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ABSTRACT

This study presents the application of an uncertainty-based technique for automatic calibration of the

well-known Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) model.

Sequential uncertainty fitting (SUFI2) approach has been used in calibration of the HEC-HMS model

built for Tamar basin located in north of Iran. The basin was divided into seven sub-basins and three

routing reaches with 24 parameters to be estimated. From the four events, three were used for

calibration and one for verification. Each event was initially calibrated separately. As there was no

unique parameter set identified, all events were then calibrated jointly. Based on the scenarios of

separately and jointly calibrated events, different candidate parameter sets were inputted to the

model verification stage where recalibration of initial abstraction parameters commenced. Some of

the candidate parameter sets with no physically meaningful parameter values were withdrawn after

recalibration. Then new ranges of parameters were identified based on minimum and maximum

values of the remaining parameter sets. The new parameter ranges were used in an uncertainty

analysis using SUFI2 technique resulting in much narrower parameter intervals that can simulate

both verification and calibration events satisfactorily in a probabilistic sense. Results show that the

SUFI2 technique linked to HEC-HMS as a simulation–optimization model can provide a basis for

performing uncertainty-based automatic calibration of event-based hydrologic models.
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INTRODUCTION

Conceptual hydrologic models play a significant role in

predicting a basin’s response to different climatic and

meteorological processes within natural systems; however,

these models require a number of estimated parameters.

Model calibration is the procedure of adjusting the par-

ameter values until the model predictions match observed

data. Manual calibration of high-fidelity hydrologic (simu-

lation) models is tedious, time consuming and sometimes

impractical, especially when the number of parameters is

large; moreover, the high degrees of nonlinearity involved

in different hydrologic processes and non-uniqueness of

inverse-type calibration problems make it difficult to find a

single set of parameter values. There is a large body of litera-

ture on the automatic calibration of hydrologic models (e.g.

Johnston & Pilgrim ; Gupta & Sorooshian ; Duan

et al. ; Ibrahim & Liong ; Eckhardt & Arnold

; Ebtehaj et al. ). Nicklow et al. () have provided

a broad discussion on the state-of-the-art use of global optim-

ization techniques and their application to hydrologic model

calibration.

There are a number of challenging issues in the auto-

matic calibration of hydrologic models such as: model

structure and identifiability (e.g. Gan et al. ; Vrugt

et al. ), parameters non-uniqueness (e.g. Sorooshian &

Gupta ), type of objective function (e.g. Gan et al.

), multi-objective optimization (e.g. Yapo et al. ;

Madsen , ) and prediction uncertainty (Abbaspour

et al. , ).

Input parameters of hydrologic models are seldom

known with certainty. Therefore, they are not capable of
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describing the exact hydrologic processes. Input data and

structural uncertainties related to scale and approximations

in system processes are different sources of uncertainty that

make it difficult to model exact hydrologic phenomena.

Modelling uncertainty has been addressed in several studies

(e.g. Muleta & Nicklow ; Moradkhani et al. ;

Tolson & Shoemaker ). There are a number of algor-

ithms dealing with how to include different types of

uncertainty in calibration procedures such as maximum like-

lihood-based models (e.g. Sorooshian et al. ), Bayesian

approach (e.g. Kuczera a, b; Romanowicz et al. ;

Kavetski et al. a, b; Ajami et al. ; Thyer et al.

) and its extension to the generalized likelihood uncer-

tainty estimation (GLUE) approach (Beven & Binley ;

Freer et al. ; Beven & Freer ), parameter solution

(ParaSol) (Van Griensven & Meixner ), sequential

uncertainty fitting (SUFI2) (Abbaspour et al. ) and

Markov chain Monte Carlo (MCMC) (e.g. Kuczera &

Parent ). Yang et al. () compared GLUE, ParaSol,

SUFI2 and MCMC methods in an application to a water-

shed in China and found that the different methods each

may converge to different solutions at different locations

of the parameters space with more or less the same dis-

charge results.

This literature review illustrates that most applications

of uncertainty techniques are for the calibration of continu-

ous hydrologic models. A continuous model simulates a

longer period, predicting watershed response both during

and between precipitation events. The present study is

about the automatic calibration of the event-based HEC-

HMS (Hydrologic Modelling System of Hydrologic Engin-

eering Center of US Army Corps of Engineers) hydrologic

model (USACE ) using the SUFI2 algorithm (Abbaspour

et al. ). The algorithm has been used in basin-wide

(Abbaspour et al. ), country-wide (Faramarzi et al.

) and continent-wide (Schuol et al. ) large-scale

Soil and Water Application Tool (SWAT) (Arnold et al.

) calibration problems. In this study, the SUFI2 tech-

nique is linked to the HEC-HMS model and a three-stage

procedure is proposed for uncertainty-based calibration of

the combined SUFI2-HMS model. The application of the

proposed model is presented through testing it in calibration

of the HEC-HMS model built for the Tamar basin located in

north-east Iran.

THE HEC-HMS MODEL

The HEC-HMS model (USACE ) was developed as a

replacement for HEC-1, which has long been considered a

standard model for hydrologic simulation. Most of the

hydrologic models employed in HEC-HMS are event-based

models simulating a single storm requiring the specification

of all conditions at the start of the simulation. The soil moist-

ure accounting model in the HEC-HMS is the only

continuous model that simulates both wet and dry weather

behaviour.

The basin processes in the HEC-HMS are modelled by

six main components. The meteorological component is

the first computational unit by which rainfall input is

spatially and temporally distributed over the basin. Rainfall

is subject to losses modelled by the rainfall loss component.

The resulting effective rainfall contributes either to direct

runoff, modelled by a direct runoff component where it is

transferred to overland flow, or to groundwater aquifers,

modelled by a baseflow component. For flood events, the

baseflow may not be significant. Both overland flow and

baseflow enter river channels where transition and attenu-

ation of streamflow are simulated by the river routing

component. Finally, the effect of reservoirs, detention

basins and natural depressions (lakes, ponds, wetlands) is

considered by the reservoir component. Each of the com-

ponents may have a number of parameters that should be

estimated through calibration.

In automatic calibration, the parameter values depend

on the objective function of the search or optimization algor-

ithm. In characterizing a runoff hydrograph, three

characteristics of time-to-peak, peak of discharge and total

runoff volume are of the most importance. It is therefore

important that simulated and observed hydrographs match

as much as possible in terms of those characteristics. We

have used the weighted root mean squared error (RMSE)

as the minimization objective function expressed as follows:

gðiÞ ¼ RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i CiðQobs;i �Qsim;iÞ
2

k

s

ð1Þ

where Qobs,i and Qsim,i are respectively observed and simu-

lated discharges, k is the number of data, and Ci is the

weight of each discharge value. Some desired discharges
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may receive larger weights such as the peak flow. In this

study, event-based models of HEC-HMS library are used

and linked to the SUFI2 algorithm as an uncertainty based

automatic calibration technique.

SUFI2 APPROACH

The problems with calibration render uncertainty analysis

absolutely essential in hydrologic models. SUFI2 combines

calibration and uncertainty analysis to find parameter uncer-

tainties that result in prediction uncertainties bracketing

most of the measured data, while producing the smallest

possible prediction uncertainty band. In the SUFI2

approach, parameters are assumed to be stochastic. In

theory, the parameters can have any distribution yet their

cumulative distribution is uniform with an interval of 0–1.

In application, however, SUFI2 uses uniform distribution

in Latin Hypercube Sampling (LHS). This fits well with

the HMS definition of each parameter as they all have a

physically meaningful range; however, when the 95 per

cent confidence interval of a parameter is calculated,

SUFI2 uses a t-type distribution around the best parameter

value (Equations (6) and (7)). These are sampled parameters

taken from an LHS.

Starting with physically meaningful intervals for the par-

ameters, the iterative LHS based calibration with SUFI2

aims to minimize the objective function and to minimize

the parameter ranges while bracketing a reasonable percen-

tage of the measured data in the 95 per cent prediction

uncertainty (95 PPU) band. This index is a measure of the

uncertainties being accounted for in the model and is

referred to as the P-factor or the percentage of measured

data bracketed by the 95 PPU.

Another measure quantifying the strength of a cali-

bration/uncertainty analysis is the R-factor, which is the

average thickness of the 95 PPU band divided by the stan-

dard deviation of the measured data. SUFI2 hence seeks

to bracket most of the measured data with the smallest poss-

ible uncertainty band. SUFI2 starts by assuming a large

parameter uncertainty and then decreases this uncertainty

in steps while monitoring the P-factor and the R-factor. A

P-factor of 1 and R-factor of zero is a simulation that exactly

corresponds to the measured data. A balance must be often

reached between the two factors. A short step-by-step

description of SUFI2 algorithm is as follows (Abbaspour

).

Step 1. An objective function should be defined. There

are 7 different options (multiplicative and summation form

of RMSE, Chi-square, R2, Nash–Sutcliffe, bR2, and ranked

sum of square error). In this application we used RMSE as

defined in Equation (1).

Step 2. Physically meaningful absolute minimum and

maximum ranges are defined for the parameters as

b j : b j;abs min ≤ bj ≤ b j;abs max j ¼ 1; . . . ;m ð2Þ

where bj is the jth parameter and m is the number of par-

ameters to be optimized.

Step 3. A sensitivity analysis is performed by keeping all

parameters constant to realistic values, while varying each

parameter within ranges assigned in the second step.

Step 4. Initial ranges are assigned to parameters for the

first round of LHS

bj : b j;min ≤ bj ≤ b j;max j ¼ 1; . . . ;m ð3Þ

These ranges are smaller than the absolute ranges, are

subjective and depend upon experience. The sensitivity

analysis in step 3 provides a valuable guide for selecting

appropriate ranges.

Step 5. LHS is used next to draw n sets of parameter

combinations where n is the number of desired simulations.

In this study, we have used a dynamic procedure in which n

is larger in the first few iterations. The simulation program

(HEC-HMS) is then run n times in each sampling round

and the simulated output variable(s) of interest (discharge),

corresponding to the measurements is saved.

Step 6. As a first step in assessing the simulations, the

objective function (g) is calculated.

Step 7. A series of measures are calculated to evaluate

each sampling round. First, the sensitivity matrix, J, of g(b)

is computed using

J ¼ Δgi=Δb
i
j i ¼ 1; . . . ;Cn

2 ; j ¼ 1; . . . ;m ð4Þ

where Δgi is the difference in the objective function between

any two parameter sets and the number of comparisons
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equals all possible combinations of parameter sets calcu-

lated by Cn
2 ¼ n !=½2 ! � ðn� 2Þ !�, which is the number of

rows in the sensitivity matrix J. The relative difference of

objective values with respect to parameter j (Δgi=Δb
i
j) consti-

tutes an element of Jwithm columns wherem is the number

of parameters. Note that Δbij is the difference of jth par-

ameter values for combination i.

An equivalent of a Hessian matrix H, is then calculated

by following the Gauss–Newton method as H¼ JTJ. Based

on the Cramer–Rao theorem (Press et al. ), an estimate

of the lower bound of the parameter covariance matrix, C,

is calculated from C ¼ s2gðJ
TJÞ�1 where s2g is the variance of

the objective function values resulting from n runs. The esti-

mated standard deviation and 95 per cent confidence

interval of a parameter bj is calculated from the diagonal

elements of C as

sj ¼
ffiffiffiffiffiffiffi

C jj

q

ð5Þ

bj;lower ¼ b�j � absðtv;0:025Þsj ð6Þ

b j;upper ¼ b�j þ absðtv;0:025Þsj ð7Þ

where b�j is the parameter bj for one of the best sets and v is

the degree of freedom (n�m). Parameter correlations can

then be assessed as follows

rlj ¼
Clj

ffiffiffiffiffiffi

Cll

p
ffiffiffiffiffiffiffi

C jj

p
ð8Þ

The correlation matrix r quantifies the change in the

objective function as a result of a change in parameter l, rela-

tive to changes in the other parameters j.

In the calculations of this step, on one hand, n should be

large enough in order to increase the chance of generating

good solutions in each sampling round. On the other

hand, when the parameter ranges become quite narrow

after a few iterations, Δbj for some js in J may tend to

equal almost zero depending upon round-off and truncation

errors and computation precision. This may make esti-

mation of C elements numerically unstable, due to the

(JTJ ) term as it may become singular. In this case, we set

those elements of J to zero based on the following interpret-

ation: suppose dbr ≈ 0 after LHS, the result would be

dg

dbr
¼

X

b

j¼1

@g

@bj
dbj=dbr

For j¼ r, we have @g=@bj ¼ 0 and for j≠ r one can set

dbj=dbr ¼ 0 as the parameters are assumed to be indepen-

dent leading to Δgi=Δbr ≈ 0 in case dbr ≈ 0.

Step 8. The 95 PPU is calculated by the 2.5th (XL)

and 97.5th (XU) percentiles of the cumulative

distribution of every simulated point. The average dis-

tance d between the upper and the lower 95 PPU is

determined by

�dx ¼
X

k

z¼1

ðXU;z �XL;zÞ=k ð9Þ

where k is the number of observed data points.R-factor is sub-

sequently expressed as

R-factor ¼ dx=σX ð10Þ

where σX is the standard deviation of themeasured variableX

(discharge). A value of less than 1 is a desirable measure for

the R-factor (Abbaspour ).

Step 9. The value of d tends to be quite large

during the first sampling round; hence, further sampling

rounds are needed with updated parameter ranges calcu-

lated by

b0j;min ¼ b j;lower

�max
ðb j;lower � b j;minÞ

2

�

;
ðb j;max � b j;upperÞ

2

�

ð11Þ

b0j;max ¼ b j;upper

þmax
ðb j;lower � b j;minÞ

2

�

;
ðb j;max � b j;upperÞ

2

�

where b0 indicates updated values. Parameters of the best

simulation is used to calculate b j;lower and b j;upper. More

details on SUFI2 approach may be found in Abbaspour

().
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CASE STUDY AND THE MODEL SET UP

The studyarea is theGorganroud river basin in Iranextending

from the north-west of Khorasan province to the Caspian Sea

in the eastern side. The basin is divided into three sub-basins

named Tamar, Tangrah andGalikesh.Due to flash floods and

subsequent damages, there is an urgent need for flood control

management plans for the basin. The most severe flood event

in Gorganrood occurred in August 2001 with a peak flow of

3,000 m3/s. Annual distribution of rainfall depth in the

basin varies between 200 and 850 mm (IWRI ). Data

on measured flood events is lacking, hence one may have dif-

ficulty in building a calibrated model of the basin. In this

study, we have focused on the Tamar basin as data for this

region is more reliable. The Tamar basin has an area of

about 1,530 km2 with only one hydrometric station used for

data compilation. Among all measured flood events, four

have more reliable data: three events are used for calibration

and one for verification in this study. The date and amount of

peakflowsof the events are given in Table 1. The hydrographs

and interpolated hyetographs of each event are also shown in

Figure 1.

Table 1 | Date, peak discharge and duration of flood events at the Tamar basin

Event Date Peak flow (m3/s) Duration (hr)

1 19 September 2004 128 20

2 6 May 2005 299 30

3 9 August 2005 783 19

4 8 October 2005 120 13

Figure 1 | Observed hydrographs and hyetographs of flood events at the Tamar basin.
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The Tamar basin was divided into seven sub-basins with

three routing reaches and four junctions (Figure 2). There

exists only one hydrometric station with reliable measured

discharge data located at the basin outlet (junction 3). Junc-

tions are used to represent river confluence points or other

important points of interest such as hydrometric stations.

They are also needed for characterizing routing reaches as

an important element of hydrologic models.

The Soil Conservation Service-Curve Number (SCS-CN)

and Clark methods were used for estimating hydrologic

losses and transforming rainfall to runoff. The Muskingum

method was used for flow routing in the reaches. The SCS-

CN method has two parameters which are curve number

and initial abstraction coefficient. Upper and lower limits

for the curve numbers were defined using physiographic

maps of the sub-basins and soil conservation service table

± 5 (IWRI ). Initial abstractions were assumed to be

between 0.15S and 0.25S (IWRI ) where S is the maxi-

mum retention of the basin. The Clark hydrograph method

also has two parameters including time of concentration

and storage coefficient. For the time of concentration, tc,

estimated from the basin’s lag time, tlag, the following

equations were used.

tlag ¼
ðL × 3:28Þ0:8 × ð1;000=CN � 9Þ0:7

1; 900y0:5
ð12Þ

tc ¼ 1:67 � tlag ð13Þ

where L is the length of river (m), y is the slope of sub-basin

and S (cm) was already defined. As all of the above par-

ameters were known, there was no need to calibrate the

time of concentration. However, another equation has

been presented relating storage coefficient, R, and time of

concentration as follows

R

Rþ tc
¼ const ð14Þ

with suggested values between 0.2 and 0.6 for the constant

number. We calibrated the constant number and conse-

quently the storage coefficient. Therefore, each sub-basin

has three parameters resulting in 21 parameters to which

three routing parameters (one for each reach) are added.

Of the two parameters of the Muskingum method, K was

estimated by the const in Equation (14). Initial parameter

ranges and values in each sub-basin were based on prelimi-

nary manual calibration and are given in Table 2 (IWRI

).

ANALYSIS AND RESULTS

Analyses with synthetic data

Before using SUFI2 in the case study and real data, it would be

helpful to test how it performs against synthetically generated

error-free data. The procedure was conducted in two stages:

first, a number of error-free synthetic hydrographs were

constructed using parameter values sampled from some

assumed narrow intervals for parameters; second, the SUFI2

algorithm was used to test if the best parameter sets are

within the assumed ranges and whether the simulated hydro-

graphs based on the identified parameters are close to the

error-free target hydrographs aforementioned.

LHS was used to generate the synthetic parameter sets.

In this regard, the range of each parameter (i.e. its uncer-

tainty) was taken as 10 per cent of its upper bound. Four

different parameter sets were sampled from these selected

ranges. Then runoff hydrographs at the basin outlet were

simulated using the sampled parameter sets as synthetic

target hydrographs. Subsequently, SUFI2 was used as an

inverse approach for estimating the best parameter sets

associated with each of the target hydrographs. Note thatFigure 2 | Schematic representation of the Tamar basin model in HEC-HMS.
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initial parameter ranges in the first SUFI2 iteration were

much wider than the narrow bounds used to generate

samples. All other basin and rainfall characteristics were

similar to those considered for the Tamar basin case study.

Table 3 reports the bounds and the sampled parameter

values as well as parameter sets identified by SUFI2 and

Figure 3 compares the hydrographs simulated using the

sampled and the identified parameter values.

Figure 3 illustrates that most of parameter values ident-

ified by SUFI2 are within or close to the narrow bounds

selected for the parameters. However, a number of par-

ameter values are outside of the bounds and are not

correctly identified, while the simulated hydrographs based

on the identified parameter values are almost the same

as the sampled error-free target hydrographs (Figure 3).

This is an issue reported in several other studies (e.g.

Sorooshian & Gupta ; Yang et al. ) showing the

non-uniqueness feature of calibration problems as there

could be different parameter values located at different

regions of the parameters’ space all resulting in more or

less similar simulated hydrographs. Also, the response sur-

face (objective function) of a calibration problem might be

insensitive with respect to some of the parameters. These

difficulties may cause non-identifiability problems for any

automatic calibration technique.

We tested whether the non-identifiability issue with

some of the parameters in our case is something related to

SUFI2 only or if it could be found in other calibration

approaches as well. This was done using two other global

optimization techniques to identify parameter sets associ-

ated with each of the sampled error-free target

hydrographs. These two techniques are particle swarm

optimization (PSO) and genetic algorithms (GAs). The

results comparing SUFI2 with the other two techniques

are also presented in Table 3 and Figure 3. The objective

function values obtained by different techniques are

reported in the last row of the table.

Comparison of the objective values associated with the

best solutions of the last iteration of SUFI2 with those of

PSO and GAs show that, in all cases, SUFI2 has arrived at

objective values better than or at least very close to, those

of other global optimization techniques. Furthermore,

some of the parameter values identified by SUFI2, PSO

and GAs are different while their simulated hydrographsT
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Table 3 | Testing SUFI2 performance against synthetic parameter sets and hydrographs compared to PSO and GA

Sample 1 Sample 2 Sample 3 Sample 4

Identified Identified Identified Identified

Upper

bound

Lower

bound Sampled SUFI2 PSO GA Sampled SUFI2 PSO GA Sampled SUFI2 PSO GA Sampled SUFI2 PSO GA

CN1 91 82 84.9 89.9 85.2 75.5 88.8 90.8 88.6 92.6 84.3 90.9 87.6 86.3 84.5 89.9 87.0 87.0

CN2 91 82 84.2 80.7 82.3 82.3 82.6 86.9 88.7 88.4 84.3 62.8 88.5 66.9 83.2 73.8 86.6 83.6

CN3 91 82 84.3 73.8 83.5 86.9 87.8 85.1 84.7 80.4 82.1 84.0 81.04 63.7 87.3 80.7 84.3 83.7

CN4 91 82 87.5 84.9 84.8 88.8 89.2 84.9 84.8 84.9 90.6 84.9 84.8 90.3 87.47 84.9 83.9 85.0

CN5 91 82 85.1 80.7 83.1 79.1 88.7 83.2 83.9 79.5 90.8 83.9 83.8 89.3 85.1 80.6 83.4 80.5

CN6 91 82 89.5 88.1 90.4 88.6 85.5 71.7 89.1 94.8 89.3 86.5 87.8 85.9 89.4 88.1 85.7 84.7

CN7 91 82 84.6 86.6 83.6 73.7 86.7 79.6 88.2 89.8 85.3 88.6 89.2 75.5 84.6 86.5 90.3 83.8

Ia1 0.25 0.225 0.25 0.16 0.22 0.15 0.24 0.19 0.15 0.18 0.23 0.19 0.16 0.2 0.25 0.16 0.19 0.19

Ia2 0.25 0.225 0.24 0.22 0.18 0.24 0.23 0.24 0.15 0.22 0.23 0.19 0.16 0.21 0.24 0.22 0.19 0.18

Ia3 0.25 0.225 0.25 0.18 0.24 0.23 0.23 0.17 0.17 0.19 0.23 0.17 0.15 0.26 0.25 0.18 0.19 0.18

Ia4 0.25 0.225 0.25 0.2 0.18 0.22 0.24 0.19 0.15 0.14 0.23 0.16 0.15 0.17 0.25 0.20 0.18 0.18

Ia5 0.25 0.225 0.23 0.16 0.18 0.14 0.23 0.18 0.15 0.21 0.24 0.15 0.15 0.18 0.23 0.16 0.19 0.19

Ia6 0.25 0.225 0.23 0.23 0.18 0.21 0.24 0.25 0.17 0.15 .24 0.19 0.24 0.16 0.23 0.23 0.17 0.23

Ia7 0.25 0.225 0.24 0.17 0.17 0.19 0.23 0.17 0.17 0.18 0.23 0.24 0.16 0.16 0.24 0.18 0.24 0.22

Cons1 0.6 0.54 0.54 0.59 0.58 0.39 0.55 0.57 0.58 0.6 0.56 0.59 0.56 0.46 0.54 0.59 0.56 0.56

Cons2 0.6 0.54 0.59 0.26 0.51 0.32 0.58 0.52 0.21 0.6 0.54 0.59 0.59 0.26 0.59 0.25 0.59 0.5

Cons3 0.6 0.54 0.57 0.59 0.54 0.67 0.57 0.44 0.57 0.49 0.54 0.49 0.23 0.38 0.58 0.59 0.57 0.56

Cons4 0.6 0.54 0.58 0.51 0.51 0.58 0.59 0.44 0.51 0.51 0.56 0.45 0.46 0.53 0.58 0.51 0.54 0.53

Cons5 0.6 0.54 0.55 0.38 0.56 0.57 0.59 0.35 0.50 0.39 0.56 0.27 0.33 0.51 0.55 0.38 0.48 0.37

Cons6 0.6 0.54 0.55 0.42 0.44 0.28 0.57 0.55 0.58 0.6 0.59 0.27 0.58 0.50 0.55 0.42 0.33 0.23

Cons7 0.6 0.54 0.59 0.42 0.29 0.41 0.55 0.52 0.56 0.5 0.56 0.58 0.57 0.47 0.58 0.42 0.5 0.49

Xmusk,1 0.5 0.45 0.47 0.29 0.47 0.42 0.45 0.42 0.38 0.47 0.47 0.24 0.48 0. 29 0.47 0.29 0.43 0.41

Xmusk,2 0.5 0.45 0.48 0.47 0.42 0.4 0.49 0.48 0.46 0.34 0.49 0.33 0.46 0.25 0.48 0.47 0.48 0.33

Xmusk,3 0.5 0.45 0.47 0.28 0.37 0.4 0.47 0.48 0.33 0.32 0.46 0.21 0.45 0.26 0.46 0.28 0.48 0.46

RMSE – – – 9.2 6.5 14.5 – 25 17.7 17.11 – 19.2 23.8 20.17 – 9.2 4.67 5.17
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(Figure 3) are almost identical. This reveals the well-known

non-uniqueness characteristic of inverse calibration pro-

blems reported in other studies such as Yang et al. (),

wherein SUFI2 has been compared with three other uncer-

tainty based techniques (i.e. GLUE, MCMC and ParaSol).

Calibrating the hydrologic model of the Tamar basin

using SUFI2 approach

Of the four flood events, the first three events were used for

calibration and the last for verification. Figures 4 and 5(a

and b) show the parameter and simulated discharge sets

including the best solution in the first and last iterations of

the SUFI2 approach, respectively. Figure 5(c) depicts the

objective value of the best solution against the iteration

number for event 1. It is seen that the best simulated dis-

charge of the last iteration is close to the observed flood

hydrograph, especially the rising limb; however, a slight

divergence is seen at terminal hours of the recession

curve. Attempts taken to improve the simulated recession

curve showed that divergence can be removed at the

expense of worsening peak discharge and time-to-peak of

the simulated hydrograph.

Figures 6(a) and 7(a) show the last-iteration’s simulated

discharges and convergence curve of the best objective

value for the second event. For this event and event 3, the

variation of parameter ranges and discharges in different

iterations are not shown due to a lack of space and because

they were the same as that of Figure 4 for the first event. We

found no parameter sets that could accurately simulate the

Figure 3 | Simulated hydrographs using sampled and identified parameter values by SUFI2, GA and PSO.
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Figure 5 | Best and 200/25 simulated discharge hydrographs at basin outlet in the first (plot a)/last (plot b) iteration and convergence of objective function (plot c), event 1.

Figure 4 | Best parameter set, parameter bounds and 200/25 simulated parameter sets in the first (plot a)/last (plot b) iteration for event 1. Note: the best set may not be observable due to

large number of simulations.
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second event, particularly its recession limb. A significant

effort was put into improving the calibration of this event

by running the model with a larger number of simulations

in each iteration and also with a larger iteration number

as well as widening parameter ranges. The results, however,

were almost the same as the one shown in Figure 6(a) indi-

cating that this was not a calibration issue.

Calibrated hydrograph of event 3 is illustrated in

Figure 6(b) with its objective function convergence curve

for the best simulation in Figure 7(b).

As mentioned before, the number of simulations was

dynamically tuned. In the first iteration, around 200 were

chosen in order to increase the chance of generating a

good or near global optimal solution. Results showed that

this many simulations were unnecessary and thus we used

100 in the second iteration and 25 in subsequent iterations.

This strategy performed quite satisfactorily and the results

were similar to the case where 200 simulations were made

in each iteration. Moreover, as the iterations proceed and

the parameter bounds become narrower in subsequent iter-

ations, generating a large number of parameter sets within

much narrower parameter intervals may cause numerical

instabilities in calculating elements of the Hessian matrix.

After inspecting the calibrated parameter values of

events 1 to 3 in different iterations, we found that each

event may be simulated by either a single- or interval-

Figure 6 | Best and 25 simulated discharge hydrographs at basin outlet in the last iteration, events 2 (plot a) and 3 (plot b).

Figure 7 | Convergence curve of the best objective function, events 2 (plot a) and 3 (plot b).
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valued (as SUFI2 estimates parameter bounds associated

with different uncertainty levels) sets of parameters. No

unique parameter values (intervals) were found by which

all three events could be reasonably simulated. This is of

course understandable for those parameters related directly

to the initial moisture condition of the basin such as initial

abstraction coefficients, although it has been reported

(IWRI ) that the anticipated moisture condition for all

three events before starting the flood storms had been the

average condition. Moreover, the non-uniqueness feature

of parameter values were tested by comparing parameter

intervals in iterations with acceptable P-factor, R-factor

and RMSE values to test the width of intersection of the

intervals of separately calibrated events. It was found that

overlaps of the intervals were small. We will test this further

in the next step when joint calibration of events is

performed.

Figure 8 illustrates the last iteration’s discharges and the

best objective function’s convergence curve in which events

1, 2 and 3 are calibrated jointly. This shall be called scen-

ario-0 hereafter. Figure 8 shows that although events 2

(Figure 8(b)) and 3 (Figure 8(c)) are simulated as well as

they were in the single-event calibration cases, event 1

(Figure 8(a)) has not been calibrated adequately as its

volume and peak discharge are significantly over-

estimated. Moreover, increasing the number of simulations

and iterations as well as enlarging the parameter ranges

did not significantly improve the situation. In another

attempt named scenario-0W, a larger weight (say 5) was

given to the RMSE of event 1 in the objective function in

Figure 8 | Best and 25 simulated discharge hydrographs of events 1 (plot a), 2 (plot b) and 3 (plot c) at basin outlet in the last iteration and the convergence curve of the best objective

function (plot d), jointly calibrated events, scenario-0.
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order to encourage the model to find a parameter set by

which event 1 can be better simulated. The simulated dis-

charges (not shown because of lack of space) showed

those of event 3 will be significantly under-estimated, even

though flow and runoff volume of event 1 were simulated

much better.

Results of scenarios-0 and 0W support this hypothesis

that there is no unique set of parameters in which events 1

and 3 can simultaneously be calibrated. As a result, we

decided to increase the number of calibration parameters,

especially those directly related to the basin’s initial con-

dition. To keep the number of parameters as small as

possible, only seven parameters including either initial

abstraction parameters of event 1 or event 3 were

considered to be different. Thus, the number of independent

calibration parameters was increased from 24 to 31 without

widening parameter ranges. As a result, flood hydrographs

were better simulated but still with larger RMSE values com-

pared with those obtained from single-event calibration

scenarios. Therefore, the upper bounds of initial abstraction

coefficients of event 1 were increased from 0.25 to 0.45,

while keeping those of events 2 and 3 at 0.25. This scenario,

referred to as scenario-1, allows the model to decrease peak

flow and flood volume of the first event’s simulated hydro-

graph. The last-iteration’s simulated hydrographs

compared with the observed floods including the variation

of the best objective value in different iterations are depicted

in Figure 9.

Figure 9 | Best and 25 simulated discharge hydrographs of events 1 (plot a), 2 (plot b) and 3 (plot c) at basin outlet in the last iteration and the convergence curve of the best objective

function (plot d), jointly calibrated events with 31 parameters, scenario-1.
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Figure 9 shows that all events have been reasonably

simulated, although event 1’s hydrograph is bi-modal. The

better obtained performance can be verified by comparing

Figures 9(d) and 7(d) where the best simulated objective

function of scenario-1 (183.7) is better than scenario-0

(about 240). Inspecting the best parameter values in

scenario 1 implies that initial abstraction coefficients of

two sub-basins, out of seven, were about 0.4, which is not

physically justified. More physically meaningful coefficients

could have been achieved if we had added another set of

seven parameters to treat the initial abstraction coefficients

of all events differently, or consider separate time of concen-

trations at least for one of the events. However, we believe

this may not be helpful, because the number of parameters

should be kept as small as possible as long as reasonable

simulated discharges are achieved and the price paid is

only widening the parameter ranges slightly beyond their

initially selected values. This is certainly an issue needing

more attention because the uncertainty in parameters that

have physical values that are not meaningful may come

from different sources such as: gauge precipitations,

observed discharges, neglecting spatial distribution of pre-

cipitation, and/or incompleteness of the adopted rainfall–

runoff model, and the functions representing physical

processes taking place in the basin.

Another way to improve the model fit is to decrease the

lower bound of initial abstractions of event 3 and keep their

upper bounds unchanged (say 0.25) for all events. There-

fore, in another scenario (scenario-2) the lower bounds of

initial abstractions of event 3 were decreased from 0.15 to

zero in order to let the model increase the peak flow and

flood volume of event 3. Note that in this case the

number of parameters was again 31 assuming that the

initial abstraction parameters of events 1 and 2 can be

different from event 3. Furthermore, (not shown because

of lack of space) all three discharge hydrographs were

reasonably simulated while event 1’s discharge hydrograph

remained bi-modal. Inspecting the best parameter values of

event 3 obtained in this scenario (scenario 2) revealed that

the initial abstractions of two sub-basins were less than

0.05. In conclusion, one should have either increased the

initial abstraction coefficients of event 1 or decreased

those of event 3 in order to have all three events jointly

calibrated.

Because in both scenarios 1 and 2, the initial abstrac-

tions at least for some sub-basins were either larger

(scenario 1) or smaller (scenario 2) than the initially selected

upper and lower bounds, we were interested to test if it was

possible to find another set of parameters in which initial

abstractions were within, or close to, the initially selected

bounds. For this reason, the 31-parameter calibration pro-

blem was re-run with the upper bounds of initial

abstraction coefficients of event 1 set to 0.35 (instead of

0.45 in scenario 1) and the lower bounds of the coefficients

of other events (2 and 3) set to 0.05 (instead of zero in scen-

ario 2). This scenario, named scenario 3 resulted in the same

results as those of scenarios 1 and 2 in terms of simulated

discharges and the best objective function.

There are now three parameter sets (scenarios 1–3)

simulating all calibration events more or less properly but

with different initial abstraction coefficients. We hoped

that the other 17 parameters of these three sets could be

almost the same. If it was so, we would say that there is a

unique set of parameters by which all calibration events

and hopefully validation events could be simulated.

However, this was not the case, which we believe could be

due to the non-uniqueness feature of the calibration

problem. So the question of which parameter set is better

or closer to the true parameter values still remains difficult

to answer. On the other hand, the answer could also

depend upon the criterion or criteria characterizing the

meaning of ‘better’ and ‘true’ in the context of uncertainty-

based modelling. We will discuss this issue later. Although

the set with initial abstractions closer to the physically

meaningful values (scenario 3) may be preferred, this

is something that needs to be evaluated in the verification

stage.

VERIFICATION ANALYSES

There are nine sets of calibrated candidate parameter sets:

three sets resulting from separately calibrated events, one

set as the mean values of the three sets, and five sets

obtained from joint calibrations (i.e. 0, 0W, 1, 2 and 3).

Figure 10(a) illustrates the simulated flood hydrograph of

event 4, as the verification event, by the parameters of the

above nine sets.
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Results show that none of the parameter sets can simu-

late event 4’s hydrograph, although two of them (i.e. those of

scenarios 1 and 3 of jointly calibrated events) perform better

than others. However, because seven calibrated parameters

deal with initial abstraction, these parameters need to be

calibrated for event 4. Calibration here means finding a con-

stant coefficient, which upon multiplication by initial

abstractions makes the peak discharge of each set almost

equal to that of the observed ones. This procedure guaran-

tees relative ratios of initial abstractions of sub-basins to

remain unchanged which makes sense from a physical

point of view. Figure 10(b) shows all the simulated hydro-

graphs with recalibrated initial abstraction parameters.

Generally, a model should not be recalibrated in the ver-

ification stage as verification is for testing a calibrated model

to check how well that model performs against data not

used in the calibration stage. However, recalibration has

been done only for the initial abstraction parameters and

not the basin parameters. This is a feature that should be

recognized in event-based hydrologic models because par-

ameters representing the initial basin conditions should in

reality not be calibrated. If parameters related to initial con-

ditions of the basin are not properly identified for each

specific flood event, other basin parameters will not be

correctly identified. On one hand, we can not use all of

the data and events in the calibration stage; as it is necessary

to test how the calibrated model and the parameters

suggested will perform against future events and to make

sure the calibrated model has not been overfitted. On

the other hand, the parameter values related to the basin

initial conditions obtained based on calibration events may

not be representative for basin initial conditions of other

flood events such as verification events. Therefore, they

need to be adjusted according to the other events’ initial

conditions.

Figure 10(b) shows that most of the simulated hydro-

graphs are similar because they have reconstructed peak

discharges with a slight error in the time-to-peak value,

except in the first solution set. Moreover, parameter sets

have difficulty with simulating the atypical recession

curves of the observed hydrograph; however, jointly

calibrated event scenarios (the last five scenarios)

perform better than others (first four sets). Consequently,

it would be hard to select the best parameter set among

those nine sets. However, comparison of their simulated

objective function (RMSE) and initial abstraction (Ia)

ranges could be helpful (Table 4 gives such additional

information).

As shown in Table 4, the set obtained by averaging the

parameter values of the single-event calibration scenarios

has not performed as well as the other sets. Moreover, par-

ameter sets whose initial abstractions are either less than

0.05 or greater than 0.45 were considered to be less phys-

ically meaningful; hence, sets three and eight and the one

with averaged parameter values were removed. There

remained six parameter sets whose RMSE were close

Figure 10 | Simulating event 4 by the parameter sets obtained in calibration stage without (plot a) and with (plot b) recalibrating initial abstractions.
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while their parameter values were within acceptable ranges.

The simulated RMSEs of the five remaining sets range

between 21.41 and 22.82, which are statistically identical.

The last solution (scenario 3) has a slightly larger RMSE

value of 24.62, but it was not removed from consideration

because its ranges of initial abstractions were closer to the

initially selected lower and upper bounds. The parameter

values of those six solutions, other than initial abstractions,

are presented in Table 5.

Table 5 shows that the ranges of parameter values are

still wide and non-unique; hence, a unique set cannot be

selected. So far we have not addressed the indices of uncer-

tainty in SUFI2, mainly P-factor and R-factor. SUFI2 does

not search for single-valued parameters but intervals

Table 4 | Simulated objective function and initial abstraction values of all recalibrated parameters

Parameter sets Event 1 Event 2 Event 3 Mean Events Scenario 0 Scenario 0W Scenario 1 Scenario 2 Scenario 3

Simulated RMSE 21.6431 22.8237 21.4624 38.0544 21.4112 21.6312 21.5938 21.5938 24.6156

Sub-basin’s 1 Ia coefficient 0.4005 0.2989 0.5201 0.3008 0.4567 0.2938 0.4070 0.95 0.2205

Sub-basin’s 2 Ia coefficient 0.3579 0.2586 0.6050 0.3013 0.4545 0.2941 0.4227 0.95 0.3092

Sub-basin’s 3 Ia coefficient 0.3380 0.2894 0.4394 0.2631 0.4584 0.2100 0.4538 0.9500 0.2309

Sub-basin’s 4 Ia coefficient 0.4052 0.2747 0.5936 0.3141 0.3902 0.3200 0.4263 0.9500 0.3570

Sub-basin’s 5 Ia coefficient 0.3563 0.3628 0.4826 0.2964 0.3606 0.2710 0.3968 0.0054 0.3581

Sub-basin’s 6 Ia coefficient 0.3846 0.3113 0.4698 0.2875 0.3474 0.2312 0.2258 0.6586 0.2564

Sub-basin’s 7 Ia coefficient 0.3155 0.3906 0.4749 0.2913 0.4426 0.1979 0.1796 0.8876 0.1246

Min Ia 0.3155 0.2586 0.4749 0.2631 0.3474 0.1979 0.1796 0.0054 0.1246

Max Ia 0.4052 0.3906 0.6050 0.3141 0.4584 0.3200 0.4538 0.95 0.3581

Table 5 | Comparison of parameter values, other than initial abstractions, of six screened-out parameter sets

Parameter values Event 1 Event 2 Scenario 0 Scenario 0W Scenario 1 Scenario 3

CN1 65.97 78.69 82.57 77.70 83.60 78.10

CN2 84.34 72.56 83.59 82.72 78.76 76.31

CN3 76.03 67.82 67.28 60.91 68.66 58.30

CN4 60.05 60.84 62.11 60.01 61.09 60.96

CN5 58.39 79.92 77.11 63.42 72.94 71.47

CN6 88.88 76.43 74.35 76.37 73.76 70.19

CN7 83.61 75.07 72.34 70.32 79.52 71.04

SC1 0.5199 0.4171 0.2785 0.2232 0.2879 0.2355

SC2 0.2984 0.5614 0.4742 0.4091 0.3182 0.3575

SC3 0.3095 0.2776 0.5406 0.5968 0.4700 0.4476

SC4 0.5987 0.5660 0.5961 0.5988 0.2696 0.4446

SC5 0.4968 0.2005 0.2640 0.2302 0.3039 0.3102

SC6 0.5213 0.3188 0.5529 0.2593 0.5114 0.5380

SC7 0.4201 0.3144 0.3512 0.2559 0.3877 0.2502

X1 0.4464 0.3245 0.3226 0.2012 0.2381 0.4232

X2 0.2540 0.4333 0.4564 0.3781 0.3563 0.3831

X3 0.4063 0.3692 0.3345 0.3912 0.3186 0.4711
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within which different randomly generated samples produce

acceptable hydrographs.

DEALING WITH UNCERTAINTY

At this stage, the minimum and maximum values of each

parameter of the six solutions presented in Table 5 were

selected to form the new uncertainty bounds of par-

ameters. Then SUFI2 was run with the new bounds to

calculate uncertainty indicators, that is, P-factors and

R-factors. Table 6 presents the results obtained by running

SUFI2 in the above-mentioned condition. The indicators

in the first iteration show the performance of the new par-

ameter intervals in terms of model prediction uncertainty.

It is seen that P-factor in this iteration is very good

(0.895). However, although the newly-estimated par-

ameter ranges are much narrower than those initially

selected at the start of calibration procedure, they

result in a significant model prediction uncertainty

(R-factor¼ 1.656).

Fortunately, better parameter ranges with a lesser total

prediction uncertainty (smaller R-factor) with acceptable

P-factors (P-factor> 65%) have been achieved in some iter-

ations. One can see by inspecting Table 6 that the parameter

ranges in iteration three could be a good solution in which

the P-factor is equal to 0.737, while significant reduction

in model prediction uncertainty has been obtained with an

R-factor equal to 0.807. Figure 11(a) shows the new par-

ameter bounds (first iteration’s values) and the bounds in

iteration three (Figure 11(b)) and Figure 12 illustrates simu-

lated discharges including the best hydrograph compared

Table 6 | Uncertainty indicators and the best solution’s RMSE obtained from running SUFI2 with new parameter bounds for verification event 4 (values in parentheses are for smoothed

hydrograph)

Iteration 1 2 3 4 5 6 7 8 9 10

P-factor

%

89.47

(94.74)

84.21

(78.95)

73.68

(84.21)

68.42

(68.42)

47.3

(68.42)

31.58

(47.37)

36.84

(42.11)

26.32

(36.84)

15.79

(26.32)

15.78

(26.32)

R-factor 1.6559

(1.6538)

1.0795

(0.813)

0.8849

(0.4887)

0.7457

(0.3653)

0.5234

(0.3430)

0.2096

(0.2267)

0.1767

(0.1676)

0.1296

(0.1140)

0.1129

(0.1110)

0.0704

(0.0837)

Par-factor 0.2047

(0.2047)

0.1285

(0.1098)

0.0783

(0.0741)

0.0571

(0.0566)

0.0395

(0.0433)

0.0289

(0.0319)

0.0227

(0.0225)

0.0149

(0.0154)

0.0117

(0.0125)

0.0085

(0.0090)

Best sol’s

RMSE

14.45

(9.1706)

13.62

(9.2093)

13.74

(8.7700)

13.36

(7.6496)

13.22

(7.4637)

13.05

(7.2927)

12.78

(7.1373)

12.69

(7.0989)

12.62

(7.0065)

12.56

(6.9803)

Figure 11 | Simulated parameter sets including the best set and the new parameter bounds in the first (plot a) and third (plot b) iterations of SUFI2 for verification event 4.
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with the observed flood in the first (Figure 11(a)) and the

third (Figure 11(b)) iterations of SUFI2.

Comparison of plots (a) and (b) in Figure 11 clearly

shows the advantage of iteration 3’s solution in which the

model parameter uncertainty (width of parameter ranges)

has been significantly decreased. To quantify the model par-

ameter uncertainty, we define another factor, Par-factor, in

SUFI2 algorithm which is a normalized sum of parameter

ranges as follows

Par-factor ¼

Pm
j¼1ðbmaxj � bminj

Þ
Pm

j¼1ðbmaxj þ bminj
Þ=2

ð15Þ

where bmaxj and bminj
are respectively the upper and lower

bounds of parameter j. Par-factor compared with R-factor

shows how a certain degree of uncertainty inputted to the

model propagates through the model relationships resulting

in model prediction uncertainty. In fact, if the basin model

was a linear system with respect to its parameters, the relation

between Par-factor and R-factor would be linear. However,

hydrologic models are often highly nonlinear. Therefore, a

small amount of model parameter uncertainty (small Par-

factor), when propagated through model nonlinear functions

and equations, may still cause significant model prediction

uncertainty (large R-factor). Figure 13 shows the variations of

Par-factor and R-factor against iteration number. This rep-

resents the dynamics of model prediction uncertainty, or in

other words the rate ofmodel prediction uncertainty reduction

with respect to the rate of model parameter uncertainty

reduction. Consequently, break points at which slope of the

plot changes could help one choose the final parameter

ranges of the model. It can be seen in the figure that the rate

of reduction of model prediction uncertainty (R-factors) in

the first six iterations are larger than that in succeeding

iterations.

It is noteworthy to mention here that sometimes P-factor

is dominated by some uncharacteristic and perhaps less

important ordinates of the predicted variable (discharge),

such as an unusual recession curve of the observed flood

hydrograph of event 4 and also less important terminating

ordinates of the curve. For example, the terminating segment

of the recession curve hydrograph of event 4 contains a sig-

nificant number of discharge ordinates, prediction of which

is not as important as the ones close-to-peak discharges.

This might result in an unreal and under-estimated P-factor

exaggerating undesirable fitting capability of model

Figure 13 | Variation of Par-factor versus R-factor in the last run of SUFI2 with the new

initial parameter ranges for event 4.

Figure 12 | Simulated discharges with the new parameter bounds compared with the observed flood in the first (plot a) and third (plot b) iterations of SUFI2 for verification event 4.
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predictions. Depending upon the shape of the observed pre-

dicted signals, it is our belief that estimating the P-factor

and R-factor using a smoothed hydrograph can result in

more realistic values. Due to the atypical shape of the

observed hydrograph of event 4 and especially its recession

curve, we repeated our analysis by smoothing out the hydro-

graph of the event. The results are reported in Table 6 within

parenthesis. The P-factors and also RMSE values are better

than those associated with non-smoothed hydrograph.

According to the above explanation, the final parameter

ranges of the model were selected as those of the fourth iter-

ation with respectively P-factor¼ 0.684, R-factor¼ 0.365,

Par-factor¼ 0.057 and RMSE¼ 7.65. Keeping these par-

ameters ranges fixed, we ran SUFI2 one more time to

calibrate the initial abstraction parameters. It is crucial to

emphasize that we must not allow SUFI2 to change and

re-adjust the selected parameter ranges any more in this

model execution; hence, the SUFI2 algorithm was revised

in this stage to keep all parameter ranges fixed all over iter-

ations except those of initial abstractions. The indicator

values for each of the events and also the simulated hydro-

graphs in iteration 4, compared to observed floods, as well

as the best objective values are presented in Table 7 and

Figure 14. Here we see that the RMSE of the best objective

function values are quite close to those already obtained in

the previous calibration stage, which shows the fact that

the proposed parameter ranges include such sets of par-

ameters resulting in the best RMSE values ever found.

Also, it was verified that the P-factor and R-factor values

after a few iterations of the model, when initial abstractions

were stabilized, are close to the values obtained in the

calibration stage. The results indicate that the proposed

parameter ranges were properly selected. Figure 14 also con-

firms that the selected parameter ranges perform

satisfactorily. The P-factors of events 2 and 3 are not large

enough but this is mostly related to atypical shapes of

the hydrographs making it impossible to have large

values of P-factors and small values of R-factors, simul-

taneously. We checked this issue in the scenarios of

jointly calibrated events with 31 parameters and realized

that the same outcome had been obtained in those scen-

arios. Moreover, inspecting plots (b) and (c) in Figure 14

implies that smaller P-factors of events 2 and 3 are partly

due to less-important discharge ordinates in terminating

segment of the recession curves of the events. Overall,

the results and analyses presented indicate that the final

parameter ranges and the proposed procedure to locate

them performed satisfactorily considering the very limited

number and atypical shapes of the flood hydrographs avail-

able in the studied basin.

COMPARING SUFI2 WITH NELDER AND MEAD

SEARCH ALGORITHM

In this section and before concluding the study, we explore

why it is justified to calibrate HEC-HMS using SUFI2, while

there are other available automatic techniques built into the

software.

There are two methods of automatic calibration avail-

able in HMS: the first is the univariate gradient, which

evaluates and adjusts one parameter at a time while holding

other parameters constant; the second method is the Nelder

and Mead (NM) which uses a downhill simplex search

Table 7 | Results of first 10 iterations obtained by SUFI2 for the problem of jointly calibrated events with fixed parameter intervals except initial abstraction ranges

Iteration 1 2 3 4 5 6 7 8 9 10

Best objective

Function

223.3 207.5 196.7 191.7 188.2 189.5 188.8 186.7 189.0 188.4

Par-factor 0.089 0.084 0.082 0.081 0.080 0.079 0.079 0.079 0.078 0.078

Event 1 P-factor % 79.41 91.17 58.82 73.52 64.70 73.52 70.58 67.64 67.64 73.52

R-factor 2.617 1.594 1.356 1.110 0.955 0.885 0.820 0.788 0.768 0.736

Event 2 P-factor 60.00 53.33 48.88 37.77 22.22 20.00 17.77 20.00 20.00 20.00

R-factor 0.858 0.497 0.403 0.364 0.317 0.312 0.286 0.271 0.268 0.271

Event 3 P-factor 46.42 28.57 28.57 32.14 28.57 21.42 25.00 25.00 21.42 21.42

R-factor 0.559 0.357 0.291 0.256 0.244 0.253 0.255 0.232 0.226 0.229
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algorithm allowing all the parameters to vary simul-

taneously and determines which parameter should be

adjusted. The default method is the univariate gradient.

The SUFI2 technique is essentially an uncertainty based

technique. Although it is capable of finding the best par-

ameter values within the proposed parameter ranges,

SUFI2 does not look for single-valued parameter sets.

None of the two available automatic calibration techniques

in HMS are uncertainty based, while the proposed three-

step procedure is related to how proper ranges of parameter

values should be determined in event-based calibration pro-

blems considering the non-uniqueness feature of the

problems – an impossibility by any deterministic calibration

approach like the ones available in HMS.

Another issue is that the modeller can choose any per-

formance criterion as the objective function of the SUFI2-

HMS model where different weights can be assigned to

different discharge values such as the weights used in the

objective function of the proposed model. Although there

are a number of alternatives for the selection of objective

function, they are limited and there is no possibility for

assigning different weights to different discharge ordinates.

In other words, the weighted RMSE, as considered in

HMS-SUFI2, is not among the alternative objective func-

tions of the HMS calibration techniques.

In HMS, the parameters that can be selected as cali-

bration parameters of the available techniques are limited

and pre-defined. Therefore, the user is not allowed to

select any parameter that they want to calibrate while this

limitation does not exist in the methodology proposed in

SUFI2-HMS. Fixing the parameters to be calibrated could

be useful for a user with less expertise; while flexibility in

selecting calibration parameters may be useful for those

having more understanding on how different parameters

Figure 14 | Iteration 4’s simulated discharges of events 1 (plot a), 2 (plot b) and 3 (plot c) and the convergence curve of the best objective value (plot d) obtained by SUFI2 for the problem

of jointly calibrated events with fixed parameter intervals except initial abstractions.
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may affect the response of the hydrologic model being

calibrated.

Besides the above points, there are other serious limit-

ations with the available calibration methods in HMS with

respect to the proposed methodology. An important limit-

ation is that calibrating more than one event jointly, as

done for joint-type calibration scenarios, is not possible

using the available automatic techniques in HMS – one

can only do single-event type calibration. In this regard,

we attempted to do joint-type calibration by available cali-

bration schemes in HMS through introducing multiple

events sequentially as one synthetic single event. This was

done by changing starting time of rainfall hyetographs of

the events, synthetically. However, it was not possible to

consider different initial conditions for the events like

what was done in our analysis using SUFI2. This is an

important limitation as we clearly showed that single event

calibration scenarios may not be adequate and the first

tree events cannot be properly calibrated jointly unless sep-

arating initial abstraction parameters of events 1 and 3. Also,

some of the variables of the SCS hydrologic loss model like

cumulative rainfall depth could not be introduced correctly

to the model when using the mentioned approach, for

example, doing joint-type calibration through simulating

multiple single events as one synthetic event.

As the most important reason, it is now tested how well

the available techniques will perform compared with the

SUFI2 approach in single event scenarios. To do so, it is

important to select first which technique is better to be

used for calibration. In this regard, the NM algorithm

could be more preferable than the univariate gradient as

the latter performs poorly for non-convex and multimodal

response surfaces; because it focuses on searching for only

one parameter at a time that can result in convergence to

a local optimum solution, especially when the number of

parameters is large. Therefore, the NM technique was

selected for comparison with the best parameter set

obtained by the SUFI2 approach.

Figure 15 shows the results obtained by the NMmethod.

Note that the results are associated with the model outputs

Figure 15 | Single event calibration using Nelder and Mead search algorithm available in HEC-HMS.
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after a number of trials as the first set of optimized par-

ameters performed poorly. Therefore, they were improved

iteratively by using solution of a trial as the initial solution

of the next one. Comparing the results presented in Figure 15

with those illustrated in Figures 5(b) and 6 shows that NM

has not performed as satisfactorily as SUFI2 approach for

single event calibration.

SUMMARY AND CONCLUSIONS

A three stage analysis was proposed to find the parameter

ranges of the HEC-HMS hydrologic model built for the

Tamar basin in Iran. In the first stage, a number of candidate

parameter sets were identified using the sequential uncer-

tainty fitting (SUFI2) technique based on scenarios of both

separately and jointly calibrated events. After recalibrating

the basin’s initial condition parameters of the candidate

sets and then performing a screening procedure through

which some of the candidate sets were withdrawn, a new

set of parameter ranges were selected according to the mini-

mum and maximum values of the screened parameter sets.

In the second stage, the SUFI2 algorithm was run with the

new parameter ranges, which were much narrower than

those of initially selected at the start of calibration. The out-

come of the run was the final parameter ranges simulating

verification event as adequately as possible in a probabilistic

sense. Finally, it was tested in the last stage if the set of final

selected ranges can simulate all events satisfactorily in terms

of the uncertainty indicators, that is, P-factor and R-factor.

The above analysis revealed the existence of different

parameter sets that can altogether simulate verification

events quite well, which shows the non-uniqueness feature

of the calibration problem under study. However, the meth-

odology has benefited from that feature by finding new

parameter intervals that should be fine tuned further in

order to decrease input and model prediction uncertainties.

A quantified measure of parameter uncertainty was intro-

duced as par-factor, which along with P-factor and

R-factor measures of SUFI2 gives insights to how the par-

ameter or input-to-model uncertainty will propagate

through a hydrologic model structure and how SUFI2 can

reach to a balanced solution in terms of input and output

model uncertainties.

The SUFI2-HMS model, from another point of view,

may be considered as a simulation-optimization procedure

in which the simulation model is the HEC-HMS model

linked to the SUFI2 algorithm as an optimization algor-

ithm. In this regard, SUFI2 is able to search for a

deterministic solution by sequentially bracketing of the

parameter ranges over 15–20 iterations, when the par-

ameter ranges become extremely narrow. In this case,

SUFI2 acts as a probabilistic search technique like other

population-based evolutionary algorithms to locate the

best deterministic parameter values with respect to a

defined objective function. From this point of view,

SUFI2 was compared with PSO and GA as two global

optimization techniques, wherein SUFI2 performed com-

parably to the other optimization techniques. This is

important as the Nelder and Mead algorithm, available

in HEC-HMS, neither performed satisfactorily for single-

event calibration scenarios nor can it be used for joint-

event calibration scenarios.

The proposed methodology performed well in the auto-

mated calibration of an event-based hydrologic model;

however, the authors are aware of a drawbackof the presented

analysis – this undertakingwas not a completely fair validation

procedure. It is because validation events represent possible

future scenarios and thus are not available at the time of

model calibration. Hence, an event being selected as a vali-

dation event should not be used to receive any more

feedback for adjusting parameter values and ranges. However,

this remark was not fully taken into consideration, mostly

because of being seriously short of enough observed events

in this calibration study. Therefore, the proposed method-

ology, although sound and useful, should be validated in

other case studies with more observed flood events.
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