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Ⓔ

Uncertainty in Earthquake Source Imaging Due to Variations

in Source Time Function and Earth Structure

by Hoby N. T. Razafindrakoto and P. Martin Mai

Abstract One way to improve the accuracy and reliability of kinematic earthquake

source imaging is to investigate the origin of uncertainty and to minimize their effects.

The difficulties in kinematic source inversion arise from the nonlinearity of the prob-

lem, nonunique choices in the parameterization, and observational errors. We analyze

particularly the uncertainty related to the choice of the source time function (STF) and

the variability in Earth structure. We consider a synthetic data set generated from a

spontaneous dynamic rupture calculation. Using Bayesian inference, we map the solu-

tion space of peak slip rate, rupture time, and rise time to characterize the kinematic

rupture in terms of posterior density functions. Our test to investigate the effect of the

choice of STF reveals that all three tested STFs (isosceles triangle, regularized Yoffe

with acceleration time of 0.1 and 0.3 s) retrieve the patch of high slip and slip rate

around the hypocenter. However, the use of an isosceles triangle as STF artificially

accelerates the rupture to propagate faster than the target solution. It additionally gen-

erates an artificial linear correlation between rupture onset time and rise time. These

appear to compensate for the dynamic source effects that are not included in the sym-

metric triangular STF. The exact rise time for the tested STFs is difficult to resolve due

to the small amount of radiated seismic moment in the tail of STF. To highlight the

effect of Earth structure variability, we perform inversions including the uncertainty in

the wavespeed only, and variability in both wavespeed and layer depth. We find that

little difference is noticeable between the resulting rupture model uncertainties from

these two parameterizations. Both significantly broaden the posterior densities and

cause faster rupture propagation particularly near the hypocenter due to the major

velocity change at the depth where the fault is located.

Online Material: Figures of inverted rupture models, trade-off curve, and posterior

probability density function.

Introduction

An improved understanding of earthquake physics and

modern seismic-hazard assessment is a key requirement for

reducing earthquake risks. In this context, robust kinematic

source models are needed that are realistic representations

of the slip history of an earthquake on a fault and provide in-

formation on the space–time evolution of ruptures. In the

1980s, Olson and Apsel (1982) and Hartzell and Heaton

(1983) developed the linear multitime window inversion

method to estimate rupture speed and slip amplitude on the

fault. In this approach, the slip history at each point of the fault

is presented as a superposition of several elementary slip func-

tions, which allow the point to slip more than once. Applying

this multitimewindow approach, Sekiguchi and Itawa (2002),

for example, analyzed the rupture process of the 1999 Kocaeli

earthquake, and Zhou et al. (2004) examined the 1999 Chi-

Chi earthquake; this latter study also included resolution

analysis of the source history. Related studies revealed that

this approach is capable of capturing details of source com-

plexity (Wald and Heaton, 1994; Graves and Wald, 2001;

Wald and Graves, 2001). More recently, Lee et al. (2011) ap-

plied this technique and detected an episode of slip reactiva-

tion during the rupture propagation of the 2011 Tohoku-Oki

earthquake.

As computational resources increased, seismologists

started to consider the full nonlinear formulation of source

inversion without linearization. In this case, a predefined

analytical source time function (STF) is required, and one

estimates the space–time rupture evolution in terms of slip

velocity, rupture time, slip duration, and rake angle at each

point of the fault plane. This nonlinear formulation may help
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to better understand the underlying dynamic rupture process

(Tinti, Spudich, and Cocco, 2005). Optimization strategies

such as simulated annealing (e.g., Hartzell et al., 1996; Bou-

chon et al., 2000; Delouis et al., 2002; Liu and Archuleta,

2004), neighborhood searches (e.g., Vallée and Bouchon,

2004), and genetic algorithms (e.g., Emolo and Zollo, 2005)

have been applied to estimate the slip rate, rise time, rupture

time, and rake angle that characterize the kinematic rupture

process. These techniques are based on an iterative approach

in which random or new generations of rupture models are

created for each iteration. The reliability of the model is then

assessed based on the fits of the corresponding synthetics

with the observed data. Once convergence is achieved, all

models that fit the data within some chosen limit can be

accepted. These studies either rely only on one model that

fits the data best or consider a limited number of models to

compute a corresponding mean model.

However, a single model is never fully representative of

the model space in a nonlinear inverse problem. Therefore,

even though macroscopic parameters such as seismic mo-

ment and average displacement may be almost identical in

all models for the same earthquake, the variability of slip

on the fault may be significant. For example, kinematic mod-

els for the 1999 Izmit earthquake (Bouchon et al., 2000;

Delouis et al., 2002; Sekiguchi and Itawa, 2002; Clévédé

et al., 2004) obtained using various data sets, making alter-

native assumption on the source parameterization and

deploying different inversion algorithms, clearly illustrate

this nonuniqueness and the resulting variations in the final

rupture models. Hence, without appropriate uncertainty as-

sessment of each of these models, it is difficult to examine

their reliability (i.e., their common and stable features), as

well as the limits of resolution.

Custodio et al. (2005) and Hartzell et al. (2007) used the

2004 Parkfield earthquake to show how the inverted source

model depends on chosen data and assumptions, such as

the misfit function and size of fault plane. Their findings call

for rigorous and quantitative analysis of uncertainty to better

understand themain factors that lead to variability in themod-

els. Uncertainty analyses were also carried out for the 1989

Loma Prieta earthquakes by Hartzell et al. (1991) and Emolo

and Zollo (2005), who defined a Gaussian probability density

function (PDF) around the best-fittingmodel obtained through

a genetic algorithm to estimate kinematic source models. Pia-

tanesi et al. (2007) performed an uncertainty estimation from

statistical analysis of the ensemble of models generated by an

optimization algorithm, whereasMonelli andMai (2008) pro-

posed the use of a Bayesian inference technique to estimate

the model uncertainty by mapping posterior PDFs of source

parameters. Producing PDFs of the model parameters defines

the admissible solution space more comprehensively.

In this study, we extend the approach of Monelli et al.

(2009) by incorporating the spatial correlation between

neighboring nodes and using the regularized Yoffe function

(Tinti, Fukuyama, et al., 2005) as STF, which is compatible

with dynamic rupture simulations. Additionally, we account

for epistemic uncertainty (e.g., Abrahamson and Bommer,

2005) associated with inadequate knowledge about physical

assumptions regarding a specific model under investigation.

Among the different sources of uncertainty related to source

inversion, we highlight the epistemic uncertainty associated

with Earth’s crustal structure. We present results using syn-

thetic tests developed in the context of the source inversion

validation exercise (SIV; Mai et al., 2007; Page et al., 2011).

The reference model stems from a spontaneous dynamic

rupture calculation that assumes random initial stress on

an 80°-dipping strike-slip fault, with 90° strike, producing

a right-lateral strike-slip event with seismic moment

M0 � 1:06 × 1019 N·m. We use the corresponding three-

component velocity waveforms at 40 well-distributed local

sites (Fig. 1) to conduct the inversion; seismograms are

filtered using a Butterworth bandpass in the range of

0.01–1 Hz. With this test, we assess the ability of kinematic

source inversion to retrieve the physical aspects of the rupture

process from a dynamic rupture simulation.

Formulation of Kinematic Source Imaging

We use the representation theorem in the formulation of

Spudich and Archuleta (1987) to infer kinematic rupture

parameters. The ground velocity recorded at the Earth’s sur-

face is expressed as a convolution of a local STF with the

corresponding tractions on the fault, written in the frequency

domain as

_uk�y; w� �

ZZ

Σ

_s�x; w�Tk�x; w; y; 0�dΣ; �1�

in which _uk�y; w� is the Fourier transform of _uk�y; t�, the kth

component of ground velocity at an observation point y;

_s�x; w� is the Fourier transform of _s�x; t�, the slip-rate func-

tion at a point x on the fault; Tk�x; w; y; 0� is the Fourier

transform of the traction vector at a point x on the fault

caused by a point impulse force in the k direction at the

observer location y and angular frequency w. This formu-

lation obeys the reciprocity theorem, meaning that the loca-

tion of source and observation points can be switched, and

the exact same response will be obtained. Assuming an ap-

propriate Earth structure in the source region, we compute

the traction, Tk, applying a frequency–wavenumber integra-

tion method (Spudich and Xu, 2002).

In the framework of inverse theory, the representation

theorem in equation (1) can be cast as d � g�θ�, in which

d is the data composed of the observed (velocity) waveforms,

θ contains the parameters that define the earthquake source

properties (e.g., peak slip rate, rise time, rupture onset time,

and rake), and g is an operator that describes the Earth struc-

ture response. The purpose in this inverse problem formu-

lation is to infer the source parameters θ, given synthetic

data d and the calculated Earth response g.

One may use any optimization technique to obtain one

or more models with minimum misfit. However, several

models with very different source-parameter distributions
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may fit the data equally well (Mai et al., 2007). This limi-

tation of the optimization can be overcome using a Bayesian

technique (Monelli and Mai 2008; Monelli et al., 2009) that

infers posterior PDFs to characterize the ensemble of all pos-

sible parameters (peak slip rate, rise time, and rupture time)

describing the STFs that are consistent with the data and the

available prior information. This technique comprises a sto-

chastic process in which the major sources of uncertainty in-

clude data noise, improper knowledge about Earth structure,

nonunique fault parameterization, and intrinsic randomness

of physical processes. To understand the effects of these fac-

tors and to eventually minimize them, our study introduces

variability in the Earth structure and the assumed STF in the

uncertainty analysis.

Kinematic Source Parameterization

We assume rupture occurs on a planar fault with known

length and width; for real earthquakes, these parameters can

be estimated based on geodetic information and aftershock

distributions, albeit with considerable uncertainty. However,

the determination of fault geometry and its associated uncer-

tainty is beyond the scope of this study and will be left for a

future extension of this work. The fault plane is discretized

into different nodes. The smaller the cell size, the more de-

tailed information we may obtain on the rupture process.

However, the data cannot resolve a cell size finer than the

shortest wavelength corresponding to the highest frequency

considered. In this study, we use a frequency range up to

1 Hz corresponding to a wavelength of 3–3.5 km in the upper

crustal layers (z < 18 km) of the given Earth model. Because

the shortest wavelength determines the finest useful grid spac-

ing on the rupture plane, we choose a grid spacing of 3 km

along strike and 4 km along dip. Inside each cell, source

parameters (peak slip rate, rise time, rupture onset time, and

rake) are assumed to be constant. The final slip on each node is

not inferred, but calculated from the chosen STF. In our pa-

rameterization, the total number of parameters is then 195.

In this study, we test the effects of two different STFs, an

isosceles triangle and the regularized Yoffe function. The

peak slip rate corresponds to the height of this function, rise

time is defined as its duration, and the rupture onset time is

the time when a particular point on the fault starts to slip. For

the regularized Yoffe STF, an additional parameter needs to

be considered: the duration of slip acceleration (acceleration

time Tacc). We choose Tacc deterministically and invert for

peak slip velocity, rise time, and rupture onset time.

Bayesian Inference

In a Bayesian approach, the purpose is to quantify the

posterior distribution that maps the solution space. It is de-

fined as the probability density of model parameters θ given

data d. Following Bayes theorem, the posterior PDF π�θjd� is

obtained by combining the prior probability distribution π�θ�

on model parameters with the likelihood f�djθ� of observing

these data given the model parameters θ:

π�θjd�
|�{z�}

posterior probability

�
f�djθ�
z�}|�{
likelihood

π�θ�
z}|{

prior probability

π�d�
�

f�djθ�π�θ�
R

f�djθ�π�θ�dθ
:

�2�
In equation (2), π�d� is the evidence, or marginal likelihood,

which is independent of the model θ. Therefore, we can
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Figure 1. Source–station geometry. The data consist of waveforms at 40 stations (gray squares), the black star denotes the epicenter, and
the black line marks the surface projection of the 80°-dipping fault.
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consider it as a normalization constant (Mosegaard and Tar-

antola, 1995), k−1, and equation (2) can be written as

π�θjd� � kf�djθ�π�θ�: �3�

We use an iterative stochastic Markov chain Monte

Carlo approach to generate samples of θ from a proposed

distribution. To search the vast space of potential kinematic

rupture models, we apply the Metropolis algorithm

(Metropolis et al., 1953) that produces a chain of random

models in which each candidate only depends on the previ-

ously generated model. Each candidate model is accepted as

a new model based on the acceptance probability. The pro-

cedure of the Markov chain Monte Carlo, based on the

Metropolis algorithm, works as follows:

1. Draw the initial state θ in the model parameter space.

2. Generate a candidate sample of θ, denoted as θ′, from a

proposed distribution q�θ′jθ�, a Gaussian centered at the

current value of θ in our case. The step size of the Markov

chain is proportional to the variance of q�θ′jθ� and tuned

according to the rejection rate. Too large a step size, for

example, leads to many rejections. We choose the step

size for the peak slip rate, rupture time, and rise time

as 2:5 cm=s, 0.05 s, and 0.05 s, respectively, leading to

acceptance rates of about 30%, in agreement with sug-

gested acceptance rates of 30%–50% (Tarantola, 2005).

3. Accept or reject the candidate θ′ based on the acceptance

probability, defined as

α�θ; θ′� � min

�

1;
f�djθ′�

f�djθ�

�

: �4�

4. Draw a uniform random number u ∈ �0; 1�; if α�θ; θ′� > u,

accept the candidate sample θ � θ′; if α�θ; θ′� < u, reject

the candidate sample (keep the current state).

5. Repeat the process to generate the next samples.

The samples obtained through this algorithm approxi-

mate the posterior distribution π�θjd� (Hoff, 2009). To min-

imize the effect of initial values and autocorrelation among

samples, we discard an initial portion of the Markov chain

and consider only every kth sample (thinning the chain). The

choice of k is arbitrary, and different numerical experiments

are needed to choose k appropriately. In our case, we select

k � 100, as larger value of k leads to a smaller number of

samples to infer the posterior, and the marginal posterior

becomes nonsmooth. On the other hand, smaller k returns

nearly the same posterior, showing that the chain length

has a larger effect on the posterior than does the thinning

interval k (Arakawa et al., 2009).

Prior Distribution

The prior distribution incorporates our a priori knowl-

edge about the model parameters. We use a uniform distri-

bution for each parameter, assuming no further information

is available aside from the range of possible values:

π�θ� �
1

θmax − θmin

for θmin ≤ θ ≤ θmax; �5�

in which π�θ� is the prior density, and θmin and θmax are the

limits of the sample space for the model parameter θ (see

Table 1). They are chosen based on physical considerations

for peak slip rate and the temporal parameters (rupture time

and rise time). Furthermore, for rupture time we define the

range based on the rupture speed such that we allow the rup-

ture to propagate at subshear and at intersonic speed (Arch-

uleta, 1984; Dunham and Archuleta, 2004). However, we do

not permit rerupturing of the fault. We choose the rupture

speed between 0.5 and 2.0 times the shear wavespeed at

the shallowest and the deepest layers of the fault zone, re-

spectively, which correspond to a rupture speed between

1.5 and 7:1 km=s.

Along the edges of the assumed rupture plane, the range

for slip is chosen such that slip occurs with a maximum pos-

sible peak slip rate of 200 cm=s, which is about half of the

value at the inner nodes. This choice is more realistic than

in Monelli and Mai (2008) and Monelli et al. (2009), who

did not allow this area to slip at all. Monelli et al. (2009) also

showed that there is a trade-off for the peak slip rate at neigh-

boring points, characterized by a strong anticorrelation.

Hence, considering them as totally independent parameters

may be problematic. Therefore, we take into account the spa-

tial correlation between neighboring patches (Jónsson et al.,

2002) using a 2D spatial Laplacian filter, respecting the dis-

tance between patches and the boundary of the fault plane (see

Appendix).

Likelihood Function

The likelihood function is the output of the forward

modeling and is used to assess how well the model explains

the data. It can be written as

Table 1
Search Ranges for Peak Slip Rate, Rise Time, and Rupture Speed

Rise Time (s)

Case Peak Slip Rate (cm=s) Triangle Yoffe-0.1* Yoffe-0.3† Rupture Speed (km=s)

Inner nodes 0–400 0–6 0.5–10 1–10 1.5–7.1

Nodes at boundary 0–200 0–3 0.5–10 1–10 1.5–7.1

*Yoffe source time function with acceleration time of 0.1 s.
†Yoffe source time function with acceleration time of 0.3 s.
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f�djθ� � c exp�−S�θ��; �6�

in which c is a normalization constant and S�θ� quantifies the

misfit. Assuming the data uncertainty is Gaussian, we can

write

S�θ� �
1

2
f�g�θ� − d�TC−1D �g�θ� − d�g; �7�

in which g�θ� is the forward modeling operator, d is the data,

and CD is the covariance matrix of data errors. The expres-

sions in equations (3) and (7) show that the covariance matrix

of data errors directly determines the form of the posterior

and therefore is crucial in a Bayesian approach. However,

in earthquake seismology, quantifying data errors is difficult

as different sources (instrumental, processing noise, and un-

modeled Earth structure) need to be included. To overcome

this problem, Monelli et al. (2009) propose an empirical for-

mulation for the likelihood function. In contrast, Yagi and

Fukahata (2008) and Bodin et al. (2012) follow a hierarchical

Bayesian approach in which all parameters that define the

data error are considered as unknown hyperparameters (Gel-

man et al., 1995). Here, we adopt the empirical formulation

of the likelihood function (Monelli et al., 2009) as

f�djθ� � c exp�−ϕ�θ�� �8�

ϕ�θ� �
S�θ� − S�θbest�

S�θbest�
× 100; �9�

in which S�θbest� represents the fit of the best model θbest,

obtained using an optimization based on the evolutionary

algorithm (Beyer, 2001), and S�θ� is the misfit function in

equation (7).

Incorporating the spatial constraint of parameters

at neighboring nodes, the likelihood function is expressed

using the penalized L2 norm on S�θ�:

S�θ� � ∥d − g�θ�∥2 � α2∥Dθ∥2; �10�

in which D is the Laplacian operator and α is the parameter

that controls the smoothness of the model, which can be

estimated deterministically from a trade-off curve.

Parameterization of the Data Covariance Matrix

Following Gouveia and Scales (1998) and Tarantola

(2005), the data covariance matrix CD (equation 7) repre-

sents the combination of observational errors (Cobs) and for-

ward modeling uncertainty (Ctheory):

CD � Cobs � Ctheory: �11�

Application of this formulation in seismic source inversion is

described in Duputel et al. (2012). Following the represen-

tation theorem (equation 1), the kinematic source model de-

pends on the choice of an Earth model. However, generally

we do not have complete knowledge of the true velocity

structure. For this source of modeling error, we define the

covariance matrix Ctheory as the covariance describing the un-

certainty in Earth structure. By computing the variability in

the synthetics obtained from the combination of the best

model (mbest) and variations on crustal models (Fig. 2), we

deduce the data covariance that we insert in equations (7)

and (9).

Two cases are studied to include uncertainty of crustal

structure: (1) accounting for wavespeed uncertainty only and

(2) accounting for simultaneous variations in wavespeed

and layer depth. Mooney (1989) proposes an uncertainty

of 3%–4% for the seismic velocities in global crustal models.

However, to be conservative on a local scale when consid-
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Figure 2. Reference 1D crustal models with two different types
of uncertainties. The solid black line and dashed black line show the
reference S and P wavespeeds, respectively; the gray lines around
them correspond to random samples of VP and VS, drawn from a
normal distribution with 10% standard deviation. (a) Wavespeed
variability only; (b) wavespeed and layer depth variabilities.
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ering heterogeneity near the surface and the trade-off be-

tween Moho depth and the crustal velocity, we assume a

standard deviation of 10% for the wavespeeds near the sur-

face and around the Moho. In all cases, we maintain the ratio

VP=VS around 1.73, the standard value for rocks without sig-

nificant fluid content. For layer depths, we consider a stan-

dard deviation of 10%.

Modeling Results

We present here the result of the inversion using the data

in the SIV exercise (Mai et al., 2007; Page et al., 2011). The

reference model (Fig. 3a) stems from a spontaneous dynamic

rupture simulation, with heterogeneous initial stress condi-

tions and a constant slip weakening distance in the inner part

of the fault plane. Rupture occurs over a rectangular fault of

about 36 km × 16 km with a slip patch around the hypocen-

ter, between 10 and 14 km depth, extending about 20 km

along strike, and with a maximum of 180 cm. The peak

slip-rate distribution comprises two patches, with maximum

values of about 250 cm=s near the hypocenter and at 12 km

distance from the hypocenter in the strike direction.

We assess the quality of the synthetics based on the vari-

ance reduction (Cohee and Beroza, 1994):

VR �

�

1 −
�d − g�θ��TC−1D �d − g�θ��

dTC−1D d

�

× 100%; �12�

in which g�θ� is the modeling result, d is the data, CD is the

covariance matrix of data errors, and superscript T denotes

transposition.

Using the Metropolis algorithm, we produce 600,000

samples of rupture models, each of which consists of 65 node

points at which we estimate the kinematic source parameters.

Discarding an initial portion of the Markov chain and con-

sidering every 100th sample, this leads to a total sample size

Along Strike (km)

A
lo

n
g
 D

ip
 (

k
m

)

Peak sliprate

 

 

R
e

fe
re

n
c

e

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

(a)

(b)

(c)

(d)

6

10

14

18

cm/s

0

100

200

300

400

Along Strike (km)

Rise time

 

 

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

s

0

2

4

6

8

10

Along Strike (km)

Final slip

 

 

2

2

2

4

4

4

4

6

6

6

6

68

8

8

8

8

1
0

1
0 1
0

1
01

2

1
2 1
2

1
21

4

1
4

1
4

1
4

1
4

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

cm

0

50

100

150

200

Along Strike (km)

A
lo

n
g
 D

ip
 (

k
m

)

Peak sliprate

 

 

T
ri

a
n

g
le

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

cm/s

0

100

200

300

400

Along Strike (km)

Rise time

 

 

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

s

0

2

4

6

8

10

Along Strike (km)

Final slip

 

 

2

2

2

4

4

4

4

4

4

6

6
6

6

6

6

8

8

8

8

8

1
0

1
0

1
0

1
0

1
2

1
2

1
2

1
4

1
4

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

cm

0

50

100

150

200

Along Strike (km)

A
lo

n
g
 D

ip
 (

k
m

)

Peak sliprate

 

 

Y
o

ff
e

−
0

.1

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

cm/s

0

100

200

300

400

Along Strike (km)

Rise time

 

 

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

s

0

2

4

6

8

10

Along Strike (km)

Final slip

 

 

2

2

2

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

8

8

8

8

8

1
0

1
0

1
0

1
0

1
0

1
2

1
2

1
2

1
4

1
4

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

cm

0

50

100

150

200

Along Strike (km)

A
lo

n
g
 D

ip
 (

k
m

)

Peak sliprate

 

 

Y
o

ff
e

−
0

.3

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

cm/s

0

100

200

300

400

Along Strike (km)

Rise time

 

 

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

s

0

2

4

6

8

10

Along Strike (km)

Final slip

 

 

2

2

2

2

4

4
4

4

4

46
6

6
6

6

6

6

6

6

6 68

8 8 8

8

8

8

1
0

1
01

0

1
01

2

1
2

1
4

1
4

1
4

−18−15−12 −9 −6 −3 0 3 6 9 12 15 18

2

6

10

14

18

cm

0

50

100

150

200

Figure 3. (a) Reference and inverted rupture models using an evolutionary algorithm assuming different STFs, (b) isosceles triangle,
(c) Yoffe with acceleration time of 0.1 s, and (d) Yoffe with acceleration time of 0.3 s. Arrows in the left column indicate slip direction and
amplitude. Contour lines in the right column mark the rupture time distribution (contour interval is 1 s).

860 H. N. T. Razafindrakoto and P. M. Mai



of 5500 to build the PDF. As we incorporate the variability in

crustal structure and the STF, including two different types of

Earth structure variabilities (composed of 11 Earth structures

each) and three different STFs (an isosceles triangle and two

regularized Yoffe functions), respectively, we produce about

5500 × 22 (Earth structures) ×3 (STF) rupture model sam-

ples to understand these variabilities. We then examine the

posterior PDFs and the corresponding statistical estimates to

assess the accuracy of the resulting source parameters at dif-

ferent points on the fault. We also show the 2D marginal pos-

terior PDFs, to visualize the correlation between parameters

at the same location and between neighboring points for the

same parameter.

Source Time Function Variability

In this section, we present inversion results using the

input 1D crustal model (Fig. 2) without crustal structure

uncertainty. The posterior PDFs in this part are generated us-

ing the empirical likelihood function (equation 9), which re-

quires the level of fit corresponding to the model that best fits

the data.

In Figure 3, we present the optimal models obtained

from an evolutionary algorithm (Beyer, 2001; Monelli et al.,

2009), using as STF an isosceles triangle and a regularized

Yoffe function. For the Yoffe function, we tested different

values of acceleration time, 0.1 and 0.3 s, respectively, fol-

lowing Tinti, Fukuyama, et al. (2005), who suggested for

Tacc a value between 0.1 and 0.38 s. All models show high

slip and slip-rate patches around the hypocenter with maxi-

mum values between 300 and 400 cm=s for the peak slip rate,

and 100–200 cm for the calculated slip, respectively. For the

Yoffe function with Tacc � 0:1 s (Yoffe-0.1), we find the

peak slip-rate patch extends about 12 km along strike. How-

ever, for both the isosceles triangle STF and the Yoffe func-

tion with Tacc � 0:3 s (Yoffe-0.3), a more compact region of

high slip rate is inferred, with an extension of about 6 km

along strike. In terms of rupture time, there appears to be

a discrepancy between source models, showing that the rup-

ture propagates faster for the isosceles triangle than for the

regularized Yoffe (see contours on final slip panels, Fig. 3).

To examine the resolution of each inverted slip model

and how it compares to the reference model, we calculate

the spatial cross correlation between reference (Fig. 3a)

and inverted models, defined as

ρ �

P
n
j�1 RjIj

�
P

n
j�1 R

2
j

P
n
j�1 I

2
j

�
1=2

; �13�

in which n is the number of points on the fault, Rj and Ij
represent the reference and inverted rupture models, respec-

tively, at one point j on the fault (e.g., Graves and Wald,

2001; Shao and Ji, 2012). The value of ρ could vary from

0 (no correlation) to 1 (best correlation). We apply this for-

mulation to the maps of peak slip rate, slip, and rise time (see

Table 2), and find that the Yoffe-0.1 rupture model is most

similar to the reference model, with slip and peak slip-rate

correlations of 0.83 and 0.84, respectively. The isosceles tri-

angle and Yoffe-0.3 models have similar ability to reproduce

the feature of the reference model, however, with lower spa-

tial cross correlation, 0.74 and 0.73 for the slip correlations,

and 0.71 and 0.72 for the peak slip-rate correlations. How-

ever, in terms of rise time, the Yoffe-0.3 model is most sim-

ilar to the reference model with cross correlation of 0.80

compared to 0.60 and 0.76 for the isosceles triangle and

Yoffe-0.1 models, respectively.

In Figure 4, we investigate the discrepancies between

reference and inverted rupture models in terms of amplitude

differences of source parameters at individual point on the

fault. For this error analysis, we do not consider the area of

zero slip in the reference model (Fig. 3a), the region into

which the dynamic rupture did not propagate. In Figure 4,

this area is marked with a black contour line. Figure 4 shows

that the residuals are not entirely random, but follow certain

trends. The peak slip-rate residuals for the isosceles triangle

and Yoffe-0.3 show similar pattern, with overpredicting

around the hypocenter and underpredicting away from the

hypocenter. However, the peak slip-rate residual for Yoffe-

0.1 shows a different pattern, with higher slip rates over al-

most the entire rupture area. The discrepancies of peak slip

rate near the hypocenter are related to the spontaneous nu-

cleation of the dynamic rupture simulation, which is difficult

to resolve by inversion. The medians of the ratio of reference

to inverted peak slip rate over the entire rupture area are 1.23,

1.03, and 0.66 for the isosceles triangle, Yoffe-0.3, and

Yoffe-01, respectively.

To unambiguously define rise time for the three different

STFs used, we use the time to accumulate 5%–95% of the

total slip in this error analysis. The rise time residual appears

to be overestimated only near the edge of the rupture and

underestimated over most of the fault. This originates from

the almost negligible seismic radiation in the tail of the dy-

namic STF, which is difficult to constrain using a simple ana-

lytical STF. Finally, for the slip amplitude, the residuals for

the three STFs show similar shape, with large residuals along

the edge of the area of zero slip. The medians of the ratio of

reference to inverted slip are 1.21, 0.98, and 1.30 for the isos-

celes triangle, Yoffe-0.1, and Yoffe-0.3, respectively.

Next, we compare the STF of the dynamic reference

model and the inverted solutions using the three different

Table 2
Spatial Cross-Correlation Coefficient between the

Reference and Each Inverted Model

Model Peak Slip Rate Slip Rise Time

Triangle 0.71 0.74 0.60

Yoffe-0.1* 0.83 0.84 0.76

Yoffe-0.3† 0.72 0.73 0.80

*Yoffe source time function with acceleration time of 0.1 s.
†Yoffe source time function with acceleration time of 0.3 s.
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STFs at eight selected points (Fig. 5). When peak slip rate is

low (less than 2 m=s) in the reference model, the imaged slip-

rate pulse occurs later for all STFs, with a delay of 0.5–2 s.

Conversely, in cases when peak slip rate is greater than

2 m=s, the peaks of the three STFs occur at around the same

time as in the reference model. We attribute this observation

to the difficulty of resolving the temporal rupture pattern,

demonstrating the nonuniqueness of the problem, as these

rupture times are all acceptable values when examining the

posterior PDFs at these points on the fault. Part of this un-

certainty originates from the trade-off between neighboring

points of the fault. Including spatial smoothing between

neighboring points, with a smoothing parameter α2 of 20,

generally reduces this time difference of the peaks, particu-

larly for Yoffe-0.1 close to the hypocenter (see Appendix).

Figure 6 presents the levels of fit of the synthetics ob-

tained from the best-fitting models with the data at a selec-

tion of 12 stations. At all stations, the predictions fit the data

well, with an average variance reduction of 93.9%, 94.2%,

and 94.1% for the triangle, Yoffe-0.1, and Yoffe-0.3, respec-

tively. To check the dependence of these best models on the

initial state of the random model parameters, we run the evo-

lutionary algorithm using different initial states and find that

the high slip and slip-rate patches around the hypocenter are

maintained for the generated rupture models. Ⓔ The results

of this test are available in the electronic supplement to this

article (Figs. S1, S2, and S3).

Figure 7 shows posterior PDFs for peak slip rate, rise

time, rupture time, and the calculated slip, at two points of

the fault (points 4 and 5 in Fig. 5) located at 5 and 12 km

from the hypocenter, for three different STFs. They reveal

that the characteristics of the uncertainty vary from point to

point, and they generally do not follow a Gaussian distribu-

tion due to the nonlinearity of the kinematic source imaging

problem. The peak slip rate PDFs close to the hypocenter

(point 4 in Fig. 5), for example, show distributions that are

skewed toward higher values for the three STFs, with a larger

uncertainty for Yoffe-0.3. Farther from the hypocenter, on

the other hand, the PDFs become broader, following nearly

uniform distributions. Therefore, the PDFs at those two

points suggest the accuracy of source parameters decreases

with increasing distance from the hypocenter.

Another interesting aspect of these PDFs is that the rup-

ture for the triangle propagates faster than for the Yoffe (see

PDFs of rupture time, Fig. 7). This feature of rupture behavior

originates from the sensitivity of ground motion to peak slip

rate. In this case, to obtain the correct timing for the peak slip

rate, the rupture time needs to be earlier due to the symmetric

form of this STF. The slip-rate functions on points 3 and 5

(Fig. 5) nicely illustrate this process. At these specific points,

the rupture times are artificially earlier by about 0.8 s (or

about 25%) compared with the Yoffe function, and the target

model (Fig. 7b). This incorrect timing has the impact of over-

estimating the rupture speed, which is one of the key
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Figure 4. Amplitude differences between the reference and inverted model parameters (peak slip rate, rise time, and slip amplitude). The
black contour line limits the area of the fault used in the error analysis.
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parameters needed to better understand earthquake source

physics.

Figures 8 and 9 present the maximum, mean, and

median posterior models for the triangle and Yoffe-0.1, re-

spectively. These statistical estimates are extracted from the

posterior PDFs. At each node, we find the kinematic source

parameters according to the maximum, mean, and median

independently of the other node. We then assemble the

composite to obtain the model estimates in Figures 8 and 9.

These figures show that all models capture the main pattern

of the rupture, characterized by high slip and slip-rate

patches around the hypocenter (compare to Fig. 3a). How-

ever, the roughness of the models and the extension of the

patches change between the various estimates. In addition,

the rupture time PDFs are skewed in the case of the triangle

STF solutions, such that the inferred rupture times for the

maximum extracted from the posterior arrive earlier than

for the mean/median, implying faster rupture propagation.

In addition, we statistically compare the estimated mod-

els with the reference model computing the 2D spatial cross

correlation between source parameters (Mai et al., 2007). As

listed in Table 3, we find that for the triangle STF, the maxi-

mum posterior model has the lowest cross correlation for the

peak slip rate, slip, and rise time (0.72, 0.61, and 0.55, re-

spectively). On the other hand, the mean and median models

have comparable cross-correlation values. They both have a

correlation of 0.77 for the peak slip rate, 0.64 and 0.67 for the

slip, and 0.73 and 0.76 for the rise time and have higher
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Figure 5. (a) Reference rupture model with eight selected points on the fault. (b) STF at eight points on the fault, for the reference model
(black), and from the inversion results, using as STF the isosceles triangle (red), Yoffe-0.1 (blue), and Yoffe-0.3 (green).
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cross-correlation value compared with the maximum model.

For Yoffe-0.1 on the other hand, the three model estimates

(maximum, mean, and median) have similar ability to re-

present the reference model (see Table 3), and with larger

values than for the triangle STF. Therefore, the Yoffe STF

is a better representation of the dynamic rupture behavior.

As we assess the levels of fit of the synthetics with re-

spect to the synthetic data, we find that among these esti-

mates, the median posterior for the triangle STF explains

the data best, with a variance reduction of 93% compared

with the maximum and mean, which give 66% and 87%,

respectively. The seismograms of the maximum posterior

Figure 6. Levels of fit produced by the best model for the isosceles triangle (thin black line), Yoffe-0.1 (light gray), and Yoffe-0.3 (dark
gray) with the synthetic data (thick black line). The maximum velocity for the synthetic record (cm=s) for each waveform is shown below each
black trace, and the variance reduction for each modeled seismogram is given at the end of the traces.
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show differences in timing, due to the fast rupture. For the

Yoffe function (Fig. 9) on the other hand, the overall pattern

of the source models are similar, and the fits vary from 89%

to 92%. The levels of fit is consistent with the cross-corre-

lation comparison, as the higher the variance reduction, the

higher the cross-correlation coefficient. Therefore, both

analyses show that the Yoffe STF more accurately captures

the dynamic rupture behavior.

Figure 10 displays the marginal distribution of the seis-

mic moment generated from the posterior source models and

considering the three different STFs. The maximum values of

the seismic moment marginals for isosceles triangle, Yoffe-

0.1, and Yoffe-0.3 are about 1:1 × 1019, 1:3 × 1019, and

1:6 × 1019 N·m, respectively. The triangle STF best fits the

seismic moment of the reference model, while the Yoffe-0.1

and Yoffe-0.3 overestimate the seismic moment by about

18% and 40%.

In terms of 2D marginal distributions, Figure 11 presents

the joint PDFs of rise time and rupture time for the isosceles

triangle and Yoffe STF at the same eight points shown in Fig-

ure 5. In general, the farther away from the hypocenter the

node is located, the stronger the trade-off between parame-

ters. This can be understood from the fact that the problem is

less ill-posed near the hypocenter as rupture is constrained to

be close to the hypocenter at the beginning of the earthquake.

Therefore, the inversion converges more easily toward the

true model. Later in the rupture, increasing possibilities to

fit the data with various parameter combinations complicates

the inversion process and decreases the accuracy of the

source parameters.

A possible explanation for the behavior of the inversion

in this test case can be given using the isochrone concept

(Bernard and Madariaga, 1984; Spudich and Frazer, 1984).

The isochrone consists of all points on the fault from which

the radiated seismic energy arrives at a specific station at the

same time. The radiated energy is significant in areas with

large slip, high isochrone velocity, and/or a strong change in

isochrone velocity. Therefore, large slip near the hypocenter

would radiate more strongly than the same amount of slip

away from the hypocenter (Schmedes and Archuleta, 2008).

In our test case, the energy is released mainly from the area

around the hypocenter, where the slip and the isochrone

velocity are highest. Moreover, the isochrones around the hy-

pocenter are in general quite different from station to station.

Hence, the source parameters in this area can be well

constrained. In contrast, away from the hypocenter, the iso-

chrones become shorter with roughly the same spacing

(velocity), and they do not change significantly from station

to station (Schmedes and Archuleta, 2008). These lead to a

wider range of plausible values for the source parameters and

hence to a decrease in the accuracy when inferring these

source parameters, in particular when slip is low farther away

from the hypocenter, as in this example.

We also observe an interesting feature of the 2D margin-

als for the triangle STF (Fig. 11a). The rupture time and rise

time are negatively correlated; that is, larger values of rupture

time are expected for smaller rise times. Therefore, by con-

straining the rupture time for a triangle STF, the data also

constrain the rise time. To the best of our knowledge, this

implicit constraint of temporal parameters for the triangle

STF has never been described before. This originates from

the fact that the ground motions are most sensitive to the time

of the peak slip velocity. This sensitivity was also reported by

Goto and Sawada (2010) and Oglesby and Mai (2012), who
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analyzed slip rates and waveforms from rupture dynamics

and related ground motion. This negative correlation be-

tween temporal parameters for the triangle STF still appears

when considering the spatial correlation between neighbor-

ing points. In contrast, for the Yoffe function this trade-off is

not observed because of the antisymmetric shape of this

function.

Crustal Model Variability

In this section, we analyze the impact of 1D crustal

structure variability on the rupture model uncertainty. In

Figure 12, we show the posterior PDFs of the source param-

eters at two points of the fault generated using a single Earth

model and the two types of crustal model uncertainties

(Fig. 2), with uncertainties in wavespeeds only and with vari-

ability in both wavespeeds and layer depths. A significant

change appears in the resolution of the parameters, including

that velocity uncertainty broadens the posterior PDFs with

some shift in peak location. This is consistent with the find-

ings of Graves and Wald (2001), which show how the use of

the incorrect Earth model reduces the resolution of the source

image. Our results quantify this loss of resolution (blurring

effect) in terms of changes in the PDFs of kinematic param-

eters. Near the hypocenter, the posterior PDFs for the slip and

peak slip rate becomes broader but maintains the peak value.

The PDFs for the rise time, on the other hand, is nearly uni-

form. For the rupture time, the distribution appears to be

shifted; the rupture tends to propagate faster if the Earth

model uncertainties are included. Because the arrival time of

each phase of the seismogram is related to both travel time

and rupture time, the distortion of the travel time due to the

changes in Earth structure ultimately affects the estimated

rupture time. In addition, because most of the variations

in shear-wave velocity occur in the third layer (where the

fault is located) and are mostly smaller than the reference

wavespeed, the resulting wave propagation is slower. There-

fore, to compensate for this slower shear-wavespeed effect,

the rupture velocity needs to be higher leading to earlier rup-

ture arrival. On the other hand, away from the hypocenter,

the PDFs of the resulting source parameters are mostly uni-

form, hence we cannot constrain the source parameters over

this area of the fault.

Figure 13 displays the spatial variations of source

parameters in terms of the posterior median for the two

crustal model uncertainties. The result shows that despite the

uncertainties in the Earth model, the inversion still retrieves

the high slip and slip-rate features near the hypocenter, with

values comparable to the reference model (Fig. 3a). How-

ever, the patch is more extended toward the surface for both

types of crustal model uncertainty. In addition, slip on the

fault boundary, which generally is not well constrained, ap-

pears to be larger than in previous results. Comparing the

cross-correlation coefficient for the median model with

and without Earth structure variability (see Table 4), we find

that the correlation becomes lower, by 20% and 10% for the

peak slip rate and slip, respectively, as we incorporate the

crustal variability.

Comparing the results for the two crustal model varia-

bilities, we do not find significant discrepancies for the pos-

terior PDFs and the extracted source parameters (with a

comparable value of correlation, as displayed in the Table 4),

mainly because the major differences between the two crustal

model variabilities appears at a depth greater than 15 km.

Only a small fraction of the rupture is located in this region,

Table 3
Spatial Cross-Correlation Coefficient between the Reference and the Model

Estimates

Triangle Yoffe-0.1*

Model Peak Slip Rate Slip Rise Time Peak Slip Rate Slip Rise Time

Maximum 0.72 0.61 0.55 0.88 0.78 0.80

Mean 0.77 0.67 0.76 0.85 0.77 0.85

Median 0.77 0.64 0.73 0.86 0.77 0.84

*Yoffe source time function with acceleration time of 0.1 s.
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and thus it has only a small effect on the inferred source

models.

Discussion

In this study, we apply a Bayesian inference approach to

obtain a kinematic rupture model from synthetic near-fault

ground motion, generated from a spontaneous dynamic rup-

ture calculation. The principal advantage of this technique

compared to using only an optimization technique, is its

ability to not only solve the nonlinear inversion, but also to

provide a quantitative assessment of the uncertainty. Instead

of obtaining one single optimal model, it yields an ensemble

of plausible models represented in terms of posterior PDF.

We can then assess the resolution of rupture models by ana-

lyzing the posterior distributions. Broad posterior distribu-

tions mean, for example, that the source parameters are not

well constrained. In addition, to learn more about the ensem-

ble of models, we can extract statistical information regard-

ing the posterior distribution at each point on the fault

independently.

In Figure 8, for example, we present three models, maxi-

mum, mean, and median of the posterior PDFs from isosceles

triangle. These estimates are not always well representative
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of the full solution space as they are just representations of a

statistical model. They are calculated by combining the esti-

mated values from the posterior distribution at each individ-

ual point of the fault. Hence, the combination of these

selected source parameters does not in general represent a

single rupture model that has been tested during the inversion

stage and found to fit the data. Instead, these are independ-

ently generated rupture models that may not fit the data as

well as any of the inverted solutions. We may expect these

three estimates to be similar, reflecting the center of the dis-

tribution, only if the posterior distributions are Gaussian.

However, if the distribution is broad, skewed, or contains

several peaks, the maximum posterior is not preferable, as

the peak is not aligned with the bulk of the distribution.

For distributions that are not Gaussian, the mean and median

do not well represent the central tendency of the distribution,

which explains the high values on the boundary of the fault.

In this part of the fault, the source parameters are not well
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Figure 13. Median extracted from the posterior PDFs for Yoffe-0.1 STF and including variability in the 1D crustal structure. (a) Wave-
speed variability only; (b) wavespeed and layer depth variabilities.

Table 4
Spatial 2D Cross-Correlation Coefficient between the

Reference and the Median Posterior Models for Yoffe-0.1,
Including 1D Crustal Structure Variability

Case Peak Slip Rate Slip Rise Time

Without uncertainty 0.86 0.77 0.84

Wavespeed only 0.68 0.70 0.85

Wavespeed and layer depth 0.69 0.70 0.85
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resolved, and posterior distributions are nearly uniform.

These characteristics of the extracted statistical models from

the posterior PDFs are also reported in Minson et al. (2013).

We also test the effects on the inversion when using dif-

ferent STFs, an isosceles triangle and two regularized Yoffe

functions with different acceleration times. The fits to the

data of the synthetics produced by these rupture models give

a variance reduction around 94%, lower than reported by

Shao and Ji (2012), who reported a variance reduction of

about 99% for the initial blind test of the source inversion

validation exercise. The reason for this difference is that

the true model in our case is based on a dynamic rupture

simulation, whose temporal properties are difficult to recover

in detail by a kinematic source inversion (Konca et al.,

2013); the initial blind test featured a simple kinematic rup-

ture as reference rupture model. We also find that the use of

an isosceles triangle causes two main issues. First, it gener-

ates an artificial rupture acceleration, which has important

implications for earthquake physics, as it would overestimate

the rupture speed. Second, the use of an isosceles triangle

generates artificial linear correlation between rupture time

and rise time, by constraining the rupture time for a triangle

STF, the data also constrain the rise time. The former problem

could be remedied by a multitime window inversion,

whereas it is not clear at present how the rise time/rupture

time correlation would manifest itself in this case.

Finally, away from the hypocenter, the distribution for all

kinematic source parameters becomes nearly uniform (which

means the accuracy of the parameter decreases) as the point is

located away from the hypocenter. Investigating the rupture

process of the 2000 Tottori earthquake, Monelli et al.

(2009) also find that the source parameters are well resolved

around the high slip patch located above the hypocenter and

poorly resolved elsewhere. These two observations suggest

the source parameter resolution is related to the amount of

seismic energy released at different parts of the fault and to

the position of these strongly radiating regions with respect

to the hypocenter and the observational network. The stronger

the seismic radiation is, the better resolved the source param-

eters should be at this specific area of the fault. The radiated

energy from the slip patches close to the hypocenter should be

large (Schmedes and Archuleta, 2008), hence the source

parameters in this areawill bemore accurately resolvable than

the same slip patch located far away from the hypocenter. The

type of data being used also controls the resolution of the rup-

ture patch, as various data sets are sensitive to different aspects

of the rupture process.

One crucial element to achieve a robust rupture model is

adopting a realistic Earth model. In this study, the Green’s

function was first calculated using a single 1D Earth model

assuming perfectly known Earth structure. We then include

the variability in Earth structure as part of the modeling error

in the Bayesian inference, to mimic the realistic case in

which we do not know the Earth structure precisely. This

allows us to capture the uncertainty in wave propagation that

in turn affects the resolution of the kinematic model. Our re-

sult (Fig. 12) shows that the use of inaccurate Earth structure

significantly reduces the resolution of the rupture model

parameters, consistent with the study of Graves and Wald

(2001). This approach to include Earth structure variability

allows the capture of uncertainty of the Green’s function

(Yagi and Fukahata, 2011). However, these are still approxi-

mate representations of the Earth structure. Therefore, an ex-

tensive analysis of the rupture model uncertainty adopting a

3D Earth model that includes the site effects and topographic

scattering deserves an extensive exploration. This will par-

ticularly help in improving the rupture model resolution,

which has important implications for near-fault ground-mo-

tion prediction and seismic-hazard assessment.

Another factor that controls the source inversion result is

the fault parameterization. In this studywe adopt a planar fault

of 36 km by 16 km, discretized based on the choice of

maximum frequency. This particular choice is reasonable

for the synthetic case considered. However, for real earth-

quakes, different modelers may use different fault geometry,

which are likely to affect the result. For some cases, too-sim-

plistic fault geometry might not be well representative of the

local tectonics. On the other hand, using very complex fault

geometry may induce other complications for the source

parameter resolution due to the increase of free parameters

and rupture complexity at fault segment boundaries. It is

therefore worthwhile to extend this Bayesian approach by in-

cluding uncertainty in the fault parameterization, as part of the

modeling error. This choice of fault parameterization is even

more challenging for an earthquake early warning purpose, as

we may not have any prior information about the fault geom-

etry. Therefore, the source geometry needs to be solved simul-

taneously with the rupture models. As an example, S. Minson

et al. (unpublished report, 2013) recently use Bayesian infer-

ence to find the optimal fault geometry and the distribution of

possible slip models for that geometry, and then apply the ap-

proach to the 2011 Tohoku-Oki and the 2003 Tokachi-Oki

earthquakes.

Conclusions

Kinematic source models are obtained considering the

full nonlinearity of the inversion problem. We use a Bayesian

technique to obtain the posterior probability function of each

source parameter on a regular grid representing the fault. We

find that a symmetric triangle STF compensates missing dy-

namic constraints by adding an artificial correlation between

rise time and rupture time. Incorporating spatial smoothing

reduces the skewness of the posterior distribution, as this

constrain reduces the trade-off of the parameters at neighbor-

ing nodes. To avoid biasing the result due to the assumption

on an Earth model, we propose incorporating Earth model

variability in the inference of source parameters. Our results

indicate that including the uncertainty in Earth structure

broadens the PDFs of the source parameters and may shift

the location of the peak rupture time. Rupture time is the

Uncertainty in Earthquake Source Imaging Due to Variations in Source Time Function and Earth Structure 871



parameter that is most strongly affected both by variations of

the STF and crustal structure.

To further explore the effect of Earth structure variabil-

ity, one should (1) consider the implication of the choice of

the inverted data frequency range on source model uncer-

tainty and (2) analyze the use of 3D Earth structure, which

includes site effects and topographic scattering. In addition,

our tests of different acceleration time Tacc for the regularized

Yoffe STF showed that an inappropriate choice on Tacc may

create artifacts in the source models (Tinti et al., 2009). The

inference and effects of this parameter need further explora-

tion. Additional work on exploring the uncertainty due to

assumption of fault plane complexity and fault parameteriza-

tion is also warranted, as in general they are chosen differ-

ently by different research teams. Several studies propose

different ways of choosing grid spacing (Bernard et al.,

1996; Emolo and Zollo, 2005; Page et al., 2009). A natural

extension of our work would consider a transdimensional in-

version (Bodin et al., 2012) in which the data itself are used

to define the model parameterization and hence dictate the

overall uncertainties.

Data and Resources

All data used in this study are generated in the context of

the source inversion validation (SIV) project and are available

at http://equake‑rc.info/sivdb/ (last accessed September 2013).
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Appendix

Effect of Spatial Smoothing in Uncertainty Analysis

To minimize the trade-off between rupture parameters at

neighboring points, we include the spatial smoothing using

an eight-neighbors Laplacian filter D,

D �

1 1 1

1 −8 1

1 1 1

2

4

3

5

respecting the distance between patches and the boundary.

Figure A1 shows that including spatial smoothing

between neighboring points, with a smoothing parameter α2

of 20, generally reduces the time difference between the

peaks of the slip-rate pulse for the reference model and the

inversion solutions, particularly for Yoffe-0.1 close to the hy-

pocenter. However, for triangle STF, the improvement is only

apparent for a few points on the fault. To analyze this effect

on the parameter uncertainties in more detail, we constrain

the inversion following the penalized likelihood (equation 10)

in which the smoothing factor is chosen deterministically. In

Ⓔ Figure S4, available in the electronic supplement, we

present the kinematic source models generated from an evo-

lutionary algorithm (Beyer, 2001) applying different smooth-

ing factors α (equation 10). For α2 � 0:1 and α2 � 20, we

identify high slip rate and slip around the hypocenter, which

is not observed for α2 � 200 due to oversmoothing of the

parameters. The variability of misfits to the seismic data with

respect to the model roughness allows us to deterministically

choose the preferred model. We choose a smoothing factor
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α2 � 20, based on the curvature of the trade-off function.

Therefore, we use this factor in Figure A1. Sekiguchi et al.

(2000) also discuss a way to optimally choose this smoothing

value. In Ⓔ Figure S5, available in the electronic supple-

ment, we also show the resulting posterior PDFs at two se-

lected points on the fault (point 4 and 5 in Fig. 5) for different

smoothing factors. The area around the hypocenter shows

better constrained slip and slip rate by incorporating the spa-

tial smoothing. The PDFs become less skewed as this con-

straint reduces the trade-off between neighboring points

that partially leads to this skewness.
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Figure A1. STFs on the same eight points as in Figure 5 for the reference model (dashed line) and different inversion solutions: (a) using
triangle slip-rate function and including spatial smoothing and (b) using Yoffe-0.1 STF and including spatial smoothing.
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