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[1] The historical surface temperature data set HadCRUT provides a record of surface
temperature trends and variability since 1850. A new version of this data set, HadCRUT3,
has been produced, benefiting from recent improvements to the sea surface temperature
data set which forms its marine component, and from improvements to the station records
which provide the land data. A comprehensive set of uncertainty estimates has been
derived to accompany the data: Estimates of measurement and sampling error, temperature
bias effects, and the effect of limited observational coverage on large-scale averages have
all been made. Since the mid twentieth century the uncertainties in
global and hemispheric mean temperatures are small, and the temperature increase greatly
exceeds its uncertainty. In earlier periods the uncertainties are larger, but the
temperature increase over the twentieth century is still significantly larger than its
uncertainty.
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1. Introduction

[2] The historical surface temperature data set Had-
CRUT [Jones, 1994; Jones and Moberg, 2003] has been
extensively used as a source of information on surface
temperature trends and variability [Houghton et al.,
2001]. Since the last update, which produced HadCRUT2
[Jones and Moberg, 2003], important improvements have
been made in the marine component of the data set
[Rayner et al., 2006]. These include the use of additional
observations, the development of comprehensive uncer-
tainty estimates, and technical improvements that enable,
for instance, the production of gridded fields at arbitrary
resolution.
[3] This paper describes work to produce a new data set

version, HadCRUT3, which will extend the advances made
to the marine data to the global data set. These new
developments include improvements to: the land station
data, the process for blending land data with marine data
to give global coverage, and the statistical process of
adjusting the variance of the gridded values to allow for
varying numbers of contributing observations. Results and
uncertainties for the new blended, global data set, called
HadCRUT3, are presented.

2. Land Surface Data

2.1. Station Data

[4] The land surface component of HadCRUT is derived
from a collection of homogenized, quality-controlled,
monthly averaged temperatures for 4349 stations. This
collection has been expanded and improved for use in the
new data set.
2.1.1. Additional Stations and Data
[5] New stations and data were added for Mali, the

Democratic Republic of Congo, Switzerland [Begert et
al., 2005] and Austria. Data for 16 Austrian stations were
completely replaced with revised values. A total of 29 Mali
series were affected: 5 had partial new data, 8 had com-
pletely new data, and 16 were new stations. Five Swiss
stations were updated for the period 1864–2001 [Begert et
al., 2005]. Thirty-three Congolese stations were affected:
Thirteen were new stations, and 20 were updates to existing
stations.
[6] As well as the new stations discussed above, addi-

tional monthly data have been obtained for stations in
Antarctica [Turner et al., 2005], while additional data for
many stations have been added from the National Climatic
Data Centre publication Monthly Climatic Data for the
World.
2.1.2. Quality Control
[7] Much additional quality control has also been

undertaken. A comparison [Simmons et al., 2004] of the
Climatic Research Unit (CRU) land temperature data with
the ERA-40 reanalysis found a few areas where the
station data were doubtful, and this was augmented by
visual examination of individual station records looking
for outliers. Some bad values were identified and either
corrected or removed. Only a small fraction of the data
needed correction, however; of the more than 3.7 million
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monthly station values, the ERA-40 comparison found
about 10 doubtful grid boxes and the visual inspection
about 270 monthly outliers.
[8] Checking the station data for identical sequences in

all possible station pairs turned up 53 stations which were
duplicates of others. These duplicates have arisen where the
same station data are assimilated into the archive from two
different sources, and the two sources give the same station
but with different names and WMO identifiers. The dupli-
cate stations were merged and duplicate temperature data
were deleted.
[9] Also the station normals and standard deviations were

improved. The station normals (monthly averages over the
normal period 1961–1990) are generated from station data
for this period where possible. Where there are insufficient
station data to achieve this for the period, normals
were derived from WMO values [World Meteorological
Organization (WMO), 1996] or inferred from surrounding
station values [Jones et al., 1985]. For 617 stations, it was
possible to replace the additional WMO normals (used by
Jones and Moberg [2003]) with normals derived from the
station data. This was made possible by relaxing the
requirement to have data for 4 years in each of the three
decades in 1961–1990 (the requirement now is simply to
have at least 15 years of data in this period), so reducing the
number of stations using the seemingly less reliable WMO
normals. As well as making the normals less uncertain (see
the discussion of normal error below), these improved
normals mean that the gridded fields of temperature anoma-
lies are much closer to zero over the normal period than was
the case for previous versions of the data set. Figure 1
shows the locations of the stations used, and indicates those
where changes have been made.

2.2. Gridding

[10] To interpolate the station data to a regular grid the
methods of [Jones and Moberg, 2003] are followed. Each
grid box value is the mean of all available station anomaly
values, except that station outliers in excess of five standard
deviations are omitted.
[11] Two changes have been made in the gridding pro-

cess. The station anomalies can now be gridded to any
spatial resolution, instead of being limited to a 5� � 5�
resolution; this simplifies comparison of the gridded data
with General Circulation Model (GCM) results. Also pre-
vious versions of the data set did some infilling of missing
grid box values using data from surrounding grid boxes
[Jones et al., 2001]. This is no longer done, allowing
the attribution of an uncertainty to each grid box value.
The resulting gridded land-only data set has been given the
name CRUTEM3. The previous version of this data set,
CRUTEM2, started in 1851: In CRUTEM3 the start date
has been extended back to 1850 to match the marine data
(section 3). Figure 2 shows a gridded field for an example
month, at the standard 5� � 5� degree resolution.
[12] For comparison with GCM results, or for regional

studies of areas where observations are plentiful, it can be
useful to perform the gridding at higher resolution. Figure 3
shows a gridded field for the same example month, at the
resolution of the HadGEM1 model [Johns et al., 2004], but
only for North America.

2.3. Uncertainties

[13] To use the data for quantitative, statistical analysis,
for instance, a detailed comparison with GCM results, the
uncertainties of the gridded anomalies are a useful addi-
tional field. A definitive assessment of uncertainties is

Figure 1. Land station coverage. Black circles mark all stations, green circles mark deleted stations,
blue circles mark stations added, and red circles mark stations edited. Many station edits are minor
changes, involving, for instance, the correction of a single outlier.
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impossible, because it is always possible that some un-
known error has contaminated the data, and no quantitative
allowance can be made for such unknowns. There are,
however, several known limitations in the data, and esti-
mates of the likely effects of these limitations can be made
(Defense secretary Rumsfeld press conference, June 6, Back
to disarmament documentation, June 2002, London, The
Acronym Institute (available at www.acronym.org.uk/docs/
0206/doc04.htm)). This means that uncertainty estimates
need to be accompanied by an error model: a precise
description of what uncertainties are being estimated.
[14] Uncertainties in the land data can be divided into

three groups: (1) station error, the uncertainty of individual
station anomalies; (2) sampling error, the uncertainty in a
grid box mean caused by estimating the mean from a small
number of point values; and (3) bias error, the uncertainty in
large-scale temperatures caused by systematic changes in
measurement methods.
2.3.1. Station Errors
[15] The uncertainties in the reported station monthly

mean temperatures can be further sub divided. Suppose

Tactual ¼ Tob þ �ob þ CH þ �H þ �RC ; ð1Þ

where Tactual is the actual station mean monthly tempera-
ture, Tob is the reported temperature, �ob is the measurement
error, CH is any homogenization adjustment that may have

been applied to the reported temperature and �H is the
uncertainty in that adjustment, and �RC is the uncertainty
due to inaccurate calculation or miss reporting of the station
mean temperature.
[16] The values being gridded are anomalies, calculated

by subtracting the station normal from the observed tem-
perature, so errors in the station normals must also be
considered.

Aactual ¼ Tob � TN þ �N þ �ob þ CH þ �H þ �RC; ð2Þ

where Aactual is the actual temperature anomaly, TN is the
estimated station normal, and �N is the error in TN.
[17] The basic station data include normals and may have

had homogenization adjustments applied, so they provide
Tob + CH and TN; also needed are estimates for �ob, �H, �N,
and �RC.
2.3.1.1. Measurement Error (��ob)
[18] The random error in a single thermometer reading is

about 0.2�C (1 s) [Folland et al., 2001]; the monthly
average will be based on at least two readings a day
throughout the month, giving 60 or more values contribut-
ing to the mean. So the error in the monthly average will be
at most 0.2/

ffiffiffiffiffi

60
p

= 0.03�C and this will be uncorrelated with
the value for any other station or the value for any other
month.

Figure 2. CRUTEM3 anomalies (�C) for January 1969 (global, 5� � 5�).

Figure 3. CRUTEM3 anomalies (�C) for January 1969 (North America, HadGEM1 model grid
(1.875� � 1.25�)).
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[19] There will be a difference between the true mean
monthly temperature (i.e., from 1 min averages) and the
average calculated by each station from measurements made
less often; but this difference will also be present in the
station normal and will cancel in the anomaly. So this does
not contribute to the measurement error. If a station changes
the way mean monthly temperature is calculated it will
produce an inhomogeneity in the station temperature series,
and uncertainties due to such changes will form part of the
homogenization adjustment error.
2.3.1.2. Homogenization Adjustment Error (��H)
[20] Inhomogeneities are introduced into the station tem-

perature series by such things as changes in the station site,
changes in measurement time, or changes in instrumenta-
tion. The station data that are used to make HadCRUT have
been adjusted to remove these inhomogeneities, but such
adjustments are not exact; there are uncertainties associated
with them.
[21] For some stations both the adjusted and unadjusted

time series are archived at CRU and so the adjustments that
have been made are known [Jones et al., 1985, 1986;
Vincent and Gullet, 1999], but for most stations only a
single series is archived, so any adjustments that might have
been made (e.g., by National Met. services or individual
scientists) are unknown.
[22] Making a histogram of the adjustments applied

(where these are known) gives the solid line in Figure 4.
Inhomogeneities will come in all sizes, but large inhomo-
geneities are more likely to be found and adjusted than
small ones. So the distribution of adjustments is bimodal,
and can be interpreted as a bell-shaped distribution with
most of the central, small, values missing.

[23] Hypothesizing that the distribution of adjustments
required is Gaussian, with a standard deviation of 0.75�C
gives the dashed line in Figure 4 which matches the number
of adjustments made where the adjustments are large, but
suggests a large number of missing small adjustments. The
homogenization uncertainty is then given by this missing
component (dotted line in Figure 4), which has a standard
deviation of 0.4�C. This uncertainty applies to both adjusted
and unadjusted data, the former have an uncertainty on
the adjustments made, the latter may require undetected
adjustments.
[24] The distribution of known adjustments is not sym-

metric; adjustments are more likely to be negative than
positive. The most common reason for a station needing
adjustment is a site move in the 1940–1960 period. The
earlier site tends to have been warmer than the later one, as
the move is often to an out of town airport. So the adjust-
ments are mainly negative, because the earlier record (in the
town/city) needs to be reduced [Jones et al., 1985, 1986].
Although a real effect, this asymmetry is small compared
with the typical adjustment, and is difficult to quantify; so
the homogenization adjustment uncertainties are treated as
being symmetric about zero.
[25] The homogenization adjustment applied to a station

is usually constant over long periods: The mean time over
which an adjustment is applied is nearly 40 years [Jones et
al., 1985, 1986; Vincent and Gullet, 1999]. The error in
each adjustment will therefore be constant over the same
period. This means that the adjustment uncertainty is highly
correlated in time: The adjustment uncertainty on a station
value will be the same for a decadal average as for an
individual monthly value.

Figure 4. Distribution of station homogeneity adjustments (�C). The solid line is the distribution of the
adjustments known to have been made (763 adjustments from Jones et al. [1985, 1986] and Vincent and
Gullet [1999]), the dashed line is a hypothesized distribution of the adjustments required, and the dotted
line is the difference and so the distribution of homogeneity adjustment error.
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[26] So the homogenization adjustment uncertainty for
any station is a random value taken from a normal distri-
bution with a standard deviation of 0.4�C. Each station
uncertainty is constant in time, but uncertainties for different
stations are not correlated with one another (correlated
inhomogeneities are treated as biases, see below). As an
inhomogeneity is a change from the conditions over the
climatology period (1961–1990), station anomalies will
have no inhomogeneities during that period unless there is
a change sometime during those 30 years. Consequently
these adjustment uncertainty estimates are pessimistic for
that period.
[27] Figure 4 also demonstrates the value of making

homogenization adjustments. The dashed line is an estimate
of the uncertainties in the unadjusted data, and the dotted
line an estimate of the uncertainties remaining after adjust-
ment. The adjustments made have reduced the uncertainties
considerably.
2.3.1.3. Normal Error (��N)
[28] For most stations, the station normal is calculated

from the monthly temperatures for that station over the
normal period (1961–1990). So the uncertainty in the
normal consists of measurement and sampling error for that
data. The measurement error will be a small fraction of the
monthly measurement error and can be neglected, so only
the sampling error is important.
[29] The station temperature in each month during the

normal period can be considered as the sum of two
components: a constant station normal value (C) and a
random weather value (w, with standard deviation si). If
data for a station are available for N of the 30 possible
months during the period from which the normals are taken,
and the ws are uncorrelated; then for stations where C is
estimated as the mean of the available monthly data, the
uncertainty on C is si/

ffiffiffiffi

N
p

. Testing this model by selecting
stations where complete data are available for the climatol-
ogy period and looking at the effect on the normals of using
only a subset of the data confirmed that the autocorrelation
is small and the model is appropriate.
[30] The station normals used fall into three groups

[Jones and Moberg, 2003]. The first group are those where
data are available for all months in 1961–1990; these
normals are given an uncertainty of si/

ffiffiffiffiffi

30
p

. The second
group are those where data are available for at least 15 years
in 1961–1990 (enough data to estimate a normal); these
normals are given an uncertainty of si/

ffiffiffiffi

N
p

where N is the
number of years for which there is data. The third group are
those where too few data are available in 1961–1990 to
estimate a normal. For some of these stations WMO
normals have been used [WMO, 1996] and experience has
shown that these normals are likely to have problems [Jones
and Moberg, 2003]. The process of data improvement
discussed in section 2.1.2 also allowed the generation of
new normals for 617 such stations. Comparison of the old
and new normals for these stations suggested that the
uncertainty in the WMO normals was about 0.3si.
2.3.1.4. Calculation and Reporting Error (��RC)
[31] The station data used in this analysis may have been

extensively processed before being added to the CRU
archive. The monthly mean temperature values will have
been calculated by averaging 60 or more subdaily measure-
ments. Where this calculation is done manually it can

introduce an error. The transmission of the station data to
the CRU archive requires at least one cycle of encoding,
transcribing and decoding the data, and this process may
also introduce an error.
[32] Where such errors are persistent they will introduce

an inhomogeneity into the data for a station, and so are
included in the homogenization adjustment error �H. So the
calculation and reporting error (�RC) is composed of only the
random and uncorrelated cases.
[33] Calculation and reporting errors can be large (chang-

ing the sign of a number and scaling it by a factor of 10 are
both typical transcription errors; as are reporting errors of
10�C (e.g., putting 29.1 for 19.1)) but almost all such errors
will be found during quality control of the data. Those
errors that remain after quality control will be small, and
because they are also uncorrelated both in time and in space
their effect on any large-scale average will be negligible.
For these reasons �RC is not considered further.
2.3.1.5. Combining Station Error Components
[34] For each station, the observational, homogeneity

adjustment, and normal uncertainties are independent; so
estimates of each can be combined in quadrature to give an
estimate of the total uncertainty for each station. The grid
box anomaly is the mean of the n station anomalies in that
grid box, so the grid box station uncertainty is the root mean
square of the station errors, multiplied by 1/

ffiffiffi

n
p

. The spatial
patterns visible in the station error field (Figure 5) are
dominated by the distribution of the mean station standard
deviation. This is larger in the high latitudes and in the
winter, and smaller in the tropics and in the summer; so for
the month shown (January) the station error is largest for the
northern high latitudes. A secondary effect is a reduction in
areas with a large number of observations. In North Amer-
ica, Europe, and southeastern Australia, observations are
plentiful and so the station error is reduced.
2.3.2. Sampling Error
[35] Even if the station temperature anomalies had no

error, the mean of the station anomalies in a grid box would
not necessarily be equal to the true spatial average temper-
ature anomaly for that grid box. This difference is the
sampling error; and it will depend on the number of stations
in the grid box, on the positions of those stations, and on the
actual variability of the climate in the grid box. A method
for calculating sampling error is described by Jones et al.
[1997], who recommend the equation

SE2 ¼ s2i r 1� rð Þ
1þ n� 1ð Þr ; ð3Þ

where s2i is the mean station standard deviation, n is the
number of stations, and r is the average intersite correlation
(itself estimated from the data according to the methods of
Jones et al. [1997]). The method of Jones et al. [1997] has
been used in this analysis.
[36] The spatial distribution of sampling error (see

Figure 6), like the station error, is dominated by the station
standard deviations and the number of observations. The
distribution is very similar to that for the station error.
2.3.3. Bias Error
[37] Bias correction uncertainties are estimated following

Folland et al. [2001], who considered two biases in the land
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data: urbanization effects [Jones et al., 1990] and thermom-
eter exposure changes [Parker, 1994].
2.3.3.1. Urbanization Effects
[38] The previous analysis of urbanization effects in the

HadCRUT data set [Folland et al., 2001] recommended a
1s uncertainty which increased from 0 in 1900 to 0.05�C in
1990 (linearly extrapolated after 1990) [Jones et al., 1990].
Since then, research has been published suggesting both that
the urbanization effect is too small to detect [Parker, 2004;
Peterson, 2004], and that the effect is as large as �0.3�C/
century [Kalnay and Cai, 2003; Zhou et al., 2004].
[39] The studies finding a large urbanization effect

[Kalnay and Cai, 2003; Zhou et al., 2004] are based on
comparison of observations with reanalyses, and assume
that any difference is entirely due to biases in the observa-
tions. A comparison of HadCRUT data with the ERA-40
reanalysis [Simmons et al., 2004] demonstrated that there
were sizable biases in the reanalysis, so this assumption
cannot be made, and the most reliable way to investigate
possible urbanization biases is to compare rural and urban
station series.
[40] A recent study of rural/urban station comparisons

[Peterson and Owen, 2005] supported the previously used
recommendation [Jones et al., 1990], and also demonstrated
that assessments of urbanization were very dependent on the
choice of metadata used to make the rural/urban classifica-

tion. To make an urbanization assessment for all the stations
used in the HadCRUT data set would require suitable
metadata for each station for the whole period since 1850.
No such complete metadata are available, so in this analysis
the same value for urbanization uncertainty is used as in the
previous analysis [Folland et al., 2001]; that is, a 1s value
of 0.0055�C/decade, starting in 1900. Recent research
suggests that this value is reasonable, or possibly a little
conservative [Parker, 2004; Peterson, 2004; Peterson and
Owen, 2005]. The same value is used over the whole land
surface, and it is one-sided: Recent temperatures may be too
high because of urbanization, but they will not be too low.
2.3.3.2. Thermometer Exposure Changes
[41] Over the period since 1850 there have been changes

in the design and siting of thermometer enclosures; many
early shelters can differ substantially from the modern
Stevenson-type screen. It is sometimes possible to deter-
mine the time of change by the homogeneity assessments
discussed in section 2.3.1.2, but this is only possible if
changes at neighboring stations are implemented at different
times. The bias errors in this section therefore allow for the
possible simultaneous replacement across entire countries
with Stevenson-type shelters. The possible effect of such
changes was investigated by Parker [1994], who concluded
that there was a possible difference between 1900 and the
present day of about 0.2�C because of such exposure

Figure 5. CRUTEM3 station errors (�C) for January 1969.

Figure 6. CRUTEM3 sampling errors (�C) for January 1969.
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changes. This was later expanded into an error model by
Folland et al. [2001]: In the tropics (20S–20N) the 1s
uncertainty range is 0.2�C before 1930, and then decreases
linearly to zero in 1950. Outside the tropics the 1s uncer-
tainty range is 0.1�C before 1900 and then decreases
linearly to zero by 1930. This uncertainty model is used
here.
[42] It is likely that further changes in thermometer

exposure have been taking place in recent years, as Steven-
son-type screens are replaced with aspirated shelters. These
changes are, however, too recent to allow a quantitative
assessment of their effects and they are not included in the
CRUTEM3 error analysis.
2.3.4. Combining the Uncertainties
[43] The total uncertainty value for any grid box can be

obtained by adding the station error, sampling error, and
bias error estimates for that grid box in quadrature. This
gives the total uncertainty for each grid box for each month.
[44] In practice, however, this combined uncertainty is

less useful than the individual components. Most uses of the
data set require not just an individual monthly grid box
value but some spatial or temporal average of many of
them. When combining uncertainties onto these larger
scales it is necessary to allow for correlations between the
grid box uncertainties, and the three error components have
different spatial and temporal correlation structures.
[45] The sampling errors have little spatial or temporal

correlation. The station errors have little spatial correlation,
but because the two main components (homogeneity ad-
justment and normal uncertainties) stay the same for each
station for many consecutive months they have almost
complete temporal autocorrelation. The bias errors are the
same for each grid box and each month, they have complete
temporal and spatial correlations.
[46] The errors shown in Figures 5 and 6 are for 5� � 5�

grid boxes. Changing the gridding resolution will change
the uncertainties. Larger grid boxes will have a larger
sampling error if they contain the same number of obser-
vations, but typically increasing the grid box size will mean
that each contains more stations and the box-averaged
uncertainties will be reduced. Similarly, reducing the grid
box size would reduce the sampling error, except that
smaller grid boxes will often contain fewer stations, which
will increase the errors.
[47] The combined effect of grid box sampling errors will

be small for any continental-scale or hemispheric-scale
average (though the lack of global coverage introduces an
additional source of sampling error, this is discussed in
section 6.1). Combined station errors will be small for large-
scale spatial averages, but remain important for averages
over long periods of the same small grid box. Bias errors are
equally large on any space or timescale.

3. Marine Data

[48] The marine data used are from the sea surface
temperature data set HadSST2 [Rayner et al., 2006]. This
is a gridded data set made from in situ ship and buoy
observations from the new International Comprehensive
Ocean-Atmosphere data set [Diaz et al., 2002; Manabe,
2003; Woodruff et al., 2003]. This data set provides the
same information for the oceans as described above for the

land. For each grid box, mean temperature anomalies,
measurement and sampling error estimates, and bias error
estimates are available. The data sets can be produced on a
grid of any desired resolution.
[49] Previous versions of HadCRUT use the SST data set

MOHSST6 [Parker et al., 1995]. The new HadSST2 data
set is an improvement on MOHSST6 for many reasons: It is
based on an enlarged and improved set of ship and buoy
observations, it includes a new climatology, and the bias
corrections needed for data before 1941 have been revisited.
Also HadSST2 starts in January 1850 (as does HadCRUT3),
MOHSST6 and HadCRUT2 started in January 1856. Full
details of all the improvements are given by Rayner et al.
[2006].
[50] Blending a sea surface temperature (SST) data set

with land air temperature makes an implicit assumption that
SST anomalies are a good surrogate for marine air temper-
ature anomalies. It has been shown, for example, by Parker
et al. [1994], that this is the case, and that marine SST
measurements provide more useful data and smaller sam-
pling errors than marine air temperature measurements
would. So blending SST anomalies with land air tempera-
ture anomalies is a sensible choice.
[51] Like the land data, the marine data set has known

errors: Estimates have been made of the measurement and
sampling error, and the uncertainty in the bias corrections.
The marine data are point measurements from moving
ships, moored buoys, and drifting buoys, so the anomalies
for any one grid box come in general from a different set of
sources each month. This means that marine data have no
equivalent of station errors or homogenization adjustments.
The marine equivalent of the station errors form part of the
measurement and sampling error, and adjustments for
inhomogeneities are done by large-scale bias corrections.
[52] The measurement and sampling error estimates are

based, like the land sampling error (section 2.3.2), on the
number of observations in a grid box, on the variability of a
single observation, and on the correlation between obser-
vations. The latter two parameters are estimated from the
gridded data for each grid box. Details are given by Rayner
et al. [2006].
[53] Only one bias correction is applied: Over the period

1850–1940, the predominant SST measurement process
changed from taking samples in wooden buckets, to taking
samples in canvas buckets, to using engine room cooling
water inlet temperatures [Folland and Parker, 1995]. A bias
correction is applied to remove the effect of these changes
on the SSTs. This correction depends on estimates of the
mix of measuring methods in use at any one time, and of
parameters such as the speed of the ships making the
measurements. An uncertainty has been estimated for the
correction; again, details are given by Rayner et al. [2006].
[54] As with the land data, the uncertainty estimates

cannot be definitive: Where there are known sources of
uncertainty, estimates of the size of those uncertainties have
been made. There may be additional sources of uncertainty
as yet unquantified (see section 6.3).

4. Blending Land and Marine Data

[55] To make a data set with global coverage the land and
marine data must be combined. For land-only grid boxes the
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land value is taken, and for sea-only grid boxes the marine
value; but for coastal and island grid boxes the land and
marine data must be blended into a combined average.
[56] Previous versions of HadCRUT [Jones, 1994;

Jones and Moberg, 2003] blended land and sea data in
coastal and island grid boxes by weighting the land and
sea values by the area fraction of land and sea respec-
tively, with a constraint that the land fraction cannot be
greater than 75% or less than 25%, to prevent either data
source being swamped by the other. The aim of weight-
ing by area was to place more weight on the more
reliable data source where possible. The constraints are
necessary because there are some grid boxes which are
almost all sea but contain one reliable land station on a
small island; and some grid boxes which are almost all
land but also include a small sea area which has many
marine observations. Unconstrained weighting by area
would essentially discard one of the measurements, which
is undesirable.
[57] The new developments described in this paper

provide measurement and sampling uncertainty estimates
for each grid box in both the land and marine data sets.
This means that the land and marine data can be blended
in the way that minimizes the uncertainty of the blended
mean. That is, by scaling according to their uncertainties,

so that the more reliable value has a higher weighting
than the less reliable.

Tblended ¼
�
2
seaTland þ �

2
landTsea

�
2
land þ �2sea

; ð4Þ

where Tblended is the blended average temperature anomaly,
Tland and Tsea are the land and marine anomalies, �land is the
measurement and sampling error of the land data, and �sea is
the measurement and sampling error of the marine data.
[58] The resulting blended data set for a sample month

(Figure 7) shows the coherency between the land and sea
data: Large-scale regions of positive or negative tempera-
ture anomalies that cross land-sea boundaries show up
clearly. The land data weighting for all coastal and island
grid boxes with both land and sea data for the same month
(Figure 8) shows that weighting by uncertainties generally
weights the marine data more highly where the marine data
are expected to be good (North Atlantic and North Pacific
coasts where there are many marine observations); and
similarly weights the land data more highly where it is the
more reliable (in the Southern Hemisphere, notably in
Indonesia and the South Pacific where marine observations

Figure 7. HadCRUT3 anomalies (�C) for January 1969.

Figure 8. Land data blending weight for January 1969. (Greater emphasis on the land would give
numbers closer to one).

D12106 BROHAN ET AL.: HADCRUT3

8 of 21

D12106



are sparse). Note that the weighting is continually varying
with time as the data availability changes.
[59] As the land and marine errors are independent, this

choice of weighting gives the lowest measurement and
sampling error for the blended mean, giving an error in
the blended mean of

�blended ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2sea�
2
land

�
2
land þ �2sea

s

: ð5Þ

The measurement and sampling error for the blended mean
(Figure 9) is the combined station and sampling error over
land (Figures 5 and 6). Over the oceans the error
distribution is dominated by variations in the number of
observations: Where marine observations are plentiful
(North Atlantic, North Pacific and the shipping lanes) the
measurement and sampling error is very small; in poorly
observed areas like the Southern Ocean, the error is much
larger. The errors for marine grid boxes are much smaller
than those for land grid boxes because SST is less variable
in both space and time than land air temperature. This
difference is discussed in more detail in section 6.2. The
smaller SST errors mean that the blended temperatures for
coastal and island grid boxes are dominated by the SST
temperatures. This is reasonable if it is assumed that, in any
grid box, the land temperature and SST values for that box
are each estimates of the same blended temperature. In
reality this may not be true (see section 6.4) and an area-
weighted average might in some cases give a more
physically consistent average temperature. However, the
choice of blending weight makes very little difference to
large-scale averages, so the extra complexity of a blending
algorithm which accounts for possible land-sea temperature
anomaly differences is not justified.

5. Variance Adjustment

[60] Assigning a grid box anomaly simply as the mean of
the observational anomalies in that grid box produces a
good estimate of the actual temperature anomaly. However,
it has the disadvantage that the variance of the grid box
average is not constant in time or space; grid boxes con-
taining many observations will have a low variance, and
those with few observations a larger one. For some appli-

cations this fluctuation in variance is undesirable. Hetero-
geneities in the variance affect estimates of the covariance
matrices which are used in EOF techniques such as Optimal
Averaging. They also affect analyses of extreme monthly
temperatures and of changes in temperature variability
through time.
[61] For these reasons, previous versions of HadCRUT

have included variance adjustments [Jones et al., 2001]:
alternative versions of the gridded data sets with the grid
box anomalies adjusted to remove the effects of changing
numbers of observations. In producing a variance adjusted
version of HadCRUT3 two refinements have been made:
The error estimates for the gridded data have been used to
devise a simpler adjustment method applicable to both land
and marine data, and the adjustment process has been tested
on synthetic data to ensure that it does not introduce biases
into the data. Details of the adjustment method and the tests
applied are given in Appendix A. Variance adjusted ver-
sions have been produced for HadCRUT3 and the marine
and land data sets from which it is formed; the adjusted data
sets are named HadCRUT3v, CRUTEM3v and HadSST2v.
One advantage of the new adjustment method is that it can
be applied to the entire data set, so the variance adjusted
data sets now also start in 1850. The previous version of the
variance adjusted data set, HadCRUT2v, started in 1870.
[62] Variance adjustment is successful at the individual

grid box scale: Comparison with synthetic data shows that
the inflation of the grid box variance caused by the limited
number of observations can be removed without introducing
biases into the grid box series. At larger space scales,
however, variance adjustment does introduce a small bias
into the data. Whether variance adjusted or unadjusted data
should be used in an analysis depends on what is to be
calculated. If it is necessary that grid box anomalies have a
spatially and temporally consistent variance, then variance
adjusted data should be used. Otherwise, better results may
be obtained using unadjusted data. In particular, global and
regional time series should be calculated using unadjusted
data.

6. Analyses of the Gridded Data Set

[63] From the 5� � 5� gridded data set and its compre-
hensive set of uncertainty estimates it is possible to calculate
a large variety of climatologically interesting summary

Figure 9. HadCRUT3 measurement and sampling error (�C) for January 1969.
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statistics and their uncertainty ranges. Of this variety, global
and regional temperature time series probably have the
widest appeal, so some illustrative examples of these are
presented here.

6.1. Hemispheric and Global Time Series

[64] If the gridded data had complete coverage of the
globe or the region to be averaged, then making a time
series would be a simple process of averaging the gridded
data and making allowances for the relative sizes of the grid
boxes and the known uncertainties in the data. However,
global coverage is not complete even in the years with the
most observations, and it is very incomplete early in the
record. In general, global and regional area averages will
have an additional source of uncertainty caused by missing
data.
[65] To estimate the uncertainty of a large-scale average

owing to missing data the effect of subsampling on a
known, complete data set is used. The NCEP/NCAR
reanalysis data set [Kalnay et al., 1996] provides complete
monthly gridded surface air temperature values for more
than 50 years. To estimate the missing data uncertainty of
the HadCRUT3 mean for a particular month, the reanalysis
data for that calendar month in each of the 50+ years is
subsampled to have the same coverage as HadCRUT3, and
the difference between the complete average and the sub-
sampled average anomaly is calculated in each of the 50+
cases. The 2.5% and 97.5% values forming the error range
of the HadCRUT3 mean for that month in the record are
then estimated from the standard deviation of the 50+
differences, assuming that the differences are normally
distributed. This procedure has the advantage that it works
for any region, so hemispheric and regional time series and
their uncertainties can be calculated as easily as global
series. Unlike sophisticated optimal methods such as that
used by Folland et al. [2001], this process makes no attempt
to minimize coverage uncertainties by using estimates of
data covariances. This means that the precision of large-
scale averages is less than that which could be achieved
with a more sophisticated method. However, the simple
method has the advantage that the estimated uncertainty on
the large-scale average due to limited coverage is indepen-
dent of all the other sources of uncertainty. So it remains
straightforward to calculate both the total uncertainty on any
large-scale average and all of its components (Figure 10).
[66] This approach can also be used to give coverage

uncertainties on longer timescales. Annual coverage uncer-
tainties can be made by converting both the HadCRUT3
data and the reanalysis data to annual averages and then
subsampling the annual reanalysis data with the coverage of
the annual HadCRUT3 data. Similarly, estimates can be
made of uncertainties of coverage uncertainties for
smoothed annual or decadal averages.
[67] The grid box sampling and measurement errors are

greatly reduced when the gridded data are averaged into
large-scale means, so the only other important uncertainty
component of global and regional time series is that owning
to the biases in the data. This is dealt with by making data
sets with allowances for bias uncertainties incorporated.
Generating averages from data sets with bias allowances
set at the 2.5% and 97.5% levels provides a 95% error range
from bias uncertainties in the resulting averages.

6.1.1. Global Averages
[68] The global temperature is calculated as the mean of

the Northern and Southern Hemisphere series (to stop the
better sampled Northern Hemisphere from dominating the
average). Figure 10 shows the global temperature anomaly
time series calculated from HadCRUT3 with these error
components. The monthly averages are dominated by short-
term fluctuations in the anomalies; combining the data into
annual averages produces a clearer picture, and smoothing
the annual averages with a 21-term binomial filter highlights
the low-frequency components and shows the importance
of the bias uncertainties.
[69] The bias uncertainties are zero over the normal

period by definition. The dominant bias uncertainties are
those due to bucket correction [Rayner et al., 2006] and
thermometer exposure changes [Parker, 1994] both of
which are large before the 1940s.
[70] A notable feature of the global time series is that the

uncertainties are not always larger for earlier periods than
later periods. The uncertainties are smaller in the 1850s than
in the 1920s, at least for the smoothed series, despite the
much larger number of observations in the 1920s. The
station, sampling and measurement, and coverage errors
(red and green bands in Figure 10) depend on the number
and distribution of the observations, and these components
of the error decrease steadily with time as the number of
observations increases. These components also decrease
with averaging to larger space and timescales, so they are
smaller in the annual than the monthly series, and smaller
again in the smoothed annual series. The bias uncertainties,
however, do not reduce with spatial or temporal averaging,
and they are largest in the early twentieth century; so the
smoothed annual series, where the uncertainty is dominated
by the bias uncertainties, also has its largest uncertainty in
this period.
[71] The bias uncertainties are largest in the early twen-

tieth century for two reasons: First, the bias uncertainties in
the marine data are largest then because the uninsulated
canvas buckets used in that period produced larger temper-
ature biases than the wooden buckets used earlier (see
Rayner et al. [2006] for details). Also because the land
temperature bias uncertainties (present before 1950) are
larger in the tropics than the extratropics, so for these
simple global averages, the bias uncertainty depends on
the ratio of station coverage in the tropics to that in the
extratropics, and this ratio is smaller in the 1850s than in the
1920s.
6.1.2. Hemispheric Averages
[72] Comparing the smoothed mean temperature time

series for the Northern Hemisphere and Southern Hemi-
sphere (Figure 11) shows the difference in uncertainties
between the two hemispheres. The difference in the uncer-
tainty ranges for the two series stems from the very different
land/sea ratio of the two hemispheres. The Northern Hemi-
sphere has more land, and so a larger station, sampling and
measurement error (Figure 9 and section 6.2), but it has
more observations and so a smaller coverage uncertainty.
The bias uncertainties are also larger in the Northern
Hemisphere both because it has more land (especially in
the tropics where the land biases are large), and because the
SST bias uncertainties are largest in the Northern Hemi-
sphere western boundary current regions where the SST can
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be very different from the air temperature [Rayner et al.,
2006].
[73] The difference between the two hemisphere series

has a smaller uncertainty than either hemispheric value over
much of the period shown, because the bias errors, though
unknown, will be much the same in the two hemispheres
and so mostly cancel in the difference. So the previously
observed increase in the interhemispheric difference in the

mid twentieth century [see, e.g., Folland et al., 1986; Kerr,
2005] is shown to be significantly outside the uncertainties.

6.2. Differences Between Land and Marine Data

[74] Comparison of global average time series for land-
only and marine-only data (Figure 12) demonstrates both a
marked agreement in the temperature trends, and a large
difference in the uncertainties.

Figure 10. HadCRUT3 global temperature anomaly time series (�C) at (top) monthly, (center) annual,
and (bottom) smoothed annual resolutions. The black line is the best estimate value; the red band gives
the 95% uncertainty range caused by station, sampling, and measurement errors; the green band adds the
95% error range due to limited coverage; and the blue band adds the 95% error range due to bias errors.
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[75] There are much larger uncertainties in the land
data because the surface air temperature over land is
much more variable than the SST. SSTs change slowly
and are highly correlated in space; but the land air
temperature at a given station has a lower correlation
with regional and global temperatures than a point SST
measurement, because land air temperature (LAT) anoma-
lies can change rapidly in both time and space. This

means that one SST measurement is more informative
about large-scale temperature averages than one LAT
measurement. This difference also shows in the hemi-
spheric differences (Figure 11): The Southern Hemisphere
(SH) series has a similar uncertainty to the Northern
Hemisphere (NH) series despite there being many more
observations in the NH. This is because a larger fraction
of the SH is sea, so fewer observations are needed.

Figure 11. HadCRUT3 hemisphere temperature anomaly time series (�C): (top) Northern Hemisphere
(NH), (middle) Southern Hemisphere (SH), and (bottom) difference (NH � SH). The black line is the
best estimate value; the red band gives the 95% uncertainty range caused by station, sampling, and
measurement errors; the green band adds the 95% error range due to limited coverage; and the blue band
adds the 95% error range due to bias errors.
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[76] The difference between the land and sea temper-
atures (Figure 12, bottom) is not distinguishable from
zero until about 1980. There are several possible causes
for the recent increase: It could be a real effect, the land
warming faster than the ocean (this is an expected
response to increasing greenhouse gas concentrations in
the atmosphere [Barnett et al., 2000], but it could also
indicate a change in the atmospheric circulation [Parker
et al., 1994]), it could indicate an uncorrected bias in one

or both data sources [see Rayner et al., 2006, section 6],
or it could be a combination of these effects. These issues
have not been pursued further here, but such studies will
form part of future work on land and marine temperatures
and their uncertainties.

6.3. Comparison of Global Time Series With
Previous Versions

[77] Figure 13 shows time series of the global average of
the land data, the marine data, and the blended data set with

Figure 12. Global average of land and marine components of HadCRUT3 (�C): (top) land, (middle)
sea, and (bottom) difference (land � sea). The black line is the best estimate value; the red band gives the
95% uncertainty range caused by station, sampling, and measurement errors; the green band adds the
95% error range due to limited coverage; and the blue band adds the 95% error range due to bias errors.
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Figure 13. New data set versions and their 95% uncertainty ranges (in blue), compared with the
previous version of each data set (in red): (top) land data, (middle) marine data, and (bottom) combined
data.
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their uncertainty ranges, and compares them to the previous
versions of each data set.
[78] The additions and improvements made to the land

data do not make any large differences to the global land
average, except very early in the record where the uncer-
tainties are large. The new marine data, however, do
produce some sizable changes: Refinements to the clima-
tology have produced an offset, and new data have pro-
duced some other secular changes in the series.
[79] The differences between the old and new marine

data series are sometimes outside the error range of the
new series. Most of the difference is a constant offset due
to changes to the climatology, and uncertainties in the
climatology are not part of the error model for the marine
data. (In the land data climatologies are estimated for
each station, and as the mix of stations in any one grid
box changes with time so does the climatology. So
uncertainties in the station climatology are a component
of the uncertainty in changes of gridded land temperature
anomalies. However, for the marine data, climatologies
are specified for each grid box, and they are constant in
time, so uncertainties in the marine climatology do not
contribute directly to uncertainties in changes in marine
temperature anomalies). However, even after removing
the constant offset produced by the climatology change,
there are still differences between the old and new SST
series that are larger than the assessed random and
sampling errors. These differences suggest the presence
of additional error components in the marine data. At the
moment, the nature of these error components is not
known for certain, but the main difference between the
old and new data sets is the use of different sets of
observations [Rayner et al., 2006]. It seems likely that

different groups of observations may be measuring SST
in different ways even in recent decades, and therefore
there may be unresolved bias uncertainties in the modern
data. Quantifying such effects will be a priority in future
work on marine data.

6.4. Comparison With Central England Temperature

[80] The Central England Temperature (CET) series is
the longest instrumental temperature record in the world
[Parker et al., 1992]. It records the temperature of a
triangular portion of England bounded by London, Here-
fordshire and Lancashire, and provides mean daily temper-
ature estimates back to 1772. The HadCRUT3 and CET
series do use some of the same stations, but of the 13 sites
that make some contribution to CRUTEM3 in the CET
region, no more than 2 also contribute to CET, and there are
always also stations contributing to CET but not to CRU-
TEM3. So if CET corresponds closely to the HadCRUT3
value for the central England grid box, it suggests that both
series are correctly describing the local temperature
changes, and is not simply a consequence of shared inputs.
Recently, uncertainty estimates have been derived for CET
since 1878 [Parker and Horton, 2005].
[81] The area covered by CET is less than 1 grid box in

the 5� � 5� gridded CRUTEM3 data set. Comparing the
CET data with the corresponding grid box in CRUTEM3
(Figure 14) shows encouraging agreement: Despite being
based on largely different observations, the two series agree
within their uncertainties.
[82] Doing the same comparison using the full Had-

CRUT3 data (blended land and sea) gives a different
picture (Figure 15). The 5� � 5� grid box covering the
CET region also contains much of the Irish Sea and the

Figure 14. CRUTEM3 (for 50–55�N, 0–5�W) comparison with Central England Temperature (CET)
(error ranges are 95%).
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English Channel; both regions where there are many SST
observations. Many SST observations mean that the
uncertainty on the SST monthly means is small, so the
blended value is biased toward SST and has a small
uncertainty.
[83] Adding the SST data has reduced the agreement with

CET; and the uncertainty in the HadCRUT3 value is much
smaller than the CRUTEM3 uncertainty because there are a
lot of SST observations around the British coast. The
uncertainty varies in time because, unlike the land data,
the number of SST observations changes with time: The
uncertainty increases in the early part of the series and
during the two world wars are quite noticeable. Figure 15
demonstrates that the land and sea temperature anomalies in
one 5� � 5� grid box can have sizable differences in their
annual values, although the longer-term changes are very
similar.
[84] Because of these land-sea differences it will some-

times be better to use the land and sea specific data rather
than the blended data set. For example when looking at
paleodata from tree rings near coasts it is probably better to
use the land data set CRUTEM3 than the blended data set
HadCRUT3. Similarly for paleodata from coastal corals the
SST data set should be used.

7. Conclusions

[85] A new version of the gridded historical surface
temperature data set HadCRUT3 has been produced. This
data set is a collaborative product of scientists at the Met
Office Hadley Centre (who provide the marine data), and at
the Climatic Research Unit at the University of East Anglia
(who provide the land surface data). The new data set
benefits from the improvements to the marine data de-

scribed by Rayner et al. [2006] as well as the improvements
to the land data described in this paper. However, the
principal advance over previous versions of the data set
[Jones et al., 2001; Jones and Moberg, 2003] is in the
provision of a comprehensive set of uncertainties to accom-
pany the gridded temperature anomalies.
[86] As well as variance adjustments (adjustments to

the data to allow for the changing numbers of observa-
tions), fields of measurement and sampling, and bias
uncertainty have been produced. All the gridded data
sets, and some time series derived from them, are
available from the Web sites http://www.hadobs.org and
http://www.cru.uea.ac.uk.
[87] The gridded data sets start in 1850 because there are

too few observations available from before this date to make
a useful gridded field. Many marine observations from the
first half of the nineteenth century are known to exist in log
books kept in the British Museum and the U.K. National
Archive, but these observations have never been digitized.
If these observations were available, it is likely that
the gridded data sets, and so information on surface
climate change and variability, could be extended by several
decades.

Appendix A: Variance Adjustment Method

A1. Description of the Method

[88] The relationship between the variance in a grid box
and the variance of individual station observations is given
by Jones et al. [1997]

s
2
n ¼

�s2i 1þ n� 1ð Þ�rð Þ
n

; ðA1Þ

Figure 15. HadCRUT3 (for 50–55�N, 0–5�W) comparison with CET (error ranges are 95%).
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where sn
2 is the variance of the grid box average, �

s2i is the
mean variance of the individual station time series that
contribute to that grid box average and �r is the average
correlation of stations within the grid box. Two interesting
variables can be derived from this. The first is the true grid
box variance, sn=1

2 . That is the variance the grid box
average would have if it contained an infinite number of
observations

s
2
n¼1 ¼ �s2i �r: ðA2Þ

The second is the sampling error, ms
2, equal to the difference

between equations (A1) and (A2)

m2
s ¼

�s2i 1� �rð Þ
n

: ðA3Þ

Equation (A1) assumes that the time series of the grid
box anomaly is stationary. In fact, the average tempera-
ture in an area defined by a grid box exhibits natural
variability on a variety of timescales: a long-term trend

(perhaps because of global warming), interdecadal
variability (perhaps because of modes like ENSO) and
higher-frequency natural variability. To ensure that the
series is stationary, the anomalies in individual grid boxes
were detrended using a 6-year running average centered
on the month of interest.
[89] The detrended anomalies were then multiplied by an

adjustment factor,

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2n¼1
m2

total n; tð Þ þ s2n¼1

s

; ðA4Þ

where mtotal
2 is the estimated random error, a combination

of sampling, measurement and other errors, expressed as
a function of the number of observations, n, and time, t.
For marine data mtotal

2 and sn=1
2 were as calculated by

Rayner et al. [2006]. For land data, values for mtotal
2 were

calculated  as in section 2.3.2 . and the   values of sn=1
2 were

calculated from equation (A2) using the individual station
variances and the average correlations between them.

Figure A1. Running 10-year standard deviations (�C, left axis scale) are shown for four grid boxes. The
blue line shows the standard deviation of the perfect model data masked to have the same coverage as
the data. The red line shows the standard deviation of the synthetic data before variance adjustment, and
the black line shows the standard deviation of the synthetic data after variance adjustment. The number of
observations is also shown (right-hand scale). The top two panels are marine grid boxes, the lower two
are land grid boxes.
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After the adjustment factor was applied, the smoothed
series was added back to recover the variance adjusted
time series.

A2. Test of the Method

[90] If it is working well, variance adjustment should
reduce the random noise in the temperature values intro-
duced by having only a limited number of observations,
but leave the real underlying temperature variations un-
changed. This cannot be tested using the actual Had-
CRUT3 data, as the distinction between real variations
and noise is unknown. To test the method, the pseudo-
proxy method of von Storch et al. [2004] has been
adapted to instrumental data. A synthetic version of
HadCRUT3 has been made by adding noise to sub-
sampled GCM temperature data; the test is then to see
how well variance adjustment recovers the original GCM
data from the synthetic HadCRUT3.
A2.1. Making the Synthetic Data Set

[91] A synthetic data set was constructed using an all
forcings run [Tett et al., 2006] of the HadCM3 [Gordon
et al., 2000] GCM. Values of �r for land data grid boxes
were calculated for the detrended model data following

the procedure of Jones et al. [1997]. In marine grid
boxes, values of �r were calculated in both time and
space to take into account the fact that marine observa-
tions are point measurements rather than monthly aver-
ages as in the land data. The time component was
calculated by fitting an exponential to the lagged corre-
lations of monthly anomalies in a given grid box and
using the fitted correlation decay time to estimate the
average correlation across the grid box. These were used
to calculate estimated station variances by assuming that
the variance of the model temperature anomalies in a grid
box represented the variance in that grid box for an
infinite number of stations, sn=1

2 . In this instance the
value of �

s2i can be easily extracted from equation A2.
These average station variances were then used to create
a synthetic time series for each grid box that showed
variance fluctuations of a kind seen in the observational
data. The variance of the time series was inflated by
adding random noise of variance, v2, calculated using

v2 ¼
�
s2i 1� �rð Þ þ m2

m

n
; ðA5Þ

Figure A2. (a) Annual average sea surface temperatures from a grid box in the tropical Atlantic for the
original model data (magenta) and three realizations of the synthetic data before (cyan) and after (black)
variance adjustment. (b) Difference between the unadjusted synthetic data and model data (cyan) and the
difference between the variance adjusted synthetic data and model data (black).
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Figure A3. Cumulative frequency distributions of monthly anomalies in four marine grid boxes. The
magenta lines show the original model data, the cyan lines show the three realizations of the
unadjusted synthetic data, and the black lines show the three realizations of the variance-adjusted
synthetic data.
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where the n were a realistic distribution of numbers of
observations as obtained from the historical records of
monthly average temperatures; mm

2 was an estimate of the
measurement error, which was assumed to be negligible
over land. Three realizations of the synthetic data were
created. They differed only in the random numbers used to
generate the random noise which was added to the time
series.
A2.2. Comparing Adjusted and True Data

[92] The synthetic data were then run through the vari-
ance adjustment algorithms and the variance of the output
was compared to that of the original model data (see
Figure A1). Before variance adjustment the variance of an
average land data grid box was overestimated by around
11% and the variance of an average marine grid box by
180%. After variance adjustment the variance of an average
land data grid box was found to be underestimated by less
than 2% and the variance of an average marine data grid
box was underestimated by 5%. In the marine case, dis-
crepancies from the true variance can be larger than this in
individual grid boxes, although in all cases the adjusted
variance is closer to the true value than the unadjusted
variance.

[93] In individual grid boxes variance adjustment typically
brings the synthetic data closer to the true value (see, for
example, Figure A2), especially at times when such adjust-
ments are large. This is notable, for example, during the
second world war or early in the record. The frequencies of
individual grid box monthly averages are also typically
improved (see, for example, Figure A3) with extreme out-
liers because of noise being effectively adjusted. This means
that it is possible to make more meaningful analyses of the
occurrences of true extremes using the variance adjusted
data.
[94] However, when these individual variance-adjusted

grid box values are averaged over large regions (Figure A4),
the opposite is true. Whereas the random errors of individ-
ual grid boxes tend to cancel out when averaged, the
cumulative effect of the hundreds of slight, but correlated,
variance adjustments is to reduce the variance of the
regional average.
[95] Some degradation of the true temperature signal is

inevitable, as no filter can perfectly separate out the mea-
surement and sampling error component of the temperature
signal, and the reduction applied to the noise component
will then be applied to some of the signal as well. Despite

Figure A4. (a) Annual average sea surface temperatures from the whole globe for the original model
data (magenta) and three realizations of the synthetic data before (cyan) and after (black) variance
adjustment. (b) Difference between the unadjusted synthetic data and model data (cyan) and the
difference between the variance-adjusted synthetic data and model data (black).
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this, the variance adjustment process is very successful at
the grid box scale.
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