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[1] Uncertainty in the Pan‐Arctic Ice‐Ocean Modeling and Assimilation System
(PIOMAS) Arctic sea ice volume record is characterized. A range of observations and
approaches, including in situ ice thickness measurements, ICESat retrieved ice thickness,
and model sensitivity studies, yields a conservative estimate for October Arctic ice
volume uncertainty of 1.35 × 103 km3 and an uncertainty of the ice volume trend over
the 1979–2010 period of 1.0 × 103 km3 decade–1. A conservative estimate of the
trend over this period is −2.8 × 103 km3 decade–1. PIOMAS ice thickness estimates
agree well with ICESat ice thickness retrievals (<0.1 m mean difference) for the area
for which submarine data are available, while difference outside this area are larger.
PIOMAS spatial thickness patterns agree well with ICESat thickness estimates with
pattern correlations of above 0.8. PIOMAS appears to overestimate thin ice thickness
and underestimate thick ice, yielding a smaller downward trend than apparent in
reconstructions from observations. PIOMAS ice volume uncertainties and trends
are examined in the context of climate change attribution and the declaration of record
minima. The distribution of 32 year trends in a preindustrial coupled model simulation
shows no trends comparable to those seen in the PIOMAS retrospective, even when
the trend uncertainty is accounted for. Attempts to label September minima as new record
lows are sensitive to modeling error. However, the September 2010 ice volume
anomaly did in fact exceed the previous 2007 minimum by a large enough margin to
establish a statistically significant new record.
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1. Introduction

[2] Arctic sea ice volume is an important indicator of
global climate change. Unlike sea ice extent, sea ice volume
is more directly related to the energy balance, because a loss
or gain in sea ice volume represents a specific change in
latent heat. Changes in Arctic sea ice volume thus provide a
gauge of our understanding of global climate, and predictive
global climate models should be able to reproduce observed
changes in sea ice volume. Moreover, global climate model
simulations with increasing anthropogenic greenhouse gas
forcing show that the decline in Arctic sea ice volume will
outpace the decline in sea ice extent on a percentage basis
from 1990 to the end of the 21st century by as much as a
factor of two [Gregory et al., 2002; Intergovernmental
Panel on Climate Change, 2007], thus making ice volume
a more sensitive climate indicator than ice extent. The
greater sensitivity of ice volume is in part due to the geo-
graphical controls of winter sea ice extent in the Northern

Hemisphere which minimize interannual changes in winter
ice extent [Eisenman, 2010].
[3] Sea ice extent has been well measured from space for

the past 30 years using passive microwave instruments.
Unfortunately a long‐term record of sea ice volume is much
more difficult to establish, since it depends on reliable
information about ice thickness in addition to ice extent.
In situ measurements of thickness are spotty in time and
space, yielding a poor sampling of the spatial and temporal
variability. Satellite‐based retrievals of ice thickness using
RADAR or LIDAR altimeters [Giles et al., 2008; Kwok
et al., 2009] have recently become available but their record
is still relatively short and the retrieval techniques are subject
to a variety of errors. Sea ice volume can also be estimated
from the age of sea ice, which can be derived from buoy or
satellite‐derived ice motion and ice extent maps in combina-
tion with empirical relationships between age and thickness
[Maslanik et al., 2007].
[4] Another approach to estimating the total ice volume

over an extended period of time is to use a coupled ice‐
ocean model which simulates variations of ice thickness
and extent by modeling the thermodynamic and dynamic
processes that influence sea ice variations [Zhang et al.,
2010]. In order to improve simulations, the model solution
can be constrained through the assimilation of observed
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information such as ice concentrations or sea surface tem-
perature. The Pan‐Arctic Ice‐Ocean Modeling and Assimi-
lation System (PIOMAS) developed at the Polar Science
Center (PSC), University of Washington is such a system.
An example of sea ice volume estimates from PIOMAS is
shown in Figure 1. Although PIOMAS ice thickness has
previously been validated against ice thickness measure-
ments from U.S. submarines at a limited number of times
and locations [Zhang and Rothrock, 2003], a systematic
assessment of uncertainties in ice volume and trends is still
needed. This paper attempts to fill this gap.
[5] This paper is organized as follows: We first introduce

the model and various data sources used to establish uncer-
tainty estimates (section 2). Since ice volume estimates are
difficult to validate directly, we examine how well PIOMAS
ice thickness estimates match in situ and satellite observa-
tions (section 3). Trends in ice thickness and their uncertainty
are examined in section 4. We then assess how the uncer-
tainty estimates for ice thickness affect the uncertainty of
the total ice volume and volume trends (section 5). Ice vol-
ume anomalies and uncertainty estimates are then put into
the context of applications (section 6), i.e., how uncertainty
affects the attribution of trends and the detection of record
minima. Given sampling issues and uncertainties in the
validation data, we employ a range of approaches and data
sets to find bounds of the uncertainty. Results for the
uncertainty estimates are summarized in Tables 1–4.

2. Model and Data

2.1. PIOMAS

[6] The coupled ice‐ocean model used to derive Arctic
sea ice volume is the Pan‐Arctic Ice‐Ocean Modeling and

Assimilation System. It consists of a multicategory thick-
ness and enthalpy distribution sea ice model [Zhang and
Rothrock, 2003] coupled with the Parallel Ocean Program
developed at the Los Alamos National Laboratory. The sea
ice model employs a teardrop viscous plastic rheology
[Zhang and Rothrock, 2005], a mechanical redistribution
function for ice ridging [Hibler, 1980; Thorndike et al.,
1975], and a LSR (line successive relaxation) dynamics
solver [Zhang and Hibler, 1997]. The model covers the
region north of 48°N and is one way nested to a similar
but global ice‐ocean model [Zhang and Rothrock, 2005].
PIOMAS is capable of assimilating satellite ice concentra-
tion data following [Lindsay and Zhang, 2006]. It is also
capable of assimilating observations of sea surface temperature
(SST) following Manda et al. [2005]. Daily mean NCEP/
NCAR reanalysis data are used as atmospheric forcing, i.e.,
10 m surface winds, 2 m surface air temperature (SAT),
specific humidity, precipitation, evaporation, downwelling
longwave radiation, sea level pressure, and cloud fraction.
Cloud fraction is used to calculate downwelling shortwave
radiation following Parkinson and Washington [1979].
[7] Three different PIOMAS integrations are discussed in

this paper. The first is an integration that assimilates ice
concentration only (IC). Ice concentrations are from the
Hadley Centre for 1958–1995 and from NSIDC for 1996 to
present. Another integration (IC‐SST), in addition to ice
concentrations, assimilates sea surface temperature (SST)
from the NCEP/NCAR reanalysis based on the global daily
high‐resolution Reynolds SST analyses using satellite and in
situ observations [Kalnay et al., 1996;Reynolds andMarsico,
1993; Reynolds et al., 2007]. A third integration (model
only) assimilates no data. For the model‐only and IC‐SST
cases, the parameterization of ice strength is based on Hibler

Figure 1. Daily Arctic sea ice volume anomaly from PIOMAS. The daily anomaly is computed relative
to the average for the day of the year computed over the 1979–2009 period. The trend is computed from
1979 to 2010. Shaded areas show the standard deviations (× 1 and × 2) of the residuals of the trend.
Updated versions are available at http://psc.apl.washington.edu/wordpress/research/projects/arctic‐sea‐
ice‐volume‐anomaly/.
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[1979], while the parameterization of ice strength for the
IC case is based on Rothrock [1975] and Hibler [1980]. The
choice of these integrations reflects the evolution of model
development and tuning which typically involves multiple
integrations. These three integrations represent the latest
state of the PIOMAS model development and have shown
good validation statistics for ice thickness (greater than 50%
explained variance) when compared with submarine‐based
upward looking sonar (ULS) measurements. The choice
of these runs is not meant to provide a comprehensive
assessment of the relative benefits of assimilating different
data sets as done by Lindsay and Zhang [2006]. As we will
show later, the IC‐SST run provides the most conservative
assessment of the long‐term trend and is therefore used as
the reference integration throughout the paper.

2.2. In Situ Measurements From the Sea Ice
Thickness Climate Data Record

[8] A sea ice thickness climate data record (sea ice CDR)
of in situ observations of ice draft and thickness has recently
been created [Lindsay, 2010]. This record integrates sea ice
draft measurements from submarine upward looking sonar,
moored ULS, and airborne electromagnetic (EM) measure-
ments from a variety of sources into a single place and
format. The sources include U.S. submarines [Tucker et al.,
2001; Wensnahan and Rothrock, 2005] moored ULS from
the eastern Beaufort Sea [Melling and Riedel, 2008], the cen-
tral Beaufort Gyre (Beaufort Gyre Exploration Project based
at the Woods Hole Oceanographic Institution, http://www.
whoi.edu/beaufortgyre), Fram Strait [Witte and Fahrbach,
2005]; airborne EM‐based thickness measurements [Haas
et al., 2009, 2010], and ULS measurements at the North
Pole Environmental Observatory (NPEO).
[9] Submarine‐based ULS and airborne EM measure-

ments are provided as 50 km averaged segments. Following
Rothrock et al. [2008, hereinafter RPW08], all draft obser-
vations from submarines and moorings are converted to ice
thickness using an ice density of 928 kg m–3 and the snow
water equivalent estimated by the model. Uncertainty in the
draft‐to‐thickness conversion is relatively small (<10% of

draft). EM measurements provide the combined thickness of
ice thickness plus the overlying snow cover [Haas et al.,
2010]. They are converted to thickness using the snow
depth estimated from the snow water equivalent accumu-
lated during the PIOMAS integrations assuming a seasonal
variation in snow density [RPW08]. ULS measurements
provide a first return measurement which can lead to a
bias in ice draft [Vinje et al., 1998]. This bias depends on
the field of view of the ULS instrument, its deployment
depth, and the thickness distribution itself. Rothrock and
Wensnahan [2007] estimate a bias of 0.29 m for the sub-
marine record they investigated. Following Kwok and
Rothrock [2009, hereinafter KR09], we subtract this bias
from submarine draft measurements prior to the comparison
with model observations. No bias corrections were applied
to measurements other than the U.S. submarine ULS data,
because such bias corrections are not readily available and
the development of such bias corrections is beyond the scope
of this study. Similarly, following RPM08, measurements
from the U.K. submarine were not used in this analysis since
their processing history is uncertain.
[10] Each sea ice CDR observation was then paired with

a monthly mean model thickness using the closest model
grid cell. For in situ measurements from moving platforms
(submarines and airborne EM) the in situ measurement does
not really correspond to a monthly average (the submarine
may cross the entire Arctic in a few days) so that this pairing
does include a temporal sampling error.

2.3. ICESat

[11] Ice thickness estimates from the Geophysical Laser
Altimetry System (GLAS) on ICESat have recently become
available [Kwok and Cunningham, 2008; Zwally et al.,
2008]. The ICESat retrieval algorithm measures ice free-
board by comparing the satellite distance from the snow or
ice surface to that of ice‐free areas. Freeboard measurements
are then converted to ice thickness using a sequence of
processing steps, accounting for snow loading, atmospheric
pressure, and sampling biases [Kwok et al., 2009, hereinafter
K09]. Given that ice freeboard amounts to only about 10%

Table 1. Mean Ice Thickness (m) Random Uncertainty and Mean Error Estimates Determined Using Different Data Setsa

Sea Ice CDR ICESat

RMSD r Mean RMSD Mean

DRA 0.76 0.73 −0.17 Spring: 0.4, Fall: 0.3 Spring: 0.1, Fall: 0.0
ICESat domain 0.78 0.73 −0.01 Spring: 0.19, Fall: 0.29 Spring: −0.1, Fall: −0.26

aRegional mean biases for two different areas are provided. Conservative estimates (bold) of the random error and the mean error are the largest
absolute estimates.

Table 2. Ice Thickness Trends (m decade–1) Determined Using Different Methodologiesa

PIOMAS 1979–2010

Paired 10 Year+ Trendsb KR09 1979–2007Mar Oct

DRA IC‐SST: −0.25, IC: −0.37,
Model only: −0.36

IC‐SST: −0.39, IC: −0.47,
Model only: −0.53

Observed: −0.48,
IC‐SST: −0.42

Mar: −0.53, Oct: −0.50

PIOMAS domainc IC‐SST: −0.15, IC: −0.19,
Model only: −0.20

IC-SST: −0.25, IC: −0.33,
Model only: −0.37

aConservative estimates (bold) are the smallest downward trend estimate for each domain and season.
bSome observations are from outside the DRA.
cThickness trends for the PIOMAS domain were computed using a minimum thickness threshold of 0.15 m to exclude the extensive areas of open water.
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of the total thickness, space‐based thickness retrievals are
highly sensitive to potential errors associated with these
steps. K09 estimates ICESat thickness uncertainties to be
0.5 m for individual 25 km ICESat grid cells. Fields of
mean ice thickness are available at the following URL (http://
rkwok.jpl.nasa.gov/icesat/). These ice thickness fields are
composites generated from ten ICESat campaigns during
October–November 2003–2007 and March–February 2004–
2008. Because of the small footprint nadir sampling of the
ICESat instrument, these fields are composites of sea ice
thickness from a range of times during the observation inter-
vals and treating them as averages incurs a sampling error.
[12] For direct comparison with PIOMAS, PIOMAS ice

thicknesses were regridded to the ICESat grid using nearest
neighbor interpolation. Monthly PIOMAS averages for March
were used for comparison with the ICESat spring campaigns,
and combined October and November averages were used
for comparisons with the ICESat fall campaigns. The averages
are thought to best correspond to the temporal sampling of
ICESat composites. To address the nature of the ICESat
retrieval, which does not fully account for varying ice con-
centrations but assigns the retrieved thickness to the entire grid
cell, an additional weighting using AMSR‐derived ice con-
centrations is needed. Following KR09, AMSR‐derived ice
concentrations at 25 km resolution were obtained from NSIDC
and concentration‐weighted ICESat thickness for each grid
cell was calculated by multiplying the ICESat ice thickness
with the AMSR‐derived ice concentration.
[13] The calculation of ICESat thickness averages includes

observations where the ice thickness is 0. This distinction is
consistent with the usage by K09 and KR09 and corresponds
to the definition of effective ice thickness often used in sea
ice modeling:

heff ¼
X

gðhiÞhi; ð1Þ

where g(h) is the discrete thickness distribution or fraction of
grid cell covered by ice thickness hi, including g(h = 0) .
It does however mean that the mean ice thickness for a given
area is strongly influenced by variations in ice concentra-
tions but that ice volume can simply be estimated from heff
and the area of the grid cell. Whether or not the open water
thickness category is included in the definition of mean ice
thickness is not always clear in the pertinent literature, so it is
specifically stated here.

2.4. Time Series of Regional Mean Ice Thickness

[14] KR09 recently published an assessment of ice thick-
ness changes from U.S. submarine data for a part of the
Arctic Ocean for which U.S. submarine data have been
released (the data release area (DRA)). In this assessment,
the inhomogenous temporal and spatial sampling of the
submarine‐based draft measurementswas addressed by fitting

polynomials to U.S. submarine draft observations that
express ice thickness as a function of space, seasonal cycle
and time [RPW08]. These polynomials are then evaluated for
the DRA and concatenated with ICESat ice thickness esti-
mates for the DRA. KR09 estimate the standard deviation of
the total uncertainty of the regression model‐derived thick-
ness for the DRA to as 0.5 m. The corresponding ICESat
uncertainty is estimated as 0.37 m. We use this time series for
comparison with PIOMAS‐derived ice thickness time series.

2.5. Community Climate System Model Version 3 Runs

[15] IPCC integrations for (1) the preindustrial control,
(2) the climate of the 20th century (20C3M), and (3) the A1b
scenario run for the NCAR Community Climate System
Model Version 3 (CCSM3) model were obtained from the
World Climate Research Programme’s (WCRP’s) Coupled
Model Intercomparison Project Phase 3 (CMIP3) multimodel
data set archive [Meehl et al., 2007]. Sea ice concentration
and thickness were retrieved and total ice volume, ice area,
and ice extent calculated. Anomalies were calculated relative
to the 1958–1978 period and expressed as percentage of
means. Additional IPCC AR4 runs for the subset of models
identified as having a better representation of sea ice vari-
ability [Wang and Overland, 2009] were also extracted and
processed in the same way (Table 5).

3. Ice Thickness Uncertainties

3.1. Local Uncertainties From In Situ Observations
From the Sea Ice CDR

[16] Measurements of total arctic ice volume do not
exist, therefore validation of modeled ice volume must rely
on local measurements of ice thickness. We here analyze
separately ice thickness observations that were or were not
used during PIOMAS model development. Figures 2 and 3
show comparisons of PIOMAS draft estimates with sea ice
CDR draft observations for submarine and all other mea-
surements, respectively. The correlations for the data which
were or were not used in model development are identical
(0.73) and RMS differences are very close (0.76 versus
0.78 m). Mean errors are actually slightly better (–0.17
versus –0.01 m) when excluding submarine measurements.
The mean thickness is over a meter smaller for the non U.S.

Table 3. Total Sea Ice Volume (103 km3) Random Uncertainty and Mean Error Estimates Determined Using Different Methodologiesa

Sea Ice CDR
PIOMAS

Adjusted to CDR Three Model Runs ICESat

Random uncertainty Mar: 0.1, Oct: 0.07 0.76 Mar: 2.25, Oct: 1.35
Biases Mar: −2.8, Oct: −1.5 Spring: −1.7, Fall: −2.3

aConservative estimates (bold) are the largest absolute estimates for each season.

Table 4. Sea Ice Volume Trends (1979–2010, 103 km3 decade−1) and

Uncertainty Estimates Determined Using Different Methodologiesa

Sea Ice CDR
PIOMAS

Adjusted to CDR Three Model Runs

Trend −3.5 −2.8 to −3.8
Uncertainty 0.07 −0.7 1.0

aConservative estimates (bold) are the smallest downward trend and the
largest uncertainty estimate.
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submarine data because most of the other data are from a
later period, reflecting the thinning of the ice cover. Using
these local thickness uncertainties as a measure of model
uncertainty, we can compute uncertainties in volume and
trends. This is done in section 5.1.
[17] What do the high correlations between PIOMAS and

in situ observations tell us? Are they simply the result of the
ability of the model to capture the strong annual cycle of
growth and melt and say little about the model’s ability
to capture the long‐term trend? To examine the effect of
the annual cycle on the validation statistics, we compare the
PIOMAS model results with in situ observations from the
sea ice CDR for the ICESAT observation periods February–
March and October–November separately. These times are
close to the maximum and minimum of the annual ice
thickness cycle and provide a sufficiently large number of
observations to allow a meaningful comparison. Perfor-

mance of PIOMAS with respect to observations for spring
(February–March) is excellent, with a correlation of 0.83 and
a mean bias of −0.08 m. RMS differences for February–
March are 0.61m. Comparisons for fall (October–November)
are somewhat worse with a correlation of 0.65, an RMS error
of 0.76 m, and a bias of –0.03 m. In general, relative to the
sea ice CDR observations, the model tends to overestimate
the thickness of thinner ice and underestimate the thickness
of thick ice. These results demonstrate that the model cap-
tures ice thickness variability beyond the annual cycle,
suggesting that long‐term spatial and temporal variability
may be well represented. We will revisit each of those
separately below.
[18] Note that observations from the North Pole Envi-

ronmental Observatory (NPEO) were excluded from the
above analysis. A comparison of NPEO data with PIOMAS
shows that some of the earlier NPEO ULS measurements

Table 5. Model Abbreviation and Source Institutions for the Subset of PCMDI Archived AR‐4 Models Used in This Study

Model Abbreviation Institutions
Subgrid‐Scale Ice

Thickness Distribution

CCSM3 National Center for Atmospheric Research, USA Yes
MIROC (medium‐resolution) Center for Climate System Research (University of Tokyo),

National Institute for Environmental Studies,
and Frontier Research Center for Global Change, Japan

No

IPSL Institute Pierre Simon Laplace, France No
ECHO‐G Meteorological Institute of the University of Bonn

and the Meteorological Research Institute of KMA,
Model and Data Group, Germany

No

GEM‐1 Hadley Centre for Climate Prediction and Research, Met Office, UK Yes
CNRM Météo-France, Centre National de Recherches Météorologiques, France Yes

Figure 2. Comparison of PIOMAS ice thickness estimates with observations from U.S. submarines.
The DRA is shown in gray in Figure 2a. USSUB‐DG and USSUB‐AN labels refer to U.S. submarine
digital and analog recordings, respectively. The data covers the period 1975–2005.
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have much thicker ice than previous observations at this
location, and seem to be inconsistent with recent measure-
ments of ice thickness from EM data near the North Pole
which have near 0 bias and correlations of 0.93 relative to
the model (Figure 4). NPEO ULS data from instruments
deployed in 2006 and 2008 show a much better agreement
with PIOMAS and EM observations. Though no direct
overlap between the earlier NPEO data and EM data exists,
it is difficult to imagine why the model would perform well
with little bias in the area near the North Pole except for
2001–2005 when differences with NPEO are large. At this
point we do not have a solid explanation for this discre-
pancy between the pre‐2006 NPEO data and the model.
A more detailed investigation is underway (D. Moritz, per-
sonal communication, 2011).

3.2. Uncertainties in Regional Mean Ice
Thickness (Biases)

[19] Random errors established from individual in situ
observations affect regional mean ice volume estimates
proportional to N–1/2, (N is the number of grid cells in model
or retrieval). Since N may be large (depending on the size of
the region), ice volume uncertainty estimates are dominated
by biases rather than random errors [KR09] (also discussion
in section 5.1). We use ICESat‐derived regional means for
both the DRA and the ICESsat domain to assess potential
biases in PIOMAS regional mean ice thickness.
[20] Figure 5a shows a comparison of ice thickness for the

ICESat domain (see Figure 6) from PIOMAS (IC‐SST) and
ICESat. ICESat thickness estimates exceed PIOMAS esti-

mates by 0.1 and 0.26 m for February–March and October–
November, respectively, well within the uncertainty of
ICESat estimates of 0.37 m [KR09]. While the difference
between PIOMAS and ICESsat in February–March (−0.1 m)
is of the same order as that between the model and in situ
observations in the sea ice CDR, October–November model‐
ICESat differences are substantially higher (−0.26 m) rela-
tive to model–in situ observation differences. Reasons for
this discrepancy will become apparent when we compare
spatial patterns (section 3.3). Model‐ICESat differences are
smaller over the DRA domain (Figure 5b), possibly reflect-
ing the use of submarine draft data over this area in both
PIOMAS model tuning and ICESat algorithm development.
[21] Applying the above derived biases (−0.01 and −0.26 m)

from the ICESat domain to the full PIOMAS domain changes
total Arctic sea ice volume estimates by −1.7 (i.e., −6.3%) and
−2.3 × 103 km3 (i.e., −10%) for spring and fall, respectively.
Given the small number of data points (N = 5) involved in
determining these biases, the uncertainty is of course large and
conclusions about ice volume biases must be viewed with
caution. Uncertainties in local and regional mean ice thick-
ness are summarized in Table 1.

3.3. Uncertainty in Spatial Patterns

[22] ICESat‐derived ice thickness fields also provide the
opportunity to assess the fidelity with which PIOMAS
integrations reproduce the spatial patterns of ice thickness.
Difference maps were computed for each ICESat cam-
paign and average differences computed for spring and fall
(Figure 6). ICESat and PIOMAS ice thickness fields show a

Figure 3. Comparison of PIOMAS ice thickness estimates with observations excluding the U.S. subma-
rine observations. (a) Location map of ice thickness observations used for this comparison. (b) Comparison
of observations with PIOMAS (IC‐SST). Colors indicate different data sources for ice thickness mea-
surements. Institute of Ocean Sciences‐Eastern Beaufort Sea (IOS‐EBS) and ‐Chukchi Sea (IOS‐CHK),
Woods Hole Oceanographic Institution‐Beaufort Gyre Exploration Projects (BGEP), Alfred Wegener
Institute‐Greenland Sea (AWI‐GS), and Alfred Wegener Institute and University of Alberta Airborne‐
Electromagnetic Induction (AIR‐EM).
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close agreement with the overall pattern of ice thickness.
Pattern correlations are high with values of 0.8 and 0.9 for
spring and fall fields, respectively. The IC integration per-
forms a bit worse than IC‐SST and model only, consistent
with comparisons against sea ice CDR observations. The
largest differences in ice thickness patterns occur in a nar-
row band along the northern coast of Greenland and the

Canadian Archipelago, where ice thicknesses are larger and
meridional gradients much steeper in the ICESat data than
in the PIOMAS model. At the current configuration with
smooth, low‐resolution forcing fields, PIOMAS seems to
have trouble reproducing the thick ice along the coast,
contributing to the negative bias noted above. This dif-
ference in spatial pattern serves as an explanation for the
above noted regional mean ice thickness difference between
PIOMAS and ICESat (Figure 5). However, while the
underestimate of ice thickness near the Canadian coast is
qualitatively supported by comparisons with near coastal
observations from the sea ice CDR (Figure 7), PIOMAS
underestimates are much smaller (0.08 m) than apparent
from the ICESat comparison. It is possible that the ICESat
retrievals may overestimate ice thickness along those coastal
area. However, some of the EM data near Ellesmere Island
also tend to show thicker ice than PIOMAS, pointing to
potential model biases which suggest that additional work is
needed to characterize ice thickness variability in those
areas. PIOMAS ice thickness in the Beaufort and Chukchi
Seas is somewhat thinner than observed from ICESat.
Because it is derived for regional means, the correction
of −0.20 m applied to the ICESat regional means to adjust
October–November ICESat retrievals to the 1 November
reference date as done for KR09 was not applied to the maps
shown in Figure 6.

4. Ice Thickness Trends and Uncertainties

4.1. Comparisons With Reconstructed
Time Series [KR09]

[23] So far we have examined local and regional uncer-
tainties and differences in spatial patterns. What about long‐
term trends, the ultimate goal of this paper? To determine
uncertainties in long‐term trends, one needs to address the
irregular spatial and temporal sampling of the available data.
Satellite‐derived records (ICESat) are still too short. RPW08
address in situ sampling issues by fitting an empirical
model to available in situ data for the DRA and KR09
concatenate the ICESat record to construct a time series of
mean ice thickness for the DRA. We use this time series
to assess the corresponding long‐term variability in PIOMAS
ice thickness.
[24] Figure 8 shows PIOMAS ice thickness (IC‐SST)

averaged over the DRA and ice thickness time series from
KR09. PIOMAS ice thickness is well within the error esti-
mates of KR09, except for a period in the early 1980s. This
discrepancy possibly arises from the higher‐order poly-
nomials utilized by RPW08 to interpolate submarine data in
space and time.
[25] Figure 8a shows in situ observations from the sea ice

CDR that were taken within the DRA over the January–May
time window. There are no February–March observations
for the 1981–1985 period, when the discrepancy between
PIOMAS and the regression model occurs and the regres-
sion model fit appears to be influenced strongly by the fall
observations. During that time, though still apparent, the
discrepancy between PIOMAS and the regression model is
substantially smaller. The scatter of individual CDR observa-
tions about their means illustrates the large spatial variability
in ice thickness that makes the construction an Arctic‐wide
time series from sparse in situ observations so difficult. The

Figure 4. Comparison of PIOMAS (IC‐SST) with in situ
observations from the sea ice CDR from 1999 to 2010
(a) for EM measurements and (b) NPEO ULS measure-
ments. Colors in Figure 4a refer to different measurement
campaign years and in Figure 4b to years of deployment
for NPEO ULS instruments.
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differences between the sea ice CDR means and the regression
model show the importance and difficulty of accounting for
this sparse sampling as attempted by RPW08.
[26] KR09’s stated uncertainty of 0.50 m is the standard

deviation of the error of the regression model for monthly
averaged ice thickness spatially averaged over the DRA. It
can be interpreted as the expectation that 67% of observed
monthly averages will lie within this bound. Given the length
of the time series of 34 years and ignoring autocorrelation,
one would then expect up to 11 years of data to lie outside
this bound. Thus, even though several of the model data
points in the early 1980s fall outside the error bounds of the
KR09 time series, the ice thickness predicted by PIOMAS for
the DRA is statistically consistent with the reconstructed

KR09 time series. RMS differences between the PIOMAS
(IC‐SST) and the KR09 time series are 0.40 and 0.32 m for
spring and fall, respectively, i.e., within the uncertainty of the
KR09 thickness estimates. The mean bias is 0.17 m and near
zero for spring and fall, respectively. However, PIOMAS
model trends for the 1979–2010 periods are −0.25 and
−0.38 m decade–1 for spring and fall for the IC‐SST run,
respectively. This contrasts with trends of −0.53 and −0.50 m
decade–1 for the KR09 time series. Given the functional form
underlying the KR09 time series a comparison of linear
trends of the time series is probably not the best way to assess
the agreement. Instead, the qualitative similarity of the time
series may be a more useful indicator of agreement between
model and observations.

Figure 5. Comparison of ice thickness and volume for (a) entire ICESat domain from PIOMAS (IC‐SST)
and (b) for the DRA only.
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Figure 6. Mean 2003–2008 (a,b) ICESat and (c,d) PIOMAS ice thickness for February–March (Figures 6a
and 6c) and October–November (Figures 6b and 6d). (e,f) Difference maps are shown. The color scale is
given in m.
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[27] Large differences between PIOMAS and the in situ
observations from the CDR are apparent in the gap between
the regression model and the beginning of the ICESat period
(2000–2003). These observations are from the NPEO which
we have previously shown to have large biases relative to
PIOMAS. The discontinuity of these observations relative to
the PIOMAS and KR09 time series further raises questions
about their validity. We need to however recognize that if
the pre‐2006 NPEO thickness estimates are indeed correct
and representative for sea ice conditions during that period
that our understanding of the variability of sea ice thickness
and volume in the Arctic would be seriously challenged.
[28] Though KR09 provide no uncertainty estimate for

their trends, those can be estimated to be in the order of
0.10 m decade–1 by specifying the uncertainties reported
by KR09 as measurement errors in a linear fit procedure
[e.g., Press et al., 1992]. The difference in mean ice thick-
ness trend between PIOMAS and KR09 is therefore outside
the random uncertainties, thus pointing to the likelihood
that systematic errors such as the previously noted tendency
of PIOMAS to underestimate thick and overestimate thin ice
accounts for the differences in trends. Both the IC and model‐
only runs show substantially larger thinning in the DRA
region with October trends of −0.53 m decade−1, thus being
closer to the KR09 record. Our choice of IC‐SST as our
reference integration therefore clearly is conservative with
respect to the trend.

4.2. Thickness Change From Paired Observations

[29] An alternative approach may also be taken to deal
with the sparse spatial and temporal sampling of the obser-
vation. This approach assesses temporal change from obser-

vations for which repeat coverage exists at the same locations
at same time of the year. Rothrock et al. [1999] and KR09 use
this approach by grouping observations by location and period
and calculate multidecadal trends for each of those location.
Here we use a similar approach and compare modeled 10 year
trends with observed 10 year trends at the same locations.
[30] We search the sea ice CDR database for pairs of

repeat observations at the same location and time of the year
(month) that are at least 10 years apart. Figure 9 shows the
comparison of 10+ year trends from sea ice CDR observa-
tions and PIOMAS. Observations are paired regardless of
the observation system. Naturally, the distribution of trends
computed in this fashion is rather noisy, because observa-
tions reflect only small areas and two‐point trends are
strongly by affected by year‐to‐year variability. In addition
pairs of observations may have different biases due to the
nature of the measurements (e.g., deployment depth or
measurement system). A total of N = 572 pairs yield a mean
thickness change for PIOMAS of −0.42 m decade–1. The
observed mean decrease is somewhat larger with −0.48 m
decade–1. Using a T means test, we find that the mean trend
for PIOMAS is significantly (p < 0.003) different from the
mean thickness change obtained from the observations
Based on this statistic we find that PIOMAS underestimates
ice thickness decline by as much as 0.06 m decade–1. Note
however that previously discussed differences in measure-
ment biases affect this finding. While the sampling of the
paired observations precludes using the derived changes as a
representative value for changes in basin‐wide ice thickness
over the period, the difference between model and observed
trends (0.06 m decade–1) maybe taken as an indication of the
uncertainty of both estimates. This result provides further

Figure 7. Comparison of PIOMAS (IC‐SST) and airborne EM (AIR‐EM) and moored ULS (IOS‐EBS)
measurements near Canadian coast. (a) Map of comparison locations. (b) Comparison with PIOMAS ice
thickness. ULS measurements are from the IOS‐EBS site.
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Figure 8. Comparison of PIOMAS model run (IC‐SST) with the KR09 regression model constructed from
U.S. submarines and the ICESat‐based ice thickness for (a) February–March and (b) October–November.
PIOMAS data are averages for the two months bracketing the ICESat campaigns. The regression model is
evaluated for 1 March and 1 November. ICESat data for fall are corrected to 1 November by subtracting
0.20 m. Shaded areas represent uncertainties (1s) estimated by KR09. Individual monthly observations from
the sea ice CDR are shown as small gray dots. Large gray dots represent the mean of all observations for that
time window. Dashed lines represent linear fits for PIOMAS (black dashed), and KR09 (blue dashed/red
dashed). Observation means can substantially differ from the regression model because of the space‐time
weighting applied in constructing the regression model (see RPW08 for details).
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evidence that PIOMAS yields a conservative estimate of
changes in ice thickness.

5. Ice Volume Uncertainties and Trends

[31] Total Arctic sea ice volume can be written as V =S hi ai
where hi is the mean thickness of sea ice (including open
water) in grid cell i, ai is the cell area, and the sum is over N

cells. If the error variance of hi is denoted by sh
2 (independent

of i), and if the errors in hi are uncorrelated with each other,
then the error variance of V is given by sv

2 = sh
2
S ai

2. Defining
the mean square grid cell area by a2 = (1/N) S ai

2, the error
standard deviation of V is then given by �v ¼

ffiffiffiffi

N
p

a�h

(equation (1)). The uncertainty in volume is proportional to
the uncertainty in thickness sh, the RMS grid cell area a, and
the square root of the number of grid cells N. The volume is

Figure 9. Comparison of 10+ year differences at repeat locations. (a) Locations, (b) differences for
observations, (c) differences for PIOMAS, and (d) histograms of difference distributions for observations
and the model are shown. Mean difference from observations is –0.48 m decade–1 and from PIOMAS is
−0.42 m decade–1. Locations of repeats are coded in different colors in Figure 9a to show the separation
distance. Colors in Figures 9c and 9d indicate different sources of thickness information (see Figures 2
and 3). Dashed lines in Figure 9d are the means of the distributions for PIOMAS and observations.
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affected by the definition of the domain as well as coastlines.
The domain and grid are fixed for the PIOMAS, so ai is a
constant with time and will not impact the uncertainty of the
time series. To obtain an estimate of the potential effect of
coast line uncertainties we obtained the AMSR‐E 6.25 km
land mask from NSIDC. Comparing this mask with the
PIOMAS grid, we estimate the total Arctic ice volume
uncertainty due to coastline uncertainty to be less than 2% of
total ice volume.

5.1. Volume and Trend Uncertainty From In Situ
Thickness Observations

[32] The direct comparisons of observed ice thickness
with PIOMAS integrations (section 3.1) yielded a maximum
standard deviation of the difference between modeled and
observed mean monthly ice thickness for each grid cell of
0.78 m and maximum bias of –0.17 m. Accounting for the
varying PIOMAS grid spacing and the fact that a different
number of grid cells are ice covered in March and October,
we use equation (1) and set the grid cell uncertainty sh, to
0.78 m; N is set to the number of grid cells with a thickness
greater than 0.15, we use the temporal mean (1979–2010)
of 15,548 for March and 10,132 for October for N; the
RMS grid cell area a is set to 1075 and 879 km2 for March
and October, respectively. The resulting random ice volume
uncertainty for the entire PIOMAS domain is rather small:
0.1 × 103 km3 for March and 0.07 × 103 km3 for October.
Much more significant is the impact of potential biases in ice
thickness. By multiplying the established −0.17 m bias with
the ice‐covered areas for March and October, the volume bias
is calculated. Over the PIOMAS domain, the modeled ice
volume bias relative to the CDR with submarine data is
−2.8 × 103 km3 for March and −1.5 × 103 km3 for October,
or about 10% of the total ice volume at those times.
[33] Using above calculated ice volume uncertainty of

0.1 × 103 km3 as the measurement error when calculating
the trend [Press et al., 1992] of the monthly volume
anomaly yields an uncertainty of 0.07 × 103 km3 decade–1 in
the linear trend. This trend uncertainty needs to be viewed as

rather optimistic since it is based on the assumption that errors
are random. Biases, if assumed constant, do not affect the
uncertainty of the volume trends. However, this assumption is
likely not a good one. As shown in 3.1, comparisons with
observations indicate that PIOMAS tends to overestimate
the thickness of thin ice and underestimate the thickness of
thick ice. In section 5.2 we will therefore attempt to quantify
the impact of such systematic errors on ice volume trends.

5.2. Uncertainty Using Adjusted Model Output

[34] As previously discussed, the comparison of PIOMAS
results with thickness observations, assuming that those are
free of systematic errors, shows that the model appears to
overestimate thin ice and underestimate thick ice (Figure 2).
How do such systematic differences impact ice volume
trends? To answer this question, we transform modeled ice
thickness to an “adjusted” ice thickness that removes such
differences. We estimate linear coefficients for hobs = a +
b*hModel using all in situ observations using a procedure that
allows for errors in both dependent and independent vari-
ables [Williams et al., 2010]. Making the assumption that
this relationship holds everywhere and at all times, we apply
the resulting coefficients to individual PIOMAS grid cells
and then sum spatially to recompute time series of ice vol-
ume anomalies.
[35] The results (Figure 10) show that anomalies are rel-

atively insensitive to this correction but that the downward
trend is somewhat increased. Because thick ice in the earlier
period increases in thickness, and thinner ice during the later
period is thinned by this adjustment, the downward decadal
trend increases from −2.8 to −3.5 × 103 km3 decade–1. Mean
total ice volume over the 1979–2010 period decreases from
21 to 19 × 103 km3. Note that this exercise is not designed
to correct potential model biases, nor do we discount the
possibility that model and observational differences are due
to errors in the observations. It does however provide a
measure of the sensitivity of ice volume estimates to the
noted systematic differences between modeled and observed
ice thickness. Using the change in trends as a measure of

Figure 10. Adjusted and unadjusted monthly ice volume anomalies. Adjustments are calculated based
on regressions between PIOMAS and observed ice thicknesses from the sea ice CDR.
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uncertainty, we arrive at a value of the trend uncertainty
of 0.7 × 103 km3 decade–1. The standard deviation of the
difference between the unadjusted and the adjusted volume
anomalies is 0.76 × 103 km3 which can be viewed as an
indicator of the uncertainty of the individual monthly volume
estimates.

5.3. Extrapolation Error

[36] At this point we have assessed PIOMAS uncertainties
from direct observations, interpolated (regressed) submarine
ULS data, and ICESat measurements. We showed that
PIOMAS performance appeared slightly worse for the entire
ICESsat domain than for the DRA only. Beyond the com-
parison with ICESat, little is known about ice thickness
uncertainty outside the DRA.
[37] In order to gain insight into how well sea ice thick-

ness variability inside the DRA relates to sea ice thickness
variability in the entire Arctic (PIOMAS domain), we cor-
relate PIOMAS ice thickness averaged for the DRA with
average ice thickness for the entire domain for each month

of the year (Figure 11). For the purpose of this calculation
mean ice thickness is calculated using a minimum thickness
threshold of 0.15 m. Both time series are detrended to
remove the correlation due to the long‐term trend. Making
the assumption that the relationship between PIOMAS ice
thickness for the DRA to the PIOMAS domain average
reflects reality, we can estimate the potential error incurred
by estimating total Arctic ice thickness from DRA averages.
The explained variance values range from 32% to 95%
depending on the model version and the month. Note that
the model‐only integration, which does not use assimilation,
shows little seasonal variation in the amount of explained
variance. In contrast, the IC‐SST and IC integrations which
assimilate data to constrain the model have lower values
of explained variance, particularly in spring and fall. This
suggests that the assimilation process introduces a substan-
tial amount of variance into the ice thickness outside the
DRA and that ice thickness variability outside the DRA is
much less controlled by the dynamics and thermodynamics
captured by the model and forcing data than in the DRA.

Figure 11. Monthly detrended regression of the mean monthly ice volume for the DRA on ice volume over
the entire PIOMAS domain (a) explained variance r2 and (b) residual error of regression or “extrapolation
error.” Green line is model only, black line is IC, and red line is IC‐SST.
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PIOMAS is apparently getting significant help from the
assimilation procedure. Future model development and thick-
ness measurement campaigns should therefore focus on areas
outside the DRA. Note however, that in PIOMAS assimila-
tion runs, at least 50% (except for September) of the variance
of the volume over the entire domain is still explained by the
ice thickness in the DRA. Thus, the mean thickness error
incurred by estimating Arctic‐wide ice thickness from DRA
values, estimated as the residual error of the regression shown
in Figure 11b, is relatively small (<0.1 m).
[38] Using the ice‐covered area of the PIOMAS domain

outside the DRA to convert this thickness extrapolation
uncertainty into a volume uncertainty yields an additional
volume uncertainty of 0.63 × 103 km3 for October. Noting the
previously established volume uncertainty of 0.1 × 103 km3

based on CDR data for the DRA, we can see that the random
volume uncertainty for the PIOMAS domain is dominated
by this extrapolation error. This analysis assumes that the
model captures the natural correlation of ice thickness cov-
ariability between the DRA and the entire PIOMAS domain,
which is of course unproven since little data exist which
would allow systematic evaluation.

5.4. Volume Uncertainty From Different
PIOMAS Runs

[39] In sections 5.1–5.3, we assessed modeled ice volume
uncertainties through comparisons with observations. Given
uncertainties in sampling and data quality, it appears prudent
to further support the results through model sensitivity stud-
ies. Here we compare three different PIOMAS integrations
and examine the range of ice volume and anomaly estimates
and linear ice volume trends. Integrations of PIOMAS using
different parameters for ice strength and using different inputs
for assimilation are compared. This approach follows the
perturbed physics approach [e.g., Sanderson et al., 2008] to
estimating uncertainty in climate model projections. However,
in contrast to perturbed physics experiments which create an
ensemble of integrations from which uncertainty with respect

to a particular parameter can be estimated, we here select three
experimental integrations that have evolved over time and
provide similarly good validation statistics when compared to
submarine ice draft data. The differences between these runs
can be considered one measure of the model uncertainty as it
represents the sensitivity of ice volume estimates to a subset of
“reasonable” choices. Reasonable in this context is defined as
meeting specific validation criteria such as explained variance
and mean of observed ice draft. As discussed in section 2.1
differences between the IC‐SST and IC are in part due to
SST assimilation, in part due to a different choice in ice
strength parameterization [Steele et al., 1997].
[40] Figure 12 shows the monthly ice volume anomaly

relative to the 1979–2009 mean from the three integrations.
Resulting volume anomaly trends for the period 1979–2010
range from −2.8 × 103 km3 decade–1 for the run assimilating
ice concentration and SST (IC‐SST) to −3.8 × 103 km3

decade–1 for the run without assimilation (model only) with
a mean trend over all integrations of trend −3.4 × 103 km3

decade–1. The uncertainty in the ice volume anomaly, esti-
mated as the time averaged standard deviation of the three
runs about the three‐run mean anomaly, is 0.76 × 103 km3.
Individual runs differ in mean volume by as much as 3.8 ×
103 km3 in March and 2.4 × 103 km3 in October. Time
averaged standard deviations about the three‐run volume
mean are 2.25 and 1.35 × 103 km3 for March and October,
respectively, and provide one measure of the total ice volume
uncertainty. These differences arise largely from the fact that
the no assimilation run (model only) has significantly larger
ice volume throughout the period. Volume anomaly uncer-
tainties estimated in this fashion are substantially smaller than
for the total volume because individual model biases are
removed when the anomalies are computed.
[41] Which run is better? What is the actual trend? How

can we estimate an uncertainty of ice volume and trends from
these different integrations? There is of course no simple
answer to these questions. Both model‐only and IC‐SST runs
have nearly identical validation statistics when compared

Figure 12. Monthly ice volume anomalies from three different PIOMAS integrations. Anomalies are
computed relative to the 1979–2009 period. The 1979–2010 linear trends for different model runs and
for the multirun mean are given in the legend.

SCHWEIGER ET AL.: ARCTIC SEA ICE VOLUME C00D06C00D06

15 of 21



with in situ ice thickness observations, though the mean
difference between those runs is largest where there are few
validation data. Both ice concentration‐only (IC) and no
assimilation (model only) runs have long‐term trends that
compare more favorably with the concatenated time series
of KR09. Both assimilation runs constrain the ice con-
centrations to observations and therefore provide a more
accurate representation of ice extent and concentration. So
what do we do? Until further improvements in models and
observations allow us to clearly identify the “best” model
integration, it appears reasonable, particularly for climate
change detection and attribution questions, to select the

integration with the most conservative estimate for the trend
(–2.8 × 103 km3 decade–1) as our “reference” integration and
use the range in trends (1.0 × 103 km3 decade–1) as an indi-
cator of potential uncertainty.

6. Applications

6.1. Comparisons of PIOMAS and CCSM3 Ice
Volume and Extent Change

[42] To put the uncertainty estimate for ice volume trend
into context we compare PIOMAS‐derived ice thickness
trends with those derived from the NCAR Community

Figure 13. Fractional ice volume and extent anomalies relative to 1958–1978 from PIOMAS (IC) and
CCSM3 combined 20th century and A1b scenario ensembles and preindustrial control ensemble for
(a) March and (b) September. Shaded areas indicate the standard deviation about the ensemble mean
for the CCSM3 ensembles.
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Climate System Model V3. Northern Hemisphere ice vol-
ume and ice extent anomalies from the 20th century run
(20C3M) and A1b scenario runs are computed for five
realizations. Anomalies are computed relative to the 1958–
1978 period and are expressed as percentages of the total
ice volume or ice extent for the period. Five hundred years
from the preindustrial control run are used to create a five‐
member pseudoensemble to represent internal variability.
[43] Figure 13 shows the fractional anomalies for ice

extent and ice volume from the NCAR CCSM3 model runs
and PIOMAS for September and March. The PIOMAS IC
run is used in this case instead of the reference IC‐SST run
since the IC‐SST starts after 1975 because of a lack of SST
data. In both seasons, ice volume anomalies begin to sepa-
rate from the control run earlier than ice extent anomalies.
During the winter season, when the ice extent is in part
controlled by geography, the separation between the volume
and extent lines is larger and continues to grow through
2050. In the fall seasons, relative ice volume and ice extent
losses narrow toward the end of the period when little ice
remains. Both the PIOMAS and the CCSM3 simulations
suggest that the ice volume compared to extent is an earlier
indicator of the decline of the ice pack by very roughly 10–
15 years. The noisy nature of the simulations precludes a
precise determination. By the mid‐1990, ice volume losses
in September exceed ice extent losses by a factor of 4 in
both PIOMAS and CCSM3. As the ice thins further, ice
extent losses accelerate relative to volume losses until vol-
ume/extent anomaly ratios are near one by 2050.
[44] Accepting PIOMAS ice volume and ice extent losses

as a proxy for reality, it appears that CCSM3 hindcast/
projection matches rather well. Ice volume and extent losses
stay within or are close to the bottom edge of the envelope
established by the ensemble for most of the time since
significant ice losses began in about 1988. This is the time
when the Arctic Oscillation started a strongly positive phase
for a few years before returning to more normal conditions
[Lindsay and Zhang, 2005]. The exception is since 2007
when ice extent and to a lesser degree the ice volume
dropped significantly below the CCSM3 envelope in the
fall. This observation contrasts with the frequently made
statement that global climate models do not capture the
observed trend in ice extent over the 1953–2006 period
[Stroeve et al., 2007]. As shown in their paper and reiterated
here with respect to ice volume trends, more sensitive cli-
mate models such as the NCAR CCSM3 and Hadley Center
HadGEM1 models have 1979–2006 ice extent and volume
trends that are quite comparable to observed (PIOMAS
proxy) trends. Thus, If we accept this match as a measure of
how well global climate models produce sea ice variability,
then the state of the art is significantly better than apparent
from a multimodel ensemble that includes many models
with much less sophisticated sea ice representations.
[45] Figure 14a shows the ice extent anomalies (km2)

versus the ice volume anomalies (km3) for a subset of IPCC
AR4models deemed to be more realistic based on their annual
cycle and mean ice extent [Wang and Overland, 2009] (see
Table 5 for abbreviations). All models lose ice extent and
volume over time, but models with initially greater, more
realistic sea ice volumes (such as NCAR CCSM3) lose ice
extent more slowly than models with initially smaller sea

ice volumes (such as ECHO‐G or CNRM). In all cases, as the
ice thins, the ice extent loss accelerates.
[46] The ice extent anomalies (E – E0) and ice volume

anomalies (V – V0) are departures from reference values
E0 and V0, which are different for every model. If instead
we use fractional ice extent (E/E0) and fractional ice vol-
ume (V/V0), all the models coalesce onto a single curve
(Figure 14b) of the form: E/E0 = 1 + 0.3*ln(V/V0). This
logarithmic relationship is related to the open water forma-
tion efficiency (OWFE) of [Holland et al., 2006; Merryfield
et al., 2009], which is defined as the fractional change in
open water per meter of vertical ice melt. Merryfield et al.
[2009] found that OWFE is proportional to 1/(mean ice
thickness) for a CCSM3 A1B simulation through 2100.
Taking the derivative of our logarithmic relationship with
respect to V shows that dE/dV is proportional to 1/V, which
is essentially the same as Merryfield’s OWFE relationship,
because sea ice volume per unit area is the same as mean ice
thickness. The relationship between extent and volume fol-
lows from the sea ice thickness distribution, which evolves
with a seasonal cycle. The selection of models based on their
seasonal cycle is a possible explanation for the similarity of
the ice extent/volume relationship in all the models. A more
detailed discussion of these topics will be given by H. Stern
et al. (The relationship between sea ice extent and volume,
manuscript in preparation, 2011).

6.2. Attribution of Ice Volume Loss to Anthropogenic
Greenhouse Forcing

[47] We now address the question how uncertainties in ice
volume affect the attribution of changes in ice loss due to
anthropogenic factors. In order to do this we employ a boot-
strap method [Vinnikov et al., 1999] to establish the proba-
bility that an observed (or proxy) trend could be found in a
control climate without changes in anthropogenic greenhouse
gas forcing.
[48] Figure 15 contrasts the 32 year trend distribution

(1979–2010) in the NCAR CCSM3 preindustrial control run
(500 years), compared with the trends from PIOMAS and
CCSM3 20C3M/A1b runs. Based on this distribution, there
is a negligible probability that a trend of the observed
(PIOMAS) magnitude occurs without anthropogenic forcing.
Using an uncertainty for the observed trend of 1 × 103 km3

decade–1, and an upper bound (−1.8 × 103 km3 decade–1) for
ice volume loss, increases the probability to 0.01%. Since our
choice of the IC‐SST run is already conservative with respect
to the downward trend, and there are numerous indications that
the actual trend is larger, this upper bound appears extremely
unlikely. Making the assumption that the preindustrial control
run reflects the internal variability of the system properly, it
is very unlikely that a trend in ice volume as obtained by
PIOMAS, even accounting for large potential errors, would
have occurred without anthropogenic forcings. Accepting the
close match between CCSM3 and PIOMAS ice volume losses
as evidence that CCSM3 provides a realistic sea ice sensitivity
to climate forcing, we conclude that the attribution of ice
volume loss to changes in anthropogenic greenhouse gases is
not sensitive to the errors in observed ice volume losses. We
emphasize that this exercise is not designed to resolve the
issue of attribution but rather to examine the sensitivity of
attribution to uncertainty of ice volume observations.
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Figure 14. (a) Ice volume anomaly versus ice extent anomaly from PIOMAS and a subset of CMIP3
models. Anomalies are computed for each model relative to the 1958–1978 mean ice volume for the
1958–1978 period, which is given in km3 in the legend following the name of the model. (b) Same as
in Figure 14a but volume and extent anomaly are plotted as fractions of the 1958–1978 mean. Definition
of model abbreviations can be found in Table 5.
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6.3. Is It a Record?

[49] We are often asked whether a particular year repre-
sents a new record in ice volume. For example, during the
fall of 2010, PIOMAS‐derived September ice volume was
at a minimum during the 32 year period for which we pro-
vide the anomaly. To assess how our established uncertainty
affects whether any particular year constitutes a “record”
minimum, we examine the time series of minima in the
PIOMAS ice volume time series and compare them to the
established maximum uncertainty for monthly ice volume
of 1.35 × 103 km3 . Only about 25% of new September
minima exceed the previous minimum by more than this
uncertainty. Using the 0.76 × 103 km3 uncertainty for the
anomaly time series, this number rises to 33%. These
numbers underline the difficultly of establishing “records”
from this time series. Using the strict 1.35 × 103 km3

uncertainty criteria, however, 2010 establishes a new record
relative to the previous 2007 record.

7. Summary and Conclusions

[50] Using a number of different approaches we have
attempted to characterize the uncertainty in the PIOMAS
Arctic ice volume record. Even though the results deliver a
spectrum of possible uncertainties, showing how uncertain-
ties are uncertain themselves, it appears possible to provide
conservative estimates that bound the potential error.
[51] Mean ice thickness uncertainty for the DRA is 0.78 m

(RMS) but biases as large as 0.4 m exist. In general PIOMAS,
relative to observations, appears to overestimate the thick-
ness of thin ice and underestimate the thickness of thick ice.

Such systematic differences will affect long‐term trends
in thickness and volume. PIOMAS ice thickness agrees
well (<0.1 m mean difference) with ICESat ice thickness
retrievals for the DRA. Agreement in spatial thickness pat-
terns between PIOMAS and ICESat is very good with pattern
correlations of above 0.8. ICESat retrievals outside the DRA
are considerably thicker (0.4 m mean) than PIOMAS
simulations. This difference arises in part from the fact that
ICESat retrievals along the northern coast of Greenland and
the Canadian Archipelago are considerably thicker (0.7 m)
than PIOMAS integrations. However, model comparisons
with in situ observations in these areas show a much better
agreement, suggesting that ICESat thickness estimates may
be too high, though additional study of this issue is war-
ranted. We further find that detrended ice thickness esti-
mates for the DRA correlate highly with areas outside the
DRA (r ∼0.8), although PIOMAS does not capture some of
the variability outside the DRA when run without assimi-
lation. Considering that substantial total ice volume uncer-
tainties arise from areas outside the DRA where a large
fraction of in situ measurements are located, a renewed
effort for additional measurement campaigns and modeling
efforts appears warranted.
[52] What about multiyear trends? Our reference integra-

tion, a model run that assimilates SST and ice concentrations
shows the mean monthly ice volume anomaly decreases by
−2.8 × 103 km3 decade–1 over the period 1979–2010. How-
ever, from comparisons with in situ observations, ICESat
retrievals, and alternate model experiments, we have good
reason to believe that this estimate is conservative and that
actual downward trends are larger. Using the range between

Figure 15. Distribution of 32 year trends in ice volume in the CCSM3 500 year control run (blue bars).
Trends from PIOMAS along with extreme error bounds (1 × 103 km3 decade–1) are plotted (gray dot and
error bars). Also trends from the 20th century/A1b ensemble members are shown (stars).

SCHWEIGER ET AL.: ARCTIC SEA ICE VOLUME C00D06C00D06

19 of 21



different integration as a measure of uncertainty, we arrive at
a conservative uncertainty estimate of 1 × 103 km3 decade–1.
[53] The uncertainty estimates stated throughout this paper

show considerable range. The spatial and temporal sampl-
ing and the unknown systematic errors of the measurement
systems preclude more definite uncertainty estimates. Further
work will need to attempt to better characterize the measure-
ment biases that may exists for each platform, and to examine
systematic modeling errors that may have spatial and temporal
variability. For many purposes, however, conservative esti-
mates established here may suffice. Two examples are dis-
cussed here and may provide guidance for other applications.
[54] PIOMAS ice volume uncertainties and trends were

examined in the context of climate change attribution and
the declaration of record minima. Ice volume losses in
CCSM3 integrations compare well with PIOMAS trends.
We find no trends of similar magnitude in the distribution
of 32 year trends in the preindustrial control simulation. We
therefore conclude that attribution studies using models
with similar sea ice sensitivities and internal variability as
the CCSM3 are not likely to be affected by uncertainties
in observed (proxy) ice volume anomaly trends. Attempts to
label new September minima as new records are significantly
more susceptible to modeling error. Assuming stationarity, the
likelihood of establishing a “new record” that passes a strin-
gent examination of uncertainty is less than 25%. However,
the 2010 September ice volume anomaly did in fact exceed the
previous 2007 minimum by a large enough margin to declare
it a new record.
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