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Abstract
It is vital to optimize the drilling trajectory to reduce the possibility of drilling accidents and boosting the efficiency. Previ-
ously, the wellbore trajectory was optimized using the true measured depth and well profile energy as objective functions 
without considering uncertainty between the actual and planned trajectories. Without an effective management of the uncer-
tainty associated with trajectory planning, the drilling process becomes more complex. Prior techniques have some draw-
backs; for example, they could not find isolated minima and have a slow convergence rate when dealing with high-dimensional 
problems. Consequently, a novel approach termed the “Modified Multi-Objective Cellular Spotted Hyena Optimizer” is 
proposed to address the aforesaid concerns. Following that, a mechanism for eliminating outliers has been developed and 
implemented in the sorting process to minimize uncertainty. The proposed algorithm outperformed the standard methods like 
cellular spotted hyena optimizer, spotted hyena optimizer, and cellular grey wolf optimizer in terms of non-dominated solu-
tion distribution, search capability, isolated minima reduction, and pareto optimal front. Numerous statistical analyses were 
undertaken to determine the statistical significance of the algorithm. The proposed algorithm achieved the lowest inverted 
generational distance, spacing metric, and error ratio, while achieving the highest maximum spread. Finally, an adaptive 
neighbourhood mechanism has been presented, which outperformed fixed neighbourhood topologies such as L5, L9, C9, 
C13, C21, and C25. Afterwards, the technique for order preference by similarity to ideal solution and linear programming 
technique for multidimensional analysis of preference were used to provide the best pareto optimal solution.
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Introduction

Present global oil and gas sectors are concerned about cost 
minimization and safety. The advantages of directional 

drilling have been known to the industry from its inception 
(Lu et al. 2014). Despite its high cost, this drilling allows 
the well path to be placed into productive intervals. With 
the growing use of directional drilling, it is vital to create 
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solutions to all complex geological problems, necessitating 
optimization (Rahman et al. 2021b, c). Prior to drilling, opti-
mizing the drilling trajectory decreases the chance of drilling 
accidents and boosts drilling efficiency. The literature demon-
strates that most of the researcher focused on true measured 
depth (TMD), torque, well profile energy, rate of penetra-
tion as optimization objectives (Atashnezhad et al. 2014; 
Wood 2016; Abbas et al. 2018; Biswas et al. 2020b). It is 
also evident from the literature that by optimizing the afore-
mentioned objectives, cost management and safety have been 
greatly enhanced. It is also worth noting that multi-objective 
optimization is far more effective than single-objective opti-
mization when it comes to trajectory design (Biswas et al. 
2021b). Researcher used cellular automata-based multi-
objective hybrid grey wolf optimization and particle swarm 
optimization, multi-objective genetic algorithm, multi-objec-
tive cellular particle swarm optimization for optimizing the 
above-mentioned properties (Zheng et al. 2019; Biswas et al. 
2020a, 2021a). Each of these parameters is optimized con-
sidering several tuning variables such as azimuth angle, dog-
leg severity, inclination angle, and kick-off point. However, 
these approaches have a number of disadvantages, including 
limited exploitation capabilities, trapping of local optima, 
non-uniform distribution of non-dominated solutions, and 
inability to follow isolated minima (Zheng et al. 2019).

However, another significant issue is the formulation of 
drill-string torque, which increases when TMD is reduced. 
Inadequate transmission of ground torque to the downhole has 
a detrimental influence on the safety and efficiency of drilling 
process (Huang et al. 2020). Additionally, the design of the 
wellbore has an effect on the torque delivered to the drill string 
(Sheppard et al. 1987). A significant dogleg angle or curvature, 
particularly for directional wells with a great depth of measure, 
results in a high drill-string torque (Mason and Chen 2007). 
This excessive amount of torque complicates the trajectory 
model. However, drill-string stress is basically affected either 
by bottom hole assembly (BHA), or by fluid. The friction 
and buoyancy factors can be used to calculate stress, which 
characterizes the relationship between drill-string torque and 
trajectory parameters (Hegde et al. 2015). Researchers devel-
oped different model to establish the aforesaid relationship. 
Several of them employed mechanical analysis to establish 
a correlation between torque and the trajectory’s geometric 
parameters, while others developed a discrete torque predic-
tion model based on force measurements recorded at the drill 
string’s joint (Aadnoy et al. 2010; Fazaelizadeh 2013).

While optimization enables the simulation of a smooth 
planned trajectory, the actual trajectory may necessitate con-
sideration of tortuosity. In drilling engineering, tortuosity 
refers to the volatile nature of a real-world drilling trajectory 
(Sugiura and Jones 2008). The varied inclination and azimuth 
angles along the trajectory reflect this event. If the trajectory 
plan's projection of drill-string torque proves to be wrong, 

the likelihood of an accident increases. When tortuosity is 
factored into the design of the drilling trajectory, it is possible 
to estimate the load on the drill string with more accuracy, 
which is beneficial (Samuel and Liu 2009; Boonsri 2014). 
Unlike TMD and torque, however, the total tortuosity of the 
trajectory cannot be computed simply summing the tortuosi-
ties of the trajectory's various sectors. Wendi Huang et al. 
demonstrated how to incorporate tortuosity into the computa-
tion of torque and demonstrated a multi-objective drilling tra-
jectory optimization model to address the issue (Huang et al. 
2018). Two objective functions were chosen for minimization 
in that work: TMD and the torque delivered to the modified 
drill-string during the drilling procedure. A sine function 
was used to describe tortuosity in that context, although this 
function can only approximate the situation approximately, 
not precisely (Samuel and Liu 2009). The probability den-
sity function of tortuosity can be estimated by conducting 
a statistical analysis on data that has been acquired from a 
real-world field. Uncertainty will be introduced into the opti-
mization model as a result of the introduction of a parameter 
indicated by a probability density function (Ma et al. 2006). 
In this work, the problem of optimizing the drilling trajectory 
in the presence of parameter uncertainty is addressed, and as 
a result of this inquiry, a hybrid multi-objective optimization 
strategy with outlier removal mechanism is proposed.

This multi-objective problem (MOP) is a nonlinear and 
conflicting optimization problem. The multi-objective spotted 
hyena optimizer (MOSHO) is extremely effective at resolv-
ing this type of problem, as it has done previously (Dhiman 
and Kumar 2018; Panda and Majhi 2020; Biswas et al. 2021a; 
Naderipour et al. 2021; Şahman 2021). Apart from that, the 
previously employed NSGA II method for wellbore trajectory 
optimization has a number of disadvantages (OuYang et al. 
2008; Zhu et al. 2016; Rahman et al. 2021a). However, SHO 
has an extremely high convergence rate (Ghafori and Ghare-
hchopogh 2021). As a result, this technique ran into difficulties 
with local optima trapping during nonlinear optimization. To 
overcome this issue and the disadvantages of NSGA II, this 
work incorporates cellular automata (CA) with spotted hyena 
optimizer (SHO), which has a slow diffusion mechanism and 
the capability to exchange information with nearby neigh-
bours. The CA mechanism stated previously assists in avoiding 
the problem of local optima trapping, and the information-
exchanging capabilities aid in improving the algorithm's local 
search capability. Additionally, the particle swarm optimi-
zation (PSO) velocity update method has been integrated to 
enhance SHO's hunting capability, which is a new feature. The 
study makes the following significant contributions to the field:

1. The torque prediction of the drill-string may be too opti-
mistic if the difference between the actual and design tra-
jectories is not taken into consideration, increasing the 
likelihood of an accident. Consequently, the tortuosity of 
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the trajectory is incorporated to indicate the differences 
between the actual and design trajectories, and the dif-
ference is expressed as parameter uncertainties in multi-
objective (MO) drilling trajectory optimization problem.

2. A probability density function is formulated to predict 
the uncertainties in azimuth and inclination angle. This 
makes this problem a MOP with uncertainties.

3. A modified multi-objective cellular spotted hyena opti-
mizer (MOCSHO) is devised here, where CA is incor-
porated to overcome the shortcomings of SHO.

4. An outlier elimination strategy is developed to deal with 
the abnormal data generated by uncertainty.

5. An adaptive neighbourhood mechanism (AN) is proposed to 
address the shortcomings of fixed neighbourhood topologi-
cal structures such as the L5, L9, C9, C13, C21, and C25.

Formulation of trajectory optimization 
problem

In order to solve the aforementioned problems of oil and gas 
industry and related uncertainties discussed in the above sections 
and to analyse the effect of uncertainties in these cases, they must 
first be formulated mathematically. Researchers have previously 
used a variety of methods to mathematically formulate the objec-
tive functions associated with trajectory optimization (Sawaryn 
and Thorogood 2003; Liu et al. 2004). This study's mathemati-
cal formulation is accomplished through the use of the radius of 
curvature method (RCM). The seven segments of the wellbore 
trajectory profile under consideration are depicted in Fig. 1.

In Fig. 1, TVD denotes the actual vertical depth of the 
entire trajectory, but the letters Dkop , DD , and DB denote mul-
tiple vertical depths. However, each section’s length is marked 
by the letters D1 − D5 . Segment D2 and segment D4 repre-
sent the tangent and hold sections, respectively, with constant 
azimuth and inclination angles. Segments with variable azi-
muth and inclination angles, such as those found in segments 
D1,D3, andD5, are called build-up segments. According to 
method the constant of curvature a , radius of curvature r and 
distance between two paths in a three-dimensional survey ΔM 
can be formulated as follows

(1)a =
1

ΔM

√√√√(�2 − �1)
2 sin4

((
�2 − �1

)

2

)
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(
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)2
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a
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�2 − �1

)2
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Here �i , ∅i represent the azimuth angle and inclination angle, 
respectively, and T stands for dogleg severity. segments. The 
following formulas (4–9) are derived to calculate the length 
of these segments.

Here r1, r3, r5 represent the curvature radius of segments 
D1,D3,D5 . Now the total length (TMD) can be formulated 
as Eq. (10).

When it comes to wellbore torque, it refers to the rate at 
which the osculating plane changes direction. That is, it reflects 
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(10)TMD = Dkop + D1 + D2 + D3 + D4 + D5 + HD

Fig. 1  Wellbore trajectory profile
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the binormal vector's rotation rate relative to the curved length. 
A complex trajectory structure implies large angle changes 
within segments, because curved and non-vertical sections 
have frequent angle fluctuations. Torque and drag evaluations, 
as well as optimization, are necessary to solve drilling issues.

When calculating the torque in this study, the soft string 
model is employed, in which the drill string is considered to 
be a soft rod (without rigidness) (Mirhaj et al. 2016). Depend-
ing on the segment type (straight or curved), the computation 
method changes. The axial weight is equivalent to the drag 
force in the straight segment of the trajectory. However, the 
contact between drill string and wellbore is responsible for the 
generation of torque. The following formulas are derived by 
using the analysis of force balance.

Here F1 signifies the axial load applied to the bottom of the 
element, F2 represents the axial load at the top of the element, 
while B , w , ΔL stand for buoyancy factor and weight of unit 
pipe length, length interval, respectively. � and D stand for fric-
tion factor and pipe diameter, respectively. In this study, B = 0.7 , 
w = 0.3kN∕ft,� = 0.2 and D = 0.2ft . In case of curved sec-
tion, azimuth and inclination angle changes often. To track these 
changes, data are collected from different survey point.

According to Fig. 2, P1 and P2 are two survey points, e1, e2  
denote two-unit vector whose direction is along the tangent of 
P1 and P2, and � is the angle between them. Now according to 
the rule of scalar product.

Now according to Fig. 3, Eq. (13) can be expressed as

(11)F2 = F1 + BwΔL cos �

(12)T = �
D

2
wΔL sin �

(13)e1.e2 =
||e1||||e2|| cos � = cos �

(14)e1.e2 = e1x.e2x + e1y.e2y + e1z.e2z = cos �

After putting these equations into Eq. (14), it becomes

The overall directional change here is represented by � . 
When the object's inclination and azimuth are both altered, 
the object's ( �) acting plane is no longer limited to the 
horizontal or vertical plane. Then, by using the derivation 
from Biswas et al. (2021b) and Fazaelizadeh (2013) the 
axial force and torque can be calculated as follows

Now to calculate the total torque, the axial loading of 
each part can be calculated as follows:
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Fig. 2  Total change in direction � at points P
1
 and P

2
Fig. 3  Decomposition of vector e along different axis
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Torque of each segment is as follows

After calculating the torque of each segment, the total 
torque can be expressed as follows:

When predicting the torque, the accuracy of torque pre-
diction is greatly influenced by the tortuosity of the actual 
drilling trajectory. Tortuosity is defined in this work in terms 
of the chganges in azimuth and inclination angles along a 
given length of the trajectory segment. The probability den-
sity function is as follows, according to Fu (2013).

Here x = �∅,�� represent the change rate of inclination 
angle, azimuth angle ( ̊/m) which are both regulated by Gauss-
ian distributions. Values of constant A, B can be determined 
through statistical procedure. Variations in angles introduces 
uncertainty into the torque computation. After the adjust-
ments, the inclination and azimuth angles are as follows:

Operational and inequality constraints

The proposed strategy is evaluated in this work using real-
world data from the Gulf of Suez (Shokir et al. 2004; Bis-
was et al. 2021b). The trajectory under investigation has 
some operational constraints, non-negative constraints and 
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inequality constraints. TVD and casing setting depth ( Ci) 
are example of operational constraints which are formulated 
in Eqs. (27–31). However, the proposed algorithm needs 
to optimize 17 tuning variables in this research which are 
tabulated in Appendix A Table A1 and their constraint limit 
in Table A2. Besides, TMD and torque are expressed as non-
negative constraints.

where Y1 represents the vertical depth of Dkop section and 
Y2 − Y6 denote the vertical depth of D1 − D5.

For smooth operation, it is necessary to keep the trajec-
tory within the target. For that, the spatial position of the end 
point should be controlled. The coordinate of the ith point on 
the trajectory can be devised as

where the value of dogleg angle �i value can be found from 
Eq. (18). Ni, Ei, represent the coordinate of point i at north 
and east direction, and Di represent the vertical depth. How-
ever, the coordinate of the straight section can be obtained 
by using the following equations.
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Framework for hybrid optimization 
approach

As part of this multi-objective optimization process, the pro-
posed hybrid algorithm must optimize the length (TMD) and 
torque, based on Eqs. (10), (22).The algorithm have to fine-
tune all 17 tuning variables simultaneously in order to opti-
mize these objectives. The followings are the mathematical 
representation of the overall multi-objective optimization 
process.

However, after incorporating probability density function 
of tortuosity, torque’s expected value can be expressed as

But the equation signifies that during each iteration of 
optimization the algorithm needs to calculate Tex for every 
single x, which will significantly influence the computational 
time. That’s why random sampling is used to calculate the 
Tex . According to Wiener–Khinchin law of large numbers, 
when M is big enough the expected value can be estimated 
by

Here xand�m = (�∞,m,��,m) denote the decision parameter 
and uncertain parameter, respectively. However, the probability 
function of �∞,�� can be represented by P

(
�∞

)
, andP

(
��

)
, 

respectively. Prior to optimizing these objective functions, it is criti-
cal to identify outliers that could distort the process. In this work, 
usually torque is affected by the random parameter which is also can 
be denoted as an outlier. Therefore, an outlier elimination strategy 
was devised for a smooth optimization process. According to the 
criterion, any data that are more than three standard deviations away 
from the mean value are considered an outlier. This study assigned 
the largest nondomination rank to identified outliers.

In this work, modified MOCSHO with outlier elimination 
mechanism was applied to optimize the objective functions, 

(40)Ei = Ei−1 + (Di − Di−1) tan �i−1 sin �i−1

(41)Di = Di

(42)arg min
i∈(1,2,)

fi(X);X ∈
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where j = 1, 2,… 17
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(
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(
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(45)Tex =
1

M

M∑

m=1

T
(
x,�m

)

since it has the capability to handle the non-linearity and 
constrained of MO problem. The proposed method employed 
the diffusion mechanism of CA to enhance the exploration 
capabilities of SHO, and it afterwards used the velocity 
update equation of PSO to update the velocity of the SHO. 
SHO’s hunting mechanism was improved as a result of this.

Spotted hyena optimizer

The metaheuristic algorithm has been devised in response 
to the hyena’s prey hunting mechanism and it is outlined 
below (Dhiman and Kumar 2018). The SHO algorithm 
simulates a hyena cluster's behaviour. It is subdivided into 
four stages: searching, encircling, hunting, and attacking. 
The first stage is the “searching”. During this phase, a group 
of peers guides the hunter towards the ideal solution while 
preserving optimal results. The equations below simulate the 
spotted hyenas' circling interactions.

where ����⃗Mh denotes the distance between the prey and the 
spotted hyena, x is the current iteration, �⃗A and �⃗F denote the 
coefficient vectors, ����⃗Qp denotes the position vector of the 
prey, and ��⃗Q denotes the position vector of the spotted hyena. 
Aside from that, the characters || and “.” signify the abso-
lute value and vector multiplication, respectively. In order 
to determine the vectors �⃗A and �⃗F , the following formulas 
are utilized:

where Iteration equals 1, 2, 3,…. MaxIteration. The vectors r 
���⃗d1 and r ���⃗d2 in the range [0,1] are generated at random. The 
search agent is able to explore different parts of the search 
space by adjusting the values of the vectors �⃗A and �⃗F . An 
adaptable hyena can change its location in relation to its prey 
by using Eqs. (48–50). This algorithm ensures that the best 
solutions remain in place and that others are compelled to 
improve their positions as a result. The algorithm authorizes 
the hyenas to attack their victim when |���⃗F|<1 is reached. For 
imitating hyena hunting behaviour and identifying areas of 
prospective search space, it is necessary to develop the fol-
lowing equations.

(46)����⃗Mh =
|||A⃗.

����⃗Qp(x) − Q⃗(x)
|||

(47)Q⃗(x + 1) = ����⃗Qp(x) − F⃗.����⃗Mh

(48)A⃗ = 2. r���⃗d1

(49)F⃗ = 2. r���⃗d2 − h⃗

(50)h⃗ = 5 − (Iteration) ∗

(
5

MaxIteration

)
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Similarly, where ( ����⃗Qh ) indicates the location of the first 
best-spotted hyena, ( ���⃗Qk  ) indicates the position of other 
search agents. In the case of spotted hyenas, the number N 
is represented by the following equation:

where ��⃗G is a random vector in the range [0.5,1], and nos 
specifies the number of solutions obtained after ��⃗G has been 
included. Furthermore, ����⃗Dh is a collection of optimal solu-
tions with an N-number of possibilities.

Exploitation

During the course of exploitation, the value of �⃗h drops stead-
ily from 5 to 0. Additionally, the variance in �⃗F has an impact 
on exploitation. When the prey becomes |< ���⃗F| 1, the algo-
rithm allows the hyenas to attack it because of the algorithm. 
The following is an expression for the formulation:

where ��⃗Q(x + 1) keeps track of the optimal position and 
assists the search agent in adjusting their position in line 
with the optimal search agent.

Exploration

At the time of exploration, the primary responsible hyenas 
are of the vector ����⃗Dh . When the exploration is performed, 
�⃗F  becomes either |> ���⃗F| 1 or |< ���⃗F|-1. It generally exer-
cises control over the hyenas in order to conduct global 
searches. The value of �⃗F compels agents to diverge from 
optimal solutions, hence broadening the range of explo-
ration and avoiding local optima. Another significant 
component is the vector �⃗A , which offers random values 
in the range [0.5,1] to the prey. In order to improve their 
positions during optimization, search agents apply Eqs. 
(53–55) to form a cluster towards the best search agent. 
Meanwhile, as iterations progress, the parameters h and 
�⃗F decrease linearly. Finally, once the termination condi-
tion is satisfied, the positions of search agents compos-
ing a cluster are regarded optimal. The detail description 
of multi-objective spotted hyena optimizer (MOSHO) is 
given by Dhiman and Kumar (2018).

(51)����⃗Mh =
|||A⃗.

����⃗Qh − ���⃗Qk
|||

(52)���⃗Qk = ����⃗Qh − F⃗.����⃗Mh

(53)����⃗Dh = ���⃗Qk + �������⃗Qk+1 +… ��������⃗Qk+N

(54)N = countnos(����⃗Qh,
�������⃗Qh+1,

�������⃗Qh+2,…… ..(����⃗Qh + G⃗

(55)Q⃗(x + 1) =
����⃗Dh

N

Cellular automata

Von Neumann and Ulam first introduced the concept of CA 
(Neumann and Burks 1966; Maignan and Yunes 2013). It is 
a distribution of cells created within a particular topological 
structure. Each cell's future state will be determined by the cur-
rent states of all its neighbouring cells and so on. CA is made up 
of several components: the cell, the cell state, the cell space, the 
neighbourhood, and the transition rule, etc. Cell state is defined 
as the data contained within the currently selected cell. It con-
tributes to the evaluation of the subsequent state. In a matrix, 
cell space is used to represent a collection of cell sets. It has a 
wide range of applications (one, two, and three). Due to the 
fact that real-world processes are generally represented by finite 
grids, it is vital to identify the cell space's boundary during the 
operation. A ring grid defines this boundary. Thus, the left bor-
der will remain connected to the right border, as well as the top 
border to the bottom border. The neighbourhood can be thought 
of as a collection of cells that are next to a central cell and so 
regarded to be its neighbours. Its primary purpose is to deter-
mine the next state to be picked. The transition rule determines 
the future state of the cell based on the state of neighbouring 
cells. The formulation of CA can exhibit the following features. 
The most frequently used metaphor for an m-dimensional CA 
is that it is a grid of m-dimensional single cells. Each cell holds 
a single value that cannot be duplicated. In accordance with the 
transition rule, each cell has the ability to update its state. As a 
result, the mathematical formulation of cellular automaton Q 
may be expressed as follows

where.The finite set of state: T, Dimension of Q: 
d ∈ Z + Neighbourhood: H, Transition rule: g

Let’s take i ∈ Zm is the position of a cell where m is the 
dimension of the lattice grid, then the neighbourhood H can 
be formulated as

where neighbourhood size is represented by n; a fixed vector 
from the search space of m-dimension is represented by rj.

Neighbourhood

Neighbours are a collection of cells that surround a central 
cell in a ring-like formation. In addition, the neighbours can 
be defined as the other atoms that are related to a single atom 
by a single bond. The neighbours of the grid are defined in 
this work depending on their direction and radius. There 
are two structural labels that are commonly used to refer 
to it. They are denoted by the letters Ln and Cn . If there are 
n—1 nearest neighbours in the direction of the centre cell, 
the structure is denoted by the letters Ln or Cn , respectively.

(56)Q = (T , H, m, g)
[
Where Q is a quadraple

]

(57)Hi = (i, i + r1,……… .. i + rn)
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If the directions of neighbouring cells are at the top, bot-
tom, left, and right, then it will be denoted by Ln . Alterna-
tively, when the directions are at the top, bottom, left, right, 
and diagonal, it will be symbolized by Cn . In this research, 
six types of classical structure have been used to analyse the 
impact of neighbourhood structure. These structures are L5, 
L9, C9, C13, C21, and C25 which are depicted in Fig. 4.

Transition rule

To handle the issue of each atom transitioning from one state 
to the next, the transition rule is applied. This rule estab-
lishes the transformation process by employing data from 
the neighbouring cells. The neighbour with the highest fit-
ness value among the neighbours will be used to facilitate 
information diffusion. If Mi denotes the optimal neighbour 
and Pt

i
(Mn) denotes its location, the transition rule can be 

defined as follows.

where f itness
(
Pt
i

(
Mi

))
 denotes the current value of Mi . Thus, 

the best optimal neighbour can be determined from the neigh-
bourhood with the help of Eq. (58). Then, the elected one will 
be used to update the present state of the current cell.

Particle swarm optimization

This algorithm is a stochastic, population-based evolutionary 
technique that is inspired by the flocking behaviour of birds 

(58)
fitness

(
Pt+1
i

(
Mi

))
= min

(
fitness

(
Pt
i

(
Mi

))
… .fitness

(
Pt
i

(
Mi+r1

)))

(Kennedy and Eberhart 1995). It is composed of two distinct 
processes. Both of these processes are carried out by birds. To 
begin, the bird will do a random search for the nearest region 
of food. Later on, it will use its flying experience to locate the 
food. The candidate solution is represented in the process by 
a bird, which is referred to as a particle. Additionally, food 
serves as a representation of the optimal solution. The position 
of a particle varies as a result of particle interaction, and the 
rate of position change is referred to as velocity. Throughout 
the flight, the particle's velocity varied randomly in the direc-
tion of its finest point (personal best) and in the direction of 
the community's best solution (global best). In conclusion, 
the knowledge and experience of swarm’s neighbours have 
an impact on the evolution of each particle.

In this work, Xi = Xi1,Xi2,Xi3 … .Xid  ,  represents 
the ith particles, whereas velocity is represented by 
vi = vi1, vi2, vi3 … .vid . According to the mechanism, each 
particle initiates the random searching in the search space 
with their initial velocity, where pi = pi1, pi2, pi3 … .pid 
represent the particle's personal best position, whereas 
pg = pg1, pg2, pg3 … .pgd represent the global best position 
of each particle. PSO updates the velocity and position of 
each particle using the following equations.

Here acceleration coefficients are c1 and c2 that primarily con-
trols algorithm’s exploration and exploitation capability, inertia 
weight is denoted by w , whereas r1andr2 , are random numbers 

(59)Vt+1
i

= w × Vt
i
+ c1.r1

(
pt
i
− Xt

i

)
+ c2.r2

(
pt
g
− Xt

i

)

(60)Xt+1
i

= Xt
i
+ Vt+1

i

Fig. 4  Different types of neigh-
bourhood structure
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between [0,1]. The fitness value is used to determine the best 
particle's quality. The particle with the highest fitness value is 
considered to be the global best one (Coello et al. 2004).

Hybridization

In order to address the issues experienced by the SHO, this 
research made use of the CA's neighbourhood formation mech-
anism for trajectory optimization. PSO, on the other hand, is 
employed to improve the hunting mechanism of SHO. The fol-
lowing three advantages motivate the improvement strategy.

• Due to the fact that CA enhances exploitation capabil-
ity through interaction with its neighbours, CA can be 
employed to enhance SHO's local search capabilities. On 
the other hand, information transfer facilitates the explo-
ration process.

• Because the resultant solutions of the candidates are 
attracted towards the good SHO solutions, the conver-
gence speed of the SHO is relatively fast, resulting in a 
trapping of local optima in the process of convergence. 
The slow diffusion mechanism of CA in conjunction with 
SHO will aid the SHO in avoiding the local optima trap.

• The SHO's hunting mechanism will be enhanced by using 
the PSO's velocity update technique. Typically, the veloc-
ity component of PSO is regulated by multiplying the 
particle's velocity by a constant factor. The purpose of 
this velocity management is to achieve a balance between 
exploration and exploitation.

This programme generates populations of spotted hyenas 
that are semi-randomly distributed. It consists of n-dimen-
sional lattice grids that are randomly distributed. In the 
approach that has been proposed, the operational constraints 
are managed during the initialization of the agent's positions. 
Once this is done, the tuning variables for the wellbore trajec-
tory xj are initialized at random but in a limited environment 
in order to get the desired outcomes. If the starting positions 
satisfy the operational and non-negative requirements, they 
are accepted without further consideration. Otherwise, they 
are rejected. As a result of this strategy, the values of the ini-
tial tuning variable will be less chaotic. The fitness value of 
each population is then computed in terms of wellbore trajec-
tory optimization. This is followed by the start of the update 
loop. It makes use of the CA principle in order to establish a 
new neighbourhood. During the process of creating a neigh-
bourhood, some of the neighbours will overlap. It permits 
the algorithm to include an implicit migration mechanism. 
Additionally, it contributes to the seamless diffusion of the 
most effective solutions throughout the population. A larger 
degree of diversity than the original SHO can be maintained 
as a result of this transformation. Soft diffusion is essential 

for maintaining a healthy balance between exploration and 
exploitation of natural resources. This strategy divides the 
total search area into multiple sub-search regions, each of 
which is a separate search space. As a result, they will be 
able to update the operation independently. However, if the 
neighbours overlap in this case, information is transferred on 
an ad hoc basis rather than in a systematic manner.

The hunting mechanism of SHO, on the other hand, has 
been updated by including the velocity update method of 
PSO (Dhiman and Kaur 2019). As a result, the following 
is an expression for Eq. (61).

The proposed algorithm will make use of the newly 
revised hunting mechanism to accomplish its goals. The 
following is the pseudocode for the algorithm that has 
been proposed:

Algorithm: Modified MOCSHO 

Input: Spotted hyena population,  

Output: Best search agent 

1: Initialize the population of spotted hyena 

2: Initialize parameters 

3: Evaluate Spotted hyena population 

4: Select =best first search agent 

5: Select  Cluster of all obtained solution 

6:    while iteration number < maximum iteration number 

7:            for i← 1 spotted hyena population

8:              Create neighbors 

9:                Update the position of hyena 

10:                 Update (h

11:                     Evaluate spotted hyena’s new position 

12:                          if new position outperforms 

13:                               Replace the current hyena 

14:                           end if

15:                       evaluation number ++ 

16:            end for 

17:    end while

16: while do

17:         for each spotted hyena do

18:               Position update by using Eq (61) 

19:           end for

20:        Update (h parameters 

21:        Calculate the fitness value of current spotted hyena

22:        Update  and 

23:         x=x+1 

24: end while 

25: return 

(61)�������⃗Qt+1
k

= w × ���⃗Qt
k
+ c1.r1

(
����⃗Qh − ����⃗Mh

)
+ c2.r2

(
����⃗Qh − ����⃗Mh

)
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Adaptive neighbourhood

Each search agent will construct a neighbourhood based 
on its fitness value, according to the proposed method. If 
the search agent is of superior value, the result will be the 
establishment of a sizable neighbourhood. It will improve 
the likelihood of intersecting with the most effective one. 
Additionally, it will increase the diversity of the solutions, 
which will aid in avoiding the local optima trap and other 
issues. The BL approach is a type of strategy that is used in 
this situation (Dorronsoro and Bouvry 2013). In the case 
of the BS approach, on the other hand, the worst search 
agent will construct a big, sizable neighbourhood in order 
to maximize the odds of interacting with the better agents 
(Dorronsoro and Bouvry 2013). As a result, the quality of 
suboptimal solutions will increase. Thus, the algorithm will 
benefit from two strategies: avoiding the local optima trap 
or refining suboptimal solutions. Apart from that, both will 
retain their uniqueness. Each search agent's neighbourhood 
will be created by the algorithm in accordance with the fol-
lowing methodology when the algorithm attempts to estab-
lish a neighbourhood for each search agent.

Algorithm: Adaptive strategy of neighbourhood 

1. function Neighborhood_construction (hyena population) 

2. Best available neighbours (List []) 

BL (From small to large) 

BS (From Large to small) 

3. best_fitness_value (hyena); 

4. worst_fitness_value (hyena); 

5.Fitness of individual hyena population. 

6.norm_fitness = (Fitness_indi_worst_fitness_value)/(best_fitness_value-  

                              worst_fitness_value); 

7.return List [norm_fitness*List.size ()]; 

8. end Neighborhood_construction 

Wellbore trajectory optimization mechanism

For optimization, 500 search agents were taken and iteration 
number was selected as 100 in this work. Later the statisti-
cal method of Fu (2013) was utilized to fit the probability 
density function of �∅ and ��.

(62)

P
3

(
��

)
= 13.09 exp

(
−

(
�� − 5.1Δ10−3

)2

8.86Δ10−6

)

+ 4.14 exp

(
−

(
�� + 1.39Δ10−2

)2

8.43Δ10−3

)

The concern now is what the value of M (Eq. 45) will be. 
M is determined by setting x is to its upper limit and then 
computing Tex. The objective was to find the value of M, for 
which it will give relatively small error, that is, less than 
0.1%. Finally, the value of M = 1000 was used in this work, 
which resulted in a relative error of 0.29%. It was an accept-
able value that will have little effect on the optimization 
process. Following that, an outlier removal mechanism was 
applied to handle the abnormal data. Later in the approach, 
the spotted hyena populations were initialized semi-ran-
domly to make the approach less chaotic. After evaluating 
each search agent, it selected the best search agents and 
clusters of all obtained solutions for the wellbore trajec-
tory optimization problem. A neighbourhood then designed 
using an adaptable neighbourhood (AN) topology because 
of this. Additionally, this scenario evaluated both the fixed 
structure (L5, L9, C9, C13, C21, C25) and the AN structure. 
After they had been built using the CA technique, they were 
analysed for optimization issues as well as constraint vio-
lation. Afterwards, they shared their newfound knowledge 
with one another. The most optimal solution was provided 
by any neighbour who was able to deliver a solution that 
was superior to the current agent's solution (central cell). In 
all other cases, the central cell was the most optimal. It was 
then repeated till the end criterion was met.

Result and discussion

In this subsection, the performance of proposed algorithm 
for well bore trajectory optimization will be analysed. For 
comparison several state-of-the-art algorithms, multi-objec-
tive cellular spotted hyena and particle swarm optimiza-
tion (MOCSHOPSO) without outlier removal mechanism, 
multi-objective spotted hyena optimizer (MOSHO), multi-
objective cellular grey wolf optimization (MOCGWO) were 
selected (Dhiman and Kumar 2018; Lu et al. 2018). During 
comparison, the stopping criteria were maximum number of 
iterations. For qualitative and quantitative analysis, inverted 
generational distance (IGD), maximum spread (MS), spac-
ing metric (SP), error ratio (ER) were selected as compara-
tive criterion. Moreover, a spearman corelation coefficient 
analysis test was performed to sort out the most prominent 
parameter during optimization.

(63)

P
4
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)
= 12.09 exp
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−

(
�� − 5.28Δ10−3

)2
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+ 2.87 exp
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Outcome of proposed algorithm

True measured depth and torque were mathematically mod-
elled for this wellbore trajectory optimization. To substan-
tiate the performance and effectiveness of the proposed 
algorithm, these objective functions were utilized as well-
bore trajectory optimization problem. Results of interest are 
demonstrated in bold expression in the relevant tables to 
highlight the capabilities of the proposed algorithm.

All results were obtained based on the overall out-
comes of 30 randomly initialized independent runs and 
during 100 internal iterations to evolve 500 search agents 
in each algorithm. All results obtained in this research 
were recorded using a single computer, and all tests were 
carried out in a same condition to have a fair comparison. 
To investigate the efficacy of the proposed algorithm in 
solving this problem, it was compared to several state-of-
the-art methods. Figure 5 depicts the pareto front obtained 
by different algorithms. According to Fig. 5, it is visible 
that the torque decreases as the length increases. Here 
the proposed method with outlier removal mechanism 
has shown better performance than others. Since it is 
important to control uncertainty than cost minimization, 
the Monte Carlo (MC) method had been applied here to 
illustrate the uncertainty and reliability of these pareto 
solutions (Luo et al. 2014).

This method finds out the upper and lower bound of the 
objective functions. For MC analysis, root mean square 
error (RMSE) and bandwidth were utilized according to 
the following equations

where the run time of optimization process is denoted by N , 
Fi = [f 2,1,f2,2,… f2,Np] is the f2 value of all individuals in 
pareto solutions obtained by the ith trial. Fu,i and Fl,i are the 
upper bound and lower bound of Fi , respectively. FAvg is the 
average value of Fi among N times trial.

Each optimization algorithm was run for 30 times to 
statistically obtain the average value of RMSE and band-
width. All the obtained results are tabulated in Table 1. 
From the recorded data in Table 1, it is visible that pro-
posed method has the lowest RMSE value (20.234) and 
bandwidth (132.401) among the compared algorithms. On 
the other hand, MOCSHOPSO which is also an improved 
version of MOSHO has obtained the second smallest 
value (22.043) for both RMSE and bandwidth. It means 

(64)RMSE =

√√√√ 1

N

N∑

i=1

(
Fi − FAvg

)2

(65)Band =
1

N

N∑

i=1

(
Fu,i − Fl,i

)

that solution provided by the proposed method is supe-
rior and most reliable among the compared algorithms. 
Proposed method with outlier mechanism has achieved 
lower RMSE value than the MOCSHOPSO. It indicates 
that outlier removal mechanism is effective in minimizing 
uncertainties.

For allowing the decision maker to take final pareto 
solutions, the pareto solutions with smallest bandwidth 
obtained by the compared algorithms are tabulated in 
Table 2. It is found that the obtained solutions by the pro-
posed method have achieve the smallest bandwidth. This 
clearly implicates that within uncertainty the obtained 
solutions by the proposed method have achieved better 
stability. Data from Table 2 also indicate that the proposed 
method has successfully obtained the smaller length and 
torque, which is clearly in line with the proposed goal.

In this work, TOPSIS and LINMAP analysis were also 
done to provide the decision maker the best pareto solu-
tions (Ahmed et al. 2021). But it slightly defers from the 
solutions provided according to smallest bandwidth. The 
solutions are provided in Table 3.

Qualitative analysis

To demonstrate the efficacy and qualitative performance 
of the proposed algorithm, the obtained results are statisti-
cally analysed by performing several well-known statisti-
cal tests. In this subsection, the description and analysis 
of this statistical test will be discussed.

A. Inverted generational distance (IGD)
  From the above solutions, a researcher can develop 

two different kinds of pareto solutions. The pareto front 
solution and the approximation pareto front solution are 
two different sorts of solutions. The IGD illustrates the 
difference between these two. However, in order to cal-
culate IGD, a true pareto front must be used. When the 
true pareto front is not available, non-dominated solu-
tions serve as a point of reference. The formulation of 
IGD can be derived as

  d(Q,Q∗) is the difference in Euclidean distance 
between the true pareto front ( Q ) and the approximation 
pareto front ( Q∗ ). If an algorithm obtains the lowest IGD 
value among comparable algorithms, it has obtained a 
pareto front that is very close to the true pareto front.

B. Spacing metric (SP)
  If the beginning and ending points of a pareto front 

are not known, it is necessary to calculate the distri-
bution of solutions. SP is a metric that quantifies the 

(66)IGD(Q,Q∗) =

∑�Q�
i=1

d(Q,Q∗)

�Q�
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distance variance between adjacent vectors in the result-
ing non-dominated solutions. The smallest value of SP 
implies that the solutions are quite close to one another 
in proximity. It expresses those solutions that are not 
dominated have a more even distribution than solutions 

that are dominated in some way. The following is the 
metric to use.

where di = minj(
|||f

i
1
(�⃗x) − f

j

1
(�⃗x)

||| +
|||f

i
2
(�⃗x) − f

j

2
(�⃗x)

|||), i, j =
1, 2,… n , the average value of all  di  is represented by d, 
and the total number of obtained pareto solutions is rep-
resented by P

C. Maximum spread (MS)
  This indicator is commonly used to calculate the 

diversity of the solutions that have been obtained as well 

(67)SP =

√√√√ 1

|P − 1|

|P|∑

i=1

(
di − d

)2

Fig. 5  Pareto optimal solutions obtained by different algorithm

Table 1  Monte Carlo analysis of the pareto solutions

Method RMSE Bandwidth

Proposed 20.234 132.401
MOCSHOPSO 22.043 136.736
MOSHO 25.073 164.632
MOCGWO 31.764 176.157
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as the covering area of the solutions. It is generally mod-
elled as a difference between the two boundary solutions 
in a given situation.

Here the maximum values in ith the objective is repre-
sented by ai and minimum values are represented by bi.

D. Error ratio (ER)
  This metric quantifies the number of solutions that do 

not have a guaranteed spot in the resulting pareto opti-
mal set. It can be expressed mathematically as follows.

(68)MS =

√√√√
0∑

i=1

max
(
d
(
ai, bi

))

(69)ER =

∑n

i=1
ei

n

where the number of vectors in the currently 
available nondominated set is represented by n, 
ei = 0if iϵparetooptimalset otherwise ei = 1 . But ER = 0 
is an ideal case that does not mean all solutions obtained 
by the proposed algorithm are within pareto optimal set.

  During the qualitative and statistical analysis, each of 
the comparative algorithm was run 30 times in MAT-
LAB software and all the results of interest for IGD, 
MS, SP and ER are tabulated in the respective tables. 
Based on the collected output, box plots are generated 
for the above-mentioned analysis because the box plot 
demonstrates the distribution, dispersion, and symmetry 
of solutions more precisely than any other plot. After 
performing the IGD analysis test, the recorded data are 
tabulated in Table 4 and the corresponding box plot is 
illustrated in Fig. 6.

  From the recorded data in Table 4, it appears that 
the proposed algorithm has obtained a mean value of 
0.0106 which is the lowest among the compared algo-
rithms. However, the best value obtained by the pro-
posed algorithm is 0. 0051. The second-best mean value 
was achieved by MOCSHOPSO without outlier removal 
mechanism which is also a hybrid version of MOSHO 
with the incorporation of CA. Since IGD justifies the 
performance of an algorithm by simultaneously evalu-
ating its convergence and diversity, an obtained lowest 
IGD mean value by the proposed algorithm means it has 
a better convergence and diversity than other algorithm. 
Moreover, it also means that the obtained pareto front is 
nearer to the true pareto front.

  After performing MS and SP statistical analysis in 
the same manner, their analysed data are tabulated in 
Tables 5 and 6, respectively, and the data are compiled 
in the form of box plot in Figs. 7 and 8, respectively. The 
data recorded in Table 5 have expressed that the pro-
posed algorithm has the highest mean value (86.5281) 
in the case of MS statistical analysis, which means that 
the diversity of the solutions obtained by the proposed 
algorithm is highest. However, the standard deviation 
obtained by the proposed algorithm is 5.0146, the lowest 
among the comparative algorithms. CA diffusion mecha-
nism assisted the search agent to diversify the solutions.

  Similarly, the data of SP analysis mentioned in Table 6 
show that the mean value of the proposed algorithm is 
the lowest (72.5432) among the comparative algorithms, 

Table 2  Non-dominated solutions with smallest bandwidth

Symbol PROPOSED MOC-
SHOPSO

MOSHO MOCGWO

Bandwidth 96.189 118.296 123.9471 126.376
Length (ft) 15,116.289 15,165.321 15,175.003 15,177.634
Torque 

(N.ft)
9674.347 9691.075 10,153.330 10,377.693

TVD (ft) 10,851.043 10,861.042 10,861.986 10,869.743
∅

1
15.201 16.961 15.971 17.063

∅
2

41.001 41.935 47.632 46.007
∅

3
90.001 92.753 90.701 92.875

�
1

270.984 275.043 274.001 270.465
�
2

271.046 272.014 273.004 277.698
�
3

273.049 271.998 274.314 272.901
�
4

337.432 332.612 335.152 336.407
�
5

330.007 331.875 331.475 331.965
�
6

358.012 358.843 359.742 359.849
Dkop 889.102 720.432 716.193 701.986
DD 6315.731 6341.703 6310.675 6329.591
DB 10,005.775 10,069.574 10,090.103 10,090.769
T
1

0.98 1.58 1.56 1.59
T
2

0.59 0.90 1.01 1.03
T
3

2.45 2.51 2.03 2.67
T
4

0.49 1.47 1.35 1.87
T
5

1.99 2.56 2.61 2.03

Table 3  Obtained solutions according to TOPSIS and LINMAP analysis

Symbol PROPOSED MOCSHOPSO MOSHO MOCGWO

TOPSIS LINMAP TOPSIS LINMAP TOPSIS LINMAP TOPSIS LINMAP

Length 15,120.478 15,120.478 15,165.321 15,165.321 15,210.753 15,210.753 15,221.007 15,221.007
Torque 9654.589 9654.589 9691.075 9691.075 9904.001 9904.001 10,105.637 10,105.637
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but in this case MOSHO has achieved the lowest stand-
ard deviation of 29.0963. Overall, the standard deviation 
is too high for all the algorithms.

  The ER statistical test was subsequently performed to 
qualitatively analyse the performance of the proposed 
algorithm, the value of which is recorded in Table 7 
and illustrated in the form of box plot in Fig. 9. Table 7 
shows that the ER of the proposed algorithm has the low-
est mean value among the compared algorithms and the 
lowest among all in the case of standard deviation. The 
mean value for the proposed algorithm is 0.1143, and the 
standard deviation is 0.0401 which is almost near to zero.

Performance analysis with different neighbourhood

Cellular automata can be used to construct different types 
of topologies, each of which performances is differ in term 
of quality. The algorithm proposed in this study is subject 
to six different conventional neighbourhood topologies 
and compared with the proposed adaptive neighbourhood 
topology for comparison purpose. IGD statistical test had 
been performed to qualitatively compare those mentioned 
topologies, and recorded data are tabulated in Table 8. 
These data are depicted in the form of box plot in Fig. 10. 

Table 4  Output of comparative IGD analysis

PROPOSED MOCSHOPSO MOSHO MOCGWO

Mean 0.0106 0.0138 0.0191 0.0651
Std 0.0082 0.0101 0.0171 0.0393
Best 0.0051 0.0051 0.0022 0.0197
Worst 0.0172 0.0234 0.0421 0.0956

Fig. 6  Box plot for IGD metric

Table 5  Output of comparative maximum spread analysis

PROPOSED MOCSHOPSO MOSHO MOCGWO

Mean 86.5281 85.0901 84.3636 80.2727
Std 5.0146 5.9910 6.0421 6.5001
Best 96.0736 93.7021 90.3014 91.0869
Worst 59.8104 65.0012 78.0009 59.0715

Table 6  Output of comparative spacing metric analysis

PROPOSED MOCSHOPSO MOSHO MOCGWO

Mean 72.5432 75.1436 81.0001 139.0909
Std 49.0745 44.3071 29.0963 62.072
Best 32.0001 30.1364 50.1723 77.0124
Worst 205.0431 176.0136 230.0725 340.0153

Fig. 7  Box plot for maximum spread

Fig. 8  Box plot for spacing metric
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From the tabulated data in Table 8, it is clearly visible 
that the proposed algorithm has given best performance 
with C21 neighbourhood structure among the conventional 
topologies, but in terms of performance the proposed AN 
topology has surpassed that of C21. Table 8 shows that AN 
has a mean value of 0.3691 which is less than C21’s mean 
value of 0.5308 and even in the case of standard deviation 
the value of AN is lowest which is 0.0121. These improve-
ments justify the incorporation of BL and BS strategy. 
The Friedman test was also used for multiple comparison 
which is the most common no parametric analysis. The 
data of this test are tabulated in Table 9 which shows that 
the p value of this test is 0.0537 and the rank value of AN 
in the test is 2.4503 which is slightly better than C21.

One of the specific properties of constructed neighbour-
hood is their radius, based on which the algorithm decides 
whether to give more importance on exploration or to 

exploitation. However, the best results are given by a neigh-
bourhood that balances the two and maintains convergence 
speed, misses a smaller number of significant optimal solu-
tions, and avoids local optima trap. In order to test which 
radius of adaptive neighbourhood can best balance these 
two properties, its IGD analysis had been tested according 
to different radii which are tabulated in Table 10. Table 10 
shows that the best performance is given by R = 1.5 with 
mean value of 0.2278 and variance 0.0179 which is lowest 
among all. This is also justified by Fig. 11 where the data 
have been presented as a box plot.

Table 7  Output of comparative error ratio analysis

PROPSED MOCSHOPSO MOSHO MOCGWO

Mean 0.1143 0.1272 0.1492 0.1873
Std 0.0401 0.0437 0.0932 0.1487
Best 0.0121 0.0192 0.0231 0.0342
Worst 0.4303 0.3013 0.4697 0.6004

Fig. 9  Box plot for error ratio

Table 8  IGD analysis of several 
neighbourhood topologies

L5 L9 C9 C13 C21 C25 AN

Mean 0.5344 0.5476 0.5451 0.5933 0.5308 0.5706 0.3691
Std 0.0259 0.0307 0.0323 0.0418 0.0251 0.0389 0.0121

Fig. 10  IGD comparison metric for neighbourhood comparison

Table 9  Comparison of 
different neighbourhood 
through Friedman test

Neighbour-
hood func-
tions

Rank P value

L5 3.6003 0.0537
L9 2.9239
C9 3.4261
C13 3.6093
C21 2.8709
C25 3.3642
AN (adap-

tive 
neigh-
bourhood)

2.4503
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Sensitivity analysis

The outputs in this study are dependent on 17 independent 
variables, each with its constraint limit. Sensitivity analy-
sis is needed to find out how different values of these 17 
independent variables affect the output based on a given 

assumption. Sensitivity analysis is of two types, out of 
which local sensitivity analysis expresses the relevance of 
each variable but does not reveal any correlation informa-
tion in the case of multi-objective optimization. However, 
with the global sensitivity analysis, adjustment of any vari-
able, a correlation between all the objectives is recognized. 
Due to the nonlinear nature of wellbore trajectory optimi-
zation, global sensitivity analysis was performed in this 
case. There are several statistical measure to find out the 
correlations; among them, Spearman correlation coefficient 
test is selected because it is very useful for non-normally 
distributed continuous data and is relatively robust for out-
liers. Spearman rank correlation is a measure of statisti-
cal dependence between two variables that is able to better 
account for non-linear relationships compared to conven-
tional Pearson Correlations (Myers and Sirois 2004). The 
values can range from -1 to 1, with 0 indicating that there is 
no relationship. A Spearman rank correlation of 1 indicates 
a perfect, monotonically increasing relationship, while − 1 
indicates a perfect, monotonically decreasing relationship. 
Therefore, the higher the absolute value of this number, 
the more important the reaction is. After performing the 
statistical test, the data observed are recorded in Table 11. 
The values of the three most significant variables for each 
objective are highlighted in the table.

Table 10  Experimental data 
of IGD metric for comparative 
radius

R = 0.5 R = 1 R = 1.5 R = 2 R = 2.5 R = 3

Mean 0.3831 0.3306 0.2278 0.3822 0.3608 0.3319
Variance 0.0198 0.0237 0.0179 0.0274 0.0371 0.0397

Fig. 11  IGD comparison metric for different radii

Table 11  Spearman correlation 
coefficient analysis for the 
decision parameters

Symbol MOCSHOPSO-OR MOCSHOPSO MOSHO MOCGWO

TMD Torque TMD Torque TMD Torque TMD Torque

∅
1

0.927 0.329 0.942 0.696 0.657 0.756 0.364 0.735
∅

2
0.247 0.471 0.801 0.201 − 0.051 0.232 0.802 0.521

∅
3

0.861 0.613 − 0.332 − 0.215 0.361 − 0.247 0.423 − 0.739
�
1

− 0.045 − 0.198 − 0.024 − 0.257 0.217 0.301 − 0.617 0.091
�
2

− 0.103 − 0.471 0.061 − 0.201 − 0.325 − 0.512 − 0.434 − 0.053
�
3

0.201 0.071 0.512 0.041 0.058 0.023 − 0.345 − 0.067
�
4

− 0.321 − 0.247 − 0.372 − 0.325 − 0.264 − 0.175 − 0.026 − 0.047
�
5

− 0.005 0.031 − 0.051 0.029 − 0.289 0.289 0.387 0.328
�
6

0.089 0.073 0.061 0.075 − 0.297 − 0.987 − 0.367 − 0.187
Dkop 0.231 0.031 − 0.145 0.0265 − 0.246 − 0.438 − 0.398 − 0.016
DD − 0.176 − 0.089 − 0.152 − 0.092 − 0.574 − 0.079 0.173 − 0.079
DB − 0.043 0.019 − 0.058 0.016 − 0.461 0.249 − 0.139 0.105
T
1

− 0.055 − 0.689 0.465 0.632 0.521 0.819 0.298 0.678
T
2

− 0.071 0.719 − 0.068 − 0.096 − 0.374 − 0.127 0.192 − 0.079
T
3

− 0.231 − 0.308 − 0.407 − 0.301 0.072 0.048 0.285 − 0.069
T
4

0.219 0.189 0.131 0.138 0.058 0.079 − 0.398 − 0.376
T
5

− 0.873 − 0.157 − 0.887 − 0.160 − 0.071 0.101 − 0.091 − 0.278
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Conclusion

Operational cost and risks are major concerns for the oil 
and gas industry worldwide. In this context, the industry 
needs a strategy that addresses the aforementioned issues 
and uncertainties involved in the design of real-world 
trajectory design problem. Meanwhile, a real-world tra-
jectory was mathematically modelled using a probability 
density function to account for uncertainty. In this sce-
nario, this work established a model termed the “modified 
MOCSHO”, which enables the operator to fix the optimal 
parameter with the least amount of uncertainty possible 
during trajectory design. The original SHO algorithm was 
improved during hybridization by adapting the slow diffu-
sion mechanism of CA and the velocity update mechanism 
of PSO. These two approaches contributed significantly 
to overcoming the SHO's drawbacks, as demonstrated by 
the proposed algorithm's performance during trajectory 
optimization and improved performance during IGD, MS, 
SP, and ER analysis. The algorithm achieved lowest value 
of IGD (0.0106), SP (72.5432), ER (0.1143) and highest 
value of MS (86.5281) among the compared algorithm 
during performance evaluation. Thus, it can be concluded 

that the CA's slow diffusion mechanism aided the SHO 
in enhancing its exploration capability and avoiding local 
optima trapping. On the other hand, PSO's velocity update 
mechanism aided in the enhancement of the hunting mech-
anism and the maintenance of a more balanced approach to 
exploration and exploitation. Because the algorithm had to 
deal with abnormal data in real-world applications, it was 
updated with an outlier removal mechanism that contrib-
uted in reducing uncertainty during trajectory optimiza-
tion. This research established that the hybrid algorithm 
version with an outlier removal mechanism outperforms 
the one without an outlier removal mechanism, as demon-
strated by MC analysis. To overcome the disadvantages of 
fixed neighbourhood topologies (L5, L9, C9, C13, C21, 
and C25), AN is developed, and IGD analysis demon-
strates its superiority. Additionally, this research estab-
lished that R = 1.5 can improve the performance of AN.

Appendix A

See (Tables 12, 13).

Table 12  Variables and their 
detailed description

Symbol Name of the variables

∅
1

First hold angle in degree
∅

2
Second hold angle in degree

∅
3

Second hold angle in degree
�
1

Azimuth angle at kick of point in degree
�
2

Azimuth angle at end of the first build portion in degree
�
3

Azimuth angle at end of first hold section in degree
�
4

Azimuth angle at end of second drop portion in degree
�
5

Azimuth angle at the end of second hold section in degree
�
6

Azimuth angle at the end of third build portion in degree
T
1

Dogleg severity of first build portion. 0/100 feet
T
2

Dogleg severity of first hold Sect. 0/100 feet
T
3

Dogleg severity of second drop portion. 0/100 feet
T
4

Dogleg severity of second hold portion. 0/100 feet
T
5

Dogleg severity of third build portion. 0/100 feet
TVD True vertical depth of the well at total depth (TD) in feet
Dkop True vertical depth of the kick-off point, feet
DD True vertical depth of the well at the top of drop off section, feet
DB True vertical depth of the well at the end of drop off section, feet
HD Lateral or horizontal length (HD), feet
TMD True measure depth in feet
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