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ABSTRACT In many real world classification tasks, all data classes are not represented equally. This

problem, known also as the curse of class imbalanced in data sets, has a potential impact in the training

procedure of a classifier by learning a model that will be biased in favor of the majority class. In this work at

hand, an under-sampling approach is proposed, which leverages the usage of aNaive Bayes classifier, in order

to select the most informative instances from the available training set, based on a random initial selection.

The method starts by learning a Naive Bayes classification model on a small stratified initial training set.

Afterwards, it iteratively teaches its base model with the instances that the model is most uncertain about

and retrains it until some criteria are satisfied. The overall performance of the proposed method has been

scrutinized through a rigorous experimental procedure, being tested using six multimodal data sets, as well

as another forty-four standard benchmark data sets. The empirical results indicate that the proposed under-

samplingmethod achieves comparable classification performance in contrast to other resampling techniques,

regarding several proper metrics and having performed a suitable statistical testing procedure.

INDEX TERMS Active selection, classification, naive bayes, imbalanced data, under-sampling.

I. INTRODUCTION

Supervised learning, and specifically classification, is one

of the most widely used Machine learning (ML) and Data

Mining (DM) tasks. In real world data sets, the distribution

of the class members is not always even. This leads to a

situation which is called imbalanced problem [1]–[4], also

known as ‘‘the curse of imbalanced data sets’’, which is

the problem of learning an hypothesis from a class that is

underrepresented in a data set. This problem is encountered

in multiple domain specific tasks such as bioinformatics,

fraud detection and medical diagnosis, among others and has

been considered one of the top 10 problems in data mining

and pattern recognition [5], [6]. Imbalanced data sets usually

influence the learning process of a model, since most of the

learning algorithms make the assumption of even distribution

among classes or equal miss-classification costs [2]. For this
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reason, several methods have been proposed to address this

problem that arises in this specific type of data sets [7],

which should be inserted into the learning chain of automated

solutions when this kind of anomaly takes place.

Usually, themethods that have been developed to copewith

the imbalanced problem can be categorized in three distinct

groups: algorithmic level methods, data level methods and

hybrid approaches [7]–[10]. Algorithmic level approaches

work either by adjusting the decision threshold or by modify-

ing the optimization function [7], [11], [12], or even by pro-

viding miss-classification costs for each class to the learning

algorithm [13]–[16]. Data level approaches work mainly in

the prepossessing step modifying the training data, oriented

towards coping with the skewed classes and providing a more

balanced data set to the next stage. These methods can be

further categorized in: 1) under-sampling methods [17]–[26],

where they try to eliminate instances from the the majority

class, 2) over-sampling methods [27]–[34], where they try

to replicate or generate instances for the minority class and
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3) combination of over- and under-sampling [35], [36].

Lastly, hybrid approaches combine sampling techniques with

ensemble methods [8].

The aim of this research work is to propose an under-

sampling method that will actively select a subset from a

training set, after modifying it appropriately. This subset aims

to be more informative from the original without sacrific-

ing the performance of the final classifier. The proposed

method has been tested on several multimodal and standard

benchmark data sets for imbalanced classification tasks, both

exploiting them based on their initial structure and modifying

them appropriately, so as to exist a challenging Imbalanced

Ratio (IR) over binary problems. From the obtained results,

it has been observed that the proposed method tends to pro-

duce data sets that outperform other well-known and widely

used resampling methods in terms of AUC and Balanced

Accuracy.

The rest of the paper is organized as follows: In Section II

some of the most well-known under-sampling methods are

briefly reviewed. In Section III the proposed algorithm is

presented and analyzed. In Section IV experimental results

obtained using six multimodal and forty-four standard bench-

mark data sets are exhibited. The paper ends in SectionVwith

a synopsis and concluding remarks.

II. RELATED WORK

Recent research articles indicate that the imbalanced problem

is an active research field in ML. Data level methods in

contrast to other family of methods have a potential broader

applicability since their goal is to fix the skewed distribution

of data sets, rather than depend on supervised learning-based

modifications. Over-sampling refers to a family of algorithms

that contain approaches that replicate or generate a number of

artificially created instances for the minority class. Random

over-sampling is a non-heuristic method that seeks to balance

class distribution using random replication of the minority

class instances. Several authors have concluded that random

over-sampling can increase the likelihood of occurring over-

fitting, since it makes exact copies of the minority class

instances [7]. The most well-known over-sampling method is

the Synthetic Minority Over-Sampling Technique (SMOTE)

which generates artificial instances by interpolating existing

instances and avoids the risk of over-fitting, unlike random

over sampling [27]. Since its publication, a number of exten-

sion methods have been proposed, mainly in order to cope

with its disadvantages [37]. Such methods fix the original

method’s weaknesses, such as to handle differently some

minority class regions, cope with within class imbalance or to

eliminate the replication of noise.

On the other hand, under-sampling methods aim to tackle

the imbalanced problemmainly by eliminating majority class

instances. They can be further categorized in prototype gener-

ation and prototype selection methods. Given a training data

set S, prototype generation methods generate a new set S ′

where |S ′| < |S| and S ′ 6∈ S. Prototype generation methods

will reduce the number of instances in the targeted classes but

the remaining instances are generated and not selected from

the original set [38]. On the contrary to prototype generation

algorithms, prototype selection algorithms will select sam-

ples from the original set S. Therefore, S ′ is defined such as

|S ′| < |S| and S ′ ⊂ S.

The most naive approach to under-sampling is the random

under-sampling [17] which is a non-heuristic method that

aims to balance the class distribution through the random

elimination of majority class examples. The major drawback

of random under-sampling is that this method can discard

potentially useful data that could be important for the clas-

sification process.

Edited Nearest Neighbors (ENN) is one of the first

approaches that have been recorded for editing the provided

dataD, in order to reduce their cardinality, without sacrificing

much of the total information that is initially contained, or on

ideal scenario, to improve the insights that are underlying into

this, as has been proposed by D. Wilson [18]. The proposed

process is oriented towards boosting the performance of

Nearest Neighbor (NN) estimators. Thus, the preprocessing

stage that is applied before the fit of 1NN is the three-nearest

neighbor rule (modified rule), which eliminates instances that

do not agree with the majority in examined neighbors. Its

performance, regarding both accuracy and asymptotic con-

vergence, mainly against Naive Bayes algorithm, seems fair

enough. It has to be referred, that the use of larger size of

neighbors during the modified rule demands much more data

in order to reach to similar results.

A Tomek’s [19] link between two instances of different

classes x and y is defined such that for any instance z:

d(x, y) < d(x, z) and d(x, y) < d(y, z) where d(.) is the dis-

tance between the two instances. So, Tomek’s links removal is

a technique that removes pairs of instances only if they belong

to different classes but are each other’s nearest neighbors.

One Side Selection [20] is an approach that categorizes

all the instances of majority class into four categories: i)

noisy, ii) borderline, iii) redundant, iv) safe. Its approach is to

find a subset of initially provided training set, which should

be consistent regarding 1-NN classifier: this means that the

selected learner predicts accurately all included instances to

this subset. The approach here does not try to find the smallest

one consistent. Thus, it starts using all minority examples

and only one from majority. Then it appends all the miss-

classified instances from the rest of the set and applies a

discarding method based on Tomek Links, so as to remove

borderline and noisy data from the previous step.

One direct improvement of OSS is Neighboring Cleaning

Rule (NCL) [21] that addresses the main drawback of its

ancestor: the application of Tomek line criterion that is sensi-

tive to noisy data. Thus, noisy data are removed according to

concept of ENN method. Firstly, by deleting instances from

majority class locally, based on the edited nearest neighbor

rule and then by reducing instances from proper classes

according to 3-NN, whose decisions are misclassified. The

experiments that were executed based on 3-NN and C4.5 were

really encouraging, removing less instances against simple
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random selection within classes (SWC) andOSS over ten data

sets from UCI.

NearMiss [22] family of under-sampling methods that

select instances from the majority class based on their dis-

tance to other instances in the same class. Let the positive

instances to be the instances that belong to the targeted class

to be under-sampled. Negative instances are referring to the

instances from theminority class.NearMiss-1 selects the pos-

itive instances for whose the mean distance to the N closest

samples of the negative class is the smallest. NearMiss-2

choose the positive instances whose the mean distance to the

N farthest samples of the negative class is the smallest. While

NearMiss-3 is a two step procedure: At first, for each negative

sample, their M nearest-neighbors will be kept aside. Then,

the positive instances that are selected are those that their

mean distance to the N nearest-neighbors is the largest.

Under-sampling methods may lose some useful informa-

tion or ignore noise in the datasets. Thus, Hou et al. [23] pro-

posed a density-based under-sampling algorithm (DBU) to

overcome the two aforementioned problems. Similar exam-

ples are expected to be close to each other and a noisy

example to be far from other examples belonging to the

same class. Therefore, similar instances should have a high

density while the noisy instances should have a low density.

DBU uses the local density peaks to represent the whole

majority class, so that it can retain the useful information and

eliminate the noisy instances automatically.

Under-sampling approaches based on clustering have

recently been proposed [17], [24], [25]. In [24] the authors

proposed a novel under-sampling approach which is called

cluster-based instance selection (CBIS), that combines clus-

tering analysis and instance selection. The clustering phase

of CBIS groups similar instances of the majority class into

subclasses, while in the instance selection phase the method

filters out unrepresentative instances from each of the sub-

classes. Lemaître et al. [17] implemented two under-sampling

strategies that use data partition algorithms to preprocess

the majority class. Concretely, the number of clusters in the

majority class is set to be equal to the number of instances of

the minority class. The first strategy uses the cluster centers

to represent the majority class, while the second strategy uses

the nearest neighbors of the cluster centers. Ofek et al. [25]

proposed Fast-CBUS, a fast, novel clustering-based under-

sampling technique which demonstrates high predictive per-

formance, while its time complexity is bound by the size of

theminority class instances. In the training phase, thismethod

clusters theminority examples and selects a similar number of

majority examples from each cluster. A specific classification

model is then trained for each cluster. An unlabeled example

is classified as the majority class, if it does not fit into

any of the clusters. Otherwise, cluster-specific classifiers are

used to return the example’s classification and the results are

weighted by the inverse-distance from the clusters.

An active selection method has been employed in 2009 for

handling imbalanced data, on contrast with resampling

and cost-sensitive methods, trying to build incrementally

a trustworthy data set for applying a simple classifier in

the field of Biomedical data [26]. This strategy, named as

Active Example Selection (AES), is applied in order to avoid

using instances that are not totally useful for the finally

exported classifier, since a large number of instances, mainly

stemming from majority class, are redundant and induce

time-consuming training stage without any predictive

improvement. Hence, a small random subset of provided data

is kept and used as the training set with the same population

of both initially minority and majority classes. The remaining

examples are used as the validation set and the selected

base learner produces its class probabilities per instance. The

instances for which the worst decisions were formatted are

moved iteratively to the training set, independently on their

class category. The exploited base learner in this work is NB,

because of its simplistic structure that does not depend on

many parameters and demands only a few data so as to be

tuned. Five different data sets, four from UCI and one from

real-life used mainly with artificial networks were examined

against the approaches that use cost-sensitive, Random Over-

sampling, Random Under-sampling and a hybrid of these last

twomethods, all combined with NB, managing to outperform

them as far as several useful metrics are concerned.

III. PROPOSED METHOD

The aim of the work at hand is to provide a method that will

cope with the problems that arise in classification when the

available training data set is imbalanced. Themethodwill edit

the available training data set and will provide a reduced set

to the final classifier, with the aim to decrease the training

time while increasing the classification performance.

The high level concept of the proposed method is that a

small balanced subset of the available training set is picked

at random and trains a Naive Bayes classification model. The

remaining set gets balanced using SMOTE and acts as a pool

for the active selection procedure. For a prespecified num-

ber of queries, the active selection procedure is performed,

in order to teach the Naive Bayes classification model and

get the most out of the remaining data pool.

In this research work, we used Naive Bayes in the proposed

under-sampling approach, as well as in the final classifica-

tion, as it is stated in Section IV. Naive Bayes [39], [40]

learning algorithm is a family of algorithms that learn a prob-

abilistic model. Based on Bayes’ theorem makes the naive

assumption of independence among every pair of predictor

variables given the value of the target class. Given class

variable y and dependent feature vector x = (x1 . . . xn) Bayes’

theorem states the following relationship

P(y | x1, . . . , xn) =
P(y)P(x1, . . . xn | y)

P(x1, . . . , xn)
(1)

assuming the naive conditional independence that

P(xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P(xi|y), (2)
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for all i this relationship is simplified to

P(y | x1, . . . , xn) =
P(y)

∏n
i=1 P(xi | y)

P(x1, . . . , xn)
(3)

Since P(x1, . . . , xn) is constant given the input, the follow-

ing classification rule can be used:

P(y | x1, . . . , xn) ∝ P(y)

n
∏

i=1

P(xi | y)

⇓

ŷ = argmax
y
P(y)

n
∏

i=1

P(xi | y), (4)

where, xi represents the i-th predictor variable. Using the

maximum a posteriori probability we can obtain estimates for

P(y) and P(xi | y) from the available training data. Learning

algorithms that are based on Bayes’ theorem differ mainly by

the assumption they make regarding the distribution of the

likelihood P(xi | y). When having data sets with numerical

features, a common assumption is that the likelihood of the

features is assumed to be Gaussian

P(xi | y) =
1

√

2πσ 2
y

exp

(

−
(xi − µy)

2

2σ 2
y

)

(5)

Maximum likelihood estimation is used to compute σ 2
y

and µy.

Apart from its naive assumption of conditional

independence, Naive Bayes classification has shown

good performances in many complex real-world

problems [41]–[47].

The entire algorithmic procedure of the proposed approach

is presented in Algorithm 1. Also an example of an under

sampled data set, that was generated by the proposed

approach, appears in Figure 1. Consider that the training data

set is denoted asD and the new data set that will be generated

is denoted as S. Initially, a small number of instances m for

each class is selected at random. The selected instances are

added to the set S (line 8) and are removed from the set D

(line 9). The number m (line 7) can be determined by mul-

tiplying the total number of minority instances n (line 6)

in D by an r parameter. The remaining set D is kept

aside and is used as a pool of instances in order to

teach the classification model in the active selection proce-

dure. Since D is imbalanced, SMOTE (line 10) is applied,

with k being the number of nearest neighbors and a new

set D’ is generated, which will has the same distribution for

each class. The detailed algorithm of SMOTE is described

in Algorithm 2. Afterwards, a classification model is trained

using Naive Bayes algorithm on the data set S. For a prespec-

ified number of active selection queries q do the following:

1) use the Naive Bayes classification model to predict class

membership probabilities for each instance in D’. Convert

the class probabilities to uncertainties (line 15-16) which are

defined by U (x) = 1 − P(ŷ|x), where x is the instance to

be predicted and ŷ (line 18) is the most likely prediction.

2) Remove most uncertain instance from the set D’ (line 22)

and add it to the set S (line 20). 3) The Naive Bayes algorithm

is retrained (line 21) using the updated set S. 4) If the pre-

specified number of queries reaches the limit (line 12), or the

score of Balanced Accuracy [48], [49] against D’ (line 24)

exceeds a certain threshold t (line 25), stop and return the

set S.

Algorithm 1 The proposed method

1: data← Training data set

2: q← Number of active selection queries

3: r ← Ratio of the minority class

4: t ← Balanced accuracy threshold

5: k ← Nearest neighbors considered by SMOTE

6: Begin

7: n← getTheNumberOfMinorityInstances(data)

8: m← n ∗ r
9: generatedSet ← getInitTrainSet(data,m)

10: deleteInstances(data, generatedSet)

11: dataPool ← SMOTE(data, k)

12: model ← trainNaiveBayesClassifier(generatedSet)

13: for 1 to q do

14: uncertainties← ∅
15: for instance ∈ dataPool do
16: u← getUncertainty(model, instance)

17: uncertainties← uncertainties ∪ {u}
18: end for

19: index ← getMaximumUncertainty(uncertainties)

20: instance← dataPool[index]

21: generatedSet ← generatedSet ∪ {instance}
22: model ← trainNaiveBayesClassifier(generatedSet)

23: deleteInstance(dataPool, instance)

24: bacc← measureBalancedAccuracy(model, dataPool)

25: if bacc >= t then

26: break

27: else

28: continue

29: end if

30: end for

31: return data

32: End

IV. NUMERICAL EXPERIMENTS

In this section, the data set descriptions, the design of the

experiments, as well as the results and the statistical analysis

of the experiments are presented. Specifically, in Subsec-

tion IV-A the data sets that are used in the experiments

are presented. In Subsection IV-B the evaluation protocol

is described as well as the other resampling techniques that

are included in the comparisons. While, In Subsection IV-C

the performance of the proposed method is compared against

other well-known resampling techniques.
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FIGURE 1. Resampling on an artificial data set.

Algorithm 2 SMOTE

1: data← Training data set

2: k ← Number of nearest neighbors

3: Begin

4: Compute: nMajority and nMinority. The number of

majority and minority instances respectively in data

5: n← nMajority− nMinority
6: for 1 to n do

7: Choose at random a minority instance Ea
8: Choose at random a neighboring instance Eb among

its k nearest minority class neighbors

9: Ex ← Ea+ λ× (Eb− Ea), where λ is a random number

in the range [0, 1]

10: data← data ∪ {Ex}
11: end for

12: return data

13: End

A. DATA SETS DESCRIPTION

In order to evaluate the performance of the proposed method,

a number of experiments have been conducted, using two

different sets of data sets. In Tables 1 and 2 themost important

characteristics per each data set are exhibited: name, number

of instances, number of attributes, its imbalanced ratio (IR),

as well as the number of different classes.

The first set of data sets contains six multimodal data sets

that were collected from independent/different data sources.

Arabic Natural Audio Data set (anad) is a recently for-

matted problem related with sentimental analysis based on

video signals from Arabic talk shows. There, the signals that

were analyzed concerned talks between human and artificial

anchors that were later provided to human listeners so as

to categorize the extracted emotion. Three different classes

had been defined as a possible outcome of emotion: happy,

angry and surprised. During the pre-process stage, the most

representative reactions were removed (e.g. laughs) and then

the total amount of signals was split into chunks, whose

duration was equal to 1 second. The feature engineering stage

contains exploitance of low-level descriptors that stem from

TABLE 1. Multimodal data sets description.

sound signals, applying numerous mathematical functions

over them [50].

Gender Recognition by Voice Data set (voice) 1 constitutes

a well-known task that was created so as to discriminate

through speech signals the speakers’ gender: male or female.

Some preprocessing actions have been made using suitable

R packages, following the specifications of human voice

frequency bandwidth (citations of R packages). Different

sources were used for collecting the finally included speech

samples, while some widely accepted acoustic features were

regarded, after having postulated some assumptions for cor-

rect validation of the formatted data set.

Characterizing Individual Speakers data set (36speak-

ers) [51] was formatted under a flexible design that has

gathered information and samples from two distinct recording

sessions and various speaking styles, in order to examine

which factors allow the recognition of individual speak-

ers from a closed set, aiming at gaining information from

recorded signals that may occur during realistic scenarios

and combine them appropriately. More technical information

could be mined from the original paper. The general con-

cept here is the discrimination among 36 different speakers,

based on their recordings that were made through reading

phrases and/or sentences under a comfortable rate, simulating

a default speaking situation. We kept only the training set

that was accumulated by speech signals based on 24 separate

sentences that read from 36 speakers, whose origin affects

their utterance (20 male and 16 female speakers from Ireland,

U.K andU.S.). The features that were used areMel-frequency

cepstral coefficients (MFCCs).

1https://data.world/ml-research/gender-recognition-by-voice
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TABLE 2. Standard benchmark data sets description.

TABLE 3. Parameters of the compared methods.

Wearable Stress and Affect Detection data set (wesad) [52]

was recently composed favoring the combination of both

motion and physiological features into a common framework.

At total, 15 different sensor modalities were measured, lead-

ing to 3 different states: stress, amusement and neutral.

During the experimental phase, data from 12 subjects were

obtained, including both male and female persons with spe-

cific age and health condition criteria, along with the ground-

truth information submitting the participants into proper

questionnaires. As it concerns the measurement phase, they

attached two different devices to each individual: one wrist

worn and one chest worn. Different window shift and window

length parameters were applied depending on the modality

that was tackled and its specific properties.More details could

be found in the original demonstration.

While the second set of data sets contains forty-

four standard benchmark data sets for imbalanced clas-

sification that were obtained from the KEEL-dataset

repository [53].

B. DESIGN OF EXPERIMENTS

All data sets have been partitioned using the five-fold strat-

ified cross-validation procedure. Stratification performed in

order to maintain the class distribution across the train and

the test folds. This procedure divides the instances in five

stratified folds. Each tested method has been trained using

four folds (training partition) and the fold left out (testing

partition) has been used for evaluation of the final method.

Then the average across all tested folds has been computed

for the performance metric used. Area Under the ROC Curve

(AUC) [49], [54] and Balanced Accuracy have been used as

evaluation metrics. AUC supplies a scalar value to determine

how well a classifier compensates its true positive (TPrate)

and false positive rates(FPrate). An approximation [55] of this

measure is given by

AUC =
1+ TPrate − FPrate

2
(6)

Similarly, another common metric to measure classi-

fication performance under imbalanced data sets is Bal-

anced Accuracy. Balanced Accuracy (BACC) is formulated

as

BACC =
TP
P
+ TN

N

2
(7)

where TP is the number of true positives, P is the number of

positive examples, TN is the number of true negatives, N is

the number of negative examples.

The proposed method is compared against six other

under-sampling methods, without a resampling method

TABLE 4. Classification performance using AUC for multimodal data sets.
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TABLE 5. Classification performance using balanced accuracy for multimodal data sets.

TABLE 6. Classification performance using AUC for standard data sets.

(NONE) and against plain SMOTE which is part of the

proposed approach. Specifically, the proposed method is

compared with Edited Nearest Neighbors (ENN), Neigh-

bourhood Cleaning Rule (NCR), One Side Selection (OSS),

Repeated Edited Nearest Neighbours (RENN) [56], Random

Under Sampling (RUS), Synthetic Minority Over-sampling

Technique (SMOTE), Tomek Links (TL). As final classifier,

the Naive Bayes classifier is used. In Table 3 the param-

eters for each compared method are presented which are

the defaults in imbalanced-learnc [17] package2. SMOTE

and RUS configured to achieve 1:1 ratio. All experiments

were conducted in Python using the available implementa-

tions and utilities of scikit-learn [57], imbalanced-learn [17]

and modAL [58]. Also, an implementation of the proposed

approach is provided3.

2TL does not take any parameters
3https://gitlab.com/chkoar/uunb
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TABLE 7. Classification performance using balanced accuracy for standard data sets.

C. RESULTS

In Tables 4,6 and Tables 5,7 the cross-validated results

for each method are presented in terms of AUC and Bal-

anced Accuracy, respectively. According to Demšar [59] non-

parametric tests should be preferred instead of parametric

ones in the context of machine learning problems, since

they do not assume normal distributions or homogeneity

of variance, especially when the number of the test cases

is low. Thus, in order to validate the significance of the

results, the Friedman test [59], which is a rank-based non-

parametric test for comparing several machine learning algo-

rithms on multiple data sets, has been used, having as control

method the proposed approach. The null hypothesis of the

test states that all the algorithms perform equivalently and

therefore their ranks should be equal. The average rankings

as well as the results of the Friedman test are presented

in Tables 8 and 9.

TABLE 8. Friedman tests and average rankings for multimodal data sets.

According to the average ranks the proposed approach

tends to generate data sets that will produce better classi-

fiers. The p-values of all Friedman tests indicate that the

null hypothesis has to be rejected. So, there is at least
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TABLE 9. Friedman tests and average rankings for standard data sets.

TABLE 10. Post hoc analysis for multimodal data sets with Holm’s
procedure using proposed as control method for AUC.

TABLE 11. Post hoc analysis for multimodal data sets with Holm’s
procedure using proposed as control method for balanced accuracy.

TABLE 12. Post hoc analysis for standard data sets with Holm’s
procedure using proposed as control method for AUC.

one method that performs significantly different from the

proposed method. With the intention of investigating the

aforementioned, the post hoc procedure that is proposed by

Holm [60] is used. The p-values in Tables 10 and 11 nominate

that the proposed method is the best performing method in

terms of AUC, while in terms of Balanced Accuracy archives

similar performance to RUS for the multimodal data sets.

It must be noted that even in that case, the proposed approach

produces smaller training set that RUS. Similarly, for the

standard benchmark data sets, Tables 12 and 13 indicate

TABLE 13. Post hoc analysis for standard data sets with Holm’s
procedure using proposed as control method for balanced accuracy.

that the proposed approach produces data sets that make the

classifiers perform significantly better, compared to the other

tested data level methods, in terms of AUC while in terms of

Balanced Accuracy the proposed approach archives similar

performance to SMOTE.

V. CONCLUSION AND FUTURE WORK

In this research work, a data level method that copes with

imbalanced data sets in classification tasks has been pre-

sented. Experiments on several multimodal and standard

benchmark data sets show that the proposed method can han-

dle imbalanced data sets and significantly improve the classi-

fication performance of Naive Bayes classifier in contrast to

other approaches in terms of AUC and Balanced Accuracy.

Although Naive Bayes algorithm could be seen as a weak

probabilistic learner, its assets matched with the context of

this work: i) it has been proven that in real cases Naive Bayes

handles imbalanced data sets with favoring manner, being

robust enough even to more degenerate situations of imbal-

anced problems [61], ii) its performance based on its structure

and its assumptions export decisions without spending much

temporal or spatial resources.

This kind of approaches could also be generalized and

integrated into other similar tasks, such as the concept of

Active Learning, where only a small initial labeled set exists

and a larger pool of unlabeled data is available for min-

ing its instances appropriately. By using our active example

selection method, we could select unlabeled instances that

satisfy more dedicated criteria, like trade-offs between dis-

criminative and representative properties [62], [63]. More-

over, different learning models should also be studied, as has

been done in the literature, concerning the base classifier

into the core of the scheme that tackles with the stage of

balancing the instances and discriminate their efficacy on

more detailed scientific domains [64] or even try to gener-

alize also our method on extremely imbalanced cases [65].

Imbalanced problems are also found in the case of Online

Learning, where more realistic scenarios take place. A well-

known field of interest is related with client credit assess-

ment, where the assumption of even distribution is not

accurate, since concept drift is the usual phenomenon that

puts obstacles on ML approaches [66]. Although ensem-

bles of learners usually achieve great accuracy, Naive Bayes

and/or algorithms that are generated from similar approaches
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and belong to Bayesian learning family, have not been

rigorously reviewed [67], [68].
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