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Uncertainty-aware molecular dynamics from Bayesian active
learning for phase transformations and thermal transport in
SiC
Yu Xie 1✉, Jonathan Vandermause 1,2, Senja Ramakers3,4, Nakib H. Protik 1, Anders Johansson 1 and Boris Kozinsky 1,5✉

Machine learning interatomic force fields are promising for combining high computational efficiency and accuracy in modeling
quantum interactions and simulating atomistic dynamics. Active learning methods have been recently developed to train force
fields efficiently and automatically. Among them, Bayesian active learning utilizes principled uncertainty quantification to make
data acquisition decisions. In this work, we present a general Bayesian active learning workflow, where the force field is constructed
from a sparse Gaussian process regression model based on atomic cluster expansion descriptors. To circumvent the high
computational cost of the sparse Gaussian process uncertainty calculation, we formulate a high-performance approximate mapping
of the uncertainty and demonstrate a speedup of several orders of magnitude. We demonstrate the autonomous active learning
workflow by training a Bayesian force field model for silicon carbide (SiC) polymorphs in only a few days of computer time and
show that pressure-induced phase transformations are accurately captured. The resulting model exhibits close agreement with
both ab initio calculations and experimental measurements, and outperforms existing empirical models on vibrational and thermal
properties. The active learning workflow readily generalizes to a wide range of material systems and accelerates their
computational understanding.
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INTRODUCTION
Machine learning interatomic force fields have recently emerged
as powerful tools in modeling interatomic interactions. They are
capable of reaching near-quantum accuracy while being orders of
magnitude faster than ab initio methods1–9.
Recently, efficient active learning schemes have been demon-

strated for high-efficiency data collection, where molecular
dynamics (MD) is driven by the machine learning force field,
and only configurations satisfying certain acquisition criteria6,10–15

are computed with accurate but expensive DFT calculations and
added to the training set. Among them, the FLARE6 framework
utilizes principled Gaussian process (GP) uncertainties to construct
a Bayesian force field (BFF), a force field equipped with internal
uncertainty quantification from Bayesian inference, enabling a
fully autonomous active learning workflow.
The cost of prediction of conventional GP models scales linearly

with the training set size, making it computationally expensive for
large data sets. The sparse Gaussian process (SGP) approach
selects a set of representative atomic environments from the
entire training set to build an approximate model, which can scale
to a larger training data set, but still suffers from the linear scaling
of the inference cost with respect to the sparse set size. To address
this issue, it was noticed that for the particular structure of the
squared exponential 2+3-body kernel, it is possible to map the
mean prediction of a trained model onto an equivalent low-
dimensional parametric model6,16,17 without any loss of accuracy.
It was subsequently shown that the evaluation of the variance can
also be mapped onto a low-dimensional model, achieving a
dramatically accelerated uncertainty-aware BFF18. While the
2-body and 3-body descriptions used in the previous work6,18

approach the computational speed of classical empirical poten-
tials, they are limited in accuracy. To systematically increase the
descriptive power of that approach, it is possible to extend the
formalism to include higher body order interactions. However,
inclusion of e.g. 4-body interactions requires summing contribu-
tions of all quadruplets of atoms in each neighborhood, which
adds significant computational expense. Therefore, in a more
recent work19 we used the atomic cluster expansion20 to construct
local structure descriptors that scale linearly with the number of
neighbors, enabling efficient inclusion of higher body order
correlations. An inner product kernel is then constructed based on
the rotationally invariant ACE descriptors, forming a basis for a
sparse Gaussian Process (GP) regression model for energies, forces
and stresses. Crucially, it was shown in general that in the case of
inner-product kernels with high dimensional many-body descrip-
tors, the prediction of the mean can also be mapped exactly onto
a constant-cost model via reorganization of the summation in the
SGP mean calculation19. This allows for efficient evaluation of the
model forces, energies and stresses, but does not address the cost
of evaluating uncertainties. In this work, we present a method to
map the variance of SGP models with inner product kernels. This
advance enables large-scale uncertainty aware MD and overcome
the linear scaling issue of SGPs. Building on this approach, we
achieve a significant acceleration of the Bayesian active learning
(BAL) workflow and integrate it with Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)21. Bayesian force fields are
implemented within the LAMMPS MD engine, such that both
forces and uncertainties for each atomic configuration are
quantified at computational cost independent of the training
set size.
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As a demonstration of the accelerated autonomous workflow,
we train an uncertainty-aware many-body BFF for silicon carbide
(SiC) on its several polymorphs and phases. SiC is a wide-gap
semiconductor with diverse applications ranging from efficient
power electronics to nuclear physics and astronomy. With the
discovery of a large number of extrasolar planets22, the composi-
tions and processes under extreme conditions have led to a wide
range of studies. In particular, SiC has been identified from the
adsorption spectroscopy of carbon-rich extrasolar planets23,24,
which has motivated numerous experimental and computational
studies of its high temperature high pressure behavior. The phase
transition of SiC from the zinc blende (3C) to the rock salt (RS)
phase is observed at high pressure in experiments25–31 and ab
initio calculations32–39. Empirical potentials such as Tersoff40,41,
Vashishta42,43, MEAM44, and Gao-Weber45 have been developed
and applied in large-scale simulations for different purposes.
However, empirical analytical potentials are limited in descriptive
complexity, and hence accuracy, and require intensive human
effort to select training configurations and to train. Machine
learning approaches have allowed for highly over-parameterized
or non-parametric models to be trained on a wide range of
structures and phases7,46–50. Recently, neural network potentials
were trained for SiC to study dielectric spectra51 and thermal
transport properties52, but they do not capture high-pressure
phase transitions.
In the present work, we deploy the accelerated autonomous

BAL workflow to the high-pressure phase transition of SiC, and
demonstrate that the transition process can be captured by the
uncertainty quantification of the BFF. Then the BFF is used to
perform large-scale MD simulations, and compute vibrational and
thermal transport properties of different phases. The FLARE BFF
shows good agreement with ab-initio calculations53 and experi-
mental measurements, and significantly outperforms available
empirical potentials in terms of accuracy, while retaining
comparable computational efficiency.

RESULTS
Accelerated bayesian active learning workflow
Directly using ab initio MD to generate a sufficiently diverse
training set for machine learning force fields is expensive and time
consuming, and may still miss higher-energy configurations
important for rare transformation phenomena. Here, we develop

an active learning workflow, where MD is instead driven by the
much faster surrogate FLARE many-body BFF. During the MD
simulation, the model uses its internal uncertainty quantification,
deciding to call DFT only when the model encounters atomic
configurations with uncertainty above a chosen threshold. Within
this framework, a much smaller number of DFT calls are needed,
which greatly reduces the training time and increases the
efficiency of phase space exploration.
In this work, we extend the formalism of efficient lossless

mapping to include uncertainty of ACE-based many-body SGP
models. Specifically, we implement mapped SGP variance to
enable efficient uncertainty quantification and achieve large-scale
MD simulations by interfacing the Bayesian active learning
algorithm with LAMMPS. The mappings of the forces and
uncertainty overcome the scaling with the training set size of
the computational cost of SGP regression, resulting in a significant
acceleration of the training process in comparison with using the
full SGP19.
We illustrate our active learning workflow in Fig. 1a. Starting

from a SGP model with a small initial training set, we map both
prediction mean and variance into quadratic models to obtain an
efficient BFF (details are discussed in Methods). With the mapped
SGP force field, MD simulation runs in LAMMPS with uncertainty
associated with the local energy assigned to each atom in a
configuration at each time step. The MD simulation is interrupted
once there are atoms whose uncertainties are above the thresh-
old. Then DFT is used to compute energy, forces and stress for the
high-uncertainty configurations. The training set is augmented
with the newly acquired DFT data, the SGP model is retrained and
mapped, and the MD simulation continues with the updated
model.
To illustrate the acceleration of active learning workflow with

mapped forces and variance compared to that with the SGP
model, we deploy a single active learning run of bulk 4H-SiC
system and show the performance of each part of the workflow in
Fig. 1b. If the model is not mapped, the computational cost of MD
with the SGP dominates the BAL procedure. When the mapped
force field and variances are used, the computational cost is
significantly reduced. The FLARE BFF achieves 0.76 ms ⋅ CPU/step/
atom in LAMMPS MD, which includes uncertainty quantification,
and is comparable in speed to empirical interatomic potentials
such as ReaxFF54. With mapped uncertainties, the DFT calculations
become the dominant part from Fig. 1b, i.e. the computational

Fig. 1 Workflow and performance. a Bayesian active learning (BAL) workflow with LAMMPS. It closely follows our previous work19, with the
key addition that the SGP uncertainties are now mapped and therefore much cheaper, and the MD part of the training can be done within
LAMMPS. b Time profiling of the BAL workflow with a system of 72 atoms and 100,000 MD time steps. The SGP BAL workflow collected 14
frames with 72 atoms each, with 10 representative sparse environments selected per frame. The MD is greatly accelerated using mapped
forces and uncertainty compared to sparse GP. “Others” includes time consumed outside of MD and DFT, e.g. adding training data to SGP and
optimizing hyperparameters.
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time for BAL is determined by the number of DFT calls. We also
note that the SGP model used for timing here has a small training
set of 14 frames, and the computational cost of prediction grows
linearly with sparse set size. It is worth emphasizing that after
mapping, the prediction of model forces, energies, and stresses,
and their variances is independent of the sparse set size.
Therefore, the speedup versus the SGP model is more pronounced
as more training data are collected and sparse representatives
are added.

Bayesian force field for SiC high pressure phase transition
In this work, we demonstrate the accelerated BAL procedure by
training a mapped uncertainty-aware Bayesian force field to
describe the phase transition of SiC at high pressure. We set up
compressive and decompressive MD simulations at temperatures
of 300 K and 2000 K for on-the-fly training simultaneously, where
each SGP model is initialized with an empty training set. The
parameters set for the on-the-fly training workflow is in the
Supplementary Table 1, and the complete training set information
is in the Supplementary Table 2.
The compressive MD starts with the 2H, 4H, 6H, and 3C

polytypes that are stable at low pressure, and the pressure is
increased by 30 GPa every 50 ps. The decompressive MD starts
with the RS phase at 200 GPa, and the pressure is decreased by
20 GPa every 50 ps. The training data are collected by the BAL
workflow shown in Fig. 1. Fig. 2a shows the system volume and
relative uncertainty, i.e. the ratio between the uncertainty of the
current frame and the average uncertainty of the training data set
(see details in Supplementary Method 155). In the compressive
(decompressive) MD, when the transition happens, the volume
decreases (increases) rapidly and the uncertainty spikes, since the
model has never seen the transition state or the RS (3C) phase
before. The post-transition high-pressure structure of the com-
pression run has 6-fold (4-fold) coordination corresponding to the
RS (3C) phase, and the transition is observed at 300 GPa (0 GPa) at
room temperature. The difference of the transition pressures
between the compressive and decompressive simulations is
caused by nucleation-driven hysteresis. After the on-the-fly
training is done, the training data from compressive and
decompressive MD are combined to train a master force field
for SiC, such that different phases at different pressures are
covered by our force field. In Supplementary Fig. 2 and
Supplementary Table 355, we demonstrate the accuracy of our
force field on cohesive energy and elastic constants in comparison
with DFT.

Using the mapped master force field, the phase transition
pressure (at zero temperature) can be obtained from the enthalpy
H= Etotal+ PV of the different phases. At low pressure, the RS
phase has higher enthalpy than 3C. With the pressure increased
above 65 GPa, the enthalpy of RS phase becomes lower than 3C.
As shown in Fig. 2, empirical potentials such as ReaxFF54, MEAM44,
Tersoff40 and EDIP56 produce qualitatively incorrect enthalpy
curves, likely because they are trained only at low pressures. The
Vashishta potential is the only one trained on the high pressure
3C-RS phase transition42 and presents a consistent scaling of
enthalpy with pressures qualitatively, but it significantly over-
estimates the transition pressure at 90 GPa compared to DFT.
FLARE BFF achieves a good agreement with the ab initio (DFT-PBE)
enthalpy predictions, with both methods yielding 65 GPa. We note
that our PBE value is consistent with previous first-principles
calculations such as 66.6(LDA)32 and 58(PBEsol)34.
Next we run a large-scale MD simulation with 1000 atoms for

500 ps at the temperature of 300 K. The NPT ensemble is used, and
the pressure is increased by 30 GPa every 50 ps. At 300 GPa, the
phase transition is observed from 4-fold coordination to 6-fold, as
shown in Fig. 3b. The final 6-fold coordinated structure has radial
distribution function as shown in Fig. 3c. The highest C-C, C-Si, Si-
Si peaks match the perfect RS structure, confirming that the final
structure is in the rock salt phase.
As in the smaller training simulations, the nucleation-controlled

hysteresis caused the transition pressure (300 GPa) to be much
higher than in experimental measurements (50–150 GPa)25,26,28.
To eliminate the nucleation barrier, we start our simulation with a
configuration where the 3C and RS phases coexist, separated by a
phase boundary, and evolve differently as a function of pressures.
It is worth noting that such large scale two-phase simulations are
enabled by the efficient force field and would not be possible to
perform with DFT. To recognize simple cubic (RS) and cubic
diamond (3C, zinc-blende) environments, we use polyhedral
template matching57 in OVITO58. The time evolution of the
fractions of simple cubic and cubic diamond atomic environments
is shown in Fig. 3c. The phase boundary evolves quickly within
10 fs. When pressure is greater than 160 GPa, the phase boundary
evolves to RS phase, while below 155 GPa it evolves to 3C phase,
which indicates the phase transition pressure is located between
155–160 GPa at the temperature of 300 K.
A number of experiments have measured the density-pressure

relations of zinc blende (3C) and rock salt at room tempera-
ture25–29. As shown in Fig. 4, the equation of state shows two
parallel density-pressure curves, where the one with lower density

Fig. 2 Phase transition simulation with FLARE BFF and enthalpy calculations. a A 5 ps segment of the whole training trajectory where the
3C-RS phase transition is captured during the compressive (decompressive) on-the-fly active learning, the volume decreases (increases), and
the model uncertainty spikes in the transition state. The uncertainty threshold is shown as the blue dashed line. DFT is called, and new
training data is added to the model when the relative uncertainty exceeds the threshold. b Enthalpy difference predictions from DFT (PBE,
PBEsol34), FLARE BFF and existing empirical potentials40,42,44,54,56 at pressures from 0 to 150 GPa. The crossing with the dotted zero line gives
the transition pressure predicted by enthalpy.
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is associated with the zinc-blende phase, and the other one with
the rock salt phase. The pressures and corresponding densities at
room temperature are extracted from the MD trajectories, and the
equation of state is plotted to compare with the experimental
measurements. FLARE BFF accurately agrees with the experi-
mental measurements for both phases. For the transition state,
there are not many experimental data points available, and the
measurements can be affected by the quality of the sample, but
the FLARE BFF still shows good agreement with the measured
data points.

Vibrational and thermal transport properties
To validate that the FLARE BFF gives accurate predictions of
thermal properties, we investigate the phonon dispersions and
thermal conductivities of the different polytypes and phases of
SiC. The phonon dispersions are computed using Phonopy59. As
shown in Fig. 5, FLARE BFF produces phonon dispersions in close
agreement with both DFT and experiments60–63 for both the low
pressure polytypes and the high pressure rock salt phase at
200 GPa. While in the optical branches the FLARE BFF prediction
shows minor discrepancies with DFT at the highest frequencies,
the phonon density of states (DOS) presents good agreement. In
particular, FLARE BFF captures the peak at 23 THz corresponding

to a number of degenerate optical branches. In Supplementary
Fig. 3, we show that the optical branches can be improved by
increasing the cutoff of BFF. Existing empirical potentials are much
less accurate than FLARE BFF by comparing the phonon DOS in
Fig. 5. We note that the SiC crystals are polarized by atomic
displacements and the generated macroscopic field induces an
LO-TO splitting near Γ point. The contribution from the polariza-
tion should be included through non-analytical correction
(NAC)59,64, and the first principle calculation with NAC is discussed
in ref. 65. However, since FLARE BFF model does not contain
charges and polarization, the NAC term is not considered. Thus,
our comparison is made between the FLARE BFF and DFT without
NAC. The lack of NAC accounts for the disagreement in the high
frequencies of the optical bands of 2H DFT phonon (Fig. 5) with
experimental measurements near Γ point.
Having confirmed the accuracy of the 2nd order force constants

by the phonon dispersion calculations, we then compute the
thermal conductivity within the Boltzmann transport equation
(BTE) formalism. The 2nd and 3rd order force constants are
computed using the Phono3py66 code, and then used in the
Phoebe67 transport code to evaluate thermal conductivity with
the iterative BTE solver68. In Supplementary Fig. 455, we verify that
the exclusion of the non-analytic correction does not have a
significant effect on the thermal conductivity values. Fig. 5
presents the thermal conductivities of the zinc blende phase at
0 GPa and the rock salt phase at 200 GPa as a function of
temperature. The FLARE BFF results are in good agreement with
the DFT-derived thermal conductivity for both zinc blende and
rock salt phases. The thermal conductivity of zinc blende phase
computed from DFT and FLARE BFF is also in good agreement
with experimental measurements69–72. For the high-pressure rock
salt phase, the thermal conductivity has not been previously
computed or measured to the best of our knowledge. Therefore,
our calculation provides a prediction that awaits experimental
verification in the future.

DISCUSSION
In this work we develop a BFF that maps both the mean
predictions and uncertainties of SGP models for many-body
interatomic force fields. The mapping procedure overcomes the
linear scaling issue of SGPs and results in near-quantum accuracy,

Fig. 3 Large-scale simulation of phase transition and analysis. a Large-scale MD with 1000 atoms for the 3C-RS phase transition after the
training of FLARE BFF is finished. The transition is observed at 300 GPa at room temperature in MD. b The radial distribution function of the
final structure after transition in the MD, compared with the perfect RS crystal lattice, indicating the final configuration is in the RS phase.
c The fraction of simple cubic (RS) and cubic diamond (3C, zinc-blende) atomic environments from the phase boundary evolution at different
pressures.

Fig. 4 The density-pressure relation from experimental measure-
ments25–29 and MD simulations from FLARE BFF. Zinc blende and
rock salt phases correspond to two different curves of equation of
state. Our FLARE BFF shows close agreement with experiments.
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while retaining computational cost comparable to empirical
interatomic potentials such as ReaxFF. The efficient uncertainty-
aware BFF model forms the basis for the construction of an
accelerated autonomous BAL workflow that is coupled with the
LAMMPS MD engine and enables large-scale parallel MD
simulations. The key improvement with respect to previous
methods is the ability of the many-body model to efficiently
calculate forces and uncertainties at comparable
computational cost.
As a demonstration of the ability of this method to capture and

learn subtle interactions driving phase transformations on-the-fly,
we use the BAL workflow to train a BFF for SiC on several common
polytypes and phases. The zinc-blende to rock-salt transition is
captured in both the active learning and the large-scale
simulation, facilitated by the model uncertainty. FLARE BFF is
shown to have good agreement with DFT for the enthalpy
prediction in a wide range of pressure values. The BFF model is
readily employed to perform a large-scale MD of the phase
boundary evolution, which allows for reliable identification of the
transition pressure at room temperature to be located at
155–160 GPa. The density-pressure relation predicted by FLARE
BFF agrees very well with experimental measurements. We also
find close agreement for phonon dispersions and thermal
conductivities of several SiC phases, as compared with DFT
calculations and experiments, outperforming existing empirical
potentials.

The high-performance implementation of BFFs, combining
accuracy with autonomous uncertainty-driven active learning,
opens numerous possibilities to explicitly study dynamics and
microscopic mechanisms of phase transformations and non-
equilibrium properties such as thermal and ionic transport. The
presented unified approach can be extended to a wide range of
complex systems and phenomena, where interatomic interactions
are difficult to capture with classical approaches while time- and
length-scales are out of reach of first-principles computational
methods. Uncertainty quantification in MD simulations allows for
systematic monitoring of the model confidence and detection of
rare and unanticipated phenomena, such as reactions or
nucleation of phases. Such events are statistically unlikely to
occur in smaller simulations and become increasingly likely and
relevant as the simulation sizes increase, as may be needed to
study complex and heterogeneous materials systems.

METHODS
In this section, we use bold letters such as α and Λ to denote a
vector or a matrix, and use indices such as αi and Λij to denote the
components of the vector and matrix respectively. In addition, we
use F to represent all the collected configurations with all atomic
environments (the “full” data set), and use S for a subset atomic
environments selected from those configurations (the “sparse”
data set).

Fig. 5 Phonon dispersions and phonon density of states of different polytypes from experimental measurements60–63, FLARE BFF and
DFT calculations. Lower right: Thermal conductivity of 3C-SiC at 0 GPa and RS phase at 200 GPa with temperatures from 100 to 1000 K, from
DFT and FLARE BFF calculations, and the experimental measurements69–72 are for 3C-SiC.
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Gaussian process regression
The local atomic environment ρi of an atom i consists of all the
neighbor atoms within a cutoff radius, and is associated with a
label yi that can be the force Fi on atom i or a local energy εi. The
local energy labels are usually not available in practice, but total
energies, stresses and atomic forces are. A kernel function k(ρi, ρj)
quantifies the similarity between two atomic environments, which
is also the covariance between local energies. Gaussian process
regression (GP) assumes a Gaussian joint distribution of all the
training data {(ρi, yi)} and test data (ρ, y). The posterior distribution
for test data is also Gaussian with the mean and variance

εðρÞ ¼ kεF KFF þ Λð Þ�1y (1)

VðρÞ ¼ kεε � kεF KFF þ Λð Þ�1kFε (2)

Here, ε is the local energy of ρ, kεF is the kernel vector describing
covariances between the test data and all the training data, with
element k(ρ, ρi), kεε= k(ρ, ρ) is the kernel between test data ρ and
itself, KFF is the kernel matrix with element k(ρi, ρj), Λ is a diagonal
matrix describing noise, and y is the vector of all training labels.
Since the full GP evaluates the kernel between all configurations

in the whole training set, it becomes computationally inefficient
for large data sets. A sparse approximation is needed such that the
computational cost can be reduced while keeping the information
as complete as possible. Following our recent work19 we consider
the mean prediction from Deterministic Training Conditional
(DTC) Approximation73, and the variance on local energies

εðρÞ ¼ kεS KSFΛ
�1KFS þ KSS

� ��1
KSFy (3)

VðρÞ ¼ kεε � kεSK�1
SS kSε (4)

where the kεS is the kernel vector between the test data ρ and the
sparse training set S, KSF is the kernel matrix between the sparse
subset S and the complete training set F, and KSS is the kernel
matrix between S and itself. The energy, forces and stress tensor of
a test configuration are given by the mean prediction, and their
corresponding uncertainties are given by the square root of the
predictive variance.

ACE descriptors with inner product kernel
In the FLARE SGP formalism19 we use the atomic cluster
expansion20 (ACE) descriptors to represent the features of a local
environment. The total energy is constructed from atomic clusters,
represented by the expansion coefficients of an atomic density
function using spherical harmonics. We refer the readers to
ref. 19,20 for more details. To build up the SGP model for
interatomic Bayesian force field, or BFF, we use the inner product
kernel defined as

kðρ1; ρ2Þ ¼ σ2
d1 � d2

d1d2

� �ξ

(5)

where d1 and d2 are ACE descriptors of environments ρ1 and ρ2, σ
is the signal variance which is optimized by maximizing the log
likelihood of SGP, and ξ is the power of the inner product kernel
which is selected a priori. We also normalize the kernel by the L2
norm of the descriptors. For simplicity of notations and without
loss of generality, we ignore the normalization and only showcase
the kernel without derivative associated with energy.
With inner product kernels, a highly efficient but lossless

approximation is available via reorganization of the summation in
the mathematical expression19. Defining α :¼
KSFΛ

�1KFS þ KSS
� ��1

KSFy and ~di ¼ di=di , the mean prediction of
test data ρi (Eq. (3)) from sparse training set S= {ρs} can be written

as19

εðρiÞ ¼ σ2 P

t

~di � ~dt

� �ξ
αt

¼ σ2 P

t;m1;:::;mξ

~dim1
~dtm1 � � � ~dimξ

~dtmξ
αt

¼ σ2 P

m1;:::;mξ

~dim1 � � � ~dimξ

P

t

~dtm1 � � � ~dtmξ
αt

� �

¼ P

m1;:::;mξ

~dim1 � � � ~dimξ
βm1;:::;mξ

;

(6)

The β tensor can be computed from the training data descriptors.
Thus, we can store the β tensor, and during the prediction we
directly evaluate Eq. (6) without the need to sum over all training
data t.
Crucially, the variance Eq. (4) has the similar reorganization as

the mean prediction of Eq. (6)

VðρiÞ ¼ σ2 ~di � ~di

� �ξ
� σ4

X

s;t

~di � ~ds

� �ξ
K�1
SS

� �
st

~dt � ~di

� �ξ

(7)

¼
X

m1; :::;mξ

n1; :::; nξ

ð~dim1 � � � ~dimξ
Þγm1; :::;mξ

n1; :::; nξ

ð~din1 � � � ~dinξ Þ
(8)

where γ is a tensor that can be calculated and stored once the
training data is collected, and used in inference without explicit
summation over training data i.
The reorganization indicates that the SGP regression with inner

product kernel essentially gives a polynomial model of the
descriptors. Denote nd as the descriptor dimension. The reorga-
nized mean prediction has both the β size and the computational
cost as OðnξdÞ. While the reorganized variance prediction has both
the γ size and the computational cost as Oðn2ξd Þ. By the
reorganization, both the mean and variance predictions become
independent of the training set and get rid of the linear scaling
with respect to training size. Here, we choose ξ= 2 for the mean
prediction, because (1) it is shown19 that ξ= 2 has a significant
improvement of likelihood compared to ξ= 1, while the
improvement of ξ > 2 is marginal; and (2) higher order requires
a much larger memory for β tensor, and the evaluation of Eq. (6) is
much costlier than ξ= 2.
From Eq. (8) we see that the variance has twice the polynomial

degree of that for the mean prediction. For example, when ξ= 2,
the mean prediction is a quadratic model while the variance is a
quartic model of descriptors. For computational efficiency, in this
work we use Vξ=1 for variance prediction. Vξ=1 is not the exact
variance of our mean prediction εξ=2, but an approximation using
the same hyperparameters as Vξ=2. It has a strong correlation with
the exact variance Vξ=2 as shown in Supplementary Fig. 155.
Especially, the correlation coefficients between Vξ=1 and higher
powers are close to 1.0, the perfect linear relation, even with a
training size of 200 frames. This indicates that uncertainty
quantification with Vξ=1 is able to recognize discrepancies
between different configurations as well as Vξ=2. Specifically,
atomic environments with higher Vξ=2 uncertainties will also be
assigned higher Vξ=1 uncertainties than others. It is then justified
that Vξ=1 can be used as a strongly correlated but much cheaper
approximation of Vξ=2.
To summarize, we use εξ=2 and Vξ=1 for mean and variance

predictions respectively, where both are quadratic models with
respect to the descriptors. During the on-the-fly active learning,
every time the training set is updated by the new DFT data, the β
and γ matrices are computed from training data descriptors and
stored as coefficient files. In LAMMPS MD, the quadratic models
are evaluated to make predictions for energy, forces, stress and
uncertainty of the configurations.
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