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A b s t r a c t 
We int roduce a new probabi l is t ic approach to 
deal ing w i t h uncerta inty, based on the obser­
vat ion tha t p robab i l i t y theory does not require 
tha t every event be assigned a probabi l i ty . For 
a nonmeasurable event (one to which we do 
not assign a p robab i l i t y ) , we can ta lk about 
only the inner measure and outer measure of 
the event. Thus , the measure of belief in an 
event can be represented by an interval (de­
fined by the inner and outer measure), rather 
than by a single number. Fur ther , this ap­
proach allows us to assign a belief ( inner mea­
sure) to an event E w i thou t commi t t i ng to a 
belief about its negation ¬E (since the inner 
measure of an event plus the inner measure of 
i ts negation is not necessarily one). Interest­
ingly enough, inner measures induced by proba­
b i l i t y measures tu rn out to correspond in a pre­
cise sense to Dempster-Shafer bel ief funct ions. 
Hence, in addi t ion to p rov id ing promis ing new 
conceptual tools for deal ing w i t h uncertainty, 
our approach shows that a key par t of the im­
portant Dempster-Shafer theory of evidence is 
f i rm ly rooted in classical p robab i l i t y theory. 

1 I n t r o d u c t i o n 
Dealing w i t h uncer ta inty is a fundamenta l issue for A l . 
The most widely-used approach to deal ing w i t h uncer­
ta in ty is undoubted ly the Bayesian approach. It has the 
advantage of re ly ing on wel l -understood techniques f rom 
probab i l i t y theory, as well as some phi losophical j us t i f i ­
cat ion on the grounds tha t a "rat ional '* agent must as­
sign uncerta int ies to events in a way that satisfies the ax­
ioms of p robab i l i t y [Cox46, Sav54]. On the other hand, 
the Bayesian approach has been widely cr i t ic ized for re­
qu i r ing an agent to assign a subject ive probab i l i t y to 
every event. Wh i l e th is can be done in pr inc ip le by hav­
ing the agent play a sui table be t t i ng game [Jef83],1 i t 
does have a number of drawbacks. Among others, there 
is the computa t iona l d i f f icu l ty of a r r i v ing at the proba­
b i l i ty . There is also the issue of whether it is reasonable 

'This idea is due to Ramsey [Ram3l] and was rediscovered 
by von Neumann and Morgenstern [vNM47]; a clear exposi­
tion can be found in [LR57]. 

to describe confidence by a single po in t rather t han a 
range. Whi le an agent might be prepared to agree tha t 
the probabi l i ty of an event lies w i th in a given range, say 
between 1/3 and 1/2, he might not be prepared to say 
that it is precisely .435. 

Not surprisingly, there has been a great deal of 
debate regarding the Bayesian approach (see [Che85] 
and [Sha76] for some of the arguments) . Numerous 
other approaches to dealing w i t h uncer ta inty have been 
proposed, inc luding Demp>ster-Shafer theory [Dem68, 
Sha76], Cohen's model of endorsements [Coh85], and 
various nonstandard, moda l , and fuzzy logics (for ex­
ample, [HR87, Zad75]). A recent overview of the field 
can be found in [Saf88]. Of par t icu lar interest to us here 
is the Dempster-Shafer approach, which uses belief {unc­
tions and plausibility functions to at tach numerical lower 
and upper bounds on the l ikel ihoods of events. 

A l though the Bayesian approach requires an agent to 
assign a probabi l i ty to every event, probabi l i ty theory 
does not. The usual reason tha t mathemat ic ians deal 
w i th nonmeasurable events (those tha t are not assigned 
a probabi l i ty ) is out of mathemat ica l necessity. For ex­
ample, it is well known that if the sample space of the 
probabi l i ty space consists of all numbers in the real in­
terval [0, 1], then we cannot allow every set to be mea­
surable if ( l ike Lebesgue measure) the measure is to be 
translat ion- invar iant (see [Boy64, page 54]). However, in 
this paper we allow nonmeasurable events out of choice, 
rather than out of mathemat ica l necessity. An event E 
for which an agent has insufficient in format ion to assign 
a probabi l i ty is modelled as a nonmeasurable set. The 
agent is not forced to assign a probabi l i ty to E in our 
approach. We can provide meaningful lower and upper 
bounds on our degree of belief in E by using the standard 
mathemat ica l notions of inner measun and outer mea­
sure induced by the probab i l i t y measure [Hal50], wh ich , 
roughly speaking, are the probabi l i ty of the largest mea­
surable event contained in E and the smallest measur­
able event contain ing E, respectively. 

A l low ing nonmeasurable events has its advantages. 
The uncertainty of event E is no longer given by a single 
number, but rather by an interval defined by the inner 
and outer measures. Fur thermore, it is possible for the 
belief (i.e., inner measure) of event E to be a w i t h o u t 
the belief of -^E being 1 — a. Rather than nonnieasura-
b i l i ty being a mathemat ica l nuisance, we have tu rned it 
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here into a desirable feature! 
We feel that this paper makes three major contr ibu­

tions. The first is conceptual: In certain situations, our 
approach gives a useful way to th ink about and reason 
about uncertainty. In part icular, the use of nonmeasur-
able sets seems to provide a useful way to capture our 
uncertainty about the probabi l i ty of an event. The sec­
ond is technical: We prove that , in a precise sense, inner 
measures induced by probabi l i ty measures are equivalent 
to Shafer's belief functions (and so outer measures in­
duced by probabi l i ty measures are equivalent to Shafer's 
plausibi l i ty funct ions). The impl icat ions of this equiv­
alence are significant. A l though some, such as Cheese-
man [Che85], consider the theory of belief functions as 
ad hoc and essentially nonprobabil ist ic (see discussion by 
Shafer [Sha86]), our results help show that a key part of 
the Dempster-Shafer theory of evidence is firmly rooted 
in classical probabi l i ty theory. The last contr ibut ion is 
also technical: by combining our results here w i th those 
of a companion paper [FHM88] , we are able to obtain 
a sound and complete axiomatizat ion for a rich propo-
sit ional logic of evidence, and provide a decision proce­
dure for the satisfiabil i ty problem, which we show is no 
harder than that of proposit ional logic (NP-complete). 
Our techniques may provide a means for automatical ly 
deducing the consequences of a body of evidence. 

2 Probab i l i t y theory 
To make our discussion precise, it is helpful to re­
call some basic definit ions f rom probabi l i ty theory (see 
[Fel57] for more details). A probability space (S, X,µ,) 
consists of a set S (called the sample space), a a-algebra 
X of subsets of S (i.e., a set of subsets of S contain­
ing S and closed under complementation and countable 
union, but not necessarily consisting of all subsets of S) 
whose elements are called measurable sets, and a proba­
bility measure //: X —> [0, 1] satisfying the fol lowing prop-
erties: 
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If there are only finitely many measurable sets ( in par­
t icular , if S is finite), then it is easy to see that the 
inner measure of A is the measure of the largest mea­
surable set contained in A, while the outer measure of 
A is the measure of the smallest measurable set contain­
ing A. In any case, it is not hard to show by countable 
add i t i v i tv that for each set .4, there are measurable sets 

Actually, the use of possible worlds in giving semantics 
to probability formulas goes back to Carnap [Car50]. 



true at s if = t r u e ; otherwise, we say that p is 
false at s. 

We th ink of S as consisting of the possible states of 
the world. We can associate w i th each state s in 5 a 
unique atom describing the t r u t h values of the pr imi t ive 
propositions in s. For example, if = {p1,p2), and if 

= t r u e and = fa lse, then we associate 
w i th s the atom It is perfectly all r ight for 
there to be several states associated w i t h the same atom 
(indeed, there may be an inf ini te number, since we allow 
S to be inf ini te, even though is finite). This si tuat ion 
may occur if a state is not completely characterized by 
the events that are true there. This is the case, for exam­
ple, if there are features of worlds that are not captured 
by the pr imi t ive proposit ions. 

We can easily extend to a t r u t h assignment on 
all formulas by taking the usual rules of proposit ional 
logic. Then if M is a probabi l i ty structure, we can 
associate w i th every formula the set consisting 
of all the states in M where is true (i.e., the set 

Of course, we assume that n 
is defined so that trueM — S. If pM is measurable for 
every pr imi t ive proposit ion then is also mea­
surable for every for inula (since the set X of measur­
able sets is closed under complementation and countable 
union). We say M is a measurable probability structure 
if is measurable for every formula 

It makes sense to talk about the probabi l i ty of <p in 
M only if is measurable; we can then take the prob­
abil i ty of which we denote to be If 
(fXi is not measurable, then we cannot talk about its 
probabi l i ty. However, we can st i l l talk about its inner 
measure and outer measure, since these are defined for 
all subsets. Intui t ively, the inner and outer measure pro­
vide lower and upper bounds on the probabi l i ty of In 
general, if is not measurable, then we take 
to be i.e., the inner measure of in M. 

We define a probabi l i ty structure M and a Nilsson 
structure N to be equivalent if = for 
every formula Intui t ively, a probabi l i ty structure and 
a Nilsson structure are equivalent if they assign the same 
probabi l i ty to every formula. The next theorem shows 
that there is a natural correspondence between Nilsson 
structures and measurable probabi l i ty structures.3 

T h e o r e m 2 . 1 : 

/. For every Nilsson structure there is an equivalent 
measurable probability structure. 

2. For every measurable probability structure there is 
an equivalent Nilsson structure. 

Why should we even allow nonmeasurable sets? As 
the fol lowing example shows (as do others given in the 
ful l paper), using nonmeasurabil i ty allows us to avoid 
assigning probabil i t ies to those events for which we have 
insufficient informat ion to assign a probabi l i ty. 

E x a m p l e 2 . 2 : Ron has two blue suits and two gray 
suits. He has a very simple method for deciding what 
color suit to wear on any part icular day: he simply 

tosses a ( fair) coin: if it lands heads he wears a blue 
sui t , and if i t lands tai ls he wears a gray sui t . Once 
he's decided what color sui t to wear, he jus t chooses the 
r ightmost suit of tha t color on the rack. Bo th of Ron's 
blue suits are single-breasted, whi le one of Ron's gray 
suits is single-breasted and the other is double-breasted. 
Ron's wife Susan is ( for tunate ly for Ron) a l i t t le more 
fashion-conscious than he is. She also knows how Ron 
makes his sartor ia l choices. So, f r om t ime to t ime , she 
makes sure tha t the gray suit she considers preferable is 
to the r ight (which it is depends on current fashions and 
perhaps on other whims of Susan).4 Suppose we don ' t 
know about the current fashions (or about Susan's cur­
rent wh ims) . W h a t can we say about the p robab i l i t y of 
Ron's wearing a single-breasted suit on Monday? 

In terms of possible wor lds, i t is clear tha t there 
are four possible worlds, one corresponding to each of 
the suits tha t Ron could choose. For definiteness, sup­
pose states $i and s<> correspond to the two blue sui ts, 
.s3 corresponds to the single-breasted gray su i t , and 
S4 corresponds to the double-breasted gray sui t . Let 
S = {.s1, s2, S3, S 4 } . There are two features of interest 
about a suit : its color and whether it is single-breasted 
or double-breasted. Let the p r im i t i ve proposi t ion g de­
note "the suit is gray" and let db denote " the suit is 
double-breasted", and define the t r u t h assignment n in 
the obvious way. Note that the a tom ¬g /\ ¬db is asso­
ciated w i th both states s1 and s2. Since the two blue 
suits are both single-breasted, these two states cannot 
be dist inguished by the formulas in our language. 

W h a t are the measurable events? Besides S i tself and 
the empty set, the only other candidates are {s1,s2} 
( "Ron chooses a blue su i t " ) and {.S3, s4} ( "Ron chooses 
a gray su i t " ) . However, SB — { s 1 , .s2, .S3} ( "Ron chooses 
a single-breasted su i t " ) is nonmeasurable. The reason 
is tha t we do not have a probabi l i ty on the event "Ron 
chooses a single-breasted sui t , given tha t Ron chooses a 
gray su i t " , since this in tu rn depends on the probab i l i t y 
tha t Susan put the single-breasted suit to the r ight of the 
other gray sui t , which we do not know. Susan's choice 
might be characterizable by a probabi l i ty d i s t r i bu t i on ; it 
might also be determinist ic , based on some complex al­
go r i t hm which even she might not be able to describe; or 
i t might be completely nondeterminist ic , in which case it 
is not technical ly meaningful to ta lk about the "p robab i l ­
i t y " of Susan's actions! Our ignorance here is captured 
by nonmeasurabi l i ty. In formal ly , we can say tha t the 
probabi l i ty of Ron choosing a single-breasted sui t lies 
somewhere in the interval [ 1 /2 ,1 ] , since it is bounded 
below by the probabi l i ty of Ron choosing a blue sui t . 
Th is is an informal statement because formal ly it does 
not make sense to ta lk about the probab i l i t y of a non-
measurable event. The fo rma l analogue is s imply tha t 
the inner measure of SB is 1/2, whi le its outer measure 
is 1. I 

The proof of this and all other theorems mentioned here 
can be found in the full paper [FH88], 

4Anv similarity between the characters in this example 
and the first author of this paper and his wife Susan is not 
totally accidental. 
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3 T h e Dempste r -Sha fe r t h e o r y o f 
evidence 

The Dernpster-Shafer theory of evidence [Sha76] pro­
vides another approach to attaching l ikelihoods to 
events. This theory starts out w i th a belief function 
(sometimes called a support function). For every event 
(i.e., set) A, the belief in A, denoted Bel(A), is a 
number in the interval [0,1] that places a lower bound 
on l ikelihood of A. We have a corresponding number 
Pl(A) = 1 — Bel(A), called the plausibility of A, which 
places an upper bound on the l ikel ihood of A. Thus, to 
every event A we can attach the interval [Bel(A), P1(A)]. 
Like a probabi l i ty measure, a belief funct ion assigns a 
"weight" to subsets of a set 5, but unlike a probabi l ­
i ty measure, the domain of a belief funct ion is always 
taken to be all subsets of S. Just as we defined prob­
abil i ty structures, we can define a DS structure (where, 
of course, "DS" stands for Dempster-Shafer) to be a t u ­
ple (S, Bel, TT), where S and are as before, and where 
Bei.2s —> [0, 1] is a funct ion satisfying: 

A belief funct ion is typical ly defined on a frame of dis­
cernment, consisting of mutual ly exclusive and exhaus­
tive propositions describing the domain of interest. We 
th ink of the set S of states in a belief structure as be­
ing this frame of discernment. We could always choose 
S to be some subset of At, the set of atoms, so that 
its elements are in fact propositions in the language. In 
general, given a DS structure D = and for­
mula we define the weight to be Bel 
where is the set of states where (p is t rue. Thus 
we can talk about an agent's degree of belief in <p in 
D, described by by ident i fy ing <p w i th the set 

and considering the belief in . As before, we de­
fine a probabi l i ty structure M (resp., a Nilsson struc­
ture N, a DS structure D') and a DS structure D to be 
equivalent if WM — (resp., = 

= for every formula 
Property B3 may seem unmot ivated. Perhaps the best 

way to understand it is as an analogue to the usual 
inclusion-exclusion rule for probabi l i t ies [Fel57, p. 89], 
which is obtained by replacing the inequal i ty by equal­
i ty (and the belief function Bel by a probabi l i ty measure). In part icular, B3 holds for probabi l i ty measures (we 
prove a more general result, namely that it holds for 
all inner measures induced by probabi l i ty measures, in 
Proposition 3.1 below). Hence, if (S, X, µ) is a probabi l ­
i ty space and X = 2s (making every subset of 5 mea­
surable), then µ is a belief funct ion. (This fact has been 
observed frequently before; see, for example, [Sha76].) It 
follows that every Nilsson structure is a DS structure. 

It is easy to see that the converse does not hold. For 
example, suppose there is only one pr imi t ive proposi­
t ion , say p, in the language, so that At = {p , - p } , and 
let D0 = (At, Bel, be such that Bel({p}) = 1/2, 

= 0, and is defined in the obvious way. 
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In tu i t ive ly , there is weight of evidence 1/2 for p, and no 
evidence for - p . Thus Wp 0 (p ) = 1/2 and Wpo(p) = 0. 
D0 is not equivalent to any Nilsson structure, since if N 
is a Nilsson structure such tha t WN(P) = 1/2, then we 
must have WN(¬P) = 1/2. 

These observations tel l us that in some sense belief 
functions are more general than probabi l i ty measures, 
provided we restrict at tent ion to probabi l i ty spaces 
where all sets are measurable. Th is fact is well known. 
Indeed, in [Sha76], Shafer makes expl ici t use of the 
greater generality of belief funct ions. Whi le he does con­
sider events E such that Bel(¬E) = 1 - Bel(E) (he calls 
such events probabilistic), he also wants to allow non-
probabil ist ic events. He gives examples of events where 
the fact that we would like to assign weight .8 to our 
belief in event E does not mean that we want to assign 
weight .2 to our belief in Ì¬E. In our framework, where 
we allow nonmeasurable sets, we can view probabil ist ic 
events as corresponding to measurable sets, while non-
probabil ist ic events do not. We can push this analogy 
much further. Not only do nonmeasurable sets corre­
spond to non-probabil ist ic events, but the inner mea­
sures induced by probabi l i ty measures correspond to be­
lief functions. 

P r o p o s i t i o n 3 . 1 : // (5 , X, p) is a probability space, 
then fjm is a belief function on 2" . 

Proposit ion 3.1 says that every inner measure is a be­
lief funct ion (and thus generalizes the statement that 
every probabi l i ty measure is a belief funct ion) . The con­
verse does not quite hold. For example, consider the DS 
space D0 defined above. There is no probabi l i ty mea­
sure // that we can define on {p , ~~>p) such that = Be I. 
However, it is easy to define a probabi l i ty structure M 
such that Tha t is, we 
can find a probabi l i ty structure equivalent to Do- The 
next theorem generalizes this observation. 

T h e o r e m 3.2: 

/. For every DS structure there is an equivalent prob­
ability structure. 

2. For every probability structure there is an equivalent 
DS structure. 

Intu i t ively, Theorem 3.2 says that belief functions and 
inner measures induced by probabi l i ty measures are pre­
cisely the same if their domains are considered to be 
formulas rather than sets. As we shall see, this result 
has impor tant implications regarding complete axioma-
t izations and decision procedures. 

4 Reason ing abou t be l ie f a n d 
p r o b a b i l i t y 

We are often interested in the inferences we can make 
about probabil i t ies or beliefs given some in format ion. 
In order to do this, we need a language for doing 
such reasoning. Such a language is given in [FHM88] . 
A term in this language is an expression of the fo rm 

where a\,..., a* are inte­
gers and are proposit ional formulas. A basic 
weight formula is one of the form where t is a 



te rm and b is an integer. A weight formula is a Boolean 
combination of basic weight formulas. We sometimes use 
obvious abbreviations w i thout further comment, such as 

We give semantics to the formulas in our language wi th 
respect to all the structures we have been considering. 
Let A' be either a Nilsson structure, a probabi l i ty struc­
ture, or a DS structure, and let / be a weight formula. 
We now define what it means for K to satisfy /, wr i t ten 

For a basic weight formula, 

We then extend in the obvious way to conjunctions 
and negations. The interpretat ion of is either "the 
probabi l i ty of (for Nilsson structures or measurable 
probabi l i ty structures), " the inner measure o f ( f o r 
general probabi l i ty structures), or "the belief in (for 
DS structures). 

Let K be a class of structures (in the cases of inter­
est to us, K is the class of either probabi l i ty structures, 
measurable probabi l i ty structures, Nilsson structures, or 
DS structures). As usual, we define a weight formula 
/ to be satisfialet with nsptct to for some 

Similarly, / is valid with respect to 
for all 

In [FHM88], an axiom system AX ME AS FOR reason­
ing about measurable probabi l i ty structures is provided. 
The system has three parts, which deal respectively with 
proposit ional reasoning, reasoning about linear inequal­
ities, and reasoning about probabi l i ty. For example, a 
typical axiom for reasoning about linear inequalities is 

which says that both sides of an inequality can be mul­
t ipl ied by a positive constant. (The remaining axioms 
for reasoning about inequalities are described in the full 
paper.) 

For reasoning about probabi l i ty, we have the following 
axioms. The first three correspond to the usual laws of 
probabi l i ty, except that W3 corresponds to finite addi-
t iv i ty , not countable addi t iv i ty . 

As is shown in [FHM88] , AXMEAS characterizes the 
valid formulas for measurable probabi l i ty structures. 

T h e o r e m 4 . 1 : ( [FHM88]) A X M E A S is a sound and 
complete axiomatization for weight formulas with respect 
to measurable probability structures. 

This result, together w i th Theorem 2.1, immediately 
gives us 

C o r o l l a r y 4 . 2 : AXMEAS IS A sound and complete ar-
lomatizatwn for weight formulas with respect to Nilsson 
structures. 

T h e o r e m 4 .3 : ( [FHM88] ) AX is a sound and complete 
axiomatization for weight formulas with respect to prob­
ability structures. 

App l y i ng Theorem 3.2, we immediate ly get 

C o r o l l a r y 4 . 4 : AX is a sound and complete automati­
zation for weight formulas with respect to DS structures. 

Thus, using A X , we can derive all consequences of a 
collection of beliefs. 

Combin ing the preceding results w i t h results of 
[FHM88] , we can also characterize the complex i ty of rea­
soning about probabi l i ty and belief. 

T h e o r e m 4 . 5 : The complexity of deciding whether a 
weight formula is satisfiable with respect to probabil­
ity structures (respectively, measurable probability struc­
tures, Nilsson structures, DS structures) is NP-complete. 

(Th is result in the ca.se of Nilsson structures was ob­
tained independently in [GKP88] . ) Note that Theo­
rem 4.5 says that reasoning about probab i l i t y and belief 
is, in a precise sense, exact ly as diff icult as proposi t ional 
reasoning. Th is is the best we could expect, since it is 
easy to see that reasoning about p robab i l i t y and belief 
is at least as hard as proposi t ional reasoning ( the propo­
si t ional formula is satisfiable iff the weight formula 

is satisf iable). 

5 Combin ing evidence 
An impor tant issue for belief funct ions, each of which can 
be viewed as representing a dist inct body of evidence, is 
how to combine them to obta in a new belief funct ion tha t 
somehow reflects the combined evidence. A way of doing 
so is provided by Dempster 's rule of combination, which 
was int roduced by Dempster [Dem68] and was fur ther 
developed and studied in an elegant and rather complete 
manner by Shafer [Sha76]. 

In the ful l paper [FH88], we show tha t there is a nat­
ural way ( in the spir i t of Dempster 's rule) to define the 
combinat ion Dx D2 of two DS structures D1 and D 2 , 
and a natura l way to define the combinat ion M1 ® M2 

of two probabi l i ty structures M1 and M2, such tha t the 
fo l lowing theorem holds. 

T h e o r e m 5 . 1 : Let D1 and D2 bt DS structures. There 
are probability structures M1 and M2 such that (a) D\ 
is equivalent to M1, (b) D2 is equivalent to M 2 , and (c) 
D\ D'2 is equivalent to M\ A/ 2 . 

Th is theorem shows tha t the spirit of Dempster 's 
rule of combinat ion can be captured w i t h i n p robab i l ­
i ty theory We are current ly invest igat ing al ternat ives 
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AX ME AS is not sound w i t h respect to a rb i t ra ry prob­
ab i l i ty structures, where is in terpreted as the inner 
measure of . In par t icu lar , ax iom W3 no longer holds: 
inner measures are not f in i te ly addi t ive. Let AX be ob­
tained f r om AXMEAS by replacing W 3 by the fo l lowing 
two axioms, which are obtained f rom condi t ions Bl and 
B3 for belief funct ions in an obvious way: 



to Dempster 's rule of combinat ion for revising beliefs 
about uncerta inty in the presence of new in fo rma t ion . 
The idea is to consider what it means to take a condi­
t ional probabi l i ty w i t h respect to a nonmeasurable set. 
We plan to report on th is work in a fu ture paper. 

6 Re la ted w o r k 

Al though we believe we are the first to propose using 
inner and outer measures as a way of deal ing w i t h un­
certainty, there are a number of other works w i t h s imi lar 
themes. We brief ly discuss t hem here. 

A number of authors have argued tha t we should 
th ink in terms of an interval in which the p robab i l i t y 
lies, rather than a unique numer ical p robab i l i t y (see, for 
example, [ K y b 6 1 , Kyb88] ) . Good [Goo62], Koopman 
[Koo40a, Koo40b] , and Smi th [Smi61] t ry to derive rea­
sonable propert ies for the in tu i t i ve not ions of lower and 
upper probabi l i ty , which are somehow meant to capture 
lower and upper bounds on an agent's bel ief in a propo­
s i t ion. Good observes tha t "The analogy [between lower 
and upper probab i l i t y and] inner and outer measure is 
obvious. B u t the axioms for upper and lower probab i l ­
i ty do not all follow7 f r om the theory of inner and outer 
measure." 

Dempster [Dem66, Dem68] gives a fo rma l mathemat­
ical def in i t ion of lower and upper p robab i l i t y in terms 
of a tuple ( ,S ,µ ,T ,T ) , which we call a Dempsler strvc-
tare. (S, 2s ,µ is a p robab i l i t y space (Dempster assumes 
for s impl ic i ty that every subset of S is measurable). T 
is another set, and F is a mul t i -va lued mapp ing S to T. 
Thus, T(s) is a subset of T for each s S. Given 
we define subsets A, and A* of S as fol lows: 
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all propos i t iona l formulas, and we de­
fine F ( A ) to consist of al l formulas such tha t is t rue 
at some po in t in .4 ( in the s t ruc tu re A / ) . Thus T is a 
mu l t i va lued mapp ing f r om X' to T. It is easy to check 
t ha t and for all 
formulas 

Ruspin i [R.us87] also considers g iv ing semantics to 
p robab i l i t y formulas by using possible wor lds, but he 
includes epistemic not ions in the p ic tu re . Br ief ly, his 
approach can be described as fol lows (where have taken 
the l iber ty of convert ing some of his nota t ion to ours, to 
make the ideas easier to compare) . F ix a set {p1,.. ., pn] 
of p r im i t i ve proposi t ions. Instead of consider ing jus t 
propos i t iona l formulas, Rusp in i allows epistemic fo rmu­
las; he obtains his language by closing off under the 
propos i t iona l connectives and , ¬ as well as 
the epistemic operator A". Thus , a typ ica l fo rmu la in 
his language wou ld be (A for­
mu la such as should be read " the agent knows ) 
Rather than considering a rb i t ra ry sample spaces as we 
have done here, where at each po in t in the sample space 
some subset of p r im i t i ve proposi t ions is t rue , Rusp in i 
considers one f ixed sample space S (which he calls a sen­
tence space) whose points consist of al l the possible t r u t h 
assignments to these formulas consistent w i t h the axioms 
of the modal logic S5. (See, for example, [HM85] for an 
in t roduc t ion to S5. We remark tha t i t can be shown tha t 
there are less than 2 r )22 consistent t r u t h assignments, 
so that 5 is f in i te. ) We can define an equivalence re­
la t ion — on S by tak ing .s ~ t if s and / agree on the 
t r u t h values of all formulas of the fo rm The equiv­
alence classes fo rm a basis for a ' ' of measurable 
subsets of S. Let X be th is . For any fo rmula 

, l e t c o n s i s t of all the t r u t h assignments in S t ha t 
make t rue. It is easy to check tha t the set 
of t r u t h assignments tha t make t rue , is the union 
of equivalence classes, and hence is measurable. Let // 
be any probab i l i t y measure defined on X. G iven / i , we 
can consider the probab i l i t y s t ruc ture where 
we take (Since .s is a t r u t h assignment, 
th is is well defined.) The axioms of S5 guarantee us tha t 
{F\<p)s is the largest measurable subset contained in 
thus, 

Ruspin i then considers the DS s t ruc ture 
where is defined in the obvious way on the atoms in 
,4 / , and Ruspin i 
shows that Bel defined in th is way is indeed a bel ief 
f unc t i on . Thus , Rusp in i shows a close connect ion be­
tween probabi l i t ies , inner measures, and bel ief funct ions 
in the par t i cu la r s t ructures tha t he considers. He does 
not show a general re lat ionship between inner measures 
and belief funct ions; in par t i cu la r , he does not show tha t 
DS st ructures are equivalent to p robab i l i t y s t ructures, as 
we do in Theorem 3.2. 

In the fu l l paper, we explore fu r the r relat ions between 
our work and tha t of Rusp in i , as well as compar ing our 
character izat ion of bel ief funct ions w i t h those of Shafer 
[Sha79], K y b u r g [Kyb87 ] , and Pearl [Pea88]. 

6Ruspini actually defines the belief function directly on 
formulas; i.e., he defines In our notat ion, what he is 
doing is defining a weight function WD-

'A subset X' of X is said to be a basis (of X) if the mem­
bers of X' are nonempty and disjoint, and if X consists pre­
cisely of countable unions of members of X'. It is easy to see 
that if X is finite then it has a basis. Moreover, whenever X 
has a basis, it is unique: it consists precisely of the minimal 
elements of X (the nonempty sets none of whose nonempty 
subsets are in X). Note that if X has a basis, once we know 
the probability of every set in the basis, we can compute 
the probability of every measurable set by using countable 
additivity. 
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