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Uncertainty Assessment of Lossy and Dispersive

Lines in SPICE-Type Environments
Paolo Manfredi, Student Member, IEEE, Dries Vande Ginste, Senior Member, IEEE,

Daniël De Zutter, Fellow, IEEE, Flavio G. Canavero, Fellow, IEEE

Abstract—This contribution presents an alternative modeling
strategy for the stochastic analysis of high-speed interconnects.
The proposed approach takes advantage of the polynomial chaos
framework and a fully SPICE-compatible formulation to avoid
repeated circuit simulations, therefore alleviating the computa-
tional burden associated to traditional sampling-based methods
like Monte Carlo. Nonetheless, the technique offers very good
accuracy and the opportunity to easily simulate complex intercon-
nect topologies which include lossy and dispersive transmission
lines, thus overcoming the limitations of previous publications.
Application examples involving the stochastic analysis of on-
chip and on-board interconnects validate the methodology and
conclude the paper.

Index Terms—Circuit design, circuit simulation, polynomial
chaos, SPICE, stochastic analysis, transmission lines, uncertainty.

I. INTRODUCTION

The boost towards very-large-scale integration (VLSI) is

stressing the impact of manufacturing tolerances on the perfor-

mance of electronic circuits and interconnects. The desirability

of performing right-the-first-time designs gave raise to a very

active research field focused on the statistical assessment of

high-speed links [1]. Nevertheless, traditional Monte Carlo

analysis is often inefficient due to the slow convergence rate

and the lack of an explicit relation between the uncertain

response and the random system parameters. Because of this,

interconnect designers are seeking for expedite and reliable

stochastic modeling strategies to assess variability in the early

design phase [2].

In this framework, the so-called polynomial chaos (PC)

technique drew much attention in the electrical engineering

community. This methodology is based on spectral expansions

of random processes in terms of Hermite [3] or other orthog-

onal polynomials, according to the distribution of the input

random variables [4]. PC can be combined with a Galerkin

approach, thus becoming a stochastic Galerkin method (SGM).

This allows to recast the original stochastic problem in terms

of a larger but deterministic one, whose solution provides the

unknown expansion coefficients [4].

The PC-SGM approach has been successfully applied to

electrical networks described by modified nodal analysis
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(MNA) equations [5], [6]. However, ad hoc MATLAB im-

plementations or customized software were required for the

solution of the resulting augmented MNA equations. For

design flexibility, integration into standard circuit analysis

software, such as SPICE or Agilent’s ADS, was imperative.

A SPICE-like code for the stochastic analysis of lumped

circuits was presented in [7], but still based on a customized

solution engine with specific libraries for the different kinds

of stochastic circuit components.

However, all the above applications lacked the inclusion of

distributed transmission-line elements, which are key compo-

nents for modern high-speed designs. Although a stochastic

MTL can be in principle analyzed as a cascade of equivalent

lumped sections (see, e.g., [5] or [8]), this approach is not

suitable to accurately model high-frequency and dispersive

phenomena, such as delay or slow-wave and skin effects.

Moreover, it requires a large number of additional nodes, thus

also reducing the efficiency.

An application of PC-SGM to distributed multiconductor

transmission lines (MTLs) was first presented in [9] and then

improved in [10], where the combination with parametrized

macromodeling made the inclusion of complex frequency-

dependent wave mechanisms efficient and straightforward.

However, the approach was limited to frequency-domain

analysis and basic (source-line-load) configurations. The in-

tegration of the above methodology in SPICE-like design

environments would allow the analysis, either transient or AC,

of arbitrary network topologies. A first attempt was proposed

in [11], but the discretization scheme commonly used by the

PC-SGM partially hindered the implementation, which was

limited to lossless and dispersion-free lines. This issue has

been solved with a better discretization scheme [12], which

opens the door to a SPICE-compatible implementation of lossy

and dispersive lines [13].

In this paper, the new scheme is used to provide an efficient

strategy for the simulation of generic on-chip and on-board

interconnects in a SPICE-type environment, by outlining a

systematic approach to extend the work in [13], where only

a source-line-load configuration was considered, to the simu-

lation of arbitrary network topologies. The relevance of this

approach is exemplified by a number of illustrative applica-

tions. The new approach, for the first time, allows a PC-SGM-

based statistical (transient) analysis of distributed networks

with uncertain parameters, thus overcoming the limitations

of previous solutions and providing circuit designers with a

powerful and SPICE-compatible tool for a quick statistical

assessment of the overall interconnect response.
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II. STOCHASTIC SIMULATION OF ELECTRICAL NETWORKS

Due to the presence of random circuit components, voltages

and currents in the network also become stochastic. According

to the PC theory [3], [4], stochastic quantities (in this case,

node voltages and branch currents) can be expanded using a

proper multivariate polynomial basis {φk}Pk=0, as follows:

V (ξ) ≈
P
∑

k=0

Vkφk(ξ), I(ξ) ≈
P
∑

k=0

Ikφk(ξ), (1)

where ξ = [ξ1, . . . , ξr] encompasses all the independent

random circuit parameters, and Vk and Ik are expansion coef-

ficients to be determined. The coefficients Vk and Ik become

then the new unknowns of the problem. The polynomials {φk}
are traditionally chosen to be orthogonal with respect to the

inner product defined as

⟨f, g⟩ =
∫

Ω

f(ξ)g(ξ)w(ξ)dξ, (2)

with Ω the support of ξ and w(ξ) its probability density

function (PDF). We will come back to this choice and further

refine it in Section IV.

Expressions (1) apply both in frequency and time domain

and provide explicit relations between the stochastic voltages

and currents and the random input parameters, thus allowing

a fast extraction of statistical information. For instance, the

mean and variance are readily obtained as

E{V (ξ)} = V0, E{I(ξ)} = I0 (3)

and

Var{V (ξ)} =
P
∑

k=1

V 2
k ∥φk∥2, Var{I(ξ)} =

P
∑

k=1

I2k∥φk∥2,

(4)

respectively, where ∥φk∥2 = ⟨φk, φk⟩ is the norm of the poly-

nomials and is analytically known ∀k. Higher order moments

or distribution functions can be computed by numerically

sampling (1), this procedure being fast thanks to the analyticity

of the expressions.

In order to avoid repeated circuit simulations of the stochas-

tic electrical network, the strategy for the computation of

the PC-expansion coefficients is to obtain, by means of the

SGM, new and deterministic constitutive equations, which

relate the coefficients and are directly implementable in a

SPICE-type environment. It is important to observe that in a

circuit with N nodes and B branches, there will be N(P +1)
unknown voltage coefficients and B(P +1) unknown current

coefficients, with

P + 1 =
(p+ r)!

p!r!
, (5)

where r is the number of random parameters and p is the

expansion order (for practical applications, choosing p = 2 al-

ready provides very good accuracy). This suggests to associate

an additional node to each new voltage variable and a branch

to each new current variable. The problem is then interpreted

as an equivalent, augmented network, where the nodes are

connected by appropriate branch elements, defined by the

circuit interpretation of the new constitutive equations. The

solution then amounts to performing a single circuit simulation

of a modified, deterministic network, instead of running a large

number of Monte Carlo simulations of the original, stochastic

network.

III. NEW CONSTITUTIVE EQUATIONS

The sought-for deterministic relations are readily obtained

with the expansion and Galerkin projection of the (stochastic)

governing equations of the random circuit elements [11]. For

instance, MTLs are described by the so-called telegrapher’s

equations, which in presence of variations in their parameters

can be written in a stochastic fashion as

d

dz
V(z, ω, ξ) = − [R(ω, ξ) + jωL(ω, ξ)] I(z, ω, ξ), (6a)

d

dz
I(z, ω, ξ) = − [G(ω, ξ) + jωC(ω, ξ)]V(z, ω, ξ), (6b)

where ω is the angular frequency, whilst for a n-conductor

line R, L, G, C are the n × n p.u.l. resistance, inductance,

conductance and capacitance matrices, respectively, and V

and I are n-vectors collecting the voltages and currents along

the line. The random vector ξ in (6) identifies the quantities

affected by random variations.

The randomness of the p.u.l. matrices suggests they can be

expanded analogously to (1), i.e.

A(ω, ξ) ≈
P
∑

k=0

Ak(ω)φk(ξ), (7)

where A stands for any of the four p.u.l. matrices in (6).

The computation of the coefficients Ak is a fundamental step

which is addressed in the next section. Substitution of (1)

and (7) into (6) and application of Galerkin projection yield the

sought-for deterministic relations for the voltage and current

coefficients [10], which can be written in matrix form as

follows

d

dz
Ṽ(z, ω) = −

[

R̃(ω) + jωL̃(ω)
]

Ĩ(z, ω), (8a)

d

dz
Ĩ(z, ω) = −

[

G̃(ω) + jωC̃(ω)
]

Ṽ(z, ω), (8b)

where R̃, L̃, G̃ and C̃ are new n(P + 1) × n(P + 1)
p.u.l. deterministic (block) matrices, whereas Ṽ and Ĩ are

vectors collecting all the n(P + 1) unknown PC-coefficients

for the voltages and currents in the MTL. The augmented

p.u.l. matrices can be easily constructed using the following

expression for their n× n blocks

Ãij =
P
∑

k=0

Akαkji, (9)

where αkji = ⟨φkφj , φi⟩/⟨φi, φi⟩ are merely real numbers,

which can be computed by means of analytical formulae.

The deterministic relations in (8) can be interpreted as

pertinent to a MTL with a larger number of terminals and

connecting the 2n(P + 1) nodes which arise from the expan-

sion of the original 2n stochastic node voltages, as illustrated

in Fig. 1 for the case n = 2 and P = 2. Hence, the original

stochastic transmission line can be replaced, in the augmented
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R(ω, ξ) , L(ω, ξ)

G(ω, ξ) , C(ω, ξ)

A0

B0

A1

B1

A2

B2

C0

D0

C1

D1

C2

D2

R̃(ω) , L̃(ω)

G̃(ω) , C̃(ω)

Fig. 1. Pictorial illustration of the augmentation of a MTL-element: original
stochastic circuit element (left) and corresponding augmented deterministic
element (right).

instance of the circuit, by a larger MTL described by the p.u.l.

parameters R̃, L̃, G̃ and C̃.

Concerning the inclusion of other kinds of (lumped) circuit

elements, in this paper and without loss of generality we limit

ourselves to consider deterministic lumped components only.

Hence, the variability is exclusively provided by the distributed

elements, as this represents the main achievement of this paper.

The derivation of deterministic constitutive relations for the

voltage and current coefficients of stochastic lumped elements

has already been addressed in [7] or, alternatively, in [11].

We consider a lumped element connecting two nodes,

indicated as C and D, and described by a Norton equivalent:

I(ω, ξ) = Y (ω) [VC(ω, ξ)− VD(ω, ξ)]−A(ω), (10)

where Y and A are the equivalent admittance and current

source, respectively. It should be noted that voltages and

currents are still stochastic due to the presence in the network

of other random circuit components. Again, the application

of the SGM allows to derive deterministic equations for the

PC-coefficients, here gathered and written in matrix form:

Ĩ(ω) = Y (ω) · IP+1

[

ṼC(ω)− ṼD(ω)
]

− [A(ω), 0, . . . , 0]T ,

(11)

where IP+1 is the (P + 1) × (P + 1) identity matrix, and

the vectors denoted with a tilde collect the PC-coefficients for

the node voltages and the branch currents. Equations (11) are

decoupled and define the behavior of the branches connecting

the 2(P + 1) nodes which result from the expansion of node

voltages VC and VD, as shown in Fig. 2 for P = 2. The circuit

interpretation consists in the replication of the equivalent

admittance on the additional branches. On the other hand, no

replication is required for the equivalent source.

The reasoning in this section equivalently applies in time

domain and outlines a practical rule to derive the overall

augmented circuit, which is obtained by direct construction

and connection of the new elements consistently with the

original circuit topology [11]: stochastic lines are replaced

by their augmented counterparts, whilst deterministic lumped

elements are replicated, as shown in Figs. 1 and 2, respectively.

For the PC simulation, a single solution of this network

provides the PC-coefficients for the stochastic circuit variables.

A(ω)

Y (ω)

C D

A(ω)

Y (ω)

Y (ω)

Y (ω)

C0

C1

C2

D0

D1

D2

Fig. 2. Illustration of the augmentation of a non-stochastic lumped element.

IV. COMPUTATION AND SPICE-TYPE DESCRIPTION OF

THE AUGMENTED TRANSMISSION-LINE MODELS

The PC approach requires the computation of the expansion

coefficients Rk, Lk, Gk, and Ck to be used in (9) for the

construction of the augmented p.u.l. matrices R̃, L̃, G̃ and C̃.

Such expansion coefficients can be obtained according to the

classical projection theorem by using the inner product (2),

i.e.

Ak(ω) = ⟨A, φk⟩ =
∫

Ω

A(ω, ξ)φk(ξ)w(ξ)dξ, (12)

where A(ω, ξ) is the outcome of some function or tool for

the computation of the p.u.l. parameters. Efficient evaluation

of (12) can be achieved by means of Gaussian quadra-

tures [15], i.e. as a weighted sum of discrete values computed

at pre-defined points:

∫

Ω

A(ω, ξ)φk(ξ)w(ξ)dξ ≈
K
∑

k=0

A(ω, ξk)φk(ξk)wk, (13)

where the weights wk are related to the weighting function

w(ξ) and K+1 = (p+1)r. The points ξk are a tensor product

combination of the zeros of the adopted class of polynomials.

As far as the practical implementation is concerned, ad-

vanced SPICE-type circuit analysis tools, such as HSPICE

or Agilent’s ADS, include the “W-element” for the modeling

of lossy and dispersive MTLs [16]. The W-element is a

circuit component which provides a numerical solution of the

telegrapher’s equations (6). It generally accepts as inputs static

R, L, G and C matrices or, for dispersive lines, tabulated

frequency data. However, due to the inherent physical sym-

metry of the RLGC-matrices, the W-element only requires the

user to specify the lower triangular part of these matrices.

In Section III, we have shown how the PC-method leads

to an augmented transmission-line model, described by an

appropriately extended set of RLGC-matrices. In order to be

able to implement it into HSPICE via the W-element, we must

assure that these extended matrices are also symmetric. This is

not trivial and in order to be accomplished, as we have already

pointed out in [12], the polynomials {φk} in (2) should not

be merely orthogonal but orthonormal. This is a crucial step

for the SPICE-implementation put forward in this paper.

It is also worth mentioning that HSPICE provides an inter-

nal field solver (FS), which is capable of computing lossy and

dispersive p.u.l. parameters and simulating a transmission line



4

upon the description of its cross-section [16]. The FS can be

combined with the available feature for Monte Carlo simula-

tions, thus allowing to perform a statistical analysis of circuits

containing transmission lines with stochastic cross-sectional

parameters entirely in the HSPICE environment. Although it is

in general not accurate for structures characterized by complex

wave phenomena, such as on-chip lines, the use of the FS and

the consequent creation of consistent PC-based transmission-

line models can be useful in many practical situations.

The FS basically computes six frequency independent p.u.l.

matrices: the DC inductance L0 [H/m], capacitance C0 [F/m],

resistance R0 [Ω/m], and conductance G0 [S/m] matrices, as

well as the skin effect resistance matrix Rs [Ω/(m
√
Hz)] and

the dielectric loss conductance matrix Gd [S/(m·Hz)]. These

six matrices are combined in a frequency-dependent way to

obtain the dispersive behavior. Also, they are obtainable as an

output or supplied as an input to a W-element (the “RLGC

model”). For the creation of the augmented transmission-line

model, it is alternatively possible to project L0, C0, R0, G0,

Rs and Gd according to (13) and compute their augmented

counterparts L̃0, C̃0, R̃0, G̃0, R̃s and G̃d with (9). These

are then supplied in place of the tabular model to create a

PC-based model which is consistent with the internal FS and

therefore with the HSPICE Monte Carlo analysis.

V. VALIDATION AND NUMERICAL RESULTS

In this section, the proposed approach is applied to the sim-

ulation of several lossy and dispersive interconnect structures.

As time-domain analysis of such structures is usually more

challenging, only transient simulations are considered and

carried out using HSPICE. All the simulations are performed

on an ASUS U30S laptop with an Intel(R) Core(TM) i3-

2330M, CPU running at 2.20 GHz and 4 GB of RAM.

A. Inverted Embedded Microstrip Line

100µm

2 µm 2 µm

β β

ζ

30 µm

6.4 µm

2 µm

3 µm

3 µm

Aluminum : σ = 3.77 · 10
7
S/m

SiO2 : ǫr = 3.9, tan δ = 0.001

Silicon : ǫr = 11.7, σ = 10S/m

Fig. 3. Cross-section of the coupled on-chip IEM line (not to scale).

The first example we consider is that of the coupled inverted

embedded microstrip (IEM) on-chip line shown in Fig. 3.

Due to its tiny dimensions and presence of semiconductors,

such a configuration is characterized by high losses and a

complex frequency behavior. Therefore, its p.u.l. parameters

cannot be accurately computed by means of the HSPICE FS. A

macromodel for the p.u.l. impedance and admittance matrices

of this coupled line is available [10], based on accurate field

simulations and parameterized with respect to the base width

β and the separation of the conductors ζ. Variations in the

base width account for the trapezoidal profile resulting from

the etching process, while variations in the separation describe

the variability of the photolitographic process. Because of the

randomness of these manufacturing steps, it is reasonable to

model such parameters as two independent Gaussian random

variables. Hence, the optimal choice for the basis {φk} is

represented in this case by a properly-rescaled version of

Hermite polynomials [12]. Here, a mean value of 2µm and

a relative standard deviation of 10% are considered for β,

whereas ζ has mean 5µm and a standard deviation of 5%.

0 0.1 0.2 0.3 0.4 0.5 0.6
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−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time t, ns

F
a
r-
en
d
cr
o
ss
ta
lk
,
V
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standard deviation (MC)
average response (PC)
standard deviation (PC)

Fig. 4. Far-end crosstalk voltage on the coupled IEM line of Fig. 3.
Gray lines: subset of 100 samples from Monte Carlo simulation; other solid
lines: mean value (blue) and standard deviation (red) estimated with Monte
Carlo analysis. Markers (×) and (∗) indicate the same statistical information
obtained from the PC-expansions.

The analyticity of the parametric macromodel allows to

quickly compute a tabular PC-augmented model for the p.u.l.

parameters of the IEM line [10], and this can be supplied

as an input to a W-element in a HSPICE netlist. Also, the

macromodel is randomly sampled to perform repeated Monte

Carlo simulations. For each run, a different tabular input is

generated and a new HSPICE simulation is launched. It is

important to note that the macromodel also allows to speed-

up the Monte Carlo simulation itself, as the computation of an

actual sample of the p.u.l. parameters by means of the accurate

external solver would be much slower.

Fig. 4 shows the stochastic transient simulation of the far-

end crosstalk for the case in which one line is excited by a

1-V step source with a 50-ps risetime and internal impedance

of 1 Ω, and terminated by a capacitance of 1 pF. The other

line is quiet and is also terminated by a 1-Ω resistance and a

1-pF capacitance at the near- and far-end sides, respectively.

The gray lines show the spread of the response resulting from

a subset of 100 Monte Carlo simulations. The blue line is the

average response, while the red line is the standard deviation,

both estimated from 1000 Monte Carlo samples. The markers

depict the same statistical information obtained from a second-

order PC simulation, showing excellent agreement. The local

maxima of the standard deviation indicate points where the
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fluctuation of the response is larger.

As far as the computational times are concerned, the Monte

Carlo analysis required 29 mins, whereas the PC circuit

simulation took 2.7 s. We can thus conclude that, for this

first example, the achieved speed-up is 640×, without any

compromise on the accuracy. It is relevant to point out that

the created model is not restricted to this specific simulation,

but can be stored and re-used for other circuits involving the

same stochastic line structure. Therefore, the time required to

generate the augmented tabular model, which amounts to 53 s,

is not included in the above figures.

B. Transmission-Line Network with Single Lines

75Ω 10nH

1pF

25Ω

6nH

1pF

10nH

0.5pF 5Ω 1pF

25Ω 5nH

1pF 0.5pF 50Ω

1pF

10nH

0.5pF
50Ω

25Ω

5nH

2pF

25Ω

5nH

0.5pF

5nH

1pF 30Ω

1pF

vout(t)

ε
r
= 4.1

tan δ = 0.02
100 µm

150 µm
20 µm

length=3 cm

length=5 cm

length=3 cm

length=3 cm

length=3 cm

length=4 cm

length=2 cm

Fig. 5. Transmission-line network with single microstrip traces and corre-
sponding line cross-section.

The second example deals with the interconnect network

illustrated in Fig. 5, whose topology is inspired by [18]. In

this case, the voltage source is a 1-V pulse with rise/fall

times of 200 ps and width of 2.6 ns. The displayed mi-

crostrip cross-section, with copper traces, is considered for the

transmission-line segments. The variability is here provided

by the thickness, permittivity and loss tangent of the board

substrate, which is shared by all the lines. The HSPICE FS

is assumed to be accurate enough for the characterization of

this transmission line geometry, which is then implemented

as a W-element characterized by the description of its cross-

section.

A Monte Carlo simulation with 1000 samples is run using

the available HSPICE feature and by considering a 10%

variation of the above parameters with respect to their nominal

values. The plot in Fig. 6 shows the stochastic transient

response of the voltage vout(t) transmitted to the far-end side

of the network, together with its average value and standard

deviation. These statistical parameters are also obtained from

a PC simulation, which again reveals perfect agreement. In

this case, a second-order PC-based RLGC model described

by augmented L̃0, C̃0, R̃0, R̃s, G̃0 and G̃d matrices is

computed by means of a Gauss-Hermite quadrature and 27

calls to the FS. This step took 22.2 s. The circuit simulation

0 1 2 3 4 5 6 7 8

−0.05

0

0.05

0.1

0.15

0.2

Time t, ns

v
o
u
t(
t
),
V

Fig. 6. Voltage vout(t) transmitted to the far end of the transmission-line
network of Fig. 5. Curves identification as in the inset of Fig. 4.

of the augmented network required 7.5 s instead, whereas the

Monte Carlo simulation took 38 mins 25 s. For this second

example, the speed-up in circuit simulation is 310×.
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Fig. 7. Probability density function of vout(t) computed at t = 2.9 ns from
the Monte Carlo samples (bars) and polynomial chaos expansions (blue line).
Dashed red line: corresponding Gaussian distribution.

It is worth noting that, despite the normal distribution of

the random input parameters, the distribution of the response

is in general not Gaussian and therefore average value and

standard deviation are not sufficient for a complete statistical

characterization. For instance, Fig. 7 displays the PDF at

t = 2.9 ns, computed from the Monte Carlo samples (bars)

and from the PC-expansion (blue line). For comparison, the

dashed red line is the Gaussian distribution corresponding to

the estimated mean value and standard deviation. It should

be noted that the small number of Monte Carlo samples (the

number of samples is typically of the order of 10000) leads to

a poor resolution of the PDF compared to the result obtained

with the PC solution.

C. Transmission-Line Network with Coupled Lines

We now consider the transmission-line network displayed in

Fig. 8 [18]. The coupled lines again have a microstrip cross-

section with random geometrical parameters, i.e. the copper

trace width, trace-to-trace separation, trace thickness, and

substrate thickness have 10% independent relative standard

deviations. Furthermore, the substrate has a permittivity of

3.7 and a loss tangent of 0.02. The FS is used to characterize

the electrical behavior of the transmission-line sections. The
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Fig. 8. Transmission-line network with coupled microstrip traces and
corresponding line cross-section.

voltage source is a Gaussian pulse of peak amplitude of 1 V

and a width of about 0.177 ns at half amplitude.
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Fig. 9. Far-end crosstalk voltage vFX(t) in the transmission-line network
of Fig. 8. Curves identification as in the inset of Fig. 4.

Fig. 9 shows the results obtained with the HSPICE Monte

Carlo analysis (1000 samples) of the far-end crosstalk voltage

vFX(t), which required 14 mins 15 s. The comparison with

a PC simulation, taking 14.2 s and based on a second-

order augmented RLGC model, confirms the accuracy of the

proposed technique and shows a 60× speed-up. The generation

of the augmented model required 55 s. Finally, Fig. 10 displays

the PDF for the crosstalk peak, occurring at t = 0.9 ns.

Again, it is possible to appreciate the better reproduction of

the distribution provided by the PC result.

VI. CONCLUSIONS

This paper proposes an alternative approach to Monte

Carlo circuit simulation of high-speed interconnects affected

by random parameter variability. The method is based on

the representation of stochastic circuit variables in terms of

orthonormalized polynomial functions and applies to lossy and

dispersive multiconductor transmission lines with multiple ran-

dom variables. The determination of the expansion coefficients

allows a convenient extraction of statistical information and is

carried out via a single simulation of a modified (augmented)

circuit, which can be readily derived from the original network

topology.
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Fig. 10. Probability density function of vFX(t) for t = 0.9 ns. Gray bars:
result of Monte Carlo analysis. Blue line: estimation from polynomial chaos
expansion.

The novelty of the advocated technique lies in the extension

of literature stochastic circuit modeling strategies with the in-

clusion of lossy and dispersive distributed elements. Moreover,

it takes advantage of a SPICE-type implementation to perform

transient simulations and facilitate the analysis of arbitrary

network topologies without the need for customized software.

This kind of analysis was not possible with previously-

presented PC-based techniques.

The approach is validated by means of three application

examples involving on-chip and on-board lines. Although the

efficiency with respect to Monte Carlo depends on the number

of samples considered, the PC approach turns out to be about

two orders of magnitude faster even when a very small num-

ber of 1000 simulations is considered, nevertheless showing

excellent accuracy on the prediction of statistical information.

It is important to remark that the proposed technique can be

applied to multiconductor lines having an arbitrary number

of conductors, the efficiency of the approach being mainly

determined by the number of terms considered for the PC-

expansions.
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