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Abstract

Understanding the uncertainty of a neural net-
work’s (NN) predictions is essential for many
purposes. The Bayesian framework provides
a principled approach to this, however ap-
plying it to NNs is challenging due to large
numbers of parameters and data. Ensembling
NNs provides an easily implementable, scal-
able method for uncertainty quantification,
however, it has been criticised for not being
Bayesian. This work proposes one modifica-
tion to the usual process that we argue does
result in approximate Bayesian inference; reg-
ularising parameters about values drawn from
a distribution which can be set equal to the
prior. A theoretical analysis of the procedure
in a simplified setting suggests the recovered
posterior is centred correctly but tends to
have underestimated marginal variance, and
overestimated correlation. However, two con-
ditions can lead to exact recovery. We argue
that these conditions are partially present in
NNs. Empirical evaluations demonstrate it
has an advantage over standard ensembling,
and is competitive with variational methods.

Interactive demo: teapearce.github.io.

1 Introduction

Neural networks (NNs) are the current dominant force
within machine learning, however, quantifying the un-
certainty of their predictions is a challenge. This is
important for many real-world applications (Bishop,
1994) as well as in auxiliary ways; to drive exploration
in reinforcement learning (RL), for active learning, and
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to guard against adversarial examples (Smith and Gal,
2018; Sünderhauf et al., 2018)

A principled approach to modelling uncertainty is pro-
vided by the Bayesian framework. Bayesian Neural Net-
works (BNNs) model the parameters of a NN as proba-
bility distributions computed via Bayes rule (MacKay,
1992). Whilst appealing, the large number of param-
eters and data points used with modern NNs renders
many Bayesian inference techniques that work well in
small-scale settings infeasible, e.g. MCMC methods.

Ensembling provides an alternative way to estimate
uncertainty: it aggregates the estimates of multiple
individual NNs, trained from different initialisations
and sometimes on noisy versions of the training data.
The variance of the ensemble’s predictions may be
interpreted as its uncertainty. The intuition is simple:
predictions converge to similar results where data has
been observed, and will be diverse elsewhere. The
chief attraction is that the method scales well to large
parameter and data settings, with each individual NN
implemented in precisely the usual way.

Whilst ensembling has proven empirically success-
ful (Tibshirani, 1996; Lakshminarayanan et al., 2017;
Osband et al., 2016), the absence of connection to
Bayesian methodology has drawn critics and inhibited
uptake, e.g. Gal (2016) [p. 27].

3xNNs, Initialised

NN1

NN2

NN3

3xNNs, Trained

3xNNs Predictive Dist. GP Predictive Dist.

Figure 1: An ensemble of NNs, starting from different
initialisations and trained with the proposed modifica-
tion, produce a predictive distribution approximating
that of a GP. This improves with number of NNs.

https://teapearce.github.io/portfolio/github_io_1_ens/
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1.1 Contribution

This paper proposes, analyses and tests one modifi-
cation to the usual NN ensembling process, with the
purpose of examining how closely the resulting proce-
dure aligns with Bayesian inference. The modification
regularises parameters about values drawn from an
anchor distribution, which can be set to be equal to the
prior distribution. We name this procedure anchored
ensembling - see figure 1 for an illustration. This falls
into a family of little known Bayesian inference meth-
ods, randomised MAP sampling (RMS) (section 2.2).

Our first contributions do not specifically consider NNs;
we derive an abstracted version of RMS in parameter
space rather than output space. (This abstraction later
allows us to propose RMS for classification tasks for
the first time.) Under the assumption that the joint
parameter likelihood and prior obey a multivariate nor-
mal distribution, we show that it is always possible to
design an RMS procedure to recover the true posterior.

This design requires knowing the parameter likelihood
covariance a priori, which is infeasible except in the
simplest models. We propose a workaround that results
in an approximation of the posterior. In general this
approximation has correct mean but underestimated
variance and overestimated correlation. However, two
conditions lead to an exact recovery: 1) perfectly cor-
related parameters, 2) parameters whose marginal like-
lihood variance is infinite (‘extrapolation parameters’).

We proceed by considering the applicability of RMS to
NNs. We discuss the appropriateness of assumptions
used in the theoretical analysis, and argue that the
two conditions leading to exact recovery of the poste-
rior are partially present in NNs. We postulate this
as the reason that predictive posteriors produced by
anchored ensembling appear very similar to those by
exact Bayesian methods in figures 4, 6, 7 & 8.

The performance of anchored ensembling is assessed
experimentally on regression, image classification, sen-
timent analysis and RL tasks. It provides an advantage
over standard ensembling procedures, and is competi-
tive with variational methods.

2 Background

2.1 Bayesian Neural Networks

A variety of methods have been developed to per-
form Bayesian inference in NNs. Variational infer-
ence (VI) has received much attention both explic-
itly modelling parameters with distributions (Graves,
2011; Hernández-Lobato and Adams, 2015) and also
implicitly through noisy optimisation procedures - MC
Dropout (Gal and Ghahramani, 2015), Vadam (Khan

et al., 2018). Correlations between parameters are
often ignored - mean-field VI (MFVI).

Other inference methods include: Hamiltonian Monte
Carlo (HMC), a MCMC variant which provides ‘gold
standard’ inference but at limited scalability (Neal,
1997); The Laplace method fits a multivariate nor-
mal distribution to the posterior (Ritter et al., 2018).
Whilst ensembling is generally seen as a non-Bayesian
alternative, Duvenaud et al. (2016) interpreted it, with
early stopping, as approximate inference. Aside from
doing Bayesian inference, recent works have begun ex-
ploring prior design in BNNs, e.g. Pearce et al. (2019).

BNNs of infinite width converge to GPs (Neal, 1997).
Analytical kernels exist for NNs with certain activation
functions, including sigmoidal (Error Function, ERF)
(Williams, 1996), Rectified Linear Unit (ReLU) (Cho
and Saul, 2009), and leaky ReLU (Tsuchida et al., 2018).
Whilst GPs scale superlinearly with data (though see
(Wang et al., 2019)), they provide a convenient method
for doing exact inference on small problems. In this
paper we use these GPs as ‘ground truth’ predictive
distributions to compare to wide NNs. In section 5, we
benchmark the ReLU GP on UCI datasets.

2.2 Randomised MAP Sampling

Recent work in the Bayesian community, and indepen-
dently in the RL community, has begun to explore a
novel approach to Bayesian inference. Roughly speak-
ing, it exploits the fact that adding a regularisation
term to a loss function returns a maximum a posteri-
ori (MAP) parameter estimate - a point estimate of
the Bayesian posterior. Injecting noise into this loss,
either to targets or regularisation term, and sampling
repeatedly (i.e. ensembling), produces a distribution
of MAP solutions mimicking that of the true poste-
rior. This can be an efficient method to sample from
high-dimensional posteriors (Gu et al., 2007; Chen and
Oliver, 2012; Bardsley et al., 2014).

Whilst it is possible to specify a noise injection that
produces exact inference in linear regression, there is
difficulty in transferring this idea to more complex set-
tings, such as NNs or classification. Directly applying
the noise distribution from linear regression to NNs has
had some empirical success, despite not reproducing the
true posterior (Lu and Van Roy, 2017; Osband et al.,
2018) (section 3.2). A more accurate, though more
computationally demanding solution, is to wrap the
optimisation step in an MCMC procedure (Bardsley,
2012; Bardsley et al., 2014).

These works have been proposed under several names
including randomise-then-optimise, randomised prior
functions, and ensemble sampling. We refer to this fam-
ily of procedures randomised MAP sampling (RMS).
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The distribution of fffMAP (θθθanc)
recovers original posterior.

Figure 2: Demonstration of (exact) RMS in a 2D parameter space.

3 RMS Theoretical Results

This section presents several novel results. We first de-
rive a general form of RMS by analysing the procedure
in parameter space, using the simplifying assumption
that both prior and parameter likelihood are multi-
variate normal distributions. This is an abstraction
compared to previous works. Appendix A contains
definitions and proofs in full.

If the parameter likelihood covariance is known a priori,
we show how RMS can be designed to recover the true
posterior. In general, this will not be known, and we
propose a practical workaround requiring knowledge
only of the prior distribution.

This workaround no longer guarantees exact recovery
of the posterior. We derive results specifying in what
ways the estimated RMS posterior is in general bi-
ased, including underestimated marginal variance, and
overestimated correlation coefficient. We discover two
special conditions that lead to an exact recovery.

The appropriateness of the normal assumption in non-
linear models for general data likelihoods will be dis-
cussed in section 4, when we consider applying this
RMS scheme with workaround to NNs.

3.1 Parameter-Space Derivation

Consider multivariate normal prior and parameter
likelihood distributions, P (θθθ) = N (µµµprior,ΣΣΣprior),
P✓✓✓(D|θθθ) / N (µµµlike,ΣΣΣlike). We make a distinction be-
tween two forms of likelihood: data likelihood, which
is defined on the domain of the target variable, and
parameter likelihood, which is specified in parameter
space. (See definition 1.)

From Bayes rule the posterior, also normal, is,

N (µµµpost,ΣΣΣpost) / N (µµµprior,ΣΣΣprior)N (µµµlike,ΣΣΣlike)
(1)

The MAP solution is simply θθθMAP = µµµpost,

θθθMAP = ΣΣΣpostΣΣΣ
�1
likeµµµlike +ΣΣΣpostΣΣΣ

�1
priorµµµprior, (2)

where ΣΣΣpost = (ΣΣΣ�1
like +ΣΣΣ

�1
prior)

�1. In RMS we assume
availability of a mechanism for returning θθθMAP, and
are interested in injecting noise into eq. 2 so that a
distribution of θθθMAP solutions are produced, matching
the true posterior distribution.

A practical choice of noise source is the mean of the
prior, µµµprior, since a modeller has full control over this
value. Let us replace µµµprior with some noisy random
variable, θθθanc. This is the same place as a hyperprior
over µµµprior, though with a subtly different role. Denote
fffMAP(θθθanc) a function that takes as input θθθanc and
returns the resulting MAP estimate,

fffMAP(θθθanc) = ΣΣΣpostΣΣΣ
�1
likeµµµlike +ΣΣΣpostΣΣΣ

�1
priorθθθanc. (3)

Accuracy of this procedure hinges on selection of
an appropriate distribution for θθθanc, which we term
the anchor distribution. The distribution that will
produce the true posterior can be found by setting
E[fffMAP (θθθanc)] = µµµpost and Var[fffMAP (θθθanc)] = ΣΣΣpost.

Theorem 1. In order that, P (fffMAP(θθθanc)) = P (θθθ|D),
the required distribution of θθθanc is also multivariate
normal, P (θθθanc) = N (µµµanc,ΣΣΣanc), where,

µµµanc = µµµprior (4)

ΣΣΣanc = ΣΣΣprior +ΣΣΣpriorΣΣΣ
�1
likeΣΣΣprior. (5)

Figure 2 provides a demonstration of the RMS algo-
rithm in 2D parameter space.

3.2 Comparison to Prior Work

Previous work on RMS (Lu and Van Roy, 2017; Osband
et al., 2019) was motivated via linear regression. Noting
that the MAP solution is given by,

θθθMAP = (
1

σ2
✏

XTX+ΣΣΣ
�1
prior)

�1(
1

σ2
✏

XTy+ΣΣΣ
�1
priorµµµprior),

(6)
these works added Gaussian noise to µµµprior, in addition
to adding noise to y, either by additive Gaussian noise
or bootstrapping. Eq. 6 is a special case of our own
derivation, substituting ΣΣΣ

�1
like = 1/σ2

✏X
TX into eq. 2.
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3.3 Practical Workaround: General Case

The previous section showed how to design an RMS
procedure that will precisely recover the true Bayesian
posterior. Unfortunately, in eq. 5 one must specify
the parameter likelihood covariance in order to set the
anchor distribution. For most models, this is infeasible.

A practical workaround is to simply ignore the second
term in eq. 5 and set ΣΣΣanc := ΣΣΣprior. Using RMS with
this anchor distribution will not generally lead to an ex-
act recovery of the true posterior, however the resulting
distribution can be considered an approximation of it.
Corollary 1.1 derives this RMS approximate posterior
in terms of the true posterior.

Corollary 1.1. Set µµµanc := µµµprior and ΣΣΣanc := ΣΣΣprior.
The RMS approximate posterior is P (fffMAP(θθθanc)) =
N (µµµpost,ΣΣΣpostΣΣΣ

�1
priorΣΣΣpost).

Proof sketch. This follows similar working to the-
orem 1, but instead of enforcing E[fffMAP (θθθanc)] =
µµµpost,Var[fffMAP (θθθanc)] = ΣΣΣpost and solving for
µµµanc,ΣΣΣanc, we now enforce µµµanc := µµµprior, ΣΣΣanc :=
ΣΣΣprior and solve for E[fffMAP (θθθanc)],Var[fffMAP (θθθanc)].

This corollary shows that the means of the two distri-
butions are aligned, although the covariances are not.
Next we state several results quantifying how the RMS
approximate posterior covariance differs compared to
the true posterior covariance. All results assume multi-
variate normal prior and parameter likelihood. They
can be observed in figure 3 (A).

Lemma 1.1. When µµµanc := µµµprior, ΣΣΣanc := ΣΣΣprior

the RMS approximate posterior will in general under-
estimate the marginal variance compared to the true
posterior, Var[fffMAP(θanc)] < Var[θ|D].

Proof sketch. ΣΣΣpostΣΣΣ
�1
priorΣΣΣpost can be rearranged as

ΣΣΣpost �ΣΣΣpostΣΣΣ
�1
likeΣΣΣpost. The second term will be pos-
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Figure 3: Examples of the RMS approximate posterior
when µµµanc := µµµprior,ΣΣΣanc := ΣΣΣprior. MFVI also shown.

itive definite, so the diagonal entry is positive, and
hence, diag(ΣΣΣpost �ΣΣΣpostΣΣΣ

�1
likeΣΣΣpost)i < diag(ΣΣΣpost)i.

Lemma 1.2. Additionally assume the prior is
isotropic. When µµµanc := µµµprior, ΣΣΣanc := ΣΣΣprior the
eigenvectors (or ‘orientation’) of the RMS approximate
posterior equal those of the true posterior.

Proof sketch. ΣΣΣpostΣΣΣ
�1
priorΣΣΣpost = 1/σ2

priorΣΣΣ
2
post. Squar-

ing a matrix only modifies eigenvalues not eigenvectors.
As does multiplying by a constant.

Theorem 2. Additionally assume the prior is
isotropic. For a two parameter model, when µµµanc :=
µµµprior,ΣΣΣanc := ΣΣΣprior, the RMS approximate poste-
rior will in general overestimate the magnitude of the
true posterior parameter correlation coefficient, |ρ|. If
|ρ| = 1, then it will recover it precisely.

Proof sketch. We compute the individual entries result-
ing from the required 2⇥ 2 matrix multiplications.

We were unable to generalise theorem 2 beyond a two
parameter model, but numerical examples (appendix
B.1) suggest that it holds for higher dimensionality.

3.4 Practical Workaround: Special Cases

Having described the covariance bias that in general
will be present in the RMS approximate posterior, we
now give two special conditions under which there is
no bias, and the true posterior is exactly recovered.
Illustrations of these cases are shown in figure 3 (B, C).

Theorem 3. For extrapolation parameters (def. 2 - pa-
rameters which do not affect data likelihood but may af-
fect new predictions) of a model, setting µµµanc := µµµprior,
ΣΣΣanc := ΣΣΣprior, means the marginal RMS approximate
posterior equals that of the marginal true posterior.

Proof sketch. We show that the required matrix multi-
plications, ΣΣΣpostΣΣΣ

�1
priorΣΣΣpost, do not affect rows corre-

sponding to extrapolation parameters.

Theorem 4. Set µµµanc := µµµprior,ΣΣΣanc := ΣΣΣprior. The
RMS approximate posterior will exactly equal the true
posterior, ΣΣΣpost, when all eigenvalues of a scaled ver-
sion of ΣΣΣpost (scaled such that the prior equals the
identity matrix) are equal to either 0 or 1. This cor-
responds to posteriors that are a mixture of perfectly
correlated and perfectly uncorrelated parameters.

Proof sketch. We are searching for solutions to
ΣΣΣpost = ΣΣΣpostΣΣΣ

�1
priorΣΣΣpost. Applying a scaling, ΣΣΣ0

post =

ΣΣΣ
�1/2
priorΣΣΣpostΣΣΣ

�1/2
prior, results in a slightly simpler equation

to find a solution to, ΣΣΣ0

post = ΣΣΣ
02
post. Results for idem-

potent matrices tell us that if ΣΣΣ0

post is singular with all
eigenvalues equal to 0 or 1, this will be a solution.

To provide intuition behind theorem 4 consider a two
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Figure 4: Predictive distributions produced by various inference methods (columns) with varying activation
functions (rows) in single-layer NNs on a toy regression task.

parameter model. If parameters are perfectly corre-
lated, the effect on the data likelihood of an increase in
the first can be exactly compensated for by a change
in the second. If the region over which this applies is
large relative to the prior, the likelihood is a line of
negligible width. This leads to a posterior of negligible
width spanning the prior. Examples in appendix B.1
show what combinations of parameters this holds for.

This section’s proofs show that if these two conditions
exist, RMS makes a precise recovery. In practise, one
would expect to see an increasingly accurate RMS
approximation as these conditions are approached.

4 RMS for Neural Networks

We now apply RMS with practical workaround to NNs.
We will refer to this as ‘anchored ensembling’.

First, we define the NN loss function to be optimised
that corresponds to RMS. We then discuss the validity
of the RMS procedure in the context of NNs, given the
assumptions made. Finally we consider some matters
arising in implementation of the scheme. Appendix,
algorithm 1 details the full procedure.

4.1 Loss Function

Consider a NN containing parameters, θθθ, making pre-
dictions, ŷ, with H hidden nodes and N data points.
If the prior is given by P (θθθ) = N (µµµprior,ΣΣΣprior), max-
imising the following returns MAP parameter estimates.
(See appendix A.1 for the standard derivation.)

θθθMAP = argmax✓✓✓ log(PD(D|θθθ))�
1

2
kΣΣΣ

�1/2
prior·(θθθ�µµµprior)k

2
2

(7)
When µµµprior = 0, this is standard L2 regularisation.
In order to apply RMS we instead replace µµµprior with
some random variable θθθanc. To use the practical form
of RMS, we will draw θθθanc ⇠ N (µµµprior,ΣΣΣprior).

Conveniently, no parametric form of data likelihood
has yet been specified. For a regression task assuming
homoskedastic Gaussian noise of variance σ2

✏ , MAP
estimates are found by minimising,

Lossj =
1

N
||y� ŷj ||

2
2 +

1

N
||ΓΓΓ1/2 · (θθθj �θθθanc,j)||

2
2. (8)

We have defined a diagonal regularisation matrix, ΓΓΓ,
where the ith diagonal element is the ratio of data noise
of the target variable to prior variance for parameter
θi, diag(ΓΓΓ)i = σ2

✏ /σ
2
priori

. Note a subscript has been
introduced, j 2 {1...M}, with the view of an ensemble
of M NNs, each with a distinct draw of θθθanc.

For classification tasks, cross entropy is normally max-
imised, which assumes a multinomial data likelihood,

= �
1

N

NX

n=1

CX

c=1

yn,c log ŷn,c,j+
1

N
||ΓΓΓ1/2 · (θθθj�θθθanc,j)||

2
2,

(9)
where yc is the label for class c 2 {1...C}. Here,
diag(ΓΓΓ)i = 1/2σ2

priori
.

4.2 Validity of RMS in NNs

Theory derived to motivate and analyse RMS assumed
a simplified setting of multivariate normal parameter
likelihoods. This section discusses this assumption,
then considers the prevalence of special conditions (sec-
tion 3.4) that would lead to a close approximation of
the true posterior.

4.2.1 Normal Distribution

Earlier proofs assumed parameter likelihoods follow
a multivariate normal distribution. We provide two
justifications for using this assumption in NNs.

1) Other approximate Bayesian methods incorporate
similar assumptions into their methodologies. MFVI
commonly fits a factorised normal distribution to the
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posterior. The Laplace approximation fits a multivari-
ate normal distribution to the mode of a MAP solution.

2) In figure 5 we visualise conditional parameter likeli-
hoods for actual NNs trained on regression and classi-
fication tasks. After training, a parameter is randomly
selected, and all others are frozen. The chosen parame-
ter is varied over a small range and the data likelihood
calculated at each point. Hence conditional distribu-
tions may be plotted. The plots suggest that thinking
of local modes as approximately normally distributed
is not unreasonable for the purpose of analysis.

This justifies modelling a single mode of the param-
eter likelihood as multivariate normal. However, the
parameter space of a NN is likely to contain many such
modes, with each member of an anchored ensemble
ending up at a different one. We believe that many of
these modes would be exchangeable, for example aris-
ing from parameter symmetries. In this case we believe
that MAP solutions would also be exchangeable.

Empirically we did not observe this multimodality be-
ing problematic - plots such as figure 8 show predictive
posteriors with low bias compared to the true posterior.

4.2.2 Presence of Special Cases

Setting the anchor distribution equal to the prior leads
to an RMS approximate posterior that, in general, has
underestimated variance and overestimated correlation.

Figures 4, 6 & 8 show predictive distributions for an-
chored ensembles that very closely approximate the
true Bayesian posterior, with little sign of bias. This
demands an answer to why, rather than if, anchored
ensembling performs such accurate inference in these
examples. We believe the reason is the presence of the
two special conditions that can lead to exact recovery.

It should be straightforward to see that extrapolation
parameters (definition 2) exist in the figures. Many
hidden nodes will be dead across the range which con-
tains data. Their corresponding final layer weight then
has no effect on the data likelihood, but they do affect
predictions outside of the training data.

0.25 0.50 −2.00 −1.75 0.0 0.5 0.00 0.25
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−0.75 −0.50 −0.25 0.00 0.25 0.00 0.25 0.25 0.50
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Figure 5: Empirical plots of conditional likelihoods for
4 randomly sampled parameters in two-layer NNs.

It is more difficult to see that perfect correlations also
exist, and we provide a numerical example illustrating
this in appendix B.3. Essentially it relies on two hidden
nodes becoming live in between the same two data
points. The associated final layer weights are then
perfectly correlated. Whether these special conditions
exist beyond fully-connected NNs is something tested
indirectly in later experiments with CNNs.

One obvious way to further encourage these condi-
tions is to increase the width of the NN, creating more
parameters and an increasing probability of strong cor-
relations. See also a study of multicollinearity in NNs
(Cheng et al., 2018) [7.1].

4.3 Implementation Practicalities

How many NNs to use in an RMS ensemble? A large
number of samples (and therefore NNs) would be re-
quired to fully capture the posterior parameter distri-
butions. By contrast, if one thinks of each NN as an
iid sample from a posterior predictive distribution, a
much smaller number are required, given output di-
mensionality is typically small. Note this is unaffected
by input dimension. Our experiments in section 5 used
5-10 NNs per ensemble, delivering good performance
on tasks ranging from 1-10 outputs. See also figure 8.
This results in anchored ensembles scaling by O(MN).

Should the NNs be initialised at anchor points? It is con-
venient to draw parameter initialisations from the an-
chor distribution, and regularise directly around these
initialised values, however, we found decoupling initial-
isations from anchor points benefited experiments.

5 Experiments

This section shares high-level findings from experiments.
Further details and hyperparameter settings are given
in appendix E. Appendix C additionally includes two
RL experiments; one testing uncertainty-aware agents
for model-free RL, and one applying anchored ensem-
bles to noisy environments for model-based RL. Code
is available online (github/TeaPearce). Also see our
interactive demo.

5.1 Qualitative Tests

We first examine anchored ensembles on toy problems
to gain intuition about its behaviour compared to pop-
ular approximate inference and ensembling methods.

Figure 4 compares popular Bayesian inference meth-
ods in single-layer NNs for ReLU and sigmoidal non-
linearities. GP and HMC produce ‘gold standard’
Bayesian inference, and we judge the remaining meth-
ods, which are scalable approximations, to them. Both

http://www.github.com/TeaPearce/Bayesian_NN_Ensembles
https://teapearce.github.io/portfolio/github_io_1_ens/
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A. 10x Unconstrained NNs

Toy Regression Task Toy Classification Task

B. 10x Regularised NNs

C. 10x Anchored NNs

D. Ground Truth

Figure 6: Comparison of NN ensemble loss choices.

MFVI (with a factorised normal distribution) and MC
dropout do a poor job of capturing interpolated uncer-
tainty. This is a symptom of the posterior approxima-
tion ignoring parameter correlations - see also figure 3
which shows MFVI failing to capture correlations in
the posterior. This was explored in Foong et al. (2019).

Figure 6 contrasts anchored ensembles trained on eq. 8
& 9, with NN ensembles using standard loss functions,
either with no regularisation term (‘unconstrained’, ΓΓΓ =
0), or regularised around zero (‘regularised’, θθθanc,j = 000).
Regularised produces poor results since it encourages
all NNs to the same single solution and diversity is
reduced. Unconstrained is also inappropriate - although
it produces diversity, no notion of prior is maintained
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Figure 7: Difference in predictive distributions of an
anchored ensemble and a ReLU GP as a function of
width and number of NNs. Mean ±1 standard error.

and it overfits the data.

Figure 8 shows the predictive distribution improving
with number of NNs compared to a ReLU GP, however
it appears a small residual difference remains.

5.2 Convergence Behaviour

To assess how precisely anchored ensembling performs
Bayesian inference on a real dataset, we compared its
predictive distribution with that of an exact method
(ReLU GP) on the Boston housing dataset. Figure 7
quantifies the difference when varying both the width
of the NN, and number of NNs in the ensemble. KL
divergence between the two predictive distributions
was measured and found to decrease as both NN width
and number of NNs was increased. As in figure 8 a
small amount of residual difference remains even for
40xNNs of 1, 024 nodes.

5.3 UCI Regression Benchmarks

In order to compare anchored ensembles against popu-
lar approximate inference methods, we used a standard
BNN benchmark. This assesses uncertainty quality for
UCI regression tasks on data drawn from the same
distribution as the training data (Hernández-Lobato
and Adams, 2015). We also implemented the ReLU
GP to assess the performance limit on these datasets.

Table 1 lists our results. We include results re-
ported for Deep Ensembles (Lakshminarayanan et al.,
2017), which is considered the state-of-the-art ensemble
method. Appendix C.3 provides a full comparison with
other approximate Bayesian methods including Proba-
bilistic Backpropagation, MC Dropout, and Stochastic
Gradient HMC.

Ordering results according to the level of estimated data
noise, σ̂2

✏ , shows a clear pattern - anchored ensembles
perform best in datasets with low data noise, surpassing
both Deep Ensembles and all approximate inference
methods listed in appendix C.3. This may be due to an
increased importance of interpolation uncertainty when
data noise is low, which anchored ensembles models
well. On other datasets, the method is also competitive
(the Deep Ensemble implementation used additional
complexity to capture heteroskedastic uncertainty and
has an advantage on higher data noise datasets).

5.4 Out-of-Distribution Classification

We now test on classification tasks, for out-of-
distribution (OOD) data, with complex NN architec-
tures, and compare against other ensemble methods.

An uncertainty-aware NN should make predictions of
decreasing confidence as it is asked to predict on data
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Figure 8: The predictive distribution of an anchored ensemble approaches that of a ReLU GP.

Table 1: NLL regression benchmark results. See ap-
pendix C for RMSE and variants of our method. Mean
±1 standard error.

Deep Ens. Anch. Ens. ReLU GP1

σ̂2
✏ State-Of-Art Our Method Gold Standard

High Epistemic Uncertainty
Energy 1e-7 1.38 ± 0.22 0.96 ± 0.13 0.86 ± 0.02
Naval 1e-7 -5.63 ± 0.05 -7.17 ± 0.03 -10.05 ± 0.02
Yacht 1e-7 1.18 ± 0.21 0.37 ± 0.08 0.49 ± 0.07

Equal Epistemic & Aleatoric Uncertainty
Kin8nm 0.02 -1.20 ± 0.02 -1.09 ± 0.01 -1.22 ± 0.01
Power 0.05 2.79 ± 0.04 2.83 ± 0.01 2.80 ± 0.01
Concrete 0.05 3.06 ± 0.18 2.97 ± 0.02 2.96 ± 0.02
Boston 0.08 2.41 ± 0.25 2.52 ± 0.05 2.45 ± 0.05

High Aleatoric Uncertainty
Protein 0.5 2.83 ± 0.02 2.89 ± 0.01 *2.88 ± 0.00
Wine 0.5 0.94 ± 0.12 0.95 ± 0.01 0.92 ± 0.01
Song 0.7 3.35 ± NA 3.60 ± NA **3.62 ± NA

1 For comparison only (not a scalable method). * Trained on 10, 000 rows
of data. ** Trained on 20, 000 rows of data, tested on 5, 000 data points.

further from the distribution seen during training. To
test this, we report the proportion of high confidence
predictions (defined as a softmax output class being
� 90%) made by various ensemble systems - uncon-
strained, regularised, and anchored (as in section 5.1).

We trained on three different datasets, using a NN
architecture appropriate to each: 1) Fashion MNIST
image classification; 3 fully-connected layers of 100
hidden nodes. 2) IMDb movie review sentiment classifi-
cation; embedding + 1D convolution + fully-connected
layer. 3) CIFAR-10 image classification; convolutional
NN (CNN) similar to VGG-13 (9 million parameters).

The confidence of predictions on novel data categories
not seen during training was assessed. Table 2 shows
example OOD images shown to the NNs trained on
CIFAR-10. Edge refers to two CIFAR classes held out
during training (ships, dogs). Appendix E provides
OOD examples for other datasets.

The three tables show similar patterns. Whilst all meth-
ods predict with similar confidence on the training data,
confidence differs greatly for other data categories, with
anchored ensembles generally producing the most con-
servative predictions. This gap increases for data drawn
further from the training distribution. Encouragingly,
we observe similar (though less extreme) behaviour to
that in the toy examples of figure 6.

Table 2: Proportion of predictions that were high con-
fidence on out-of-distribution data, e.g. a single regu-
larised NN trained on CIFAR-10 made high confidence
predictions 54% of the time when asked to predict on
MNIST. Mean over five runs (three for CIFAR).

CIFAR-10 Image Classification, VGG-13 CNN

Train — Edge — Fashion MNIST Scramble Invert Noise

– Accuracy – – Train – Edge Fashion MNIST Scramble Invert Noise
1xNNs Reg. 81.6% 0.671 0.466 0.440 0.540 0.459 0.324 0.948
5xNNs Uncons. 85.0% 0.607 0.330 0.208 0.275 0.175 0.209 0.380
5xNNs Reg. 86.1% 0.594 0.296 0.219 0.188 0.106 0.153 0.598
5xNNs Anch. 85.6% 0.567 0.258 0.184 0.149 0.134 0.136 0.118

10xNNs Anch. 86.0% 0.549 0.256 0.119 0.145 0.122 0.124 0.161

IMDb Text Sentiment Classification, Embedding+CNN

– Accuracy – – Train – – Reuters – Rand. 1 Rand. 2 Rand. 3
1xNNs Reg. 85.3% 0.637 0.119 0.153 0.211 0.326
5xNNs Uncons. 89.1% 0.670 0.102 0.141 0.100 0.075
5xNNs Reg. 87.1% 0.612 0.051 0.091 0.076 0.055
5xNNs Anch. 87.7% 0.603 0.049 0.075 0.061 0.009

Fashion MNIST Image Classification, Fully-Connected NN

Accuracy – Train – Edge CIFAR MNIST Distort Noise
1xNN Reg. 86.8 % 0.660 0.584 0.143 0.160 0.429 0.364
5xNNs Uncons. 89.0 % 0.733 0.581 0.301 0.104 0.364 0.045
5xNNs Reg. 87.8 % 0.634 0.429 0.115 0.072 0.342 0.143
5xNNs Anch. 88.0 % 0.631 0.452 0.065 0.041 0.246 0.006

6 Conclusion

This paper proposed, analysed, and tested a modifica-
tion to the usual NN ensembling process that results in
approximate Bayesian inference - regularising parame-
ters around values drawn from a prior distribution.

Under simplifying assumptions, we derived an ab-
stracted form of RMS motivating this. We analysed
a practical RMS variant to understand the bias of its
approximate posterior. Two special conditions were
shown to lead to recovery of the true posterior: per-
fectly correlated parameters and extrapolation param-
eters. We discussed the validity of applying RMS to
NNs, arguing that these two special conditions are
partially present in NNs.

On regression benchmarking experiments, state-of-the-
art performance was achieved on 3/10 datasets - out-
performing popular approximate inference methods.
On image and text classification tasks, anchored en-
sembles were shown to be more robust than alternative
ensemble methods.
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