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SUMMARY

A key task in the elicitation of expert knowledge is to construct a distribution from the
finite, and usually small, number of statements that have been elicited from the expert.
These statements typically specify some quantiles or moments of the distribution. Such
statements are not enough to identify the expert’s probability distribution uniquely, and
the usual approach is to fit some member of a convenient parametric family. There are two
clear deficiencies in this solution. First, the expert’s beliefs are forced to fit the parametric
family. Secondly, no account is then taken of the many other possible distributions that
might have fitted the elicited statements equally well. We present a nonparametric approach
which tackles both of these deficiencies. We also consider the issue of the imprecision in the
elicited probability judgements.

Some key words: Expert elicitation; Gaussian process; Nonparametric density estimation.

1. INTRODUCTION

1·1. Expert elicitation

We consider the elicitation of an expert’s beliefs about some unknown continuous
variable θ . The objective of the elicitation is to identify the underlying density function
f (θ) that represents the expert’s beliefs. For convenience of exposition, we consider an
analyst who receives the expert’s elicited statements, and suppose that the analyst wishes to
make inferences about the expert’s density function f (θ). To avoid convoluted language,
we let the expert be female and the analyst be male.

The use of elicited prior distributions will always be contentious in practice, irrespective
of any theoretical justification, and even disregarding any considerations of bias. One
important concern is the extent to which the density function resulting from the elicitation
represents what the expert actually believes. Winkler (1967) argues that the expert does
not have a ‘true’ prior density function waiting to be elicited, only a ‘satisficing’ prior
distribution that she is ‘content to live with at a particular moment of time’. If we accept
this position, it follows that there can be no unique ‘satisficing’ prior distribution, and
almost certainly different analysts, using different elicitation methods, would elicit different
distributions from the same expert.

This issue is generic to all elicitation; with the exception of some trivial cases we doubt
whether an analyst could ever claim that a single density function f (θ) was the sole
correct representation of an expert’s beliefs. Any subsequent analysis that only considers
a single f (θ) must therefore be ignoring the uncertainty that the analyst still has about
the expert’s genuine beliefs. We believe that, to improve the credibility and robustness of
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expert elicitation, this uncertainty needs to be assessed formally. Rather than producing a
single f (θ), the analyst needs to derive a set of all the distinct density functions that he
believes to be consistent with the judgements provided by the expert. This in itself is not
a novel suggestion; Berger & Berliner (1986) advocate exploring robustness of posterior
inferences to the choice of prior. A crucial distinction here is that, by considering prior
beliefs about the nature of the expert’s density function, such as smoothness, the analyst
can probabilistically assess his uncertainty about the expert’s beliefs, and so conduct a
probabilistic robustness analysis if required.

1·2. Uncertainty about the expert’s distribution

It is assumed that the expert is only able to provide certain summaries of her distribution
such as the mean or various percentiles. A finite set of elicited summaries does not of
course identify f (θ) uniquely, and we identify this as the primary source of uncertainty
about the expert’s beliefs. A common strategy is to choose a density function that fits those
summaries as closely as possible from some convenient parametric family of distributions.
Some examples of this are Kadane et al. (1980), O’Hagan (1998), Oakley (2000) and
Garthwaite & Al-Awahdi (2002). Two deficiencies in this approach are that it forces the
expert’s beliefs to fit the parametric family, and that it fails to acknowledge the fact
that many other densities might have fitted those same summaries equally well. Practical
responses to these criticisms include using a process of feedback to verify that the fitted
density is a satisfactory approximation to the expert’s beliefs, and checking the sensitivity
of subsequent inferences or decisions to variations in the fitted f (θ).

We present here an approach that addresses both deficiencies together in a single coherent
framework. Our fitted estimate of the expert’s f (θ) is nonparametric and we explicitly
quantify the uncertainty around this estimate that results from the expert having stated
only a finite set of summaries. We treat the problem of fitting a density function to given
summaries as an exercise in Bayesian inference; we have an unknown quantity of interest,
f (θ), the analyst formulates his prior beliefs about this quantity and then receives data
in the form of summaries of the expert’s density function. The analyst then derives his
posterior distribution for f (θ). The analyst’s posterior mean can then be offered as a ‘best
estimate’ for f (θ), while his posterior distribution quantifies the remaining uncertainty
around this estimate.

A second source of uncertainty in an elicitation is the expert’s inability to make probability
judgements with absolute precision. A complete assessment of the uncertainty about the
expert’s beliefs should also allow for this. In §6 we suggest a simple extension of our
method for acknowledging this imprecision, though we do not aim to give a comprehensive
treatment of this issue in this paper.

1·3. The analyst and the expert

The field of elicitation is diverse, and addresses a number of related but distinct problems.
Lindley et al. (1979), French (1980), Lindley (1982) and Lindley & Singpurwalla (1986)
consider the problem of updating the analyst’s own beliefs about θ given judgements,
possibly incoherent, from one or more experts. It is important to emphasize that our
objective is quite different from that of these other authors. In this paper, the analyst is
making inference about the expert’s density function f (θ), not about θ . Another way to
view the distinction is that in the approach of French, Lindley and Singpurwalla it is the
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analyst who is the decision-maker, and therefore whose distribution for θ is ultimately
required, whereas in our method the decision-maker is implicitly the expert, because it is
the expert’s distribution for θ that is required. We emphasize that the separation of the
roles of the analyst and the expert is primarily for convenience of exposition. In principle,
they could be the same person.

There is much more to the process of eliciting expert knowledge than is addressed in
this article. Questions should be carefully formulated in terms that the expert understands,
and so as to avoid known ways in which experts tend to misjudge probabilities. There
are many other important practical questions regarding how the analyst should actually
conduct the elicitation, and for advice we refer the reader to Chaloner (1996), Clemen
(1996), Garthwaite et al. (2005) and O’Hagan et al. (2006).

2. A PRIOR DISTRIBUTION FOR THE UNKNOWN DENSITY FUNCTION

2·1. The scaled Gaussian process

A very useful and flexible prior model for an unknown function is the Gaussian process,
and we will assume that the analyst’s prior beliefs about f (θ) can be represented by a Gaus-
sian process. In particular, the analyst’s prior distribution for any finite set of points on this
function is multivariate normal. Gaussian process priors for functions have been proposed
in various different settings, including regression (O’Hagan, 1978; Neal, 1999), classifi-
cation (Neal, 1999) and numerical analysis (O’Hagan, 1992). A recent treatment of both
Gaussian process regression and classification is given in Rasmussen & Williams (2006).

Since f (θ) is a density function, we need to apply the constraint f (θ) � 0 for all θ . This
is accomplished by first updating the analyst’s prior given the elicited data D, ignoring the
constraint, and then conditioning on f (θ) � 0 for all θ after we have derived p{f (θ)|D}.
It is also known that

∫∞
−∞ f (θ)dθ = 1 and we apply this constraint as part of the data in §3.

The Gaussian process is specified by giving its mean function and variance-covariance
function. We model these hierarchically in terms of a vector α of hyperparameters. First
let the analyst’s prior expectation of f (θ) be some member g(θ |u) of a suitable parametric
family with parameters u, contained within α. Thus

E{f (θ) |α} = g(θ |u).

It would not be realistic to suppose that the variance of f (θ) would be the same for all θ . In
general, where the analyst expects f (θ) to be smaller his prior variance should be smaller
in absolute terms. We reflect this in our model by supposing that the variance-covariance
function has the scaled stationary form

cov{f (θ), f (φ) |α} = g(θ |u) g(φ |u) σ 2c(θ, φ),

where c(θ, φ) is a correlation function that takes the value 1 at θ = φ and is a decreasing
function of |θ − φ|. In general, the function c(·, ·) must ensure that the prior variance-
covariance matrix of any set of observations of f (·), or functionals of f (·), is positive
semidefinite. Here we choose the function

c(θ, φ) = exp{− 1
2b

(θ − φ)2}.
This will be seen to be a mathematically convenient choice, and implies that f (·) is infinitely
differentiable with probability 1. This formulation was given in Kennedy & O’Hagan
(1996), who were interested in quadrature for computationally expensive density functions.
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Although the analyst’s prior expectation is that f (θ) will be a member of the parametric
family g(θ |u), the model is nonparametric and allows the true f (θ) to have any form at all.
The hyperparameter σ 2 specifies how close the true density function will be to the analyst’s
parametric family. The hyperparameter b controls the smoothness of the true density. If b is
large, then two points f (θ) and f (φ) will be highly correlated even if θ and φ are far apart.

2·2. Hierarchical prior distribution

The hyperparameters of this model are α = (u, σ 2, b). In general, we would wish to
express noninformative prior distributions for the components of u. Although the analyst
may in practice have some idea himself about what values to expect for θ , and so may
have prior knowledge about u, our objective is to elicit the expert’s beliefs about θ , and we
would not wish this to be coloured by the analyst’s beliefs.

We would also wish to express noninformative prior beliefs about σ 2, and so allow the
analyst to learn just how well the expert’s density function approximates the underlying
parametric family. However, there are good reasons for wishing to specify some informative
beliefs about the smoothness parameter b. The first reason is technical: an improper prior
for b can lead to an improper posterior regardless of the data observed. The data will not be
able to distinguish between two sufficiently small but distinct values of b, as the differences
in smoothness would only be detectable on a very fine scale. Furthermore, the analyst will
not expect the true density to be highly multimodal. If u contains a variance parameter v,
then it is reasonable to suppose that b is of the same order of magnitude as v, since this
then expresses a belief in moderate smoothness of the true density over the range for which
f (θ) is non-negligible. This implies prior beliefs about the ratio b/v.

In the following sections we will consider the particular case where u = (m, v) and g(· |u)

is the normal density with mean m and variance v. We reparameterize the covariance
function as follows:

c(θ, φ) = exp{− 1
2vb∗ (θ − φ)2},

where b∗ = b/v. We now let the prior distribution of α = (m, v, σ 2, b∗) have the form

p(m, v, σ 2, b∗) ∝ v−1σ−2p(b∗),

where p(b∗) will be an informative prior for b∗ expressing the above beliefs. We represent
our uncertainty about log b∗ with a standard normal distribution. Informal justification for
this prior is given in Fig. ??, where we show realizations from the prior distribution of the
ratio f (θ)/g(θ). Since we believe f (·) to be a smooth function, we would not expect this
ratio to fluctuate excessively. In addition, we believe that f (·) may deviate substantially
from a normal density function, and so we would not assign much prior weight to values
of b∗ that imply an almost constant ratio. The plots in Fig. ?? suggest that (−2, 2) is an
appropriate range to consider for log b∗ a priori. We have chosen a normal distribution to
give more weight to the centre of the range, as log b∗ = ±2 appears to give realizations that
are too rough/smooth. We note that it will be important to investigate robustness to this
choice of prior.

2·3. Alternative models

We have described a model for the unknown density function in which f (·) is allowed to
deviate nonparametrically from a parametric class of density functions. This is a common
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Fig. 1. Realizations from the prior distribution of f (θ)/g(θ) for
(a) log b∗ = −2, (b) log b∗ = 0, (c) log b∗ = 2.

theme in Bayesian nonparametric inference; see for example Leonard (1978), who modelled
the log of the unknown density function as a Gaussian process, Hjort (1996) and Walker
et al. (1999). In general these alternative modelling approaches guarantee a positive density
function, but they were developed for the problem of density estimation, where inference is
required for an unknown distribution based on a sample of observations from that distri-
bution. The elicitation context is quite different, and our data comprise elicited summaries
of the distributions, such as quantiles. These alternative models would become completely
intractable for such data. For instance, if log f (θ) has a Gaussian process distribution then
we cannot even write down the likelihood for data which comprise integrals of f (θ).

West (1988) presents a prior distribution for an expert’s quantile function Q(U) for
U ∈ [0, 1]. His formulation leads to a Dirichlet model for the expert’s distribution. As in
Lindley et al. (1979), this is in the context where the analyst is the decision-maker and so it
is the analyst’s beliefs about θ rather than f (θ) that are of interest. Note that a possibility
here would have been to model the quantile function as a Gaussian process; this would
solve one problem in that Q(U) can be negative, but would create a new one in that Q(U)

must be nondecreasing.

3. PRIOR TO POSTERIOR UPDATING

Our model for the analyst’s prior distribution is designed to handle the kinds of
information commonly elicited from an expert. This includes quantiles of the distribution
and simple moments. Since f (θ) has a Gaussian process distribution conditional on
the hyperparameters α, the distribution of any linear functional of f (θ), which includes
moments and other expectations such as the probabilities that define given quantiles, is
normal.



432 JEREMY E. OAKLEY AND ANTHONY O’HAGAN

Formally, let the data comprise a vector D of elicited summaries of this form. Remember
that D will also include the information that

∫∞
−∞ f (θ)dθ = 1. Then the joint distribution of

D and any finite set of points on the function f (θ) is multivariate normal. Denote the mean
vector and variance-covariance matrix of D by H and σ 2A respectively, and denote the
covariance between D and f (θ) by σ 2t (θ). Note that H will be a function of m and v, while
A and t (θ) will be functions of m, v and b∗. The forms of these quantities for some common
summaries are given explicitly in the Appendix. It follows immediately from properties of the
multivariate normal distribution that f (θ)|D,m, v, b, σ 2 also has a normal distribution with

E{f (θ) |α} = g(θ) + t (θ)TA−1(D − H),

cov{f (θ), f (φ) |α} = σ 2{g(θ |u)g(φ |u)c(θ, φ) − t (θ)TA−1t (φ)},
In fact, conditional on α the analyst’s posterior distribution of f (θ) is again that of a
Gaussian process, with these as its mean and variance-covariance functions.

The posterior distribution of α = (m, v, σ 2, b∗) is easily found from the multivariate
normal likelihood for D given α:

p(m, v, σ 2, b∗ |D) ∝ v−1|A|− 1
2 σ−(n+2) 1

b∗ exp{−1
2
(log b∗)2}

× exp{− 1
2σ 2

(D − H)T A−1(D − H)} , (1)

where n denotes the number of elements in D. The posterior marginal distribution of
f (θ) is then the result of integrating its Gaussian process conditional distribution with
respect to this marginal posterior of the hyperparameters. We can integrate σ 2 out of (1)
analytically to obtain

p(m, v, b∗ |D) ∝ v−1(σ̂
2
)−

n
2 |A|− 1

2
1
b∗ exp{−1

2
(log b∗)2} ,

where

σ̂
2 = 1

n − 2
(D − H)T A−1(D − H).

We can then use Markov chain Monte Carlo to obtain a sample of values of {m, v, b∗} from
their joint posterior. Finally, given m, v and b∗, we can sample a density function f (·) at a
finite number of values of θ from the posterior p{f (·) |D,m, v, b∗}, as in Oakley & O’Hagan
(2002) the joint posterior distribution of {f (θ1),. . . , f (θn)} conditional on D,m, v and b∗
is multivariate t , for any set {θ1,. . . , θn}. At this point we apply the constraint f (θ) � 0
for all θ by discarding any density functions that are negative over a suitable finite range.
Repeating this will give us a sample of functions from the analyst’s posterior distribution
of f (·), and estimates and pointwise bounds for f (θ) can then be reported.

4. EXAMPLE

4·1. A bimodal test case

The aim of this synthetic example is to demonstrate how the analyst is able to identify
a density function that is of a markedly different shape from his prior expectation of a
normal density, given sufficient judgements from the expert. Suppose that the expert has
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the following density function for θ :

f (θ) = 0·4√
(2π)

exp{−1
2
(θ + 2)2} + 0·6√

(4π)
exp{−1

4
(θ − 1)2}.

The analyst asks the expert to state pr(θ < x) for x ∈ {−3,−2,−1, 0, 1, 2, 3}.
We now use Markov chain Monte Carlo to sample from the posterior distribution of

{m, v, b∗}. The chain is run for 20 000 iterations, and the first 1000 runs are discarded. For
each sampled set of {m, v, b∗}, we generate one random density function. Functions that
are negative anywhere for θ ∈ (−6, 6) are rejected. We plot the pointwise median, 2·5th
and 97·5th percentiles from the distribution of the density function in Fig. ?? (a). Note that
the median is almost indistinguishable from the true density function.

4·2. Feedback

The analyst can show the expert his posterior distribution of her density function,
although, with the exception of features such as number of modes and skewness, she may
not to be able to assess whether or not the analyst has a good representation of her beliefs.
However, if the analyst presents his posterior distribution of her distribution function, she
can then see if values of pr(θ < θ0) for new values of θ0 suggested by his posterior match
her own beliefs. We plot a pointwise 95% interval for the distribution function in Fig. ??(b).

4·3. Robustness

We now repeat the analysis with weaker prior information about the parameter b∗:
we double the prior standard deviation so that log b∗ ∼ N(0, 4). In Fig. ??(a) we show
pointwise posterior intervals for f (θ) resulting from both the N(0, 1) and N(0, 4) prior
distributions. We can see that posterior uncertainty about f (θ) is sensitive to the choice of
prior; posterior uncertainty about the cumulative distribution function is less sensitive, but
we do not show the plot here.

Increasing prior uncertainty about b∗ has led to more realizations from the posterior
distribution of f (θ) with three or more modes; these account for approximately 20% of
the realizations compared with 5% using the N(0, 1) prior. In practice, information about
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Fig. 2. Synthetic example. (a) The median (dotted), pointwise 95% intervals for the expert’s density
function (dot-dashed), and the true density function (solid). (b) Pointwise 95% intervals for the

expert’s distribution function (dot-dashed), and the true distribution function (solid).
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Fig. 3. Synthetic example. (a) Pointwise 95% intervals for the expert’s
density function using log b∗ ∼ N(0, 1) (dotted) and log b∗ ∼ N(0, 4)
(dashed), and the true density function (solid). (b) as in panel (a), but

with all density functions with three or more modes excluded.

the number of modes in the expert’s distribution could be obtained through discussion
between the analyst and the expert. If we now choose to reject any realization that has
three or more modes, we find that the two prior distributions for b∗ give similar results; see
Fig. ??(b). Consequently, given additional information about the number of modes in the
expert’s distribution, it could be argued that in this example the only important difference
between the two priors is that the N(0, 1) prior will lead to more efficient computation, as
fewer realizations will need to be rejected.

5. UNCERTAINTY ABOUT POSTERIOR BELIEFS

Whether or not the uncertainty about the expert’s distribution matters in practice will
depend upon the use to which it will be put. One obvious use for an elicited distribution
is to serve as a prior distribution f (θ) for a Bayesian analysis of some data s. It is then of
interest to derive the uncertainty that is implied for the resulting posterior density f (θ |s).
We consider inference about a posterior probability pr(θ ∈ A|s). We can simulate random
probabilities from the analyst’s distribution of pr(θ ∈ A|s), by first simulating density
functions f (·) from the analyst’s posterior distribution of f (·)|D, and then by calculating
pr(θ ∈ A|s) using numerical integration.

Berger & O’Hagan (1988) give an example of two engineers stating prior probabilities
for the mean lifetime θ of a proposed new industrial engine; for conciseness we only
consider one engineer here. The engineer states pr(θ ∈ Ii) for a set of intervals I1,. . . , I6,
and these probabilities are listed in Table 1. In addition to these prior beliefs there are data
s consisting of two observations with likelihood function f (s|θ) = θ−2 exp(−4500/θ). In
Berger & O’Hagan (1988), the objective was to compute maximum and minimum values
for posterior probabilities for various classes of prior distributions, rather than to quantify
probabilistically the uncertainty in the prior/posterior distribution. Consequently, we can
only compare the two approaches informally.
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Table 1. Engineers example. Prior probabilities (pi),
minimum and maximum posterior probabilities under two
classes of prior distribution �0 and �′

2, and an approximate
99·9% interval for the posterior probability using the

Gaussian process model (GP).

Ii pi �0 �′
2 GP

[0, 1000) 0·15 (0, 0·111) (0·020, 0·023) (0·017, 0·031)
[1000, 2000) 0·15 (0·088, 0·255) (0·162, 0·184) (0·149, 0·178)
[2000, 3000) 0·20 (0·235, 0·391) (0·284, 0·327) (0·286, 0·301)
[3000, 4000) 0·20 (0·197, 0·349) (0·248, 0·288) (0·247, 0·260)
[4000, 5000) 0·15 (0·125, 0·233) (0·149, 0·175) (0·149, 0·159)
[5000,∞) 0·15 (0, 0·146) (0, 0·121) (0·077, 0·123)

We now simulate values from the distribution of pr(θ ∈ Ii |s) for the engineer.
Approximate 99·9% intervals are reported in Table 1 for each interval. For comparison,
ranges of posterior probabilities are given for two prior families of distributions considered
in Berger & O’Hagan (1988): the family �0 contains any prior distribution that has the
correct elicited prior probabilities given by the expert, and �′

2 contains any prior distribution
that has the correct elicited prior probabilities, is unimodal and has a particular upper
bound for the maximum value of the density.

Note the discrepancy between the Gaussian process model and the �′
2 class regarding

interval I2. This occurs because the probabilities specified by the engineer are incompatible
with a distribution that is both smooth and unimodal; a smooth distribution would have
to have a turning point in the interval (0, 2000).

6. UNCERTAINTY IN THE ELICITED PROBABILITIES

A difficulty in any elicitation is that the expert will not be able to specify any probability
with absolute precision. This issue was considered in Walley (1991), who proposed bounding
a probability P with upper and lower probabilities, PU and PL respectively. This still leaves
unresolved the issue of how to specify PU and PL with absolute precision. In addition,
the expert may also feel that values in the centre of the interval [PL, PU] represent their
uncertainty more appropriately than values towards the ends of the interval. This is an
important yet under-researched theme in elicitation. In this paper, we suggest a simple
pragmatic approach for acknowledging this imprecision.

We interpret the reported probability pr∗(θ ∈ A) as the expert’s ‘true’ probability plus a
small additive ‘error’ which represents the imprecision in the stated probability:

pr∗(θ ∈ A) = pr(θ ∈ A) + ε.

Lindley et al. (1979) and Dickey (1980) both consider models for errors in probability
judgements, but in the context of incoherence rather than imprecision. We then assume
that ε ∼ N(0, τ 2) for some appropriate value of τ 2. The variance parameter τ 2 describes
the imprecision in the probability assessment, and may vary for different probability
judgements. The variances could be chosen in consultation with the expert.

With noise in the data, it is now necessary to use a proper prior distribution for σ 2. By
considering the posterior distribution of σ 2 in noise-free examples, we have found that
σ−2 ∼ Ga(1, 1) is a suitable candidate for f (σ 2). As with the proper prior for b∗, robustness
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Fig. 4. Engineers example. Curves show 2·5th, 50th and 97·5th
percentiles of f (θ) with (a) no imprecision and (b) imprecision in
the elicited probabilities. A histogram, truncated at 7000, based on

the elicited probabilities is also given for comparison.

of posterior inferences to this choice of prior should be checked, though we have found
that alternatives such as σ−2 ∼ Ga(2, 1) and σ−2 ∼ Ga(1, 0·5) give similar results.

We return to the example of the elicited probabilities from the engineer. Recall that
these were incompatible with a smooth, unimodal distribution, and we now consider the
effect of allowing for imprecision in the elicited probabilities. We suppose that the six prior
probabilities in Table 1 were imprecise probabilities p∗

1,. . . , p
∗
6, with

p∗
i = pi + εi.

We need to choose a variance for each error εi . Since the absolute imprecision must be
smaller for probabilities close to 0 or 1, we set εi ∼ N [0, {0·1 × (1 − p∗

i )p
∗
i }2]. The effect

of including this ‘noise’ in the data is shown in Fig. ??. In Fig. ??(a), we show the analyst’s
pointwise 2·5th, 50th and 97·5th percentiles of f (θ) with no imprecision in the elicited
probabilities. In Fig. ??(b), the imprecision has been added, and the analyst now expects
the engineer to have a smooth, unimodal distribution.

7. EXAMPLE: THE BISECTION METHOD

One significant concern in elicitation is the ability of experts to assess appropriately the
tails of their distributions. Alpert & Raiffa (1982) report an experiment in which subjects
were asked to provide 98% intervals for various uncertain quantities known only to the
experimenter. It was found that these intervals contained the true values only 53% of
the time. In an attempt to reduce overconfidence, various elicitation schemes have been
suggested in which the expert is not asked for extreme percentiles. One such scheme is the
bisection method, described in Raiffa (1968), in which the expert is asked for her median
and quartiles. Murphy & Winkler (1974) report good results with this method, though
Garthwaite & O’Hagan (2000) suggest that overconfidence is reduced more effectively if
the expert is asked to provide three equally likely intervals.
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Here we show that, given only the median and quartiles, posterior uncertainty about
f (θ) can be considerable, particularly if the expert’s distribution is skewed. We consider a
parameter θ that is known to be positive, but is likely to be close to zero. It is straightforward
to handle this scenario by transforming θ to the log scale, and then model the density
function of log θ as a Gaussian process, with the expectation of f (log θ) given by a normal
density function. The same prior as described in §2·2 is used for b∗. We can then transform
back to the original scale when reporting the posterior distribution of f (θ).

The initial elicited probabilities are pr(θ < 1) = 0·25, pr(θ < 1·7) = 0·5 and pr(θ <

2·7) = 0·75. We then compare the analyst’s posterior distribution for f (θ) with three
parametric distributions, namely θ ∼ Ga(2·127, 1·058), log θ ∼ N(0·512, 0·7372) and
θ−1 ∼ Ga(2·066, 2·844). All three parametric distributions give good approximations
to the elicited probabilities, although, as they do not match the elicited probabilities
exactly, we again allow for imprecision in the Gaussian process model, with εi ∼
N [0, {0·1 × (1 − p∗

i )p
∗
i }2] as before.

In Fig. ??(a), we plot the analyst’s pointwise 99% intervals for f (θ) together with
these three parametric estimates. For this comparison we have chosen to reject any
bimodal realization from the analyst’s posterior distribution for f (θ). Note that there is
considerably more uncertainty about f (θ) given the three percentiles only. Of particular
interest here is the right-hand tail. In Fig. ??(b) we can see that the analyst’s posterior
uncertainty encompasses the different tail behaviours exhibited by the three parametric
approximations.

We can also consider the analyst’s uncertainty about the expert’s mean of θ . For a skewed
distribution, it is very unlikely that the expert would be able to specify her mean value
directly, and so it could only be deduced by considering her complete density function.
The three parametric fits give mean values of 2·010, 2·189 and 2·668 respectively. The
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Fig. 5. Bisection method example. Analyst’s 99% pointwise interval for
f (θ) (solid), fitted gamma distribution (dashed), fitted log-normal
distribution (dotted) and fitted inverse gamma distribution (dot-

dashed), (a) for the whole range, (b) for the upper tail.
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analyst’s 99% interval for the expert’s mean is (1·91, 2·83); changing the prior distribution
for b∗ to log b∗ ∼ N(0, 4) has negligible effect, although again the proportion of rejected
realizations is higher. The uncertainty in the mean value is not trivial and could, for
example, be important if the expert needed to identify E(θ) for use in a decision problem.
To reduce this uncertainty, the expert would have to make a judgement about the tail
of her distribution, such as its 95th percentile. Alternatively, if the expert were unwilling
to make a tail judgement, she could use the analyst’s posterior expectation of E(θ)

as her mean value, if she were willing to accept the analyst’s prior assumptions about
f (θ).

8. DISCUSSION

We have presented a means of eliciting an expert’s prior density function f (·) that
both avoids having to assume a parametric form for f (·) and allows us to measure our
uncertainty about f (·) given a limited number of judgements from the individual. A
number of potential practical advantages of this approach offer directions for its further
development. In practice, elicitation is a dialogue between the expert and the analyst.
For instance, after eliciting a set of summaries the analyst can consider his posterior
uncertainty about the expert’s density function before offering a final inference. For
example, he may choose to elicit more summaries if his posterior uncertainty is too
large. Our model may then help to identify which additional summaries would be most
informative. The dialogue can also be used to check the validity of the analyst’s prior model
for f (θ).

One obvious area for further development is the multivariate case. In some cases the
existing method can be applied simply by considering alternative parameterizations where
independence may be assumed, such as a baseline and relative risk instead of two absolute
risks. In principle, the method extends readily to multivariate elicitation, but some practical
issues arise of computation and of deciding what summaries to elicit from the expert. This
is an area of active research.
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APPENDIX

Likelihood for the expert’s summaries

In §3 it is stated that the data D comprising the expert’s summaries are normally distributed. We
give here details of the means, variances and covariances for summaries of particular forms when
g(θ |u) is the N(m, v) density.

Expectation of θ . Let µ = E(θ). Then µ is normally distributed with

Ef (µ|m, v, b∗, σ 2) = m,

covf {f (θ), µ|m, v, b∗, σ 2} = σ 2g(θ)

∫∞

−∞
φc(θ, φ)g(φ)dφ
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= σ 2g(θ) exp{− (θ − m)2

2v(b∗ + 1)
} (θ + mb∗)

√
b∗

(1 + b∗)3/2

varf (µ|m, v, b∗, σ 2) = σ 2
∫∞

−∞

∫∞

−∞
θφc(θ, φ)g(θ)g(φ)dθdφ

= σ 2
√

b∗(2m2 + b∗m2 + v)

(2 + b∗)3/2 .

Percentiles of θ . A value x is chosen, and the expert gives her probability that θ � x. We write
Px = ∫x

−∞ f (θ)dθ . This also has a normal distribution, with

E(Px |m, v, b∗) = �(x − m

v
) ,

cov{Px, f (θ)|m, v, b∗, σ 2} = σ 2g(θ)

∫x

−∞
c(θ, φ)g(φ)dφ

= σ 2g(θ)( b∗

1 + b∗)
1/2

exp{− (θ − m)2

2v(b∗ + 1)
}�{(x − θ + mb∗

b∗ + 1
)√(1 + b∗

vb∗ )} ,

where �(·) denotes the cumulative distribution function of the standard normal distribution. The
covariance between any two percentiles is given by

cov(Px, Py |m, v, b∗, σ 2) = σ 2
∫x

−∞

∫y

−∞
g(θ)g(φ)c(θ, φ)dθdφ

= σ 2

2πv

∫x

−∞

∫y

−∞
exp{− 1

2vb∗ (θ − φ)2 − 1
2v

(θ − m)2 − 1
2v

(φ − m)2} dθdφ

= |S|1/2σ 2

2πv

∫x

−∞

∫y

−∞
|S|− 1

2 exp{−1
2
(θ − m, φ − m)S−1(θ − m, φ − m)T} dθdφ,

where

S−1 =




1 + b∗

vb∗ − 1
vb∗

− 1
vb∗

1 + b∗

vb∗


 .

Making the transformation

z1 = √( b∗ + 2
v(b∗ + 1)

) (θ − m),

z2 = √(b∗ + 1
b∗v ) (φ − m) − √( 1

b∗v(b∗ + 1)
) (θ − m),

we have

cov(Px, Py |m, v, b∗, σ 2) = σ 2

2π

√( b

b + 2v
)

∫l1

−∞

∫l2

−∞
exp{−1

2
(z2

1 + z2
2)} dz1dz2

= σ 2

√
(2π)

√( b

b + 2v
)

∫l1

−∞
exp(−1

2
z2

1)�(l2)dz1,

where

l1 = √( b∗ + 2
v(b∗ + 1)

) (x − m),

l2 = √(b∗ + 1
b∗v ) (y − m) − 1√{b∗(b∗ + 2)}z1.
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We also need the covariance between percentiles and the mean. This is given by

cov(Py, µ|m, v, b∗, σ 2)

= σ 2

2π

√( b∗

b∗ + 2
)

∫∞

−∞

∫l2

−∞
{√(v(b∗ + 1)

b∗ + 2
) z1 + m} exp{−1

2
(z2

1 + z2
2)} dz1dz2.
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