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Abstract

We introduce a new probabilistic approach to
dealing with uncertainty, based on the obser-
vation that probability theory does not require
that every event be assigned a probability. For
a nonmeasurable event (one to which we do
not assign a probability), we can talk about
only the inner measure and outer measure of
the event. Thus, the measure of belief in an
event can be represented by an interval (de-
fined by the inner and outer measure), rather
than by a single number. Further, this ap-
proach allows us to assign a belief (inner mea-
sure) to an event E without committing to a
belief about its negation ~E (since the inner
measure of an event plus the inner measure of
its negation is not necessarily one). Interest-
ingly enough, inner measures induced by proba-
bility measures turn out to correspond in a pre-
cise sense to Dempster-Shafer belief functions.
Hence, in addition to providing promising new
conceptual tools for dealing with uncertainty,
our approach shows that a key part of the im-
portant Dempster-Shafer theory of evidence is
firmly rooted in classical probability theory.

1 Introduction

Dealing with uncertainty is a fundamental issue for Al.
The most widely-used approach to dealing with uncer-
tainty is undoubtedly the Bayesian approach. It has the
advantage of relying on well-understood techniques from
probability theory, as well as some philosophical justifi-
cation on the grounds that a "rational'™* agent must as-
sign uncertainties to events in a way that satisfies the ax-
ioms of probability [Cox46, Sav54]. On the other hand,
the Bayesian approach has been widely criticized for re-
quiring an agent to assign a subjective probability to
every event. While this can be done in principle by hav-
ing the agent play a suitable betting game [Jef83]," it
does have a number of drawbacks. Among others, there
Is the computational difficulty of arriving at the proba-
bility. There is also the issue of whether it is reasonable

'This idea is due to Ramsey [Ram3l] and was rediscovered
by von Neumann and Morgenstern [vNM47]; a clear exposi-
tion can be found in [LR57].

to describe confidence by a single point rather than a
range. While an agent might be prepared to agree that
the probability of an event lies within a given range, say
between 1/3 and 1/2, he might not be prepared to say
that it is precisely .435.

Not surprisingly, there has been a great deal of
debate regarding the Bayesian approach (see [Che85]
and [Sha76] for some of the arguments). Numerous
other approaches to dealing with uncertainty have been
proposed, including Demp>ster-Shafer theory [DemoG68,
Sha76], Cohen's model of endorsements [Coh85], and
various nonstandard, modal, and fuzzy logics (for ex-
ample, [HR87, Zad75]). A recent overview of the field
can be found in [Saf88]. Of particular interest to us here
Is the Dempster-Shafer approach, which uses belief {unc-
tions and plausibility functions to attach numerical lower
and upper bounds on the likelihoods of events.

Although the Bayesian approach requires an agent to
assign a probability to every event, probability theory
does not. The usual reason that mathematicians deal
with nonmeasurable events (those that are not assigned
a probability) is out of mathematical necessity. For ex-
ample, it is well known that if the sample space of the
probability space consists of all numbers in the real in-
terval [0, 1], then we cannot allow every set to be mea-
surable if (like Lebesgue measure) the measure is to be
translation-invariant (see [Boy64, page 54]). However, in
this paper we allow nonmeasurable events out of choice,
rather than out of mathematical necessity. An event E
for which an agent has insufficient information to assign
a probability is modelled as a nonmeasurable set. The
agent is not forced to assign a probability to E in our
approach. We can provide meaningful lower and upper
bounds on our degree of beliefin E by using the standard
mathematical notions of inner measun and outer mea-
sure induced by the probability measure [Hal50], which,
roughly speaking, are the probability of the largest mea-
surable event contained in E and the smallest measur-
able event containing E, respectively.

Allowing nonmeasurable events has its advantages.
The uncertainty of event E is no longer given by a single
number, but rather by an interval defined by the inner
and outer measures. Furthermore, it is possible for the
belief (i.e., inner measure) of event E to be a without
the belief of -*E being 1 — a. Rather than nonnieasura-
bility being a mathematical nuisance, we have turned it
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here into a desirable feature!

We feel that this paper makes three major contribu-
tions. The first is conceptual: In certain situations, our
approach gives a useful way to think about and reason
about uncertainty. In particular, the use of nonmeasur-
able sets seems to provide a useful way to capture our
uncertainty about the probability of an event. The sec-
ond is technical: We prove that, in a precise sense, inner
measures induced by probability measures are equivalent
to Shafer's belief functions (and so outer measures in-
duced by probability measures are equivalent to Shafer's
plausibility functions). The implications of this equiv-
alence are significant. Although some, such as Cheese-
man [Che85], consider the theory of belief functions as
ad hoc and essentially nonprobabilistic (see discussion by
Shafer [Sha86]), our results help show that a key part of
the Dempster-Shafer theory of evidence is firmly rooted
In classical probability theory. The last contribution is
also technical: by combining our results here with those
of a companion paper [FHM88], we are able to obtain
a sound and complete axiomatization for a rich propo-
sitional logic of evidence, and provide a decision proce-
dure for the satisfiability problem, which we show is no
harder than that of propositional logic (NP-complete).
Our techniques may provide a means for automatically
deducing the consequences of a body of evidence.

2 Probability theory

To make our discussion precise, it is helpful to re-
call some basic definitions from probability theory (see
[Fel57] for more details). A probability space (S, X,u,)
consists of a set S (called the sample space), a a-algebra
X of subsets of S (i.e., a set of subsets of S contain-
ing S and closed under complementation and countable
union, but not necessarily consisting of all subsets of S)
whose elements are called measurable sets, and a proba-
bility measure [/. X—> [0, 1] satisfying the following prop-
erties:

Pl. py(N)>0forall X\ € X
P2. u(S5) =1

P3. p(UZ, X)) = Y22, (X)), if the X;'s are pairwise
disjoint members of .v'.

Property P31s called countable additivity. Of course, the
{act that X" 1s closed under countable union guarantees
that if each X; € X', then so1s US2, X;. If X 1s a finite
set, then we can sumplify property P3 above to

P3. pf(YUY) = pu(X)+ pu(Y),if X and Y are disjomnt

members of Y.

This property 1s called finite additinity. Properties P,
P2, and P3’ characterize probability measures in finite
spaces.

In a probability space (5, A", 1), the probability mea-
sure u is not defined on 2° (the set of all subset of S), but
only on &'. We can extend u to 2° in two standard ways,
by defining functions p. and p*, traditionally called the
iner measure and ouler measure induced by p [Hal50].
For an arbitrary subset A C S, we define

pa(A) = sup{u(X)| X C A and X € X}
p (A) =inf{u(X)|X D A and X € X}.
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If there are only finitely many measurable sets (in par-
ticular, if S is finite), then it is easy to see that the
inner measure of A is the measure of the largest mea-
surable set contained in A, while the outer measure of
A is the measure of the smallest measurable set contain-
iIng A. In any case, it is not hard to show by countable
additivitv that for each set .4, there are measurable sets
B and ' where B C A C (' such that u(B) = p.(A)
and u(C') = p*(A). Note that if there are no nonempty
measurable sets contained in A, then u.(A4) = 0, and
if there are no ineasurable sets containing A other than
the whole space S, then u*(A) = 1. The properties of
probability spaces guarantee that if .\ 1s a measurable
set., then p (X)) = p*(X) = p(X). In general we have
p*(A) =1 — u.(A).

Suppose we have a situation we want to reason about.
Typically we do so by fixing a finite set ® = {p,,...,pn}
of primitive propositions, which can be thought of as cor-
responding to basic events, such as “It 1s raining now’
or “the coin landed heads”. The set £L(®) of (propos:-
tional) formulas s the closure of & under the Boolean
operations A and —. The primitive propositions in ¢ do
not. in general describe mutually exclusive events. To get
mutually exclusive events, we can consider all the atoms,
that is, all the formulas of the form p} A ... A p;,, where
p' 1s either p; or —p;. Let At denote the set of atoms.

We have been using the word “event” informally,
sometimes meaning “set” and sometimes meaning “for-
mula”. We now want to be more formal, and to be
able to talk explicitly about the probability of a for-
mula. However, a probability measure 1s a function on
sets, not formulas. Fortunately, it 1s easy to go from sets
to formulas.

Using standard propositional reasoning, it 1s easy to
see that any formula can be written as a disjunction
of atoms. Thus, a formula ¢ can be i1dentified with
the unique set {é;,...,6;} of atoms such that ¢ =
6,V ...V é&. If we want to assign probabilities to all
formulas, we can siunply assign probabilities to each of
the atoms, and then use the finite additivity property of
probability measures to compute the probability of an
arbitrary forimula. This amounts to taking a probability
space of the form (At, 24", u). The states in the probabil-
ity space are just the atoms, and the measurable subsets
are all the sets of atoms (1.e., all formulas). Once we as-
sign a measure to the singleton sets (1.e., to the atoms),
we can extend by additivity to any subset. We call such
a probability space a Nilsson structure, since this is es-
sentially what Nilsson used to give meaning to formulas
in his probability logic [Nil86]. Given a Nilsson struc-
ture N = (At, 24" u) and a formula ¢, let. Wy (p) denote
the wewght or probability of ¢ in N, which 1s defined to
be u(At(p)), where At(p) 1s the set of atoms whose dis-
junction i1s equivalent to .

A more general approach is to take a probability struc-
ture to be a tuple (S, X, u, 7), where (S, &, i£) 1s a prob-
ability space, and 7 assoclates with each s € S a truth
assignment m(s):® — {true, false}. We say that p 1s

Actually, the use of possible worlds in giving semantics
to probability formulas goes back to Carnap [Car50].



true at s if 7(8)(p) = true; otherwise, we say that p is
false at s.

We think of S as consisting of the possible states of
the world. We can associate with each state s in 5 a
uniqgue atom describing the truth values of the primitive
propositions in s. For example, if® = {p,py), and if
m(s)(p1) = true and 7(s)(py) = false, then we associate
with s the atom py A —pqe. It is perfectly all right for
there to be several states associated with the same atom
(indeed, there may be an infinite number, since we allow
S to be infinite, even though ® is finite). This situation
may occur if a state is not completely characterized by
the events that are true there. This is the case, for exam-
ple, if there are features of worlds that are not captured
by the primitive propositions.

We can easily extend w(s) to a truth assignment on
all formulas by taking the usual rules of propositional
logic. Then if M is a probability structure, we can
associate with every formula ¢ the set cpM consisting
of all the states in M where ¢ is true (i.e., the set
{s € S|n(s)(¢) = true}). Of course, we assume that n
is defined so that true¥ — S. If p" is measurable for
every primitive proposition p € ®, then o™ is also mea-
surable for every forinula ¢ (since the set X of measur-
able sets is closed under complementation and countable
union). We say M is a measurable probability structure
If ch IS measurable for every formula .

It makes sense to talk about the probability of <p in
M only iftpM IS measurable; we can then take the prob-
ability of ¢, which we denote Was(). to be u(p™). If
(f" is not measurable, then we cannot talk about its
probability. However, we can still talk about its inner
measure and outer measure, since these are defined for
all subsets. Intuitively, the inner and outer measure pro-
vide lower and upper bounds on the probability of ¢. In
general, if ™ is not measurable, then we take Wy ()
to be u.(y¢), i.e., the inner measure of p in M.

We define a probability structure M and a Nilsson
structure N to be equivalent if Wps(y) = Win(p) for
every formula ¢. Intuitively, a probability structure and
a Nilsson structure are equivalent if they assign the same
probability to every formula. The next theorem shows
that there is a natural correspondence between Nilsson
structures and measurable probability structures.’

Theorem 2.1:

/. For every Nilsson structure there
measurable  probability  structure.

IS an equivalent

2. For every measurable probability structure there is

an equivalent Nilsson structure.

Why should we even allow nonmeasurable sets? As
the following example shows (as do others given in the
full paper), using nonmeasurability allows us to avoid
assigning probabilities to those events for which we have
insufficient information to assign a probability.

Example 2.2: Ron has two blue suits and two gray
suits. He has a very simple method for deciding what
color suit to wear on any particular day: he simply

The proof of this and all other theorems mentioned here
can be found in the full paper [FH88],

tosses a (fair) coin: if it lands heads he wears a blue
suit, and if it lands tails he wears a gray suit. Once
he's decided what color suit to wear, he just chooses the
rightmost suit of that color on the rack. Both of Ron's
blue suits are single-breasted, while one of Ron's gray
suits is single-breasted and the other is double-breasted.
Ron's wife Susan is (fortunately for Ron) a little more
fashion-conscious than he is. She also knows how Ron
makes his sartorial choices. So, from time to time, she
makes sure that the gray suit she considers preferable is
to the right (which it is depends on current fashions and
perhaps on other whims of Susan).” Suppose we don't
know about the current fashions (or about Susan's cur-
rent whims). What can we say about the probability of
Ron's wearing a single-breasted suit on Monday?

In terms of possible worlds, it is clear that there
are four possible worlds, one corresponding to each of
the suits that Ron could choose. For definiteness, sup-
pose states $i and s<> correspond to the two blue suits,
.83 corresponds to the single-breasted gray suit, and
S4 corresponds to the double-breasted gray suit. Let
S ={.s1, s2, S3, S4}. There are two features of interest
about a suit: its color and whether it is single-breasted
or double-breasted. Let the primitive proposition g de-
note "the suit is gray" and let db denote "the suit is
double-breasted", and define the truth assignment n in
the obvious way. Note that the atom —g /\ =db is asso-
ciated with both states s7 and s2. Since the two blue
suits are both single-breasted, these two states cannot
be distinguished by the formulas in our language.

What are the measurable events? Besides S itself and
the empty set, the only other candidates are {s,s)}
("Ron chooses a blue suit") and {S3, s4} ("Ron chooses
a gray suit"). However, SB — {s1, .s,, .S3} ("Ron chooses
a single-breasted suit") is nonmeasurable. The reason
Is that we do not have a probability on the event "Ron
chooses a single-breasted suit, given that Ron chooses a
gray suit", since this in turn depends on the probability
that Susan put the single-breasted suit to the right of the
other gray suit, which we do not know. Susan's choice
might be characterizable by a probability distribution; it
might also be deterministic, based on some complex al-
gorithm which even she might not be able to describe; or
it might be completely nondeterministic, in which case it
is not technically meaningful to talk about the "probabil-
ity" of Susan's actions! Our ignorance here is captured
by nonmeasurability. Informally, we can say that the
probability of Ron choosing a single-breasted suit lies
somewhere in the interval [1/2,1], since it is bounded
below by the probability of Ron choosing a blue suit.
This is an informal statement because formally it does
not make sense to talk about the probability of a non-
measurable event. The formal analogue is simply that
the inner measure of SB is 1/2, while its outer measure
is 1. |

*Anv similarity between the characters in this example
and the first author of this paper and his wife Susan is not
totally accidental.

Fagin and Halpern 1163



3 The Dempster-Shafer theory of
evidence

The Dernpster-Shafer theory of evidence [Sha76] pro-
vides another approach to attaching Ilikelihoods to
events. This theory starts out with a belief function
(sometimes called a support function). For every event
(i.e., set) A, the belief in A, denoted Bel(A), is a
number in the interval [0,1] that places a lower bound
on likelihood of A. We have a corresponding number
PI(A) = 1 — Bel(A), called the plausibility of A, which
places an upper bound on the likelihood of A. Thus, to
every event A we can attach the interval [Bel(A), P1(A)].
Like a probability measure, a belief function assigns a
"weight" to subsets of a set 5, but unlike a probabil-
ity measure, the domain of a belief function is always
taken to be all subsets of S. Just as we defined prob-
ability structures, we can define a DS structure (where,
of course, "DS" stands for Dempster-Shafer) to be a tu-
ple (S, Bel, TT), where S and are as before, and where
Bei.2®> —> [0, 1] is a function satisfying:

B1l. Bel(0) =0
B2. Bel(S) =1

B3. BC’I(AI u...U Ak) Z
Yorcqr.. k) 1ze(=DTIHBel(N;c; As).

A belief function is typically defined on a frame of dis-
cernment, consisting of mutually exclusive and exhaus-
tive propositions describing the domain of interest. We
think of the set S of states in a belief structure as be-
ing this frame of discernment. We could always choose
S to be some subset of At the set of atoms, so that
its elements are in fact propositions in the language. In
general, given a DS structure D = (5, Bel, m) and for-
mula ¢, ¢ define the weight Wp(y) to be Bel(¢’)),
where ch Is the set of states where (p is true. Thus
we can talk about an agent's degree of belief in <p in
D, described by Wp(y), by identifying <p with the set
cp” and considering the belief in <pD. As before, we de-
fine a probability structure M (resp., a Nilsson struc-
ture N, a DS structure D') and a DS structure D to be
equivalent if WM(@)— Wn(w) (resp., Wn(p) = Wp(p),
Wpi(p) = Wp(p)) for every formula ¢.

Property B3 may seem unmotivated. Perhaps the best
way to understand it is as an analogue to the usual
Inclusion-exclusion rule for probabilities [Fel57, p. 89],

which is obtained by replacing the inequality by equal-

Intuitively, there is weight of evidence 1/2 for p, and no
evidence for -p. Thus Wpe(p) = 1/2 and Wpo(p) = 0.
Do is not equivalent to any Nilsson structure, since if N
Is a Nilsson structure such that WN(P) = 1/2, then we
must have WNE-P) = 1/2.

These observations tell us that in some sense belief
functions are more general than probability measures,
provided we restrict attention to probability spaces
where all sets are measurable. This fact is well known.
Indeed, in [Sha76], Shafer makes explicit use of the
greater generality of belief functions. While he does con-
sider events E such that Bel("fE) = 1 - Bel(E) (he calls
such events probabilistic)) he also wants to allow non-
probabilistic events. He gives examples of events where
the fact that we would like to assign weight .8 to our
belief in event E does not mean that we want to assign
weight .2 to our belief in /7E. In our framework, where
we allow nonmeasurable sets, we can view probabilistic
events as corresponding to measurable sets, while non-
probabilistic events do not. We can push this analogy
much further. Not only do nonmeasurable sets corre-
spond to non-probabilistic events, but the inner mea-
sures induced by probability measures correspond to be-
lief functions.

Proposition 3.1: /I (5, X, p)
then fj,, Is a belief function on 2" .

IS a probability space,

Proposition 3.1 says that every inner measure is a be-
lief function (and thus generalizes the statement that
every probability measure is a belief function). The con-
verse does not quite hold. For example, consider the DS
space Dy defined above. There is no probability mea-
sure // that we can define on {p, ~~>p) such that 4. = Bel.
However, it is easy to define a probability structure M
such that u.(p™) = 1/2 and p.(—-p™) = 0. That is, we
can find a probability structure equivalent to Do- The
next theorem generalizes this observation.

Theorem 3.2:

/. For every DS structure
ability structure.

there Is an equivalent prob-

2. For every probability structure there is an equivalent
DS  structure.

Intuitively, Theorem 3.2 says that belief functions and
Inner measures induced by probability measures are pre-
cisely the same if their domains are considered to be
formulas rather than sets. As we shall see, this result

ity (andthebelieffunction Belbyaprobabilitymeasure). In particuhas, Baps tiefor p roplaesa tig e cergasdiinge complete axioma-

prove a more general result, namely that it holds for
all inner measures induced by probability measures, In
Proposition 3.1 below). Hence, if (S, X, y) is a probabil-
ity space and X = 2° (making every subset of 5 mea-
surable), then y is a belief function. (This fact has been
observed frequently before; see, for example, [Sha76].) It
follows that every Nilsson structure is a DS structure.

It iIs easy to see that the converse does not hold. For
example, suppose there is only one primitive proposi-
tion, say p, in the language, so that At = {p,-p}, and
let Do = (At Bel, ™) be such that Bel({p})) = 1/2,
B“-’l({"‘l’}) = 0, and 7 is defined in the obvious way.
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tizations and decision procedures.

4 Reasoning about belief and
probability

We are often interested in the inferences we can make
about probabilities or beliefs given some information.
In order to do this, we need a language for doing
such reasoning. Such a language is given in [FHM88].
A term in this language is an expression of the form
a,w(py) + - + arw(pr), where a\l.. a* are inte-
gers and ¢, . ., are propositional formulas. A basic

weight formula is one of the form t > b, where t is a



term and b is an integer. A weight formula is a Boolean
combination of basic weight formulas. We sometimes use
obvious abbreviations without further comment, such as

w(p) > w(y) for w(yp) — w(y) > 0.

We give semantics to the formulas in our language with
respect to all the structures we have been considering.
Let A' be either a Nilsson structure, a probability struc-
ture, or a DS structure, and let / be a weight formula.
We now define what it means for K to satisfy /, written

K = f. For a basic weight formula,

KEauwle))+ - +arw(er) > biff
ayWk(e1)+ -+ arWgk (o) > b.

We then extend = In the obvious way to conjunctions
and negations. The interpretation of w(y) is either "the
probability of ¢~ (for Nilsson structures or measurable
probability structures), "the inner measure o ¢”for

general probability structures), or "the belief in ¢” (for
DS structures).

Let K be a class of structures (in the cases of inter-
est to us, K is the class of either probability structures,
measurable probability structures, Nilsson structures, or
DS structures). As usual, we define a weight formula
| to be satisfialet with nsptct to A if X' = f for some
N € K. Similarly, / is valid with respect to A if N k= [
for all A € A

In [FHM88], an axiom system AX ME AS FOR reason-
Ing about measurable probability structures is provided.
The system has three parts, which deal respectively with
propositional reasoning, reasoning about linear inequal-
ities, and reasoning about probability. For example, a
typical axiom for reasoning about linear inequalities is

(ayw(p)) + -+ apu(pr) > b) =
(cajw(e)+ - -+ caruw(er) > cb) if ¢ > 0.

l

which says that both sides of an inequality can be mul-
tiplied by a positive constant. (The remaining axioms
for reasoning about inequalities are described in the full
paper.)

For reasoning about probability, we have the following
axioms. The first three correspond to the usual laws of
probability, except that W3 corresponds to finite addi-
tivity, not countable additivity.

W1. w(yp) > 0 (nonnegativity)
W2, u(
W3. w(p Ay)+ w(p A-yY) = w(p) (additivity)

W4. w(p) = w(y) if ¢ = ¢ 1s a propositional tautology

true) = 1 (the probability of the event fruec 1s 1)

As is shown in [FHM88], AXMEAS characterizes the
valid formulas for measurable probability structures.

Theorem 4.1: ([FHM88]) AXwyeas Is a sound and
complete axiomatization for weight formulas with respect
fo measurable probability structures.

This result, together with Theorem 2.1,
gives us

iImmediately

Corollary 4.2: AXMEAS IS A sound and complete ar-
lomatizatwn for weight formulas with respect to Nilsson
structures.

AX MEAS is not sound with respect to arbitrary prob-
ability structures, where w(¢) is interpreted as the inner
measure ofcpM. In particular, axiom W3 no longer holds:
iInner measures are not finitely additive. Let AX be ob-
tained from AXMEAS by replacing W3 by the following
two axioms, which are obtained from conditions Bl and
B3 for belief functions in an obvious way:

W3S, w(false) =0

W6. wip, V... Ver)>
Zlg{l,...,k},I;to(_l)””lw(/\ig] ‘Pi)

Theorem 4.3: ([FHM88]) AX is a sound and complete
axiomatization for weight formulas with respect to prob-
ability structures.

Applying Theorem 3.2, we immediately get

Corollary 4.4: AX is a sound and complete automati-
zation for weight formulas with respect to DS structures.

Thus, using AX, we can derive all consequences of a
collection of beliefs.

Combining the preceding results with results of
[FHM88], we can also characterize the complexity of rea-
soning about probability and belief.

Theorem 4.5: The complexity of deciding whether a
weight formula is satisfiable with respect to probabil-
ity structures (respectively,  measurable probability struc-
tures, Nilsson structures, DS structures) is NP-complete.

(This result in the ca.se of Nilsson structures was ob-
tained independently in [GKP88].) Note that Theo-
rem 4.5 says that reasoning about probability and belief
IS, in a precise sense, exactly as difficult as propositional
reasoning. This is the best we could expect, since it is
easy to see that reasoning about probability and belief
Is at least as hard as propositional reasoning (the propo-
sitional formula ¢ is satisfiable iff the weight formula
wi) > 0 is satisfiable).

5 Combining evidence

An important issue for belief functions, each of which can
be viewed as representing a distinct body of evidence, is
how to combine them to obtain a new belief function that
somehow reflects the combined evidence. A way of doing
so is provided by Dempster's rule of combination, which
was introduced by Dempster [Dem68] and was further
developed and studied in an elegant and rather complete
manner by Shafer [Sha70].

In the full paper [FH88], we show that there is a nat-
ural way (in the spirit of Dempster's rule) to define the
combination D, D, of two DS structures D; and D,
and a natural way to define the combination M; ® M,
of two probability structures M; and M,, such that the
following theorem holds.

Theorem 5.1: Let D, and D, bt DS structures. There
are probability structures M; and M, such that (a) D\
is equivalent to My, (b) D, is equivalent to M,, and (c)

D\ 4 D'2 is equivalent to M\ & Al,.

This theorem shows that the spirit of Dempster's
rule of combination can be captured within probabil-
ity theory We are currently investigating alternatives
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to Dempster's rule of combination for revising beliefs
about uncertainty in the presence of new information.
The idea is to consider what it means to take a condi-
tional probability with respect to a nonmeasurable set.
We plan to report on this work in a future paper.

6 Related work

Although we believe we are the first to propose using
iInner and outer measures as a way of dealing with un-
certainty, there are a number of other works with similar
themes. We briefly discuss them here.

A number of authors have argued that we should
think in terms of an interval in which the probability
lies, rather than a unique numerical probability (see, for
example, [Kyb61, Kyb88]). Good [Goo062], Koopman
[Koo40a, Koo40b], and Smith [Smi61] try to derive rea-
sonable properties for the intuitive notions of lower and
upper probability, which are somehow meant to capture
lower and upper bounds on an agent's belief in a propo-
sition. Good observes that "The analogy [between lower
and upper probability and] inner and outer measure is
obvious. But the axioms for upper and lower probabil-
ity do not all follow’ from the theory of inner and outer
measure.”

Dempster [Dem66, Dem68] gives a formal mathemat-
ical definition of lower and upper probability in terms
of a tuple (,S,u,T,T), which we call a Dempsler strvc-
tare. (S, 2° ,u is a probability space (Dempster assumes
for simplicity that every subset of S is measurable). T
iIs another set, and F is a multi-valued mapping S to T.
Thus, T(s) is a subset of T for each s S. Given A C 1.
we define subsets A, and A* of S as follows:

A.={s € S|T(s) # 0. I(s) C A
A" = {s€ S|I'(s)N A £ 8},

Provided u(7T™) # 0, we define the lower and upper prob-
abiities of A, written I’.(A) and P*(A) respectively, by

P,.(A_) = ;1.(.4.._)/;1.(7—")
P*(A) = pu(A")/ u(T™).

It is easy to check that T, = T™. Thus, dividing by u(7™)
has the eflect of normalizing so that P, (T) = P*(T) = 1.

There 1s a close relationship between lower and up-
per probabilities and inner and outer measures induced
by a probability measure. Given a probability structure
M = (S5, ,u,7) where S 1s finite, let (X, u', T, T) be
the Dempster structure where (1) A” is a basis for X’,°

(2) p' is a probability measure defined on 2% by tak-
ing ¢'({A}) = p(A) for A € A’ and then extending to
all subsets of X’ by finite additivity, (3) T consists of

'A subset X' of X is said to be a basis (of X) if the mem-
bers of X' are nonempty and disjoint, and if X consists pre-
cisely of countable unions of members of X' It is easy to see
that if X is finite then it has a basis. Moreover, whenever X
has a basis, it is unique: it consists precisely of the minimal
elements of X (the nonempty sets none of whose nonempty
subsets are in X). Note that if X has a basis, once we know
the probability of every set in the basis, we can compute
the probability of every measurable set by using countable
additivity.
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all propositional formulas, and (4) for A € &, we de-
fine F(A) to consist of all formulas ¢ such that ¢ is true
at some point in .4 (in the structure A/). Thus T is a
multivalued mapping from X' to 7. It is easy to check
that P.({¢}) = p.(pM) and P*({p}) = p* (M) for all
formulas ¢

Ruspini [R.us87] also considers giving semantics to
probability formulas by using possible worlds, but he
includes epistemic notions in the picture. Briefly, his
approach can be described as follows (where have taken
the liberty of converting some of his notation to ours, to
make the ideas easier to compare). Fix a set {ps.. ., pif
of primitive propositions. Instead of considering just
propositional formulas, Ruspini allows epistemic formu-
las; he obtains his language by closing off under the
propositional connectives A, V, =, and , = as well as
the epistemic operator A". Thus, a typical formula in
his language would be A (p1 = h(p>» A p3)). (A for-
mula such as /\ y should be read "the agent knows )
Rather than considering arbitrary sample spaces as we
have done here, where at each point in the sample space
some subset of primitive propositions is true, Ruspini
considers one fixed sample space S (which he calls a sen-
tence space) whose points consist of all the possible truth
assignments to these formulas consistent with the axioms
of the modal logic S5. (See, for example, [HM85] for an
introduction to S5. We remark that it can be shown that
there are less than 272 consistent truth assignments,
so that 5 is finite.) We can define an equivalence re-
lation — on S by taking .s ~ t if s and / agree on the
truth values of all formulas of the form Ihy. The equiv-
alence classes form a basis for a o-algebra of measurable
subsets of S. Let X be this o-algebra. For any formula
w, le gp‘qonsist of all the truth assignments ‘in S that
make  true. It is easy to check that (1\'«,9)5, the set
of truth assignments that make A ¢ true, is the union
of equivalence classes, and hence is measurable. Let //
be any probability measure defined on X. Given /i, we
can consider the probability structure (5,1, i, ™), where
we take w(s)(p) = s(p). (Since .s is a truth assignment,
this is well defined.) The axioms of S5 guarantee us that

{F\<p)® is the largest measurable subset contained in cpM;

thus, . (™) = p((Ke)").

Ruspini then considers the DS structure (At, Bel, n'),
where =’ is defined in the obvious way on the atoms in
41, and Bel(e?) = p((Ke))(= pa(#™)).® Ruspini
shows that Bel defined in this way is indeed a belief
function. Thus, Ruspini shows a close connection be-
tween probabilities, inner measures, and belief functions
In the particular structures that he considers. He does
not show a general relationship between inner measures
and belief functions; in particular, he does not show that
DS structures are equivalent to probability structures, as
we do in Theorem 3.2.

In the full paper, we explore further relations between
our work and that of Ruspini, as well as comparing our
characterization of belief functions with those of Shafer
[Sha79], Kyburg [Kyb87], and Pearl [Pea88].

°Ruspini actually defines the belief function directly on
formulas; i.e., he defines Bel(¢). In our notation, what he is
doing is defining a weight function WD-
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