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�is paper studies uncertainty and its e�ect on system response displacement.�e paper also describes how IT2MFs (interval type-
2 membership functions) di�erentiate from T1MFs (type-1 membership functions) by adding uncertainty.�e e�ect of uncertainty
is modeled clearly by introducing a technique that describes how uncertainty causes membership degree reduction and changing
the fuzzy word meanings in fuzzy logic controllers (FLCs). Several criteria are discussed for the measurement of the imbalance rate
of internal uncertainty and its e�ect on system behavior. Uncertainty removal is introduced to observe the e�ect of uncertainty on
the output.�e theorem of uncertainty avoidance is presented for describing the role of uncertainty in interval type-2 fuzzy systems
(IT2FSs). Another objective of this paper is to derive a novel uncertainty measure for IT2MFs with lower complexity and clearer
presentation. Finally, for proving the a�ectivity of novel interpretation of uncertainty in IT2FSs, several investigations are done.

1. Introduction

Type-n fuzzy sets were discussed generally and comprehen-
sively in [1–12]. �e standardized version of interval type-
2 (IT2) fuzzy systems (IT2FSs) [13] was referred to in [14–
16]. �e standardized IT2FS was completed in 2007. �e
IT2FS provides a suitable environment for computing with
words (CW) [17]. However, complexities, high volumes of
calculations, and ambiguities in applying uncertainty hinder
extensive applications. �is paper investigates the sources of
uncertainty and the uncertainty handling behavior of IT2FSs.

Interval type-2 fuzzy sets have widely been accepted as
more capable of modeling higher orders of uncertainty than
type-1 fuzzy sets [4, 9–11, 18, 19]. �is property has been the
driving force behind much of the advancement of interval
type-2 fuzzy set theories and applications [10]. One of the
most important causes of such forces is �nding a suitable
interpretation that is theoretically meaningful and practically
tractable. Uncertainty plays an important role in fuzzy logic
theory and applications. �e amount of uncertainty inherent
in a fuzzy set has been quanti�ed using di�erent methods.
Klir and Parviz presented the generalized information theory
as a foundation for a research project that uni�es the theories
dealing with uncertainty in [20]. In this paper, interval type-2
fuzzy sets (IT2FS) are utilized in the �eld of generalized

information theory and general theory of uncertainty. �e
contribution presented in this paper paves the way for active
research on the relationship between the amount of injected
uncertainty and response displacement a�er injection of
uncertainty.

�e authors presented an ensemble of fuzzy systems
in [21] for capturing uncertainty. In that paper one type-
1 fuzzy logic controller chooses the output position in an
area produced by another type-1 fuzzy system. �is paper
attempts to discover the new features of IT2FSs, speci�cally
the signi�cant relationship between uncertainty and defuzzi-
�cation of the center of gravity (COG) to show the e�ect of
uncertainty on system output based on extracted concepts.
�is study investigates that the output of interval type-2 (IT2)
fuzzy logic system (FLS) in comparison with type-1 (T1)
FLS moves to points with less uncertainty. Uncertainty can
enter into T1FSs and a�ect system response. �e e�ect of
uncertainty is modeled clearly by introducing a technique
that describes how uncertainty causes membership degree
reduction and changing the fuzzy word meanings. Several
criteria are discussed for the measurement of the imbalance
rate of internal uncertainty and its e�ect on system behavior.
�is paper shows the imbalance rate of uncertainty that
can be seen as a criterion for displacing COG. �e e�ect
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of uncertainty on displacing COG is presented as a novel
uncertainty measure in this paper.

�e concept of uncertainty in fuzzy systems is interpreted
in a new manner as illustrated in Figure 1. �is research
considers the presence of uncertainty injectors and removers
di�erent from conventional fuzzy systems (Figure 1). T1 fuzzy
systems do not have these two blocks compared with the
proposed fuzzy system. �e main di�erence between T1
fuzzy systems and IT2FSs [13] is found in the fuzzi�er and
defuzzi�er blocks.

Uncertainty removal is introduced to observe the e�ect
of uncertainty on the output. In Section 2 (Uncertainty), the
conceptual descriptions regarding fuzzi�cation block based
on the interpretations derived from this paper are discussed.
We explain the application of these concepts in a system
wherein each variable corresponds to a number with one
interval in each moment. Our method attempts to �nd a T1
fuzzy membership function for each IT2MF based on the
e�ect of uncertainty on certain data. We also avoid using
iterative procedures.

�e direct role of uncertainty is introduced as the main
di�erence between T1FSs and T2FSs. �e justi�cation of
application of IT2FLSs in fuzzy systems is highly depen-
dent on uncertainty issue. �is paper aims to recognize
di�erent types of uncertainty by introducing new de�nitions
and expressions, thus creating informed and goal-oriented
maneuvers during the design process and increasing the
application of interval T2 fuzzy controllers.

Another objective of this paper is about new uncertainty
measure for interval type-2 fuzzy membership functions
(IT2MFs). Uncertainty measure is a necessity because to use
fuzzy sets (FSs) as granules in general theory of uncertainty
(GTU), which is introduced by Zadeh [22], it is necessary
to quantify the uncertainty associated with fuzzy sets (FS)
because, based on [23], “once uncertainty (and information)
measures become well justi�ed, they can very e�ectively be
utilized for managing uncertainty and associated informa-
tion. For example, they can be utilized for extrapolating
evidence, assessing the strength of relationship between given
groups of variables, assessing the in�uences of given input
variables on given output variables, measuring the loss of
information when a system is simpli�ed, and the like.”

Klir and Folger [24], Klir and Parviz [20], and Harmanec
[25] have developed three fundamental principles to guide
the use of uncertainty measures under di�erent circum-
stances.

(1) “�e principle of minimum uncertainty, which states
that solutionswith the least loss of information should
be selected, can be used in simpli�cation and con�ict
resolution problems.”

(2) “�e principle of maximum uncertainty, which states
that a conclusion should maximize the relevant
uncertainty within constraints given by the veri�ed
premises, is widely used within classical probability
framework [26, 27].”

(3) “�e principle of uncertainty invariance, which states
that the amount of uncertainty should be preserved in

each transformation of uncertainty from one math-
ematical framework to another, is widely studied in
the context of probability-possibility transformation
[28, 29].”

�is paper tries to discuss the e�ect of uncertainty of
IT2FS based on the �rst principal of uncertainty.

�e remainder of this paper is organized as follows.
Section 2 discusses uncertainty and IT2MF e�cacy and
presents improvements in this �eld. Section 3 discusses the
imbalance rate of internal uncertainty and its e�ect on
system behavior. Section 4 explains new uncertainty mea-
sure. Section 5 formulizes the uncertainty e�ect on system
output. Sections 6 and 7 display the simulation analyses and
conclusions, respectively.

2. Uncertainty

Zadeh points out in [22] that “uncertainty is an attribute of
information” and introduced the general theory of uncer-
tainty (GTU), “because existing approaches to representation
of uncertain information are inadequate for dealing with
problems in which uncertain information is perception-
based and is expressed in a natural language.” He also states
that “In GTU, uncertainty is linked to information through
the concept of granular structure, a concept which plays a key
role in human interaction with the real world [30–32].”

Fuzzy systems are mainly applied for calculations that
use lexical variables (i.e., CW) [33]. Verbal interpretations
for di�erent operations are the key elements in CW. For
fuzzi�cation, general T2 fuzzy systems are more e�ective
in modeling de�ned quantities by linguistic constraints.
IT2FSs, which have less complexity, have discovered a �eld
of application that is higher than T2 fuzzy sets. �is paper
focuses on IT2FLSs. Figure 2 shows an example of an IT2MF.
�e membership degree of (� = �) takes the form of an
interval or a line segment [��� ���] (Figure 2). �e length
of this line segment indicates the uncertainty bandwidth(�̃ = �� to ��) on that point. �is paper emphasizes the
hypothesis in [34], in which IT2MF serves as the expansion of
T1 fuzzy MF with an equal amount of uncertainty expansion
at both ends. A principal MF that is located in the middle
of the upper and lower bands of uncertainty is de�ned
for each IT2MF, where the membership degree of each
member �� is the average of the upper and lowermembership
degrees (�� = (�� + ��)/2) [34]. For each T1MF (which
is referred to as “deterministic membership degrees,” that
is, one-to-one correspondence between each variable and its
membership degree) an unlimited number of IT2MFs are
created because of the presence of uncertainty on either side
of each point of the member function. �ese IT2MFs are
called uncertainti�ed MFs of the T1MF.

Four sources with di�erent nature were mentioned for
uncertainty in [35].�ese sources introduce the equal IT2MF
for uncertainty modeling. For instance, the uncertainty that
is transmitted to the data of a local factor such as noise is
completely di�erent from the uncertainty that is an insep-
arable part of a word in mind. �erefore, the uncertainty
should be modeled separately or the description trend of
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Figure 2: Principal function and one of its uncertainti�ed functions.

this uncertainty should be determined. Several methods of
extracting the MF of an IT2FS were explained in [36–38].
Nevertheless, none of these sources have shown clearly the
e�ect of these types of uncertainty on control processes
and/or their e�ect on output. In the literature related to
IT2FSs application, the cause of the di�erences between
system outputs in the presence or absence of uncertainty
has not been associated with the lack of certainty in a
systemor data by using documented and signi�cant formulas.
Discussions in [39] indicate the minor role of uncertainty in
this issue.

If we divide the uncertainty sources introduced in [35]
into two groups based on the classi�cations performed
on uncertainty sources [40–42], one group will be related
to uncertainty, which naturally exists in every word. �is
uncertainty is independent from the �eld wherein adverbs
of quantity such as “little,” “fairly,” “very,” and “too” are
determined. �e quantity and end points of these endpoints
have been determined by experts.Mendel proposed amethod
in [38] to determine the start and end points. Natural
uncertainty is nondecreasing; that is, uncertaintymay change
from person to person and from one period to the next [38],
but its nature does not change the general form of the MF.

Modeling the function of interval T2 membership functions
(IT2MFs) for this type of uncertainty is very rational. Certain
IT2MF words, which are used more in IT2FS, were studied
in [18]. �ese IT2MF words accurately model uncertainty
properties within the nature of a word. IT2MF words can be
summarized by three modes: small sounding words (low),
medium sounding words (medium), and large sounding
words (high) (Figure 3) [19]. Gaussian MF is introduced for
“high” to generalize the discussion (Figure 3).

In a speci�c problem, choosing the same type of MF for
all inputs and outputs is preferred.

Regardless of whether the triangular, trapezoidal, or
Gaussian MFs are selected at points where the input range
has quantitatively higher or lower membership degrees, the
uncertainty band will be narrower and wider at points that
have medium membership degrees, respectively. �is model
is consistent with our attitudes toward words. For instance,
at a low mode, the membership degree is high when the
uncertainty of placing very small data in a �eld becomes low
(Points zero and one in low shape in Figure 3). When data
becomes larger, the membership degree can be stated more
decisively to be not small (Points 	 and 
 in low shape in
Figure 3).However, at Point �, themembership degree cannot
be determined at a low mode; furthermore, disagreements
among di�erent people and the uncertainty of one person are
greater in points close to Point � than the rest of the points
(Figure 3).

Another type of uncertainty is related to data. Two out
of 4 items discussed in [35] are included in this category.
Data uncertainty is not limited to these items, and other
items were mentioned in [41, 42]. Most parts of these types of
uncertainty can be reduced if a system is better understood.
Some types of uncertainty are inevitable because of scienti�c
reasons and the nature of the problem. �e e�ciencies and
abilities of IT2MF have not o�en been explained clearly. �e
usual applied forms in [18] and the three basicMFs (Figure 3)
against modeling data uncertainty are not as e�cient as
modeling the uncertainty in the nature of a word.�ese types
of uncertainty are not always in line with the changes of
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Figure 3: Basic IT2MF shapes.

Table 1: Sample data that denotes uncertainty as an interval.

Interval [2.7, 3.3] [0.7, 3.3] [−1.3, 3.3] [−3.3, 3.3]
Average 3 2 1 0

Interval [6.3, 7.7] [5.4, 6.6] [4.5, 5.5] [3.6, 4.4]

Average 7 6 5 4

Interval [11, 11] [9.825, 0.175] [8.65, 9.23] [7.475, 8.525]

Average 11 10 9 8

the uncertainty band in the nature of a word in terms of
decreasing or increasing uncertainty band.

If the uncertainty in the nature of a word is applied to a
T1MF, we will achieve the same common IT2MFs. However,
if the same approach is implemented on data uncertainty,
we will not achieve IT2MFs with common forms. In this
example, two types of uncertainties are applied to a basic T1
fuzzy function in two steps.

Example. Sample data that have been measured for a
point obtain an interval for numbers rather than a certain
number because of the iteration of measurement or noise.
Table 1 shows these intervals and their middle points. �e
uncertainty bounds of these intervals are the maximum
possible bounds in related systems for correspondent data
(second row, Table 1). �is master interval (the uncertainty
of incoming online data does not exceed these intervals)
can be achieved clearly from an iterative measurement of a
parameter point or from di�erent system conditions, which
is applied in a single-input system or a system analyzer. For
these recent conditions, the data obtained from two precise
temperature sensors can be considered as an interval of
uncertainty; the sensors are installed on both ends of an
autoclave room or a steam room. �e temperature is not
necessarily the same at both ends of the room at anymoment.
�e average bounds of the temperature are applied as a single
input to the control system of the steam room temperature.
�is type of uncertainty is created to remove the complex
modeling of temperature changes inside an autoclave room.

In this example, we assume that the general �eld of
the data related is the verbal expression of “low,” which is
de�ned as T1 fuzzy MF (Figure 4(b)). If the low bound of
all points in the intervals of the �rst row of Table 1 (also
shown in Figure 4(a)) is determined by the verbal expression

“low” with the MF shown in Figure 4(b) (according to
the graphical description of Figure 4(b)), an IT2MF will
be created. A�er deleting the saturated part, an IT2MF is
achieved (Figure 4(c)); that is, the IT2MF is obtained from
direct inclusion of the data uncertainty in Table 1 to the T1MF
of Figure 4(b).

Each set of optional data, which represents one set of
�gures in each interval of uncertainty in Table 1, has a �rst-
degree fuzzy MF embedded in the IT2MF of Figure 4(c).

In the following step, we intend to inject data uncertainty
to an IT2MF that de�nes only the natural uncertainty inside
the verbal expression (Figure 5(a)). We repeat all the above-
mentioned steps for every single T1 embedded membership
degree function in Figure 4(c), which is limited to the bound-
aries shown in Figure 5(b) and takes the form of Figure 5(c).

According to the de�nition provided in this section, the
MFs of Figures 4(c) and 5(c) are the IT2MFs for “low” (also
called uncertainti�ed) of Figure 4(b) per data uncertainty
and per natural uncertainty, respectively.

�e e�ect of these di�erent MFs on system behavior is
investigated in Section 6 (Investigation 6).

3. Rate of Internal Uncertainty Imbalance and
Its Effect on System Response

Discussions have been provided in [18] regarding uncertainty
measurement. By considering the concepts of these discus-
sions, new de�nitions that are compatible with the objectives
of this paper are presented in this section. �e di�erence
in the internal uncertainty of words plays an important role
in �nding the COG through the principles introduced in
the following sections of the present paper. �us, a new
formula and de�nition is provided for COG calculation.
Before starting the discussion, we de�ne the function of the
absolute ratio of two parameters:

� (�, �) = ((�
� if � < �) , ( �

� if � < �)) . (1)

De�nition 1. For each IT2MF, one de�nes a function of �̃,
which shows the bandwidth of uncertainty (�̃ = �� − ��) for
each point of horizontal axes of IT2MF as shown in Figure 6.
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De�nition 2. �e absolute ratio of the surface areas on both
sides of a line to the length of the COG of the principle
function enclosed between the upper and lower bounds of
uncertainty band is called the di�erence index in internal
uncertainty, also referred to as the absolute ratio of surface
(ARS). If the uncertainty bandwidth by �̃ and �̃(�) is a
function that shows the uncertainty bandwidth of every

single point of the IT2MF of �, the amount of ARS is shown
as follows:

ARS (�) = �(∫�
�

�̃ 
�, ∫�
�

�̃ 
�) . (2)

�e role of ARS, which is the role of the surface area
between two uncertainty bands in internal uncertainty in
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[18], is used in the remaining sections of this paper to prove
the theorem proposed in this section. ARS is also used as a
closed formula for �nding COG as a factor to dri� the COG.

�eorem of Uncertainty Avoidance. In proportion to the COG
of the principal MF, the COGs of uncertainti�ed MFs are
displaced toward a more clari�ed domain. A higher amount
of uncertainty imbalance on both sides of the COG of the
principle MF corresponds to more displacements that shi�
toward certainty.

For example, as shown in Figure 7, if some uncertainty
is injected to one side of the COG of IT2MF, the COG
will shi� toward the other side. An increasing uncertainty
on the le� of Points � and 	 displaces the response (COG)
toward the right compared with Point a (Figure 7). In Points	 and 
, creating a slight uncertainty toward the right slightly
displaces the response (COG) toward the le�. �e blue
shadow around each point shows the uncertainty around that
point (Figure 7).

Veri�cation. We use the physical properties of the COG of
homogeneous planes without employing large volumes of
calculations, even simple ones, to prove the theorem. An
IT2MF is formed by creating uncertainty at both sides of the
function that is on the le� side of the COG (Figure 8(b)).
�eMF of Figure 8(a) is the principal function of this T2MF.
According to the principles of the Karnik-Mendel (KM)
calculations [34], the switching � and  points are located
on the le� and right sides of �, respectively; � and  are
the COGs of T1 embedded fuzzy MF, respectively (Figures
8(c) and 8(d)). By contrast, in the homogeneous plane below
the curve of the principal function, the �1 and �2 domains are
reduced (cut) from the le� side of their COG (Figure 8(d)).
�is makes the new COG (i.e., ) move toward the right side

Response

Response

Response

Response

�

Under controlling or under analyzing variable of system

(a)

(b)

(c)

(d)

Figure 7: (a) Both sides are certain; (b) le� side is slightly uncer-
tainti�ed; (c) le� side is more uncertainti�ed; (d) addition of uncer-
tainty in the right side of (c).

of � as far as 
	. �e addition of the �1 domain makes the
COGmove le�, and the �2 domain is removed because of the
movement of the COG to the right (Figure 8(c)).�e e�ect of
the �1 and �2 domains will not cause COG to exit toward the
right side of�.�e uncertainty grows equally at both sides of
the principal function.�e �1 and �2 domains in both Figures
8(c) and 8(d) have similar e�ects on the movement of COG
(in the same and opposite directions).

It is concluded that 
� < 
	, considering that the e�ect of
both domains on COG displacement is in the same direction
in Figure 8(c) and in opposite direction in Figure 8(d).
�erefore, the center of gravity of IT2MF function moves
toward the right side of �, as shown in Figure 8(b).
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Figure 8(e) shows an IT2MF with the same princi-
pal function as the IT2MF of Figure 8(a). �e COG and
switching points of this IT2MF are �1, �1, and 1. A solid
color domain is added, thus, increasing uncertainty. Given
that the upper domain is considered the domain added to
the le� side of �1 and T1 fuzzy function, in which �1 is the
COG, COG departs from � toward the le�. In addition,
the lower solid domain acts as the domain reduced from
the T1 fuzzy function, in which 1 is the COG. �is setting
causes the COG to depart from � toward the right side. �e
movements of the right and le� COGs do not help displace�. Two solid domains are not added to or reduced from an
identical function; however, one domain was added to� and
the other was reduced from �. Considering that � is always
smaller than � (� < �), 
	 is bigger than 
� (
	 > 
�); thus,�2 > �1.

�e amount of uncertainty added to the right and le�
sides of , which is proven by the previous procedure, moves
the COG toward the le� side.

4. Proposed Uncertainty Measurement Method

�eorem of Uncertainty Avoidance points out that “�e
response of system avoids uncertainty.” In case of IT2FMs,
it means that the center of gravity of uncertainti�ed mem-
bership functions is displaced toward the less uncertainti�ed
domain or, in other words, toward themore clari�ed domain.
�e more the amount of imbalance of the created (or
available) uncertainty on both sides of the center of gravity
of principle membership function, the more the displace-
ment will tend toward certainty. In other words, if some
uncertainty is injected to one side of the center of gravity of
IT2MF, the center of gravity will be shi�ed toward the other
side.

In this paper, wemeasure the rate of uncertainty based on
the power of total uncertainty to push the response of system
to the opposite side considering the aforementioned theorem.

In this method, we add a completely certain member-
ship function (with membership degree is equal to one)
to IT2MF in the right hand in such a way that the COG



8 Mathematical Problems in Engineering

c

a

1

� IT2MF

Principal function = f(y)

(a)

a

c

1

�

d

Extended IT2MF

Extended principal function

COG

�

(b)

Figure 9: (a) A typical IT2MF. (b) Extended principal function and extended IT2MF.

of new established principal function is positioning in the
conjunction point of the added part with earlier IT2MF.

Considering the aforementioned theorem, the COG of
new established IT2MF must be displaced to the right side
in (Figure 9(b)), which is completely certain.

Method 1. In Method 1, we use KM algorithm for calculating
COG of IT2MF. �e procedure of calculation has been
described below in detail.

(1) �e domain of discourse of shown IT2MF in
Figure 9(a) is from zero to � = 	. �e principal
function also has been shown in Figure 9(a).

(2) �e principal function must be extended to the right
side by adding a T1 membership function with �xed
and certainmembership degree of “one.”We lengthen
the added part to the right in Figure 9(b) so that the
COG of total new established principal function is
positioning in � = 	.

(3) For obtaining “
”, (3) is written to show that � = 	 is
the COG of new principal function. From this equa-
tion the second-degree equation (4) is concluded, in
which just “
” is unknown:

	 = ∫
0 � (�) � 
� + ∫�
 1� 
�
∫
0 � (�) 
� + ∫�
 1 
�

= ∫
0 � (�) � 
� + (1/2) (
2 − 	2)
∫
0 � (�) 
� + (
 − 	) ,

(3)

1
2
2 − 	
 + (∫


0
� (�) � 
� − ∫


0
� (�) 
� − 1

2	2 + 	) = 0.
(4)

a c

1

d

Extended IT2MF

COG

�

2d 3d

Upper bound = u(y)

Lower bound = l(y)

Area with certain membership degree added to IT2MF

Figure 10: Extended IT2MF based on Method 2.

(4) Using KM algorithm, we calculate the COG of
extended IT2MF.

(5) �e direct distance between � = 	 and � = (new
IT2MF COG), which is shown with % in Figure 9(b),
is a criterion of pushing power of the IT2MF uncer-
tainty. We can compare the uncertainty inside of a set
of IT2MFs, which are put in a domain by calculating%.

Method 2. In this method, we use an approximation for
calculating the COG of IT2MF during extracting a criterion
for measuring uncertainty.

In this method, we extend the IT2MF as described
in part 2 of Method 1 but not with the same length of
principal function. In this method, “
” is multiplied by “&”
as shown in Figure 10. Enlarging “
” to & times helps us to
use KM algorithm in closed form formula with acceptable
approximation for calculating COG of extended IT2MF. For
larger &, the error caused by this approximation is negligible.
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It should be considered that higher & decreases the sensitivity
of ' uncertainty measure criteria.

(1) Given that switching point in KM algorithm is posi-
tioned in the right side of � = 	�right KM is easily
obtainable from

�right KM = ∫
0 � (�) � 
� + ∫��
 1� 
�
∫
0 � (�) 
� + ∫��
 1 
�

= ∫
0 � (�) � 
� + (1/2) ((&
)2 − 	2)
∫
0 � (�) 
� + (&
 − 	) .

(5)

(2) Given that switching point in KM algorithm is posi-
tioned in the right side of � = 	�le�KM is easily
obtainable from

�le�KM = ∫
0 * (�) � 
� + ∫��
 1� 
�
∫
0 * (�) 
� + ∫��
 1 
�

= ∫
0 * (�) � 
� + (1/2) ((&
)2 − 	2)
∫
0 * (�) 
� + (&
 − 	) .

(6)

(3) �e COG of extended principal function is shown in

�COG = �right KM + �le�KM

2 . (7)

(4) ' is introduced as a criterion for uncertainty measure
by

' = �COG − 	 = ∫
0 � (�) � 
� + (1/2) ((&
)2 − 	2)
2 ∫
0 � (�) 
� + 2 (&
 − 	)

+ ∫
0 * (�) � 
� + (1/2) ((&
)2 − 	2)
2 ∫
0 * (�) 
� + 2 (&
 − 	) − 	.

(8)

5. Uncertainty Effect on Output

According to �eorem of Uncertainty Avoidance, if uncer-
tainty increases in one side of COG of principal function, the
new COGmoves to the other side. In other words, we can see
this e�ect similar to the situation in which the membership
grades of principal function are decreased in that side that
uncertainty increased. Equation (9) is introduced to describe
the behavior of this imbalanced internal uncertainty, based
on �eorem of Uncertainty Avoidance and �rst principal of
uncertainty of Klir (refer to Section 2). �is formula shows
that new membership degrees decrease a�er uncertainty
removal. �e COG of �� is compatible with the COG of an
IT2MF:

��	 = �� − 1
2 + �1 �̃

1+�2 . (9)

�1 ≥ 0 and �2 ≥ 0 are parameters that depend on various
IT2MF factors. �e overall formula, which can be deducted

from this paper, for the uncertainty e�ect on the MF and
membership degree should satisfy the following conditions.
�eorem of Uncertainty Avoidance should be considered in
the overall formula because the resulted property is the main
reason to di�erentiate T1 and T2 fuzzy systems. Another
condition is the decrease of membership degrees. �e COG
is displaced by data that are more deterministic with respect
to the di�erence of uncertainty at both sides of the COG of
the principal function. In the last part, attempts are made
to introduce the special formula, whose output shows the
e�ect of uncertainty. To reduce the error of the formula under
special conditions, wherein we insist the output is COG, the
formula is improved as in the following method. �e fol-
lowing formula was introduced according to two conditions
mentioned previously and produces a proper output. �is
method has free parameters that can be determined by a
designer or the nature of the problem to obtain favorable
results such as the COG.

Considering the de�nition of ARS in (2), ARS is always
between zero and one. With respect to the performed simu-
lations, the increase in the distance of ARS from zero and one
corresponds to higher errors. �us, the sensitivity of COG
in medium ARS severely devaluates unreliable data. Based
on this fact, the behavior of the COG of IT2MF (i.e., (9)) is
specialized into (10). Equation (10) approximately produces
the COG of IT2MF:

��	 = �� − 1
2 + (1/ARS) ∗ �� �̃

2. (10)

In the general condition of the proposed method, the
response of IT2FS is not always completely in accord with
COG. We propose a technique that considers this di�erence
(refer to Table 2) in real problems for designers that want to
use the proposed method.

�e following results are obtained from themany calcula-
tions and simulations conducted by the authors of this paper
to extract the closed formula of COG and propose simple and
e�ective formulas.

According to the aforementioned equations, ��	 depends
on the power of IT2MF. No precise criterion exists to calcu-
late IT2MF under these conditions. �e �1 and �2 domains
in (9) are not exactly equal to power but are the criteria of
power. 4 is a better describer for showing the power of IT2MF,
the rate of absence of uncertainty, and the presence of higher
membership degrees. �e answer will also be nearer to the
COG of IT2MF.

Calculations and simulations at various di�erent condi-
tions lead to more complex results. �e COG can be shi�ed
by the proposed formula and by calculating theCOGby using
the KM algorithm. However, one approach is slower or faster
than the other approach.

According to the results obtained from the simulation and
calculation inwhich IT2MF ismore asymmetric but has equal
uncertainty areas in both sides of the COG of the principal
function, (10) acts worse.When ARS distances from zero and
one, the behavior of theCOGdetector is intensi�ed toweaken
ambiguous data.
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Table 2: Basic IT2FS words: defuzzi�ed output obtained by using the proposed method and di�erence percentage compared to the COG
calculated by the KM algorithm.

UMF LMF KM Proposed ARS % E

(1) [0, 0, 0.14, 1.97, 1] [0, 0, 0.05, 0.66, 1] 0.47 0.49 0.27 1.0

(2) [0, 0, 0.14, 1.97, 1] [0, 0, 0.01, 0.13, 1] 0.56 0.61 0.96 2.5

(3) [0, 0, 0.26, 2.63, 1] [0, 0, 0.05, 0.63, 1] 0.63 0.66 0.47 1.1

(4) [0, 0, 0.36, 2.63, 1] [0, 0, 0.05, 0.63, 1] 0.64 0.67 0.49 1.1

(5) [0, 0, 0.64, 2.47, 1] [0, 0, 0.10, 1.16, 1] 0.66 0.66 0.24 0.0

(6) [0, 0, 0.64, 2.63, 1] [0, 0, 0.09, 0.99, 1] 0.67 0.68 0.29 0.3

(7) [0.59, 1.50, 2.00, 3.41, 1] [0.79, 1.68, 1.68, 2.21, 0.74] 1.75 1.74 0.45 0.3

(8) [0.38, 1.50, 2.50, 4.62, 1] [1.09, 1.83, 1.83, 2.21, 0.53] 2.13 2.11 0.75 0.5

(9) [0.09, 1.25, 2.50, 4.62, 1] [1.67, 1.92, 1.92, 2.21, 0.30] 2.19 2.28 0.99 0.2

(10) [0.09, 1.50, 3.00, 4.62, 1] [1.79, 2.28, 2.28, 2.81, 0.40] 2.32 2.33 0.91 0.2

(11) [0.59, 2.00, 3.25, 4.41, 1] [2.29, 2.70, 2.70, 3.21, 0.42] 2.59 2.59 0.93 0.0

(12) [0.38, 2.50, 5.00, 7.83, 1] [2.88, 3.61, 3.61, 4.21, 0.35] 3.90 3.94 0.93 0.5

(13) [1.17, 3.50, 5.50, 7.83, 1] [4.09, 4.65, 4.65, 5.41, 0.40] 4.56 4.57 0.95 0.1

(14) [2.59, 4.00, 5.50, 7.62, 1] [4.29, 4.75, 4.75, 5.21, 0.38] 4.95 4.98 0.89 0.6

(15) [2.17, 4.25, 6.00, 7.83, 1] [4.79, 5.29, 5.29, 6.02, 0.41] 5.13 5.13 0.98 0.0

(16) [3.59, 4.75, 5.50, 6.91, 1] [4.86, 5.03, 5.03, 5.14, 0.27] 5.19 5.21 0.90 0.6

(17) [3.59, 4.75, 6.00, 7.41, 1] [4.79, 5.30, 5.30, 5.71, 0.42] 5.41 5.41 0.99 0.0

(18) [3.38, 5.50, 7.50, 9.62, 1] [5.79, 6.50, 6.50, 7.21, 0.41] 6.50 6.50 0.82 0.0

(19) [4.38, 6.50, 8.00, 9.41, 1] [6.79, 7.38, 7.38, 8.21, 0.49] 7.16 7.15 0.82 0.2

(20) [4.38, 6.50, 8.00, 9.41, 1] [6.79, 7.38, 7.38, 8.21, 0.49] 7.16 7.15 0.90 0.2

(21) [4.38, 6.50, 8.25, 9.62, 1] [7.19, 7.58, 7.58, 8.21, 0.37] 7.25 7.21 0.86 0.7

(22) [5.38, 7.50, 8.75, 9.81, 1] [7.79, 8.22, 8.22, 8.81, 0.45] 7.90 7.87 0.86 0.6

(23) [5.38, 7.50, 8.75, 9.83, 1] [7.69, 8.19, 8.19, 8.81, 0.47] 7.91 7.88 0.45 0.6

(24) [5.38, 7.50, 8.75, 9.81, 1] [7.79, 8.30, 8.30, 9.21, 0.53] 8.01 8.01 0.65 0.0

(25) [5.38, 7.50, 9.00, 9.81, 1] [8.29, 8.56, 8.56, 9.21, 0.38] 8.03 7.97 0.90 1.3

(26) [5.98, 7.75, 8.60, 9.52, 1] [8.03, 8.36, 8.36, 9.17, 0.57] 8.12 8.12 0.65 0.0

(27) [7.37, 9.41, 10, 10, 1] [8.72, 9.91, 10, 10, 1] 9.30 9.31 0.24 0.3

(28) [7.37, 9.82, 10, 10, 1] [9.74, 9.98, 10, 10, 1] 9.31 9.23 0.28 3.0

(29) [7.37, 9.59, 10, 10, 1] [8.95, 9.93, 10, 10, 1] 9.34 9.35 0.28 0.3

(30) [7.37, 9.73, 10, 10, 1] [9.34, 9.95, 10, 10, 1] 9.37 9.34 0.47 1.1

(31) [7.37, 9.82, 10, 10, 1] [9.37, 9.95, 10, 10, 1] 9.38 9.34 0.48 1.5

(32) [8.68, 9.91, 10, 10, 1] [9.61, 9.97, 10, 10, 1] 9.69 9.67 0.36 1.5

Di�erence (error) RMS% compared to KM 0.95%.

�is method has a high degree of freedom (9), and the
uncertainty removingmethod can be de�ned by a simple lin-
ear method or more complex methods based on conservative
or courageous logic and on the conditions and requirements
of di�erent issues.

Our method eases the defuzzifying of IT2MF to obtain
accurate results on the main feature of IT2FSs. In case of
slight output di�erences between our method and the KM
algorithm, no mathematic proof exists that shows that the
outputs gained by KM algorithm are better than our method.
On the contrary, the existence of concepts and reasons
behind our proposed method provides a designer with more
opportunities to manage parameters related to uncertainty
in IT2 fuzzy controllers in engineering and industrial a�airs
conveniently.

6. Simulations and Investigations

Investigation 1 examines the a�ectivity of the proposed
uncertainty measures. Investigation 2 shows the illustrative
concept of the e�ect of uncertainty on membership degrees.
Investigation 3 shows the comparative outputs as a result
of applying the proposed formula and KM algorithm of
32 basic IT2MF words. A single-input single-output (SISO)
fuzzy system is introduced in “Investigation 4” to compare
clearly the outputs created in di�erent uncertainty imbalance
situations and by di�erent methods. Investigation 5 discusses
on a comparison between collapsing method [43] and pro-
posedmethod. In Investigation 6, the e�ects of di�erent types
of uncertainty on system output are investigated. Examples
are chosen by selecting various forms of MFs and changing
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Figure 11: Common form of trapezoidal and triangle MFs.

the di�erentmodes of antecedent and subsequentMFs to cre-
ate various modes by using di�erent ARSs and membership
degrees and cover the generalities of the issue.�e root mean
square of the di�erences and maximum error shows di�erent
states.

�e common form of the trapezoidal and triangular MF
can be described by a �ve-number vector [�, �, 	, 
, and5] (Figure 11). �is presentation of the common form of
trapezoidal and triangularMF is used in the rest of this paper.
�e distance between “�” and “5,” that is, (5–�) is called the
support of MF (Figure 11).

Investigation 1. Calculate % and ' for comparing uncertainty
of two IT2MFs shown in Figure 12. For calculating ' consider& = 3.

According to (4), the new domain 
 which is necessary
for calculating % and ' is calculable as follows:

1
2
2 − 
 + (∫1

0
0.5� 
� − ∫1

0
0.5 
� − 1

2 + 1) = 0
8⇒ 1

2
2 − 
 + (1
4 − 1

2 − 1
2 + 1) = 0

8⇒ 1
2
2 − 
 + 1

4 = 0 8⇒ 
 = 1 + √2
2 .

(11)

Calculating %. COG1 and COG2 based on KM algorithm are
1.01 and 1.1, respectively, then %1 and %2 are 0.01 and 0.1,
respectively.

Two uncertainty measures have been shown in Figure 13.
Considering the area of surrounded region by upper and
lower bounds, it is clear that the uncertainty of Figure 12(a)
is lesser than the uncertainty of Figure 12(b) before calcula-
tion. �is fact is con�rmed using the proposed method for
uncertainty measurement. Calculations for ' using (8) show'1 = 0.003 and '2 = 0.02. A comparison between % and '
shows that the sensitivity of % is more than '.
Investigation 2. For IT2MF (UMF = [0.38, 2.50, 3.75, 4.81, 1]
and LMF = [2.79, 3.30, 3.30, 4.21, 0.53]) calculate (a) ARS and
(b) output value by using (10). (c) Calculate the di�erence

percentage between obtained value by using (12) and the

COG of IT2MF.

Answer. �e COG of the principal function shown in
Figure 14(a) is � = 2.88. In Figure 14(b), the function of�̃ = �� − �� is observed, wherein, � � = 7.15, �	 = 5.16,
and ARS = 0.72 are obtained from (2).

By using (10), the embedded fuzzy T1 shown in
Figure 14(a) is obtained. �e COG of this fuzzy T1 is easily
calculable as COG (D3) = 3.0088.

�e COG of IT2MF in Figure 14(a) (i.e., 3.01) is obtained
by using the KM algorithm. To calculate the di�erence
percentage between these two COGs, we use the following
formula:

B = CCCCOutput (10) − COG (IT2MF)CCCC
Sup (UMF) × 100%, (12)

where Sup is the support of MF (Figure 11).

Here, B = 0.04%, and (10) produces accurate answers to
COG (IT2MF).

Investigation 3.WuandMendel showed in [18] the defuzzi�ed
output of 32 basic IT2 fuzzy words based on the KM
algorithm. Here, we calculate the defuzzi�ed output by using
our proposed formula (i.e., (10) for obtaining T1MF and using
COG for type-1 defuzzi�cation). Table 2 shows those words
by using the �ve parameters for introducing trapezoidal MFs
shown in Figure 11. Equation (12) is used for calculating(B), which shows the error percentages of (10). �e absolute
maximum error of (10) for those words is 3%.

Investigation 4. A SISO single-rule system exists. �e speci�-
cations of this system are as follows.

Rule. If D is small, then E is small. Implication = Max.

E (output) MF is T1: small = [0 0 0 2.95 1].
D (input) MF is the (a) T1MF shown in Figure 4(b);
(b) standard IT2MF shown in Figure 5(a); (c)
IT2MF shown in Figure 4(c); (d) IT2MF shown in
Figure 5(c).

Calculate the output by using (9) and investigate the e�ect
of uncertainty.

�e output is a�ected by various uncertainties separately
(Figure 15). For example, we want to discuss the e�ect of
data uncertainty only. Considering the IT2Mf of �, a lower
“�” (� < 2.5) is more uncertainti�ed (compared with the
conditions in which uncertainties are absent). A higher “�”(7 > � > 2.5) is more uncertainti�ed, and � > 7 indicates
balance. If we look to the property of the rule used in this
system and consider the bandwidth of uncertainty in input
MF, higher values of “�” are more certain if � < 2, and
lower values of “�” are more certain if 7 > � > 2.5; in other
conditions, “�” does not change. �is reasoning is applicable
for other types of uncertainty.

Investigation 5. Calculate outputs by using collapsing method
[43] and (9) for

(a) the MF of the upper and lower bands that are 0.8 and
0.2 in the [0 1] range of the primary domain;

(b) symmetric triangle MF, UMF = [0.1 0.4 0.4 0.7 1]
and LMF = [0.2 0.4 0.4 0.6 1];
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(c) asymmetric GaussianMF, UMF = [0.3 0.2] and LMF
= [0.18 0.3].

Answer. In case of symmetric IT2MFs, the use of (9) causes
no error.�e error is zerowhen the upper and lower bands are
considered continuous functions or appliedwith few samples.
�e defuzzi�ed outputs for the upper and lower bands are
0.5 and 0.4, respectively. �e collapsing method with 11 or
more samples is slightly di�erent with the exact answer. For
the asymmetric Gaussian IT2MF, the result obtained by (10)

for 100 samples is 0.33; the result decreaseswith increasing the
number of samples. By using continuous formula of the upper
and lower MFs, the output converges to 0.3219. �e results in
[43] are slightly di�erent with the convergent answer.

Investigation 6. Provide visualization on the e�ect of di�erent
types of uncertainty by investigating the output of an SISO
FLC. �e SISO inputs are selected from Section 2 of this
paper.

Rule. If D is small, then E is small. Implication = Max.

E (output) MF is T1: small = [0 0 0 4.95 1].
D (input) MF is the (a) T1MF shown in Figure 4(b);
the standard IT2MF shown in Figure 5(a); (c)
IT2MF shown in Figure 4(c); (d) IT2MF shown in
Figure 5(c).

In all the above conditions, calculate the output by using
(9), and investigate the e�ect of uncertainty.

�e output is a�ected by various uncertainties separately
(Figure 16). Figures 16(a), 16(b), and 16(c) show that applied
uncertainty causes rules to weaken.We use the following rule
for this case: “if the input is small, the output is small.”

However, we considered the e�ect of uncertainty in
Figure 16. We observed in all cases that the response a�er
applying the uncertainty increased, as well as in points in
which input data has greater amount of uncertainty. Output
also signi�cantly increased.�e result shows that the concept
of “low” in the output shi�s toward the concept of “large.”

Discussion on Investigations.�eproposedmethod has a high
degree of freedom.�e uncertainty removing method can be
de�ned by a simple linear method or more complex methods
based on conservative or courageous logic and the conditions
and requirements of di�erent issues.

Our method eased the defuzzifying of IT2MF to obtain
accurate results on the feature of IT2FSs. In case of slight
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Figure 15: E�ect of uncertainty on outputs of SISO (Investigation
4).

output di�erences between our method and the KM algo-
rithm, no mathematical proof exists to show that the outputs
gained by KM algorithm are better than our method. On the
contrary, the existence of concepts and reasons behind our
proposed method provides designers with more opportuni-
ties to manage parameters related to uncertainty in T2 fuzzy
systems in engineering and industrial a�airs conveniently.

Designers who work with fuzzy systems must have
information on the behavior of the fuzzi�er, inference, and
defuzzi�er methods used in the system. No defuzzi�cation
method exists that is suitable in all systems and all conditions.

IfmethodAproduces better results thanmethodB, B is better
than A if conditions or systems change. �e experience of a
designer plays a major role in the selection of an appropriate
method. In our case, understanding and absorbing system
behavior is easier.

7. Conclusion

�is paper presented the �eorem of Uncertainty Avoid-
ance and used it for uncertainty measuring in IT2FMs.
�e proposed methods provide simple closed formulas for
calculating total uncertainty of a membership function. �is
paper brought up a new vision to the problem of uncer-
tainty measure. �e measurement is based on the power
of uncertainty to push the COG of principal function to a
completely certain domain. �e results of this paper provide
a new perspective on the relationship between uncertainty
and fuzzy system output. For each T1MF, uncertainti�ed
functions are presented to be more complete than common
IT2MFs. In addition, we show that uncertainty reduces the
value ofmembership degrees and the absolute value of words.
Higher uncertainty causes a higher reduction of values. For
example, if the input and output of a system contain “low,”
“medium,” and “large” words, a�er injecting uncertainty to
inputs, “low” will shi� to “medium,” “medium” to “large,”
and “large” to “medium.” Results show that the uncertainty
reduces the value of the membership degree proportionally.
�e concept of words is also shi�ed toward the opposite
neighbor words in the system output by the uncertainty of
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Figure 16: E�ect of uncertainty on outputs of a simple fuzzy controller (Investigation 6).

system inputs proportionally. �e proposed technique for
uncertainty removing can be considered as a closed formula
for calculating the COG of IT2MF with acceptable accuracy.
On the contrary, the existence of concepts and reasons behind
the new interpretation of uncertainty provides designers
more opportunities to manage parameters related to uncer-
tainty in interval T2 fuzzy controllers in engineering and
industrial a�airs conveniently.
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