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Abstract

We propose a method for training a determinis-

tic deep model that can find and reject out of

distribution data points at test time with a single

forward pass. Our approach, deterministic uncer-

tainty quantification (DUQ), builds upon ideas of

RBF networks. We scale training in these with a

novel loss function and centroid updating scheme

and match the accuracy of softmax models. By

enforcing detectability of changes in the input

using a gradient penalty, we are able to reliably

detect out of distribution data. Our uncertainty

quantification scales well to large datasets, and

using a single model, we improve upon or match

Deep Ensembles in out of distribution detection

on notable difficult dataset pairs such as Fashion-

MNIST vs. MNIST, and CIFAR-10 vs. SVHN.

1. Introduction

Estimating uncertainty reliably and efficiently has remained

an open problem with many important applications such

as guiding exploration in Reinforcement Learning (Os-

band et al., 2016) or as a method for selecting data points

for which to acquire labels in Active Learning (Houlsby

et al., 2011). Until now, most approaches for estimating

uncertainty in deep learning rely on ensembling (Laksh-

minarayanan et al., 2017) or Monte Carlo sampling (Gal

& Ghahramani, 2016). In this paper, we introduce a deep

model that is able to estimate uncertainty in a single forward

pass. We call our model DUQ, Deterministic Uncertainty

Quantification, and we construct it by re-examining ideas

originally suggested in the 90s. We combine these with

recent advances and make a number of improvements which

enable scalable training of modern deep learning architec-

tures. We evaluate our model against the current best ap-

proach for estimating uncertainty in Deep Learning, Deep
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(a) Deep Ensembles (b) Our model - DUQ

Figure 1. Uncertainty results on two moons dataset. Yellow in-

dicates high certainty, while blue indicates uncertainty. DUQ is

certain only on the data distribution, and uncertain away from

it: the ideal result. Deep Ensembles is uncertain only along the

decision boundary, and certain elsewhere.

Ensembles, and show that DUQ compares favourably on a

number of evaluations, such as out of distribution (OoD) de-

tection of FashionMNIST vs MNIST, and CIFAR vs. SVHN.

We visualise how DUQ performs on the two moons dataset

in Figure 1. We see that DUQ is only certain on the training

data, and its certainty decreases away from it. Deep Ensem-

bles are not able to obtain meaningful uncertainty on this

dataset, because of a lack of diversity in the different models

in the ensemble. We make our code publicly available1.

DUQ consists of a deep model and a set of feature vectors

corresponding to the different classes (centroids). A pre-

diction is made by computing a kernel function, a distance

function, between the feature vector computed by the model

and the centroids. This type of model is called an RBF

network (LeCun et al., 1998a) and uncertainty is measured

as the distance between the model output and the closest

centroid. A data point for which the feature vector is far

away from all centroids does not belong to any class and can

be considered out of distribution. In this paper, we define

uncertainty to be predictive uncertainty.

The model is trained by minimising the distance to the

correct centroid, while maximising it with respect to the

others. This incentivises the model to put the features of

training data close to a particular centroid, however there is

no mechanism that dictates what should happen away from

the training data. Therefore we need to enforce that DUQ is

1https://github.com/y0ast/

deterministic-uncertainty-quantification

https://github.com/y0ast/deterministic-uncertainty-quantification
https://github.com/y0ast/deterministic-uncertainty-quantification
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sensitive to changes in the input, such that we can reliably

detect out of distribution data and avoid mapping out of

distribution data to in distribution feature representations

— an effect we call feature collapse. The upper bound of

this sensitivity can be quantified by the Lipschitz constant

of the model. We are interested in models for which this

sensitivity is not too low, but also not too high, because that

could hurt generalisation and optimisation. DUQ achieves

this result by regularising the Jacobian with respect to the

input, as was first introduced by Drucker & Le Cun (1992).

In practice, RBF networks prove difficult to optimise, be-

cause of instability of the centroids and a saturating loss. We

propose to make training stable by updating the centroids

using an exponential moving average of the feature vectors

of the data points assigned to them, as was introduced in

van den Oord et al. (2017). We use a “one vs the rest” loss

function minimising the distance to the correct centroid,

while maximising the other distances. We find that these

two changes stabilise training and lead to accuracies that are

similar to the standard softmax and cross entropy set up on

standard datasets such as FashionMNIST and CIFAR-10.

Uncertainty quantification in deep neural networks with a

softmax output is generally done by measuring the entropy

of the predictive distribution, so the maximally uncertain

output is achieved by uniformly assigning probabilities over

all the classes. The only way to achieve a uniform output

for out of distribution data, is by training on additional

data and hoping it generalises to out of distribution samples

at test time. This does not happen in practice, and it is

found that the only uncertainty that can reliably be captured

by looking at the entropy of the softmax distribution is

aleatoric uncertainty (Gal, 2016; Hein et al., 2019). In DUQ,

it is possible to predict that none of the classes seen during

training is a good fit, when the distance between the model

output and all centroids is large.

The contributions of this paper are as follows:

• We stabilise training of RBF networks and show, for

the first time, that these type of models can achieve

competitive accuracy versus softmax models.

• We show how two-sided Jacobian regularisation makes

it possible to obtain reliable uncertainty estimates for

RBF networks.

• We obtain excellent uncertainty in a single forward

pass, while maintaining competitive accuracy.

2. Methods

DUQ consists of a deep feature extractor, such as a ResNet

(He et al., 2016), but without the softmax layer. Instead, we

have one learnable weight matrix Wc per class, c. Using the
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Figure 2. A depiction of the architecture of DUQ. The input is

mapped to feature space, where it is assigned to the closest centroid.

The distance to that centroid is the uncertainty.

output and the class centroids, we compute the exponenti-

ated distance between the model output and the centroids:

Kc(fθ(x), ec) = exp

[

−
1

n
||Wcfθ(x)− ec||

2

2

2σ2

]

, (1)

with fθ : Rm → R
d our model, m the input dimension, d

the output dimension, and parameters θ. ec is the centroid

for class c, a vector of length n. Wc is a weight matrix of

size n (centroid size) by d (feature extractor output size)

and σ a hyper parameter sometimes called the length scale.

This function is also referred to as a Radial Basis Function

(RBF) kernel. The class dependent weight matrix allows

features insensitivity on a class by class basis, minimising

the potential for feature collapse. A prediction is made by

taking the class c with the maximum correlation (minimum

distance) between data point x and class centroids E =
{e1, . . . , eC}:

argmax
c

Kc(fθ(x), ec). (2)

we define the uncertainty in this model as the distance to

the closest centroid, i.e. replacing the argmax operator by

a max in Equation (2).

The loss function is the sum of the binary cross entropy

between each class’ kernel value Kc(·, ec), and a one-hot

(binary) encoding of the label. For a particular data point

{x,y} in our data set {X,Y }:

L(x,y) = −
∑

c

yc log(Kc) + (1− yc) log(1−Kc) (3)

where we shortened K(fθ(x), ec) as Kc. During train-

ing, we average the loss over a minibatch of data points,

and perform stochastic gradient descent on θ and W =
{W1, · · · ,Wc}. The class centroids, E, are updated using

an exponential moving average of the feature vectors of data

points belonging to that class. If the model parameters, θ

and W , are held constant, then this update rule leads to the

closed form solution for the centroids that minimises the
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loss:

Nc,t = γ ∗Nc,t−1 + (1− γ) ∗ nc,t (4)

mc,t = γ ∗mc,t−1 + (1− γ)
∑

i

Wcfθ(xc,t,i) (5)

ec,t =
mc,t

Nc,t

(6)

where nc,t is the number of data points assigned to class

c in minibatch t, xc,t,i is element i of a minibatch at time

t, with class c. γ is the momentum, which we usually set

between [0.99, 0.999]. This method of updating centroids

was introduced in the Appendix of van den Oord et al. (2017)

for updating quantised latent variables. The high momentum

leads to stable optimisation that is robust to initialisation.

The proposed set up leads to the centroids being pushed

further away at each minibatch, without converging to a

stable point. We avoid this by regularising the l2 norm of

θ. This restricts the model to sensible solutions and aids

optimisation.

2.1. Gradient Penalty

As discussed in the introduction, without further regular-

isation deep networks are prone to feature collapse. We

find that it can be avoided by regularising the representa-

tion map using a gradient penalty. Gradient penalties were

first introduced to aid generalisation in Drucker & Le Cun

(1992), who named it “double backpropagation”. Recently,

this type of penalty has been used successfully in training

Wasserstein GANs (Gulrajani et al., 2017) to regularise the

Lipschitz constant.

In our set up, we consider the following two-sided penalty:

λ ·

[

||∇x

∑

c

Kc||
2

2
− 1

]2

, (7)

where ||·||2 is the l2 norm and the targeted Lipschitz constant

is 1. We found empirically that regularising the gradient of
∑

c Kc works better than fθ(x) or Kc(x) (which is the vec-

tor of kernel distances for input x). A similar approach was

taken for softmax models by Ross & Doshi-Velez (2018).

The two-sided penalty was introduced by Gulrajani et al.

(2017), who mention that despite a one-sided penalty being

sufficient to satisfy their requirements, the two sided penalty

proved to be better in practice. The one-sided penalty is

defined as:

λ ·max(0, ||∇x

∑

c

Kc||
2

F − 1). (8)

In Section 4.1, we show the difference between the single

and two sided penalties experimentally. We find the two-

sided penalty to be ideal for enforcing sensitivity, while still

allowing strong generalisation.

2.2. Intuition about Gradient Penalty

A gradient penalty enforces smoothness, limiting how

quickly the output of a function changes as the input x

changes. Smoothness is important for generalisation, espe-

cially if we are using a kernel which depends on distances

in the representation space. It is simple to show that regu-

larising the l2 norm of the Jacobian, J , enforces a Lipschitz

constraint at least locally, since for a small region around x

we have g(x+ ǫ)− g(x) ≃ Jg(x)ǫ ≤ ||J(x)||2||ǫ||2.

However, smoothness still leaves us vulnerable to the feature

collapse problem outlined earlier, where multiple inputs are

mapped to the same g(x). Lipschitz smooth functions can

collapse their inputs — the constant function g(x) = c is

Lipschitz for any Lipschitz constant L. Collapsing features

can be beneficial for accuracy, but it hurts our ability to per-

form out of distribution detection, since it has the potential

to make input points indistinguishable in the representation

space. We find empirically in our work that the two sided

penalty is extremely important: using the one sided penalty,

i.e, enforcing only smoothness, is not sufficient to produce

the sensitive behaviour we want in our representation. This

can be seen in Figure 4b, in contrast to Figure 1b with the

two-sided penalty.

By keeping the norm of the Jacobian above some value, in-

tuitively we encourage sensitivity of the learnt function, by

preventing it from collapsing to a locally constant function,

ignoring all changes in the input space. This argument is

speculative, as this regularisation scheme has no effect on

sensitivity in directions orthogonal to the local Jacobian,

and more work is needed to explain definitively exactly why

this penalty seems to encourage sensitivity, as it would seem

mathematically that collapsing the representation would

still be possible. However, we find empirically that it is

important for preserving out of distribution performance. In

Appendix C, we evaluate a number of alternative approaches

such as using a reversible model as feature extractor (guar-

anteed to be invertible) and computing the Jacobian with

respect to the vector Kc and fθ(x).

2.3. Epistemic and Aleatoric Uncertainty

When quantifying uncertainty, it can be useful to distinguish

between “epistemic” and “aleatoric” uncertainty. Epistemic

uncertainty comes from uncertainty in the parameters of the

model. This uncertainty is high for out of distribution data,

but also for example for informative data points in active

learning (Houlsby et al., 2011). Aleatoric uncertainty is

uncertainty inherent in the data such as an image of a 3 that

is similar to an 8 (Smith & Gal, 2018). In this case, the true

class cannot be determined.

In practice, DUQ captures both aleatoric and epistemic

uncertainty. Informally, when a point is far from all cen-
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Figure 3. The uncertainty learned by DUQ on a simple problem of

classifying samples from two overlapping Gaussian distributions.

Yellow indicates certainty, while blue indicates uncertainty. There

is significant aleatoric uncertainty due to the overlap between the

classes. DUQ can express high aleatoric uncertainty by placing

centroids close to each other in feature space, and is able to learn

this in practice if the task needs it, as shown here by the higher

uncertainty around the 0 mark on the x axis.

troids in feature space there is epistemic uncertainty. While

aleatoric uncertainty is expressed by placing centroids so

that they are close in feature space (see Figure 3) and map-

ping a data point close to both of them. It is important that

the centroids are close in feature space, because otherwise

the model would not map them in between as it incurs a

large loss, following Equation 3. We do not currently have

a formal way to distinguish between these two kinds of

uncertainty in DUQ. Solving this problem is an interesting

direction for future research.

2.4. Why Sensitivity can be at odds with Classification

In this section we analyse some of the trade-offs and as-

sumptions encoded in detecting out-of-distribution inputs.

We show in a toy experiment that standard classification

losses can hurt out-of-distribution detection. Consider fit-

ting a model on a problem with two features, x1 and x2,

both sampled from a unit Gaussian, and output y, such that

y = sign(x1) ∗ ǫ, where ǫ is noise with a low probability of

flipping the label. The optimal decision function in terms of

the empirical risk, no matter the algorithm, is the function

f(x1, x2) = sign(x1). But this says nothing about the out

of distribution behaviour. What happens if we now see the

input x1, x2 = 1, 1000? By our definition of the problem,

this is out of distribution, as it lies many standard deviations

away from the observed data. But should it be detected as

out of distribution? The data does not define what could

be given as the input, at least if we take a conventional

empirical risk minimisation approach.

In this situation, it seems natural to prefer the kind of de-

cisions which would be made by a generative model, for

example. If x1 and x2 represent medical data, then pre-

sumably a highly abnormal value for x2 is notable, and we

would like to detect it. However, if x2 is a truly irrelevant

variable, say, the temperature on the surface of a distant

planet, then presumably our model is correct to ignore its

value, even if the value of the irrelevant variable is highly

abnormal. When training using empirical risk minimisation,

features not relevant to classification accuracy can simply be

ignored by the feature extractors of a neural network. This

makes out-of-distribution detection more difficult using fea-

ture space methods, even those that use a distance loss as

we do. It is important to note that there is a potential tension

here with classification accuracy. Enforcing sensitivity can

make accurate classification harder because it forces the

model to represent changes in input — as in the example

above, these may be irrelevant to the causal structure of the

problem. If we know about invariances that are appropriate

for the problem at hand, we can enforce these by correspond-

ing construction of the network. For example, we enforce

translation invariance by using convolutional networks in

this paper.

3. Related Work

The largest body of research on obtaining uncertainty in

deep learning are Bayesian neural networks (MacKay, 1992;

Neal, 2012). While exact inference in them is intractable, a

range of approximate methods have been proposed. Mean-

field variational inference methods, such as Bayes by Back-

prop (Blundell et al., 2015) and Radial BNNs (Farquhar

et al., 2020) are a promising direction but have not yet lead

to stable training on large image datasets. A more scal-

able alternative is MC Dropout (Gal & Ghahramani, 2016),

which is very simple to implement and evaluate. In prac-

tice, these variational Bayesian methods are outperformed

by Deep Ensembles (Lakshminarayanan et al., 2017). This

is a simple, non-Bayesian, method that involves training

multiple deep models from different initialisations and a

different data set ordering. Snoek et al. (2019) showed that

Deep Ensembles consistently outperform Bayesian neural

networks that were trained using variational inference. This

performance comes at the expense of computational cost,

Deep Ensembles’ memory and compute use scales linearly

with the number of ensemble elements at both train and test

time.

Aside from using discriminative models, there have also

been attempts at finding out of distribution data using gener-

ative models. Nalisnick et al. (2019a) showed that simply

measuring the likelihood under the data distribution does

not work. Recently, a more advanced approach that in-

volves separating the likelihood of the semantic foreground

from the background did show promising results on selected

datasets (Ren et al., 2019). While generative models are a



Uncertainty Estimation Using a Single Deep Deterministic Neural Network

promising avenue for out of distribution detection, they are

not able to assess predictive uncertainty; given that a data

point is in distribution, can our discriminative model actu-

ally make a reliable prediction? Further, generative models

are significantly more expensive to train than classification

models.

Our approach is distinct from both ensembles/Monte Carlo

methods, which aim to find different explanations for the

data and increase uncertainty when these disagree, and gen-

erative models which model the data distribution directly.

Instead our approach is more related to pre-deep learning

kernel methods (Quinn & Sugiyama, 2014; Schölkopf et al.,

2000), such as Gaussian processes which revert to a prior

away from data, and Support Vector Machines, where the

distance to the separating hyperplane is informative of the

uncertainty. These approaches have never scaled to high di-

mensional data, because of a lack of well performing kernel

functions.

The decision function based on kernel distances was first

used in the context of convolutional neural networks by

LeCun et al. (1998a). They were quickly abandoned for

softmax models, because they were difficult to scale and

optimise with gradient-based approaches due to saturating

gradients and unstable centroids. Notable improvements

in our work over the original are the updating mechanism

of the centroids and the loss function that is based on a

multivariate Bernoulli, solving the problems of unstable

centroids and saturating gradients.

Regularising the Jacobian has a long history, starting with

Drucker & Le Cun (1992) and more recently Ross & Doshi-

Velez (2018). Both papers aim to regularise the l2 norm

of Jacobian down to zero. In the first case to obtain better

generalisation, while the second paper aims to achieve ad-

versarial robustness and interpretability. In neither case are

the authors interested in increasing the Jacobian. Gulrajani

et al. (2017) showed how a gradient penalty can be applied

to training GANs with the Wasserstein distance, which was

a more scalable and simpler alternative to weight clipping.

They use the double sided penalty and mention it works

better in practice. Follow up work has analysed the penalty

in more detail and concluded that, contrary to our case, for

training Wasserstein GANS the one-sided penalty is prefer-

able theoretically and practically (Jolicoeur-Martineau &

Mitliagkas, 2019; Petzka et al., 2017).

4. Experiments

We show the behaviour of DUQ in two dimensions, with the

two moons dataset and show the effect of leaving out the

gradient penalty and using a one sided penalty. We continue

by looking at the out of distribution detection performance

for some notable difficult data set pairs (Nalisnick et al.,

(a) DUQ - No penalty (b) DUQ - One-sided penalty

Figure 4. Uncertainty results for two variations of DUQ: left with-

out gradient penalty, and right with a one-sided gradient penalty

(λ = 1). Yellow indicates certainty, while blue indicates un-

certainty. Both results are significantly worse than DUQ with a

two-sided penalty.

2019a), such as FashionMNIST vs MNIST, and CIFAR-10

vs SVHN. We further study sensitivity to two important

hyper parameters the length scale σ and gradient penalty

weight λ and propose how to tune them without relying on

example OoD data.

4.1. Two Moons

We use the scikit-learn (Pedregosa et al., 2011) implemen-

tation of this dataset and describe the model architecture

and optimisation details in Appendix A.1. For colouring

the visualisations, we normalise the colour map within the

figure.

The result of our model trained with a two-sided gradient

penalty is shown in Figure 1b. The uncertainty is exactly as

one would expect for the two moons dataset: certain on the

training data, uncertain away from it and in the heart within

the two moons. The difference with Deep Ensembles is

striking (Figure 1a). The uncertainty for DUQ is quantified

as the distance to the closest centroid (max over the kernel

distances), the uncertainty for Deep Ensembles is computed

as the predictive entropy of the average output, see Appendix

B. The ensemble elements were trained separately using the

same model as described in Appendix A.1, but without L2

regularisation to encourage diverse solutions.

Discussion While Figure 1b is an impressive result in deep

learning, it is worth highlighting that Gaussian processes

are able to obtain such result too. A good visualisation

can be found in Bradshaw et al. (2017). Interestingly, even

though Deep Ensembles have been successfully applied to

many large datasets (Snoek et al., 2019), they fail to estimate

uncertainty well on the two moons dataset. This is due to

the simplicity and low dimensionality of this dataset, the

ensembles generalise in nearly the same way — with a

diagonal line dividing the top left and the bottom right.

Gradient Penalty In Section 2.1, we introduced the two-

sided gradient penalty. Figure 4 shows why it is important.

In Figure 4a, we show the result of having no gradient
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penalty, which shows that the model is certain every far

away from the data. In Figure 4b, we see that the uncertainty

does not improve when only a one-sided penalty is applied.

In both cases, there are ’blobs’ sticking out of the training

data domain that are also classified with high certainty.

Hyper parameters We found classification performance

on two moons to be insensitive to our setting of the gradient

penalty weight λ, likely because of the simplicity of the

two moons dataset. For the uncertainty visualisation, we

found it important to set the length scale to be small (in the

interval [0.05, 0.5]), despite accuracy not being affected by

this hyper parameter. In the following experiments, we will

discuss methods for picking the length scale and the weight

of the gradient penalty.

4.2. FashionMNIST vs MNIST

In this experiment, we assess the quality of our uncertainty

estimation by looking at how well we can separate the test

set of FashionMNIST (Xiao et al., 2017) from the test set

of MNIST (LeCun et al., 1998b) by looking only at the

uncertainty predicted by the model. We train our model on

FashionMNIST and we expect it to assign low uncertainty to

the FashionMNIST test set, but high uncertainty to MNIST,

since the model has never seen that dataset before and it is

very different from FashionMNIST.

During evaluation we compute uncertainty scores on both

test sets and measure for a range of thresholds how well

the two are separated. As in previous work (Ren et al.,

2019), we report the AUROC metric, where a higher value

is better and 1 indicates that all FashionMNIST data points

have a higher certainty than all MNIST data points. We

picked FashionMNIST vs MNIST, because it is a notably

difficult dataset pair (Nalisnick et al., 2019a), while MNIST

vs NotMNIST (Bulatov, 2011) is much simpler.

Experimental set up Our model is a three layer convolu-

tional network and we report all architectural and optimisa-

tion details in Appendix A.2. It is important to note that at

test time we set Batch Normalization to evaluation mode,

meaning that we use the mean and standard deviation of

the feature activations computed from the training set (i.e.

FashionMNIST). It is unlikely that in practice we would get

an entire batch of (uncorrelated) OoD points, so we can not

normalise using test time batch statistics2. Further, we use

the same data normalisation for the out of distribution set as

the in distribution set. Skipping either of these steps makes

the problem artificially simple.

Length Scale Most hyper parameters, such as as the learn-

ing rate or weight decay parameter, can be set using the

standard train/validation split. However there are two hyper

2Just one datapoint needs to have significantly different activa-
tion statistics for the entire batch to be easily detectable.

Figure 5. ROC curve for DUQ trained on FashionMNIST and eval-

uated on FashionMNIST and MNIST. The task is to separate these

data sets based on uncertainty estimates.

parameters that are particularly important: the length scale

σ and the gradient penalty weight λ. We set the length scale

by doing a grid search over the interval (0, 1] while keeping

λ = 0. We pick the value that leads to the highest validation

accuracy. Following this process, we found that a length

scale of 0.1 leads to the highest accuracy, as measured over

five runs. While this process might not result in a length

scale that leads to the best OoD performance, it works well

in practice.

Gradient Penalty Setting the λ parameter is more involved:

from Section 2.4, we know that the accuracy can suffer as

a result from gaining the ability to do out of distribution

detection, so we cannot rely on it to select the best λ. We

also cannot use the AUROC score on the MNIST dataset,

because that would give the method an unfair advantage:

we cannot assume access to the OoD set in advance in prac-

tice.3 Instead we use a third dataset on which we evaluate

the AUROC and select our λ values based on that. We fol-

low previous work (Ren et al., 2019) and use NotMNIST

as the third dataset for this pair. The results can be seen

in Table 1. As expected, the accuracy goes down as λ in-

creases, and we also observe that the best AUROC result for

NotMNIST coincides with the best score for MNIST, which

shows that the strategy of selecting a hyper parameter based

on the NotMNIST data set is reasonable. We note that while

NotMNIST generalises to MNIST, we cannot rely on this

property in general. Therefore, we propose an alternative

method for model selection based on predictive uncertainty

in Section 4.3.

Comparison We show our results and compare with alter-

native methods in Table 2. Our proposed method, DUQ,

outperforms all other classification based methods. The only

method that is better is LL ratio (Ren et al., 2019), which is

based on generative models. These type of models are more

3If we do assume access, then we can trivially train a binary
classifier on the original and OoD set.
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Figure 6. Rejection classification plot: accuracy on a combination

of FashionMNIST and MNIST test sets. The x-axis indicates the

proportion of data rejected based on the uncertainty score. The

theoretical maximum is computed from a classifier with 100%

accuracy on FashionMNIST and rejects all MNIST points first.

computationally costly to train than DUQ. The PixelCNN++

(Salimans et al., 2017) used by LL ratio for FashionMNIST

uses 2 blocks of 5 gated ResNet layers, while our model is

a simple three layer convolutional network. An alternative,

competitive approach is Mahalanobis Distance (Lee et al.,

2018), which computes a distance in the feature space of a

pretrained softmax/cross entropy model in combination with

a number of dataset specific augmentations. The method

relies on hyper parameter tuning using 1,000 samples of the

out of distribution dataset.

The difference in AUROC between our Deep Ensemble

result and Ren et al. (2019)’s is due to using different archi-

tectures. For a fair comparison, we use the same architecture

for the ensemble elements as for DUQ (replacing the class

dependent final layer by the usual single linear layer). In

Figure 5, we show the complete ROC curve for our imple-

mentation of Deep Ensembles and DUQ. We see that DUQ

outperforms Deep Ensembles at all chosen rates.

Accuracy and Gradient Penalty To confirm that training

using DUQ’s distance based output achieves competitive

accuracy, we train two models using our architecture: the

standard softmax and cross entropy set up and DUQ with

λ = 0. We obtained 92.4%± 0.1 accuracy for the softmax

model, and for our proposed set up 92.4% ± 0.2, both av-

eraged over five runs. The results show that we can obtain

competitive accuracy using DUQ, resolving previous prob-

lems with RBF networks. In Table 1, we show how accuracy

changes for an increasingly weighted gradient penalty. The

accuracy only degrades slightly, while AUROC is improved.

Rejection Classification In Figure 6, we visualise how well

these algorithms work in a more realistic scenario. We com-

bine the FashionMNIST and MNIST test sets, then we reject

Figure 7. A histogram of uncertainty estimates as computed using

DUQ (λ = 0.5). CIFAR-10 and SVHN are clearly separated. The

counts are normalised, because the SVHN test set is significantly

larger than CIFAR-10’s.

a certain portion of the combined dataset by uncertainty

score. Next we compute the accuracy on the remaining data

for each portion, considering all predictions on the OoD

MNIST set to be incorrect. We expect the accuracy to go up

as we reject more of the data points on which the model is

uncertain. Ideally, we reject the incorrectly classified Fash-

ionMNIST points and all MNIST points. The Theoretical

Maximum is computed by assuming a model that has perfect

accuracy on the FashionMNIST test set and is able to reject

all MNIST data before any FashionMNIST data. This exper-

iment combines out of distribution detection, with detecting

difficult to classify data points, which is closer to actual

deployment scenarios than the AUROC metric, and also a

suggested practically informed evaluation method by Filos

et al. (2019). Note that the ensemble model has an accuracy

of 93.6% on FashionMNIST, giving it a 1.2% head start on

DUQ, which has an accuracy of 92.4%. We see that DUQ

outperforms Deep Ensembles in this more realistic scenario.

λ Acc (FM) AUROC (NM) AUROC (M)

0 92.4%± .2 0.933± .009 0.948± .004
0.05 92.4%± .2 0.946± .018 0.955± .007

0.1 92.4%± .1 0.938± .0018 0.948± .005
0.2 92.2%± .1 0.945± .019 0.944± .011
0.3 92.3%± .1 0.944± .013 0.941± .011
0.5 92.0%± .1 0.946± .014 0.932± .009
1.0 91.9%± .1 0.945± .018 0.934± .006

Table 1. FM stands for FashionMNIST, NM for NotMNIST, and M

for MNIST. The results are mean/std computed from 5 experiment

repetitions. We show AUROC for separating FashionMNIST from

NotMNIST and MNIST; higher is better. We see that the gradient

penalty improves AUROC performance slightly, but performance

on this dataset pair is already very strong.
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4.3. CIFAR-10 vs SVHN

In this section we look at the CIFAR-10 dataset (Krizhevsky

et al., 2014), with SVHN (Netzer et al., 2019) as OoD set.

We use a ResNet-18 (He et al., 2016) as feature extractor

fθ(·), specifically the version provided by PyTorch (Paszke

et al., 2017) with some minor modifications: we use 64

filters in the first convolutional layer, and skip the first pool-

ing operation and last linear layer. CIFAR-10 is a difficult

dataset for out of distribution detection for several reasons.

There is a significant amount of data noise: some of the dog

and cat examples are not distinguishable using only 32 by 32

pixels. The training set is small compared to its complexity,

making it easy to overfit without data augmentation.

Experimental set up As in the previous section, we tune

the length scale using the accuracy on the validation set,

and find that 0.1 works best from a range of [0.05, 1]. We

train for a fixed 75 epochs and reduce the learning rate

by a factor of 0.2 at 25 and 50 epochs. We use random

horizontal flips and random crops as data augmentation and

find that this is enough regularisation to prevent the model

from overfitting. All architectural and optimisation details

are described in Appendix A.3. We obtain an accuracy

of 94.1% ± 0.2 using the standard softmax/cross entropy

loss. A Deep Ensemble of several softmax models obtains

an accuracy of 95.2%. DUQ without a gradient penalty

(λ = 0) obtains 94.2% ± 0.2 accuracy, while accuracy of

DUQ with λ = 0.5 is 93.2%± 0.4.

Gradient Penalty For CIFAR-10, we do not use a third

dataset to set λ. Instead, we avoid using more data and

use in-distribution uncertainty. We measure this using the

AUROC of detecting correctly and incorrectly classified val-

idation set data points using the predicted uncertainty. We

found that optimising λ using this procedure also transfer

to λ values that lead to strong out of distribution detection

performance. In general, this approach is preferable over

using a third dataset, because it is difficult to find an ap-

propriate out of distribution dataset, which will have the

same characteristics as those encountered during deploy-

ment. Imagine a particular difficult traffic situation or an

Method AUROC

DUQ 0.955

LL ratio (generative model) 0.994

Single model 0.843

5 - Deep Ensembles (ours) 0.861

5 - Deep Ensembles (ll) 0.839

Mahalanobis Distance (ll) 0.942

Table 2. Results on FashionMNIST, with MNIST as OoD set. Deep

Ensembles is by Lakshminarayanan et al. (2017), Mahalanobis

Distance by Lee et al. (2018), LL ratio by Ren et al. (2019). Results

marked by (ll) are obtained from Ren et al. (2019), (ours) is imple-

mented using our architecture. Single model is our architecture,

but trained with softmax/cross entropy.

Figure 8. Rejection classification plot, which shows model perfor-

mance on a mix of CIFAR-10 and SVHN, while rejecting uncertain

points. The theoretical maximum is achieved when a hypotheti-

cal classifier obtains 100% accuracy on CIFAR-10 and rejects all

SVHN data points first. We see that DUQ and a 5 element Deep

Ensemble perform very similar.

MRI scan which shows a new type of disease, these sce-

narios have no reasonable out of distribution set available.

Generative models are not able to take this approach, be-

cause they do not have predictive uncertainty. Even if we

use a hybrid model (Nalisnick et al., 2019b), then the dis-

criminative part, a softmax/cross entropy model, does not

have reliable predictive uncertainty.

Results In Figure 7, we show a a normalised histogram

for the kernel distances of CIFAR-10 and SVHN. We see

that most of CIFAR-10 is very close to 1, while SVHN is

uniformly spread out over the range of distances. This shows

that DUQ works as expected and that out of distribution data

ends up away from all of the centroids in feature space.

The rejection classification plot, Figure 8, is created sim-

ilar to the previous experiment in the last section. Note

that this time the Theoretical Maximum line is significantly

lower, because the SVHN test set contains close to 26, 000
elements, while CIFAR-10’s only contains 10, 000. This

means that the best possible accuracy when 100% of the

data is considered is about 28%. We see that DUQ and Deep

Ensembles perform similarly.

In Table 3, we compare DUQ with several alternative meth-

ods. We see that DUQ performs competitively with a num-

ber of recent approaches. Interestingly, on these more com-

plicated data sets Deep Ensembles performs the best. We

suspect this is because the complexity of the data set al-

lows the ensemble elements to be more diverse while still

explaining the data well.

We further see a significant gap between DUQ with and

without a gradient penalty: there is a big improvement going

from λ = 0 to λ = 0.5. We suspect this is because there is

a lot of within class variation, which incentivises the model

to collapse more diverse data points to the class centroids.
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Method AUROC

DUQ (λ = 0.5) 0.927± 0.013
DUQ (λ = 0) 0.861± 0.032
LL ratio (generative model) 0.930

Single model 0.906± 0.007
3 - Deep Ensembles 0.926± 0.010
5 - Deep Ensembles 0.933± 0.008
10 - Deep Ensembles 0.941

15 - Deep Ensembles 0.942

Table 3. Deep Ensembles is by Lakshminarayanan et al. (2017),

but re-implemented and evaluated using our architecture. LL ratio

is as reported in Ren et al. (2019). Single model is our architecture,

but trained with softmax/cross entropy. We show the AUROC for

separating CIFAR-10 from SVHN.

Runtime One of the main advantages of DUQ over Deep

Ensembles is computational cost. For Deep Ensembles, both

computation and memory cost scale linearly in the number

of ensemble components, during both train and test time.

DUQ has to compute the Jacobian at training time, which is

expensive, but at test time there is only a marginal overhead

over a softmax based model. Training for one epoch on a

modern 1080 Ti GPU, takes 21 seconds for a softmax/cross

entropy model, which leads to 105 seconds for a Deep

Ensemble with 5 components. DUQ with gradient penalty

needs 103 seconds for one epoch at training time, but only

27 seconds without gradient penalty. DUQ is 25% slower at

test time than single softmax/cross entropy model, but about

4 times faster than a Deep Ensemble with 5 components.

5. Conclusion

We introduced DUQ, Deterministic Uncertainty Quantifica-

tion, a simple method for obtaining uncertainty using a deep

neural network in a single forward pass. Evaluations show

that our method is better in some scenarios and competitive

in others with the more computationally expensive Deep

Ensembles.

Interesting future work would be to place DUQ in a prob-

abilistic framework, enabling a calibrated notion of uncer-

tainty and a rigorous way of separating out epistemic and

aleatoric uncertainty.
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