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Abstract— In this paper a practical method is presented
for modelling uncertainty of a nominal linear parameter-
varying (LPV) vehicle model. The aim with the uncertainty
model is to bound the nominal model-error and satisfy robust
stability and performance objectives during robust control
design. Existing frequency-domain model-validation methods
are applied to perform the first aim. The linear fractional
uncertainty structure and the distribution of nominal model-
error among the uncertainty blocks and disturbances are
chosen to perform the second aim. The paper is motivated
by the problem of steering a vehicle by alternately braking
the front wheels in emergency situations. The identification
is performed on real experiment data. The method and the
results are demonstrated on a yaw-rate tracking problem and
µ-controller design on constant scheduling variable of the LPV
model. Using the proposed algorithm, on the supposition that
nominal model error remains below the bound estimated from
the validation data set, an unfalsified model is constructed for
robust control guaranteeing robust performance against worst-
case uncertainty and disturbance.

I. INTRODUCTION

Model validation for control is a central research area of

system identification. The product of identification, i.e. the

model, should be a reliable base of controller design. The

validation or invalidation approaches depend on the control

strategy. Robust control typically requires strict bounds on

the model-error. Usually this error is structured as distur-

bances originating from outer signals and a variety of model

uncertainty types due to neglected dynamics.

Both time- and frequency-domain techniques have been

developed for model validation problems for robust control.

Concerning time-domain approaches Ljung maintains the

concept of model error modelling based on statistical tools

in many papers, e.g. in [1] and references therein. Another

fundamental paper is by Poolla at al. [2]. Sizable research has

been devoted to algorithmize the creation of validated, more

exactly unfalsified models for a specific control approach.

The validation step of the identification process and the

control design step get interlacing. For example, in the field

of adaptive control directly the controller is falsified before

it is implemented [3]. Applications of unfalsification concept

in adaptive control can also be found e.g. in [4] and [5].

Of the works most relevant to this paper Smith [6], [7] and

Lim [8] studied model validation problems on the frequency-
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domain. Their concept will be applied in constructing unfal-

sified models.

A. Problem setup

The nominal model is assumed to be linear time-invariant

(LTI) or linear parameter-varying provided that the schedul-

ing variable can be fixed constant while performing a single

experiment. This is required because the measured data will

be transformed into frequency-domain. The nominal model

can be the result of any classical identification method, e.g.

[9], or constructed by the help of physical considerations.

All signals are assumed to be elements of L2 and the model

perturbations are stable, causal and LTI, as usual in robust

control [10]. The structure of the uncertainty is a designer

choice. The only limitation on it that at least a part of the

disturbance should be additive and the perturbation is struc-

tured in linear-fractional transformation (LFT) form. Once

the structure is selected, the unfalsification means finding

the minimum required sizes of the uncertainty blocks and

disturbances along some defined trade-off between them. The

unfalsified model describes all model-error in the validation

data set.

In the robust control setup the control problem is defined

by weighting functions. They reflect the frequency-contents

of outer signals, like reference, noise, and disturbances and

penalize signals that should be small. Some of these are

objective: reference, noise, control energy and tracking are

nature and requirements of the environment. But disturbance

and model-perturbation are only modelling tools to capture

the nominal-error. Once an unfalsified uncertainty structure

is created it remains to test whether the specified, objective

performance goals can be achieved. If not, the designer’s

freedom stands in the uncertainty structure and in the trade-

off.

B. The application problem

In the most common vehicles, where no electronic steering

system is available but the braking is controlled by onboard

computers, the only way to automate or assist steering is

the use of the electronic brake system, the application of

individual or unilateral wheel brakes. There are many papers

concerning different approaches that develop steering by the

braking systems. In [11] active steering and individual wheel

braking is compared in yaw and roll control point of view. A

method for unilateral braking for rollover avoidance can be

found in [12], [13], for avoiding unintended lane departure in

e.g. [14], [15]. The model presented in this paper is designed
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for this latter application. All the details of the identification

of the nominal vehicle model is described in [16]

The frequency-domain invalidation method of [6], [7] and

[8] is summarized in section II. Then the concept of the

unfalsification for achieving robust performance is detailed in

section III. The nominal vehicle model is presented in section

IV. The computation results for the vehicle and controller

simulation results can be found in section V.

II. MODEL VALIDATION METHOD - THE BASIS OF

UNFALSIFICATION

The following frequency-domain model validation method

borrowed from Smith [6], [7] and Lim [8] is the basis of

unfalsification and therefore summarized here.

Given a nominal discrete-time, linear time-invariant sys-

tem in the frequency-domain with linear fractional trans-

formation (LFT) type uncertainty structure and disturbance

signal w in the form as follows

[
η
ŷ

]
=

[
P11 P12 P13

P21 P22 P23

] ⎡
⎣ ξ

w
u

⎤
⎦ , (1)

ξ = ∆η, ∆ ∈ D (2)

D := {∆ ∈ Cm×n : ∆ = diag{∆i, i = 1, . . . , τ}},
where the signals are given in the frequency-domain. Practi-

cally the control input u ∈ Cnu and the measured output of

the real system yn ∈ Cny is computed via N-point discrete

Fourier-transformation (DFT) on the frequencies zk = ejωk ,

ωk = 2π
Ts

k
N , k = 1, . . . , �N

2 �, where Ts is the sampling time.

Introduce real scalar bounds νi and γw so that

‖∆i‖∞ ≤ νi, i = 1, . . . , τ, |w| ≤ γw, (3)

then the model validation problem can be stated like this: if

there exist ∆ ∈ D and w ∈ Cnw such that ŷ = yn and (2)

and (3) are satisfied, then the data does not falsify the model

with the given bounds ν := [ν1 · · · ντ ]T and γw.

The condition ŷ = yn means that the nominal model-error

e = yn − P23u can be written as

e = M

[
ξ
w

]
, M :=

[
P21 P22

]
(4)

If e ∈ Im(M) does not hold, the validation fails. This can be

avoided by appropriate selection of the uncertainty structure.

If M is invertible, there is a trivial unique solution.

If the dimension of the space of e is less then that of[
ξ
w

]
, then we can extend the vector e by θ so that the

augmented coefficient matrix will be invertible and we get[
ξ
w

]
=

[
M+

ξ Nξ

M+
w Nw

] [
e
θ

]
,

where

[
M+

ξ

M+
w

]
is the Moore-Penrose pseudo-inverse of M.

We are looking for an uncertainty vector

[
ξ
w

]
so that (4) is

satisfied with the constraint (2). Clearly we have dim(Nξ)
freedom, i.e infinitely many solutions. The aim can be to

find the minimum norm solution, i.e the smallest uncertainty

and/or disturbance required.

Now consider the inequality constraint on w:

|w| =
∣∣∣∣[ M+

w Nw

] [
e
θ

]∣∣∣∣ < γw.

The space of θ can be divided according to the kernel space

of Nw. Using singular value decomposition (SVD) (* denotes

conjugate transpose)

Nw = UwSwV ∗
w =

[
U1 U2

] [
S1 0
0 0

] [
V ∗

1

V ∗
2

]

θ = V1γ + V2ψ

w = M+
w e + U1S1γ

The norm of a vector remains unchanged when multiplied

by a unitary matrix. A new variable φ is introduced:[
U∗

1

U∗
2

]
w =

[
U∗

1 M+
w e + S1γ

U∗
2 M+

w e

]
=:

[
φ

U∗
2 M+

w e

]

w = U1φ + (I − U1U
∗
1 )M+

w e

⇒ φ = U∗
1 w.

The φ is the free variable in w. The inequality constraint can

be written as follows

|φ|2 + |U∗
2 M+

w e|2 ≤ γ2
w (5)

Now consider again equality constraint (2)

ξ =
[

M+
ξ Nξ

] [
e
θ

]

= M+
ξ e + Nξ(V1γ + V2ψ), where

γ = S−1
1 (φ − U∗

1 M+
w e), from the def. of φ

ξ = (M+
ξ − NξV1S

−1
1 U∗

1 M+
w )e + NξV1S

−1
1 φ +

+ NξV2ψ (6)

η =
[

P11 P12

] [
ξ
w

]
+ P13u

=
[

P11 P12

] ([
M+

ξ − NξV1S
−1
1 U∗

1 M+
w

(I − U1U
∗
1 )M+

w

]
e+

+
[

NξV1S
−1
1

U1

]
φ +

[
NξV2

0

]
ψ

)
+ P13u (7)

There are two free variables in ξ and η: φ and ψ. Once

they are found, a ∆ satisfying (2) can be constructed. A

general optimization problem can be stated with the intro-

duction of positive-semidefinite trade-off variables Λν for the

uncertainty blocks and Λw for the disturbance

minφ,ψ,ννT Λνν + w∗Λww (8)

subject to the constraints

νi ≥ |ξi|
|ηi| , i=1..τ , and (5),

This optimization is performed on each frequency points ωk,

k = 1, . . . , �N
2 �. The validation method can handle also real

or complex repeated scalar uncertainty. For details see [8].

In the next section a procedure is presented that applies

this validation algorithm to create unfalsified models.
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Fig. 1. A general robust control design structure.

III. THE CONCEPT OF IDENTIFYING AN UNCERTAINTY

MODEL FOR ROBUST CONTROL

In the following part of the paper the disturbance is

assumed to be additive on the outputs, i.e. P12 = 0 and

P22 = Iny
in (1). This is the only restriction on the

uncertainty model structure. The signals belong to the L2

space as usual in the robust control context [10]. The goal

of identifying an uncertainty model for robust control can be

comprise within the next sentence.

Select an uncertainty LFT structure and an additive distur-

bance bound as function of frequency so that an unfalsified

model be created with minimum size of uncertainty and ro-

bust performance objectives of the control setup be satisfied.

An example for robust performance objectives can be seen

on Fig. 1. The disturbance weight Ww and the uncertainty

weight W∆ are the results of the unfalsification process,

while the other weighting functions represent the objective

requirements of the closed-loop system and are considered

to be given. They are defined in section V.

In order to perform the goal, the following steps are

applied.

Step 1. Preparations. Transform the nominal model into

discrete-time and perform DFT for input u and output yn of

each experiments in the validation data set.

Step 2. Minimum disturbance. Compute the minimum

disturbance for each experiments on each frequency (φ = 0
in (5)) and take a bound function B1 defined as

B1(ω) ≥ |U∗
2 (ω)M+

w (ω)e(ω)| (9)

for all ω, in all experiments as plotted on Fig. 2, where the

points represent the right side of (9).

Step 3. Maximum disturbance. Define a real-valued

bound function B2 over the Euclidean norm of the nominal

model-error, i.e. B2(ω) ≥ |e(ω)| for all ω, in all experiments.

On Fig. 2 B2 is plotted. Would B2 be defined for the

components of e(ω) and were these bounds the magnitude

of the disturbance weight functions, there were no need for

uncertainty.

Step 4. Disturbance bound. Design a disturbance bound

function γw(ω) ≥ B1(ω) that guaranties the existence of

the solution to optimization problem (8). With the relative

distance of γw from the lower and upper bounds the trade-

off between disturbance and uncertainty can be planned.

On Fig. 2 the upper bound B2 and γw can be seen. Also

the DC data of the minimum disturbances are plotted with
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Fig. 3. Design of the yaw rate disturbance bound Br (left) and the input-
multiplicative uncertainty bound W∆i

(right). Wnr is the yaw rate sensor
model (left).

stars, shifted from ω = 0 to ω = 1e − 4 in order to

see them in the logarithmic scale. It’s worth adverting loop

shaping viewpoints in selecting the trade-off variable (see

[10], chapter 5).

Step 5. Optimization. Select a trade-off parameter Λν for

the uncertainty blocks and perform the optimization problem

(8) with Λw = 0, i.e minimize the uncertainty subject to the

selected disturbance constraint.

Step 6. Bounds over the results. Define bounds Bwi
(ω)

over the resulted disturbance points |wi(ω)| i = 1, . . . , ny

and W∆i
(ω) over νi(ω) i = 1, . . . , τ . See Fig. 3 for the

case of ny = 2 and τ = 1. In the example of the figures

maximum disturbance was specified for the DC frequency

which corresponds to zero uncertainty. Therefore in design-

ing W∆i
(ω) any small values can be placed to frequencies

below ω1. If information is required below ω1, the number

of DFT points N should be increased.

Step 7. Correction with sensor model If a sensor model

is available, the magnitude of its weight function |Wn(ω)|
can be subtracted from Bw(ω) since noise is also additive

and was included in the unfalsification process. The real

disturbance weight is defined accordingly as |Ww(ω)| =
|Bw(ω)| − |Wn(ω)|

As soon as the diagonal normalization weights Ww and

W∆ are computed, the following assumptions are applied on
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the disturbance and uncertainty

‖∆‖∞ ≤ 1, |w| ≤ 1.

Step 8. Validation by controller design. Now we have

an unfalsified model and all weighting functions in the

robust control setup. It remained to check whether robust

performance of the closed loop system can be guaranteed

against worst-case disturbances and uncertainties. If not,

there is a lots of freedom in the trade-off variables γw(ω)
and Λν(ω), go back to steps 4 or 5.

In the next section the method is demonstrated on a linear

velocity-scheduled vehicle model. It makes no difficulty

about extending the proposed method for LTI systems to

LPV systems of that kind. The vehicle driven on constant

velocity defines an LTI model per experiments. In this paper

LTI uncertainty model is identified, i.e. Ww and W∆ are

velocity-independent, while the nominal model changes from

experiment to experiment due to the velocity.

IV. THE NOMINAL LPV MODEL OF THE VEHICLE

The experimental vehicle is an MAN truck, with disk

breaks at the front axle. During the data acquisition the

vehicle is driven with constant velocity v. The control

input is the brake pressure difference ∆p. The measured

outputs are the yaw-rate r and steering angle δ. The nominal

model consists of the yaw dynamics of the vehicle body

and the steering system. The details of the derivation and

identification of the LPV model can be found in [16]. From

the resulted model in [16], which is in predictor form, only

the A, B, C, D state-space matrices are kept, the predictor

gain is omitted for the robust control setup. So the nominal

model is as follows⎡
⎣ ṙ

δ̇

δ̈

⎤
⎦ =

⎡
⎣

−p1l
v + p2v p1 0

0 0 1
p3l
v + p4v −p3 p5

⎤
⎦

⎡
⎣ r

δ

δ̇

⎤
⎦ +

⎡
⎣ 0

0
p6

⎤
⎦ ∆p

and y =
[

r δ
]T

where the parameters given in table I.

TABLE I

PARAMETERS OF THE NOMINAL MODEL

p1 p2 p3 p4 p5 p6

14.54 0.06 20.60 -0.25 -4.96 -0.32

Let Pv(s) denote the Laplace-transform of the nominal

model on velocity v.

Fig. 4 shows the outputs of the real system and the

model in the time-domain on a low (v=8 m/s) and a higher

(v=17m/s) velocity.

The model-error is mainly due to disturbances of the

lateral road-slope and the neglected roll dynamics, i.e. tire-

load variation.

V. UNCERTAINTY MODELLING FOR THE LPV VEHICLE

MODEL

In this section three type of uncertainty structures are

compared to demonstrate the procedure. The unfalsified
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Fig. 4. The nominal model in time-domain. Measurements (solid), nominal
model (dashed).

uncertainty models are compared on the same objectives of

the control setup, see Fig. 1.

The reference command yc is the yaw-rate command rc.

Its weight function WC that normalizes yc = rc to yc1

is computed by bounding the DFT of the measured yaw-

rate. It is assumed that similar commands can occur during

the identification experiments. See Fig. 5 for WC and other

performance weights.

The reference model WR is a well-damped second-order

LTI system.

The weight functions Wn =
[

Wnr

Wnδ

]
for the noises

are computed by bounding the DFT of the outputs of an

experiment with zero control input (∆p = 0).

The penalty functions for the control energy Wu and

tracking-error Wt are parameterized by the DC-gain in

order to compare the three uncertainty model on different

performance specifications.

Wt(s) = At
s/10 + 1

s/0.02 + 1

Wu(s) = Au
(s/0.02 + 1)2

(s/50 + 1)2

H∞ control design (KH∞ ). In the first structure all of

the model errors are considered as additive disturbance and

noise. Steps 4 and 5 can be omitted, since the optimization
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would have trivial solution with the choice γw = B2. The

resulted disturbances w would be equal to e. Bounding the

components of the nominal error vector e(ω) the procedure

can be continued from step 7 with W∆ = 0. The controller

is a simple H∞ controller designed by γ-iteration with the

hinfsyn command in the µ-Analysis and Synthesis Toolbox

in MATLAB [17].

µ-control design with input-multiplicative uncertainty
(Ki) . Figures 2 and 3 show the design steps of this type.

The Laplace-transform of the output of the uncertain model

can be written as

y(s) = Pv(s)(1 + W∆i
(s)∆i(s))u(s) + Ww(s)w(s),

w =
[

wr

wδ

]
,

‖∆i‖∞ ≤ 1,

‖w‖2
2 =

∫ ∞

−∞
|w(t)|2dt ≤ 1,

where Pv(s) is the nominal model on velocity v.

µ control design with input-multiplicative and state-
space uncertainty (Kis). The state-space uncertainty is

represented by a 3 by 3 full complex block ∆s defined with

the following open-loop plant model specification

ẋ = Ax + Bũ + ξs

ξs = W∆s
∆sηs

ηs = x,

‖∆s‖∞ ≤ 1,

where the input is loaded with the input-multiplicative un-

certainty block:

ũ = (1 + W∆i
∆i)u

The closed-loop robust performance is summarized in

table II. The last three columns of the table corresponds to

three different performance objectives in the penalty func-

tions. The rows corresponds to the three type of uncertainty

descriptions. The table shows the achieved performance

values and controller order. The KH∞ and Kis controllers

achieved similar performance in each specification. The

conclusion can be drawn that further improvement on the

trade-off variables γw and Λν are required. The second

controller Ki could not satisfy robust performance by the

first specification. Either control energy should be allowed

to increase or tracking performance should be abated.

TABLE II

COMPARISON OF THE THREE UNCERTAINTY STRUCTURES.

At 95 75 95
Au 1e-6 1e-6 1e-7

KH∞ γ 0.984 0.777 0.984
order 23 23 23

Ki µ 1.053 0.999 0.986
order 30 30 24

Kis µ 0.986 0.777 0.985
order 29 29 29

For time-domain simulation the nominal models are feed

back with worst-case uncertainty of size ‖∆i‖∞ = 1. The

reference command rc is the filtered yaw-rate measurement

of the experiment shown on the right of Fig. 4 and the

disturbance is proportional to the nominal model-error

w(t) := e(t)
[

0.63 0
0 1

]

The yaw-rate error is decreased in order to keep the DC

disturbance bound. The noise is simulated, band limited and

white, of power 0.01.

On Fig. 6 the three solution denoted with boldface in table

II are compared. It can be seen, that the worst tracking per-

formance was produced by the second controller with input-

multiplicative uncertainty, while KH∞ and Kis presented

similar results. Note, that in case of Kis the worst-case input-

multiplicative and state-space uncertainty was simulated in

addition to the same disturbances as at the KH∞ controller,

where the nominal model did not have uncertainty.

VI. CONCLUSIONS

In the general robust control setup the proposed method

ensures a reliable uncertainty model of a nominal LTI or

a special kind of LPV model. Assuming appropriate (in-

formative) validation data set an unfalsified model can be

guaranteed by some simple design steps. The selection from

the candidate models was performed by µ-control design.
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Fig. 6. Validation of the model in the time-domain by controller-simulation.
Differential pressure (top), yaw-rate (down). (worst-case uncertainty, mea-
sured disturbances and reference). Ki dotted, reference solid, Kis dashed,
KH∞ dash-dot.

The procedure was demonstrated using real experimental

data on a velocity-scheduled linear vehicle model. Some

practical viewpoints were presented to the selection of the

design parameters.
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