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Weather radar based nowcasting (or short term forecasting) of rainfall in urban areas is an evolving topic as it is 

an economically feasible solution handle some of the challenges of climate changes. The perspectives within 

hydrological and urban hydrological modelleing are many. In urban drainage, there is a large potential to predict rain 

with a certain lead time, in order to implement real time operations of urban drainage systems to facilitate storage of 

rain water in some parts of the drainage system in order to prevent flooding or overflow to receiving waters 

elsewhere. Another feasible potential is activation of warning systems of urban flooding based on rainfall nowcasting 

in combination with a real time urban drainage model. In the end, these solutions are ways of reducing construction 

or reconstructions costs of drainage systems in the changing climate. During the past few years the applications have 

evolved from development of methods and case studies to actual real time operation based on nowcasting, e.g. 

Aspegren (2001), Einfalt et al. (2004), Achleitner et al. (2009), Schellart et al. (2009) and Thorndahl et al. (2009, 2010).  

However, in excitement of the current development in technology, the uncertainty of rainfall nowcasting is often 

ignored in operation applications, and thus the risk of making wrong decisions based on defective nowcasts is 

impending. The uncertainty quantification is further complicated by the fact that prediction of urban rainfall requires 

small time scales as the runoff response is fast. Therefore, it is not sufficient to predict correct rainfall volumes, but 

the rain intensities have to be precise in order to apply nowcasting in urban areas.  

Uncertainties related to quantitative precipitation estimates from weather radars have been investigated by several 

authors, e.g. Borga (2002), Villarini et al. (2008) and Villarini and Krajewski (2010); and Grecu and Krajewski (2000) 

and Fabry and Seed (2009) investigated uncertainty related to quantitative precipitation forecasting using radars, 

however on a larger temporal scale than required within the area of urban hydrology. Therefore, this study will 

investigate the uncertainties related to nowcasting of weather radar based rainfall on a small spatial and temporal scale 

by implementation of a stochastic shell on top of the existing model framework (Thorndahl et al. 2009 and 

Thorndahl and Rasmussen 2009). 

The model is based on extrapolation of radar images and has its origin in the TREC and CO=TREC models 

(Rinehart and Garvey 1978; Mechlenburg 2000; Li et al. 1995). This is combined with the Monte Carlo based 

Generalized Likelihood Uncertainty Estimation (GLUE) method (Beven and Binley 1992) in which the nowcast 

model is conditioned on observations in order to evaluate uncertainties. GLUE has been applied within a wide range 

of hydrological applications and urban hydrological applications (e.g. Thorndahl et al. 2008), but as far as the authors 

know never in the context of nowcasting and extrapolation of radar rainfall. 

Besides evaluating the nowcast model as a function of the lead time and investigating the sensitivity of model 

parameters, it is examined, if the concept can be applied for predicting rain intensities with confidence bounds linked 

to each point in space and time as well as predicting probability of rain occurrence in a specific area. The main 

purpose is to gain knowledge on the limitations and constraints of the model during different meteorological 

conditions and to obtain realistic values and posterior distributions of parameters in order to, on the longer term, be 

able to calculate uncertainty estimates in real time nowcasting. 
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The short term forecast algorithm applied in this study is developed at Aalborg University and is based on the 
TREC=algorithm (TRacking of Echoes with Correlation, Rinehart and Garvey 1978) and the CO=TREC 
(Continuous=TREC, Mechlenburg 2000; Li et al. 1995). Furthermore, Van Horne (2002) has inspired some of the 
spatial smoothing algorithms which are implemented in the model.  

In the first step of the model (Preprocessing), the radar data is spatially averaged over a number of time steps (N) and 
filtered over the filter grid size (fgz). Moreover, a reflectivity cutoff value is implemented (Zmin) in order to reduce noise 
produced by low reflectivity. In the second step (Correlation Analysis), a 2D cross=correlation analysis is applied on 
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subset boxes of the radar image (Box size: B). These boxes are displaced in pairs by the displacement distance (dB) and the 
correlation coefficient is calculated for all possible pairs of boxes. The search area (Amax) defines the area in which to 
find the box pairs with the highest correlation. In order for the correlation coefficient to be calculated a minimum 
percentage (rmin) of the pixels in the individual boxes must contain values (rainfall). In the end the correlation analysis 
leads to a number of translation vectors (cf. the TREC algorithm) corresponding to the movement of the rain. The 
translation vectors are interpolated into a number of squares (Square size: S). In order to avoid defective or unrealistic 
advection, the field of vectors is smoothed by implementation of a moving average between the radar images over 
time and some constraints on the variations of speeds and directions (CO'TREC). These constraints involve four 
parameters: the maximum ratio between the global translation vector velocity and the individual velocities in each 
square (Vmax,global); the maximum ratio between the velocities in two successive squares (Vmax,local); the maximum 
difference between the angle of the global vector and the individual vectors in the squares (αmax,global); and finally the 
maximum difference between the angles of two successive squares (αmax,local). An example of the vector field (squares) 
in TREC and CO=TREC is shown in fig. 1. In the final step of the nowcast model (Extrapolation) the latest calibrated 
radar image is extrapolated a number of time steps into the future based on the field of smoothened vectors. The 
vectors in the different time steps are independent. The parameters included in the model are presented in table 1. 

Prior to the nowcast model, the radar data reflectivity is converted into rain intensities using a standard Marshall=
Palmer conversion (Marshall and Palmer 1948). This process might also be randomized, but this would however 
remove the focus from nowcast model in the present paper and is therefore omitted. 

 

 
!	����� Example of vectors in TREC and CO=TREC. 

 
The model is implemented in a MATLAB environment, and is currently running on=line with eight different X= 

and C=band radars as presented in Thorndahl et al. (2009). 
The nowcast model is validated using three different parameters: The 2D correlation coefficient (R2) for a 

masked area of the radar image (see section 4), and the critical success index (CSI, Li et al. 1995). CSI is a measure of the 
model’s ability to predict rain in the correct pixels and does not take the intensity levels into account. Ranging from 
zero to one, both correlation measures are used to estimate the maximum effective lead time of the nowcast model. 
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The concept of the generalized likelihood uncertainty estimation (GLUE) method (Beven and Binley 1992) is to 

execute a large number of Monte Carlo simulations with random parameter sets selected from prior probability 
distribution functions for each parameter. For each model simulation a likelihood measure is calculated in order to 
reflect the goodness of fit in comparison with some observation dataset. Simulations that are not considered to be 
acceptable are rejected as non=behavioural (given a likelihood of zero).  From the remaining set of behavioural 
simulations, it is possible to derive posterior probability density functions for both parameters and predictions using 
the likelihood measure as a weighting factor. The intention is to allow for the demonstrated possibility that many 
different models and parameter sets might provide acceptable predictions when compared with the available 
observations, the equifinality thesis (Beven, 2006). GLUE differs from traditional Bayesian methods as the likelihood 
measure is defined empirically. In the present paper the likelihood is defined as the arithmetic mean of the validation 
parameter (either R2 or CSI) over the total lead time. These likelihood measures will ensure a measure of the overall 
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fit of the nowcast model. The likelihood based on R2 is applied when rain intensities are estimated and the likelihood 
based on the CSI index is applied when binarily occurrence of rain is considered. 

The randomized parameters are presented in table 1 along with the prior probability distributions of each 
parameter (uniform distributions). 
 

��#������ Continuity of the nowcast model, parameters and prior distributions. 

Model Step Parameter Symbol Distribution Type 

1) Preprocessing Number of time steps for averaging (=) N U(2,7) Integer 
 Filter grid size (pixels) fgz U(1,240) Integer 
 Reflectivity cut=off (dBz)  Zmin U(0,350) Real 

2) Correlation 
analysis 

Correlation  box size (pixels) B U(1,60) Integer 

 Box displacement (pixels) dB U(1,120) Integer 
 Search area (pixels) Amax U(1,15) Integer 
 Minimum percentage of rain in box (%) rmin U(0,1) Real 
 Square size (interpolated boxsize) (pixels) S U(6,120) Integer 

3) Smoothing 
Max. ratio between global vector velocity and individual 
velocities (=) 

Vmax, 

global 
U(0,5) Real 

 Max. ratio between velocities in two successive squares (=) 
Vmax, 

local 
U(0,5) Real 

 
Max. difference between angle of the global vector and 
individual vectors (rad) 

αmax,global U(0, π) Real 

 
Max. difference between angles of two successive squares 
(rad)  

αmax,local U(0, π) Real 

4) Extrapolation     

�
$��%�����������������&�
 

The data applied in this study is from the C=band weather radar located in Sindal in the northern part of 
Denmark. The radar is owned and operated by Danish Meteorological Institute (DMI, Gill et al. 2006). The radar has 
a range of 240 km with a temporal resolution of 10 min. The data is an extraction of the lowest cappi layer with a 
Cartesian grid of 2 x 2 km pixels. DMI recommends quantitative precipitation estimates in the range of 0 to 75=100 
km. Therefore, the radar image is masked to the 100 km radius, calculating R2. The total lead time of the nowcast 
model is fixed to 120 min. 

The model is evaluated using GLUE during three different conditions: (1) a stratiform front moving from SW (Fig. 
2), (2) a cyclonic low pressure rotation (Fig. 3), and (3) scattered convective storms (Fig. 4). For each of the three 
events 10,000 Monte Carlo simulations are completed. 

 

!���� �� Event 1, Stratiform event 
(Google Maps). 

!���� "�  Event 2, Cyclonic rotation 
event (Google Maps). 

!���� $� Event 3, Convective event 
(Google Maps). 

�
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In this section selected plots are presented in order to describe the model performance during the three different 
conditions. In order to sort out the simulations with the worst goodness of fit simulations with a likelihood lower 
than 0.3 are rejected. Fig. 7 shows the so=called dotty plots in which the calculated likelihoods are shown as a function 
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of the parameter values for each parameter. It is obvious that many of the subplots has equal likelihood as a function 
of the parameter value (flat tops), indicating either low sensitivity or that the parameters are heavily correlated. 
Studying the posterior distributions show that the latter is not the case. Some of the parameters have a clear 
optimum, e.g. the Search Area (Amax) and the reflectivity cutoff (Zmin). Comparing the dotty plots of the two other events 
(not shown but summarized in Tab. 2), it is obvious that event 1 has the highest likelihood values and the most 
accepted simulations. This result is as expected as the stratiform rain has a rather uniform and straight movement. 
The likelihood values for the cyclonic rotation (event 2) and the convective storms (event 3) varies more than in the two 
other events, indicating that the parameters are more sensitive during these meteorological conditions. 

Fig. 5 and 6 show the masked correlation coefficient (R2) and the critical success index as a function of the lead 
time for event 2. R2, representing the intensity levels, drops quite fast whereas CSI, representing the displacement of 
the rain is above 0.5 until a mean lead time of approx. 60 min. There is quite a large dispersion around the mean 
values of the performance parameters which is a result of relatively low acceptance threshold. If the threshold was 
assigned a higher value the mean values would be larger and the dispersion smaller. 
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!���� '� R2 as a function of the lead time with 5 and 95 % 
prediction bands (event 2) 
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!����)� CSI as a function of the lead time with 5 and 95 
% prediction bands (event 2) 
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!����*� Likelihoods (based on R2) as a function of parameter values – event 1. 

 
Table 2. Number of accepted simulations and mean and standards deviations of the likelihood values. 

 Likelihood based on R2 Likelihood based on CSI 

 Accepted 
Mean 
(L) 

Standard dev. 
(L) Accepted Mean (L) 

Standard dev. 
(L) 

Event 1 6653 0.46 0.12 7069 0.65 0.17 
Event 2 2725 0.37 0.06 6267 0.42 0.07 
Event 3 1064 0.35 0.04 3204 0.34 0.03 
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Fig. 10, 11, and 12 show the probability of rain (scaled likelihood based on CSI) at four different lead times for 
the three events. Obviously, the largest probabilities occur at the smallest lead times. Furthermore, the largest 
probabilities are observed in event 1 as this type rain is the simplest to predict. 

Figure 8 and 9 show an example of predicted rain intensities in two pixels for event 1 and 3. The first event shows 
some divergence between the predicted mean value and the observed; however the observed values are within the 
predicted 5 and 95 % prediction bands, indicating that the predicted range is correct.  
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!����,� Time series of observed and forecasted rain,  
Event 3 

 
  
30 min 60 min 90 min 120 min 

!�����-� Probability of rain occurrence, cf. a rain intensity larger than 0. Deep red corresponds to a probability of 1 
and dark blue to a probability of 0, event 1(Google maps). 

 
30 min 60 min 90 min 120 min 

!������� Probability of rain occurrence, cf. a rain intensity larger than 0. Deep red corresponds to a probability of 1 
and dark blue to a probability of 0, event 2(Google maps). 
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30 min 60 min 90 min 120 min 

!������� Probability of rain occurrence, cf. a rain intensity larger than 0. Deep red corresponds to a probability of 1 
and dark blue to a probability of 0, event 3(Google maps). 
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Through this analysis satisfying results are obtained with regards to the overall nowcast model performance, and 
in general it is possible to a quite reliable nowcast within 100 km radius of the radar with a lead time of 60 minutes. 
Beyond 60 minutes and outside the 100 km range it is only possible to predict non=quantitative precipitation. The 
best model performance is found during stratiform conditions (event 1) due to the semi steady state conditions. The 
cyclonic rotation (event 2) is also modeled with satisfying results, however with lower likelihoods than the former. The 
convective storms (event 3) are more difficult to forecast due to more transient meteorological conditions. 
Furthermore, the model fails in event 3 as the nowcast is only based on extrapolation of the radar images and 
development of the rain is not included. Increase or decrease in rain intensity in convective cells is therefore not 
modeled. Currently, the authors are developing a new version of the nowcast model which includes a synthetic 
particle tracking module for simulation of the dynamics of the rain.  

The concept of GLUE has shown to be very applicable in terms of testing model and model parameter 
sensitivity as well as estimating the uncertainties of predicted rain intensities.  

The fact that the model show very little sensitivity, and therefore low variability in the posterior distributions, 
with regards to some of the parameter are rather unexpected, however application of different likelihood measures 
might entail larger variations. Furthermore, if the likelihoods are calculated locally, e.g. corresponding to a specific 
area of focus, instead of globally more deviations from the uniform prior distributions is expected. This will be the 
object of another paper. 

As written in the introduction, the object of this paper is obviously to be able to do uncertainty estimates 
applying the nowcast model in real time based on the posterior distributions from this analysis and a simple stochastic 
sampling method, e.g. crude Monte Carlo simulations. However, in order to derive reliable posterior distributions for 
implementation in real time applications, a more thorough review of likelihood measures is needed as well as long 
term statistical analysis on more than the three selected events.  

In general the proposed combination of nowcast model and stochastic model shows a great potential in rainfall 
nowcasting with uncertainty estimates and is therefore a promising part of climate solutions in urban areas. 
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