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ABSTRACT

Drop size distribution (DSD) is a fundamental parameter in rain microphysics. Retrieving DSDs from

polarimetric radar measurements extends the capabilities of rain microphysics research and quantitative

precipitation estimation. In this study, issues in rain DSD retrieval were studied with simulated andmeasured

data. It was found that a three-parameter gamma distribution model was not suitable for directly retrieving

DSD from polarimetric radar measurements. A statistical constraint, such as the shape–slope relation used in

the constrained-gamma (C-G) distribution model, helped to reduce the uncertainties and errors in the re-

trieval. The inclusion of specific differential phase (KDP) measurements resulted in more accurate DSD re-

trieval and rain physical parameter estimation if the measurement errors were properly characterized in the

error minimization analysis (EMA), which was verified using two real precipitation events. The study dem-

onstrated the potential of using full polarimetric radar measurements to improve rain DSD retrieval.

1. Introduction

Drop size distribution (DSD) is a fundamental prop-

erty of rain microphysics. Rain DSD, denoted as N(D),

is defined as the numbers of raindrops in a unit volume

per unit size bin (with unit mm21m23). The sizes of

raindrops are represented using the equivolume di-

ameter D (mm). Different moments of N(D) are used

alone or combined to calculate physical and statistical

parameters of rain, including rainfall rate R (mmh21),

liquid water content W (gm23), mass-weighted mean

diameter Dm (mm), and total number concentration

Nt (m
23). Other parameters regarding these physical

processes, for example, the evaporation rate and the ac-

cretion rate, are also related toDSDs (Zhang et al. 2006).

A disdrometer is an in situ instrument used to mea-

sure DSDs. A disdrometer usually has a limited sam-

pling area, and the spatial and temporal variabilities

of weather systems make it difficult to obtain com-

prehensive measurements of DSDs (Bringi et al. 2015).

Polarimetric radars typically have fine spatiotemporal

resolutions and large coverage, which can measure the

microphysical properties of raindrops using horizon-

tally and vertically polarized channels. The measure-

ments made by polarimetric radars, namely, horizontal

reflectivity factor ZH (dBZ), differential reflectivity

ZDR (dB), and specific differential phaseKDP (8 km
21),

are related to the DSDs (Cao et al. 2012). Therefore, it

is possible to retrieve an estimated N(D) from the
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polarimetric measurements. Because only three types of

measurements (ZH, ZDR, and KDP) are available for the

quantitative retrieval, N(D) should be represented using

simplified DSD models containing only a few parame-

ters. The gamma distribution N(D)5N0D
m exp(2LD),

Dmin#D#Dmax is widely used to represent natural rain

spectra,whereN0 (mm21m23) is the number concentration

parameter, m (unitless) is the shape parameter, L (mm21)

is the slope parameter, andDmin (mm) andDmax (mm) are

the minimum and maximum diameters of raindrops re-

spectively (Ulbrich 1983; Testud et al. 2001).

Because most DSD variabilities can be accounted for

by a DSD model with 2 degrees of freedom (Morrison

et al. 2019), the gamma distribution was usually further

constrained for DSD retrieval. Seliga and Bringi (1976)

proposed to calculate R and the median volume diameter

D0 (mm) from ZH and ZDR based on the exponential

distribution, which assumes m 5 0 in the gamma distri-

bution. Zhang et al. (2001) used the gamma distribution

constrained by a statistical relation between m and L in

retrieval, which was cross verified with the relation be-

tween Dm and the mass spectrum standard deviation sm

(mm; Zhang et al. 2003; Moisseev and Chandrasekar

2007). Cao et al. (2008) also found that the m–L relation

may vary in different climate regions (Cao and Zhang

2009). With the constraint of the m–L relation, the de-

grees of freedom in the gamma distribution is reduced to

2 for DSD retrieval. Testud et al. (2001) demonstrated

that the average normalized DSD spectra with 2 degrees

of freedom were stable. Later on, Lee et al. (2004) pro-

posed to use a double-moment normalization method to

express DSD as a combination of two DSD moments

and a double-moment normalized function. Recently, this

method was also adapted for X band (Raupach and Berne

2017).Williams et al. (2014) proposed the retrieval ofDSD

on the basis of the normalized gamma distribution con-

strained by a statistical relation betweenDm andsm. In the

Self-Consistent with Optimal Parameterization attenua-

tion correction andMicrophysics Estimation (SCOP-ME)

algorithm, a statistical relation betweenD0 andmwas used

(Anagnostou et al. 2013; Kalogiros et al. 2013).

Using the DSD models with 2 degrees of freedom, the

DSD parameters and N(D) can be explicitly estimated

from two measurements of rain; ZH and ZDR are usually

chosen as the measurements. However, polarimetric ra-

dars also measure the differential phase FDP and its de-

rivativeKDP. BecauseKDP is approximately proportional

to the fourth moment of N(D), it provides useful in-

formation about rain (Huang et al. 2017). Gorgucci et al.

(2002) attempted to include KDP for the estimation of

D0, Nw (the generalized intercept parameter for the nor-

malized gamma distribution), and m, as well as the shape

of the raindrops, which is known as the beta method.

However, the method proved to be unstable due to the

errors in KDP according to Brandes et al. (2004b). As a

result, when adapting the method for X band, only the

data with rainfall rates above 10mmh21 were used in the

study of Park et al. (2005). This method was extended to

reduce the impact of the measurement errors in ZDR and

KDP in Bringi et al. (2002). Whether the inclusion of KDP

can improve the retrieval depends on whether useful in-

formation is utilized and the effect of measurement errors

is reduced at the same time, which has not been compre-

hensively studied yet. With the inclusion ofKDP, there are

three available measurements. The most instinctive way is

to estimate DSD based on the gamma distribution, which

has 3 degrees of freedom. Its feasibility and performance

will be studied. Moreover, even when using a DSD model

with 2 degrees of freedom (e.g., the gamma distribution

constrained by a m–L relation), KDP can be incorporated

using some mathematical methods, for example, the error

minimization analysis (EMA), which will be described in

later sections. We assessed the impact of KDP measure-

ments on DSD retrievals based on these models.

The methods used in this study are introduced in

section 2. The feasibility and performance of DSD

retrieval using the three-parameter gamma distribution

(three-parameter GM) are given in section 3. The per-

formance of the retrievals based on the exponential dis-

tribution (EXP) and the gamma distribution constrained

by a m–L relation [constrained gamma (C-G)] was used

as a reference.A quantitative study ofKDP’s influences on

DSD retrievals on the basis of EXP and C-G is presented

in section 4. Section 5 presents a comparison of the per-

formance of the DSD retrievals with and without KDP

measurements in a real weather event. The conclusions

and further discussion are given in section 6.

2. Methods

According to Cao et al. (2012), the polarimetric vari-

ables (ZH, ZDR, and KDP) are related to N(D) via
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where D (mm) is the equivalent diameters of the

raindrops, l (mm) is the radar wavelength, Kw 5

(«2 1)/(«1 2) where « (unitless) is the relative dielectric
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constant of water, sh,v (a, D) (mm) is the complex scat-

tering amplitude at the horizontal or vertical polariza-

tion for raindrops of diameter D, with the parameter

a being the angle between the incident and scattering

directions (in radian), and Re(�) means the real part of a

complex number (Doviak and Zrnić 1993; Bringi and

Chandrasekar 2001; Zhang et al. 2001; Cao et al. 2012).

Note that the reflectivity factors in linear scale are in

units of mm6m23, and theZH andZV are the reflectivity

factors in decibels. In this study, the scattering am-

plitudes were calculated with the T-matrix method

(Vivekanandan et al. 1991; Mishchenko et al. 1996). The

axis ratio relation was assumed to be the same as that

from Brandes et al. (2002). Since the effect of raindrop

oscillations has been taken into account in their axis

ratio, no additional canting angle was considered in the

simulation of our study. The environmental temperature

was set to 208C. The radar wavelength was assumed to

be 10.7 cm, which is used by operational S-band radars.

The Dmin and Dmax were usually assumed to be 0 and

8mm respectively in the retrieval.

To retrieve rain DSDs from polarimetric radar data, a

DSD model of two or three free parameters is needed in

Eqs. (1)–(3). For example, if the gamma distribution is

used, N0, m, and L can be obtained from ZH, ZDR, and

KDP by solving a system of three nonlinear equations. For

real applications, there are various errors, including mi-

crophysics (MP; DSD, shape, orientation) modeling er-

ror, electromagnetic (EM) scattering modeling error, and

radar measurement (ZH, ZDR, and KDP) errors. These

errors cause uncertainty and sometimes result in no so-

lution in rain DSD retrievals from polarimetric radar

data (PRD). If an additional constraint is introduced for

the gamma distribution (e.g., EXP or C-G), the inverse

problem becomes more complicated. Thus, a DSD re-

trieval framework based on the EMA was introduced.

The EMA is based on the idea of optimization using

forward operators. The parameters in the DSD model

are refined step by step according to the difference of

the radar parameters synthesized from the DSD against

the measurements.When the difference is minimized, the

DSD is optimally estimated. The measurement errors are

taken into account in the EMA by normalizing the terms

in the cost functions by the corresponding error terms

(sZH
,sZDR

, and sKDP
). For EXP and C-G, the terms re-

garding KDP can be removed from the optimization by

increasing the corresponding error term sKDP
to infinity.

Then, only ZH and ZDR are required for the calculation

of the DSD parameters. The formulas and details of the

framework are described in the appendix. Using this

framework, the impact of the exclusion of KDP from the

DSD retrieval was demonstrated by the sensitivity ex-

periments described in sections 3 and 4.

The DSD data used in this study were collected by a

two-dimensional video disdrometer (2DVD) located at

Nanjing, China, in the summers of 2014 and 2015. The

position of the 2DVD was indicated by the black dot

shown in Fig. 1. Before collecting data, the 2DVD was

calibrated by measuring metal balls with known size

dropped into the orifice every year. The time resolution

for the DSD integration was 1min. Total number of the

DSD samples used for the simulations in this study was

21 739. More details of the dataset can be found in Wen

et al. (2016). With the DSD dataset, the m–L relation for

the summer precipitation in this region was derived

using a method of sorting and averaging based on two

parameters (SATP; Cao et al. 2008), resulting in

m520:017 60L2
1 0:9472L2 1:687: (4)

To assess the performance of the DSD retrievals, sim-

ulated polarimetric data were calculated from the ob-

served DSDs following Eqs. (1)–(3). The polarimetric

measurements were simulated by adding Gaussian

random errors into the synthetic polarimetric data. Af-

ter estimating N(D) from these simulations, the physi-

cal parameters (R, W, Dm, and Nt) were derived

following the formulas in Zhang (2016). In calculating

R, the statistical terminal velocity derived by Brandes

et al. (2004a) was used. Because Nt data usually have a

very large dynamic range, they were shown using the

logarithmic scale in this study. The physical parameters

calculated from the observed DSDs were treated as the

truth for natural rain, and the retrievals were compared

with them using four common parameters, namely, the

correlation coefficient (CC), the fractional error (FE),

the bias (BIAS), and the root-mean-square error

(RMSE), which were calculated as follows:
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where Ve is the one of the physical parameters (R, W,

Dm, and Nt) estimated from the retrieved DSD, and
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Vd is the truth calculated from the disdrometer data. The

overbar indicates the mean value of the N samples.

3. The feasibility of the gamma distribution–based

DSD retrieval

The gamma distribution has been widely used to

characterize rain properties for several decades (Ulbrich

1983). Nevertheless, whether the gamma distribution

can be directly used to retrieve the DSD from ZH, ZDR,

and KDP still remains to be proven. Two major sources

of errors in the retrieval are the DSD model error and

measurement error, which were analyzed as follows.

a. DSD model error effects

In the formulation of the DSD retrieval Eqs. (1)–(3),

rainDSD is assumed to be gamma distributed so that the

threeDSDparameters (N0,m, andL) can be solved from

the three radar variables (ZH,ZDR, andKDP). In reality,

rain DSD may not be exactly gamma distributed. There

is a model representation error in the gamma distribu-

tion, which will in turn cause an error in DSDs retrieved

from polarimetric measurements, which also contain

errors. To study theDSDmodel effects, the EMA-based

approach was used with simulated polarimetric radar

data. GammaDSD parameters were estimated from the

ZH, ZDR, and KDP simulated directly from the 2DVD

data (see section 2). No measurement errors were in-

cluded in the radar data, and the values of the error

terms in the EMAwere set to be very small, as explained

in the appendix. Then,R,W,Dm, andNtwere calculated

from the retrieved DSD for comparison with the cor-

responding observations (Fig. 2). The results based on

the C-G and EXP are provided as references. Overall,

the performance of the three-parameter GM was worse

than that of the C-G. The deviations of retrieved R, W,

andNt from the truth were obvious, exhibiting generally

larger RMSE, BIAS, and FE values than the C-G. The

performance of Dm was better than the other three pa-

rameters but was still not satisfactory. Although the C-G

was based on the gamma distribution, an extra con-

straint (the m–L relation) made the estimated physical

parameters more consistent with those from the obser-

vations. The RMSE, BIAS, and FE values were gen-

erally low and CC values were high. However, the

performance of the EXP was much worse than that of

the C-G, even though the EXP was also essentially the

gamma distribution with m 5 0. The values of RMSE,

BIAS, and FE for the EXPwere even greater than those

for the three-parameter GM, suggesting that simply

fixing m 5 0 was a nonrealistic constraint. The differ-

ences between the physical parameter estimates (R, W,

Dm, and Nt) based on the three-parameter GM and the

values derived from the DSD observations were mainly

caused by its model representation error. Note that,

since R and W are close as the DSD moments, they re-

veal similar behaviors consistently in the comparative

study. Thus, most of the results for R were not shown in

the rest of the study for simplicity.

In studies of rain properties, the observed DSDs are

usually fitted to the three-parameter GM. Here, the

untruncated-moment method using the second, fourth,

and sixth moments were adopted (Vivekanandan et al.

2004; Zhang 2016). The difference between the fitted

DSDs and those retrieved from the radar variables

clearly illustrated the errors caused by the different

models. Comparisons of the physical parameters cal-

culated from the fitted DSDs and those estimated from

the retrieval are shown in Fig. 3. In this simulation, we

also assumed that the scattering condition was known.

If the natural DSDs exactly followed the assumed

three-parameter GM, the retrieved DSDs based on

the three-parameter GM would be exactly the same as

the fitted ones. Nevertheless, there were significant

differences between the physical parameters calcu-

lated from the fitted DSDs and those estimated from

the retrieved DSDs based on the three-parameter GM,

which validated the conclusion obtained from Fig. 2.

DSD truncation is an important factor that needs to

be considered when representing the natural DSDwith

the gamma distribution (Vivekanandan et al. 2004).

As noted earlier, Dmax is not easy to determine from

polarimetric measurements, and therefore it is usu-

ally given an assumed fixed value (e.g., 8mm) in the

FIG. 1. The topography around Lishui S-Pol (black triangle)

and NJU 2DVD (black dot). The elevation of the terrain is in-

dicated as shading.
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retrieval (Zhang et al. 2001), which is not true for the

observed DSD. The inconsistency between the natural

DSD and the gamma distribution may also be partially

attributed to the microphysical processes of precipita-

tion, for example, the evaporation, collision coalescence,

and breakup processes (Kumjian and Ryzhkov 2010;

Kumjian and Prat 2014). The size sorting process

may cause the ‘‘long tail,’’ suggesting an increase in the

concentrations of larger raindrops and a decrease in the

concentration of small raindrops (Cao and Zhang 2009).

Furthermore, the polarimetric variables and the pa-

rameters of gamma distribution are not independent,

which leads to an ill-posed retrieval problem using the

three-parameter GM. As a result, the retrieved physical

parameters are not consistent with the truth in Fig. 2.

As indicated by Figs. 2 and 3, the impact of the in-

consistency between the natural DSD and the models

weakened as extra constraints were used. In this study,

FIG. 2. Comparisons of (a1),(b1),(c1) R; (a2),(b2),(c2) W; (a3),(b3),(c3) Dm; and (a4),(b4),(c4) Nt calculated from the 2DVD obser-

vations against those from the retrieved DSDs. The shading means the two-dimensional probability density. The category sizes of R, W,

Dm, andNt are 2mmh21, 0.1 gm23, 0.1 mm, and 0.1 log10(m
23), respectively. The DSDs were retrieved from the synthetic ZH, ZDR, and

KDP based on the three-parameter (a1)–(a4) GM, (b1)–(b4) C-G, and (c1)–(c4) EXP, respectively.
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the m–L relation used in C-G had better performance

than the constraint of EXP (m 5 0). Based on the C-G,

better DSDs and corresponding rain parameters can be

retrieved from the synthetic polarimetric variables. The

m–L relation can be considered to represent the physical

property of natural rain and helps to reduce the un-

certainties in DSD retrievals (Zhang et al. 2003).

b. The impacts of simulated measurement errors

Although polarimetric measurements provide valu-

able information regarding rain microphysical properties,

measurement errors sometimes prevent their effective

use and should be rigorously handled in DSD re-

trievals. To evaluate the impacts of these errors quan-

titatively, polarimetric measurements were simulated

by adding Gaussian random errors to the calculated

radar variables from a 2DVD dataset. In this analysis,

the standard deviations of the simulated errors for ZH,

ZDR, and KDP were 1 and 0.2dB and 0.38km21 re-

spectively (Bringi and Chandrasekar 2001; Ryzhkov et al.

2003; Lee 2006). As such, the error terms in the EMA-

based retrieval were assumed to be known, namely

sZH
5 1 dB, sZDR

5 0:2 dB, and sKDP
5 0:38km21. The

physical parameters of rain calculated from retrieved

DSDs based on the three-parameter GM, C-G, and

EXP were compared with the truth, as shown in Fig. 4.

The physical parameters were less accurate due to the

measurement errors. Different DSD models had dif-

ferent levels of sensitivity to the measurement errors.

Compared with the results of the C-G, the retrievals

based on the three-parameter GM had fewer con-

straints, making them more sensitive to measurement

FIG. 3. As in Fig. 2, but for a comparison of the physical parameters calculated from fitted DSDs with those from the

retrieved DSDs.
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errors. Thus, the results based on the three-parameter

GM deteriorated significantly, with increased RMSE,

FE, and BIAS, and a very low CC. The results of the

C-G also indicated reduced accuracy in the physical

parameters, although the overall performance was

satisfactory. The impacts of the measurement errors

were diminished by the constraint in the C-G. For

the EXP, negative errors inZDR andKDP also affected

the estimates of the physical parameters, with great-

er errors than C-G. The R, W, and Nt estimates were

positively biased, while Dm estimates were negatively

biased.

It should be noted that no valid estimates can

be obtained if ZDR or KDP values were negative

in conventional retrieval using C-G or EXP (Seliga

and Bringi 1976; Zhang et al. 2001). However, the

EMA-based approach made it possible to obtain valid

estimates under such conditions, which is the advantage

of this kind of optimization-based retrieval.

c. The feasibility of the three-parameter GM-based

DSD retrieval

Some conclusions can be drawn from the analyses

in the preceding two subsections. Neither radar mea-

surements nor the parameters of gamma distribution

were completely independent for natural rain, which

makes the retrieval using the three-parameter GM

alone ill-conditioned. For natural rain, even with-

out errors in the polarimetric measurements, the

retrieved physical parameters based on the three-

parameter GM showed significant deviations from

the truth. They also showed large sensitivities to the

measurement errors. The errors in the radar mea-

surements may increase due to the contaminated

FIG. 4. As in Fig. 2, but with errors in the measurements (sZH
5 1 dB, sZDR

5 0.2 dB, and sKDP
5 0.38 km21).
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echoes or echoes with a lower radar signal-to-noise

ratio (SNR). Under these circumstances, the results

would become even worse than those in the simula-

tions, indicating the importance of additional con-

straints in the gamma distribution.

4. The roles of KDP in DSD retrieval

a. Comparison of retrievals with and without KDP

From the quantitative studies in the previous section,

we found that the C-G had advantages over the three-

parameter GM and EXP when retrieving DSDs from

ZH, ZDR, and KDP measurements. Before the EMA-

based or other optimization-based approaches were

developed, DSDs were commonly retrieved from ZH

and ZDR databased on the DSD models with 2 degrees

of freedom, for example, C-G and EXP (Zhang et al.

2001; Brandes et al. 2004a). The KDP is not a direct

radar measurement but is obtained from the range

derivative of FDP (8) over multiple gates. The mea-

surement errors of KDP are not only from the random

errors in FDP measurements but also from the average

of the physical variabilities of rain (Huang et al. 2017).

Thus, the resolution volume of KDP is different from

ZH and ZDR (Zhang 2016), and many studies only use

ZH andZDR in DSD retrievals (Zhang et al. 2001, 2003;

Zhang 2016). Even so,KDP measurements still contain

valuable information about rain (Gosset et al. 2010),

and proper utilization of KDP may potentially improve

DSD retrievals. In the EMA-based approach, if the

error term of KDP is set to infinity, only ZH and ZDR

measurements will play roles in the retrievals, which

allows for a quantitative evaluation of how KDP mea-

surements affect the retrievals.

First, the intrinsic representatives of C-G and

EXP for the natural rain were investigated when

KDP was not included. Similar to the simulation in

section 3a, no measurement errors were added to the

polarimetric data. The results are shown in Fig. 5. The

KDP values were calculated from the retrieved DSD

and were compared with the synthetic KDP from the

2DVD dataset, which was similar to the estimation of

KDP from ZH and ZDR based on their self-consistent

relations (Vivekanandan et al. 2003; Huang et al.

2017). The high consistency between KDP calculated

from the retrieved DSD and the 2DVD dataset

[Figs. 5a(1),b(1)] indicated that both C-G and EXP

retained self-consistency among the polarimetric var-

iables. If KDP was excluded from the retrievals, negli-

gible changes appeared in W and Dm according to the

comparison between Fig. 5 and Figs. 2b and 2c. The

results for Nt and R (not shown) were also similar and

are not shown for simplicity. The similarity suggests

that, due to the self-consistency of the polarimetric

variables,KDP provides little independent information

if no error exists in the polarimetric data.

However, the measurement error effect cannot be

underestimated. It is worth investigating how KDP con-

tributes to DSD retrieval when errors exist in radar

measurements. Similar to the experiment described in

section 3b, another retrieval experiment was conducted

in which the KDP measurements were not included. The

evaluation of the physical parameters is shown in Fig. 6.

According to the comparison between Fig. 6 and Figs. 4b

and 4c, the errors in Dm and Nt did not significantly

change when KDP measurements were not used in the

retrievals. However, the errors in W and R slightly in-

creased for the C-G but decreased for the EXP, sug-

gesting different roles of the KDP measurements (see

RMSE, FE, BIAS, and CC).

The integrated effects of KDP may depend on the

DSD model. For EXP, if the radar echo intensity is

moderate (e.g., ZH around 40dBZ), the negative KDP

caused by the measurement error may have two differ-

ent effects, as shown in Table 1. With no ZDR errors

(0 dB in Table 1), the negativeKDP tended to result in a

lower Dm and larger R/W. However, with a large nega-

tive error in the ZDR measurement (e.g.,20.55 dB), the

negative KDP may result in a very large L and large N0

(note m 5 0 for EXP), which represents a high concen-

tration of very small raindrops, resulting in extreme

positive biases in the estimated R and W and a negative

bias in Dm. In such a case, the retrieval without KDP

measurements was better than that with KDP measure-

ments included.

For the C-G, the above situation did not cause severe

biases because the concentration of the small drops

was suppressed by the positive m required by the m–L

relation, which mitigated the impacts of measurement

errors. As shown by the comparison of Figs. 4 and 6,

the incorporation of KDP measurements enhanced

the accuracy of the DSD retrieval, and hence the ac-

curacy of the physical parameters W and R. When

measurement errors exist, less information is provided

by ZH and ZDR. Under such condition, the incorpo-

ration of KDP made a positive contribution due to self-

consistency of polarimetric variables. Because the C-G

has two parameters that need to be determined, the

measurement errors generally cannot be removed or

canceled if only ZH and ZDR are used in the DSD re-

trieval. By using the EMA-based approach, the DSD

was optimized under the statistical constraint of the

C-G, with the consideration of errors in ZH, ZDR, and

KDP. The constraint provided by the m–L relation re-

flects the physical property of rain (Zhang et al. 2003).

Thus, the optimized DSDs from ZH, ZDR, and KDP
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were more realistic and less affected by the measure-

ment errors.

b. Quantitative evaluation of the impact of KDP on

the retrieval

The impact of incorporating KDP in the retrieval was

shown in the previous subsection. The C-G had an ad-

vantage over the EXP when we attempted to obtain

the most accurate DSD estimates by combining all the

useful information of the polarimetric variables. In the

earlier experiments, the standard deviation of the KDP

errors was assumed to be equal to 0.38 km21. However,

in recent years, novel approaches have been proposed

for more accurateKDP estimates, including an approach

based on linear programming (Giangrande et al. 2013),

the hybrid method (Huang et al. 2017), and the varia-

tional approach (Maesaka et al. 2012; Huang et al. 2018).

The errors in KDP can be reduced by incorporating

physical constraints or by an optimization using all of

the useful information provided by polarimetric radars.

On the other hand, when a radar echo is contaminated

by nonmeteorological scatterers or when the radar

SNR decreases, the backscattering phase or ran-

dom errors in FDP can increase significantly. Unfortu-

nately, these can cause larger errors inKDP (Bringi and

Chandrasekar 2001, chapter 6). Moreover, KDP on a

radar gate is calculated based on a series of sequential

FDP data at its neighboring range gates. Large spatial

variabilities in these range gates will cause more errors

and uncertainties in the KDP estimates.

FIG. 5. Comparisons of (a1),(b1)KDP; (a2),(b2)W; and (a3),(b3)Dm calculated from the retrieved DSDs against those from the 2DVD

observations. The shading means the two-dimensional probability density. The category sizes ofKDP,W, andDm are 0.18 km21, 0.1 gm23,

and 0.1mm. The DSDs are retrieved from the synthetic ZH and ZDR based on the (a1)–(a3) C-G distribution and (b1)–(b3) EXP,

respectively.
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To study quantitatively howKDPmeasurements with

different error levels can affect the accuracy of DSD

retrieval, six groups of comparative experiments were

designed. All of these sensitivity experiments used the

same group of simulated ZH and ZDR measurements

with sZH
5 1 dB and sZDR

5 0:2 dB (see section 3b for

the simulation of radar measurements). In the control

experiment, the KDP measurements were not used

in the retrievals. In the other five groups of sensitivity

experiments, we used simulated KDP measurements

with different levels of Gaussian random error and

standard deviations ranging from 0.18 to 0.58km21,

with a 0.18km21 interval. DSDs were then retrieved

from the simulated radar measurements using the

EMA-based approach. The error terms in the EMA

were assumed to be known and correctly used in all

sensitivity measurements. Only the C-G was used as

the model for DSD retrieval because the EXP and the

FIG. 6. As in Fig. 4, but for retrievals usingZH andZDRmeasurements based on the (a1)–(a3) C-G distribution and

(b1)–(b3) EXP.
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three-parameter GM exhibit clear shortcomings in the

DSD retrieval due to the lack of physical constraints.

The dependence of the retrieval accuracy on KDP

errors was then demonstrated with respect to the echo

intensity (ZH). As shown in Fig. 7, the syntheticZH from

theDSDwas separated into nine bins ranging from 12 to

48dBZ with 4-dB intervals, and the CC, BIAS, FE, and

RMSE of the physical parameters were calculated

within each ZH bin. The results demonstrated that there

was no significant change forDmwhen themeasurement

errors in theKDP changed from 0.18 to 0.58 km21 or even

when KDP measurements were not used in the retrieval.

For W, Nt, and R, the accuracy of the retrieval changed

when the errors in the KDP measurements changed.

This effect was not significant when the echo intensity

ZH , 35 dBZ, while the advantage of using more accu-

rate KDP measurements was clear when ZH . 35dBZ.

Note that the threshold 35 dBZ was also adopted by

Bringi et al. (2002) to determine whether KDP should

be used for DSD retrieval. The CC values increased and

the RMSE, FE, and BIAS decreased when the errors in

the KDP measurements changed, indicating more accu-

rate physical parameters and hence a more accurate

DSD. This effect intensified as ZH increased. Even

when including KDP measurements with relatively large

errors (sKDP
5 0:58km21), the W, Nt, and R estimates

were still more accurate than those estimated from the

retrieval using only ZH and ZDR measurements. Note

that Nt was in logarithmic scale. Thus, only the increase

in CC was significant.

To investigate the underlying reason for this, the

synthetic polarimetric variables calculated from the re-

trieved DSDs were compared with those calculated

from the observed DSD data. Only the results for

sKDP
5 0.18 and 0.38km21 aswell as thosewithoutKDP are

shown in Fig. 8. The comparisons between the estimated

and the synthetic polarimetric variables indicate how

much error was removed and how much propagated to

the estimates. When the DSD was retrieved from two

measurements (ZH and ZDR), most errors except the

negative ZDR could not be removed because there was

no additional information. As a consequence, the errors

in the estimatedKDP shown in Fig. 8a(3) were relatively

large compared with those in Figs. 8b(3) and 8c(3).

When KDP was used, the errors in the three measure-

ments could be partially canceled through the optimi-

zation because of the additional constraint in C-G. In the

EMA-based retrieval, the error terms in the cost func-

tion acted as weightings or as a quality index for the

measurements. When the errors in the KDP measure-

ments were reduced, KDP contributed more to the esti-

mation, especially when the echo intensity was severe

(relatively large ZH; see Fig. 7 and Fig. 8). Because ZH

was recorded using the decibel scale, the errors in ZH

had a large impact on the estimation of W, Nt, and R

when ZH was relatively large. Under such conditions,

more useful information in KDP contributed to the es-

timates since the effect of the errors in KDP is linear.

When sKDP
decreased, more accurate information in

KDP resulted in more accurate estimation of W, Nt, and

R (Figs. 7a and 7c). In the meantime, fewer ZH errors

propagated to the estimates, and ZH estimates would be-

comemore accuratewhenZH. 35dBZ [Figs. 8a(1)–c(1)].

However, ZDR estimates barely changed even when

very accurate KDP measurements were used in

the retrieval [Figs. 8a(2)–c(2)], corresponding to

quasi invariability in the performance of the Dm

estimates [Figs. 7b(1)–b(4)].

c. Effects of the inaccurate characterization of the

KDP error properties

As stated earlier, the advantage of the EMA-based

retrievals was that all the available measurements were

used according to their reliabilities, as determined by

their error properties (error terms). Thus, accurate re-

trievals require relatively accurate characterization of

the measurement errors. However, the KDP errors are

not easy to estimate quantitatively because they are

derived not only from the errors in FDP measurements

but also from the uncertainty in the spatial variabilities

TABLE 1. The performance of the retrieved physical parameters (R,W, andDm), with two different levels of errors included. The retrieval

was based on the polarimetric data calculated from an observed DSD (ZH 5 39.962 dBZ, ZDR 5 0.597 dB, KDP 5 0.2458 km21).

R (mmh21) W (gm23) Dm (mm)

Truth 24.01 1.43 1.3

«ZH
5 0.0

«ZDR
5 0.0

«KDP
5 20.6

With KDP C-G 24.82 1.46 1.31

EXP 30.45 2.13 1.07

Without KDP C-G 26.19 1.55 1.3

EXP 32.21 2.27 1.06

«ZH
5 0.0

«ZDR
5 20.55

«KDP
5 20.6

With KDP C-G 118.25 11.25 0.71

EXP 1040.75 344.95 0.2

Without KDP C-G 124.22 11.81 0.71

EXP 281.2 47.74 0.39
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of rain properties. We next investigated how the per-

formance of the retrieval changed when inaccurate KDP

error terms were used in the retrieval.

The following experiments were designed based on

the earlier ones. Simulated radar measurements were

obtained by adding Gaussian simulated errors to the

synthetic polarimetric data (sZH
5 1 dB, sZDR

5 0:2 dB,

sKDP
5 0:38km21). Unlike the previous experiments, the

error properties of the KDP measurements were as-

sumed to be not well known. As listed in Table 2, the

error terms (sKDP
) used in the EMA in the different

experiments were 0.18, 0.28, 0.38, 0.48, and 0.58km21. A

retrieval with the accurate sKDP
(0.38km21) was used

as a control experiment. From the RMSE, BIAS, FE,

and CC of the physical parameters for each experiment,

we found that the physical parameters became less ac-

curate if inaccurate sKDP
values were used. Among the

four physical parameters,Dmwas the least affected. The

useful information in the KDP measurements was in-

sufficiently used if the overestimated sKDP
was used in

FIG. 7. Comparisons of (a1),(b1),(c1) CC, (a2),(b2),(c2) RMSE, (a3),(b3),(c3) BIAS, and (a4),(b4),(c4) FE corresponding to (a1)–(a4)

W, (b1)–(b4)Dm, and (c1)–(c4)Nt calculated from the retrieved DSDs withoutKDP measurements or withKDP measurements including

different random errors.
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the EMA. On the other hand, if a sKDP
lower than the

real error was used, the measurement errors in KDP

tended to propagate into the DSDs and the corre-

sponding physical parameters. The retrievals under both

situations were less accurate than that obtained when

using an accurate sKDP
The results from the experiments

using overestimated sKDP
values (0.4 or 0.5) were gen-

erally better than those obtained using underestimated

sKDP
values (0.1 or 0.2). This is probably because even

when the information in KDP measurements was un-

derutilized, better results than those without KDP mea-

surements could still be obtained. However, by using

underestimated sKDP
values, the KDP measurements

were overly weighted. The useful information inZH and

ZDR measurements was lost and the KDP errors overly

propagated into the retrieval results. For example, even

Dm can deteriorate when sKDP
5 0.18km21 is used im-

properly. Therefore, when it is difficult to determine the

errors in KDP measurements, it is better not to use a

relatively small sKDP
.

5. DSD retrieval in a real event

In the above study, simulation experiments based on

observed DSD data were used to demonstrate the fea-

sibility of directly retrieving theDSDs from polarimetric

measurements based on the three-parameter GM and

that including KDP measurements with accurate error

FIG. 8. Comparisons of synthetic (a1),(b1),(c1) ZH, (a2),(b2),(c2) ZDR, and (a3),(b3),(c3) KDP from the retrieved DSDs against those

from the 2DVD data. The shading means the two-dimensional probability density. The category sizes of ZH, ZDR, KDP, R, and Dm are

1 dB, 0.1 dB, and 0.18 km21. (a1)–(a3) The results from the retrievals only using ZH and ZDR measurements. (b1)–(b3),(c1)–(c3) The

results from the retrievals including measurements of different KDP accuracy (sKDP
5 0.38 km21 and sKDP

5 0.18 km21, respectively).
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properties in the EMA-based retrieval led to more ac-

curate DSDs and physical parameter estimates. Their

performance will be investigated using real radar ob-

servations in the current section.

An S-band polarimetric radar called the Lishui ra-

dar (black triangle in Fig. 1) is located about 37 km to

the southeast of the 2DVD. The radar was calibrated

with a hollow metal sphere in June 2014, which en-

sured the accuracy of the radar reflectivity measure-

ments. TheZDRwas calibrated by monitoring theZDR

variations of the drizzle echo. The echoes with a cor-

relation coefficient (rhv) less than 0.8 were considered

to be potentially contaminated by clutter or other

nonmeteorological scatterers and were removed. The

adaptive least squares fitting method similar to that

adopted by WSR-88D was used to calculate KDP

(Huang et al. 2017); KDP at each gate was obtained

from the least squares fitting of FDP within a specific

fitting window. If the corrected ZH is above (below)

40 dBZ, the length of the adaptive fitting window was

set to 2.5 (9) km. On 12 and 3–4 July 2014, two pre-

cipitation systems passed over both the Lishui radar

and the 2DVD. DSDs and physical parameters (R, W,

Dm, and Nt) were retrieved from the radar measure-

ments. The radar-derived parameters were quantita-

tively compared with the 2DVD observations to show

the performance of different retrieving models.

The precipitation event on 12 July 2014 lasted for

about 9h. Figure 9 shows the plan position indicator

(PPI) images of the radar scan at 0.58 elevation at

0640 UTC. The weather system produced both strati-

form and convective precipitation. TheZDR values were

generally lower in the stratiform regions than in the

convective regions, with substantial variation in the

convective regions, indicating vastly different micro-

physical properties. The black lines in Fig. 10 show the

synthetic polarimetric measurements generated from

the 2DVD observations, while the red dots show the

polarimetric radar measurements at 0.58 elevation

above the 2DVD site for comparison. The rain DSDs

sampled by the 2DVD contained both stratiform and

convective precipitation. The vertical distance between

the center of the radar volume and the 2DVD site was

about 400m. The radar measurements had a lower

time resolution (about 7min) than the 2DVD (1min).

Additional uncertainty in the comparison was led

by different sampling volumes of these two different

instruments as well as the evolution of hydrome-

teor microphysical properties while falling from the

radar volume to the 2DVD site. Although sometimes

no radar measurement was available while the 2DVD

observed rain, overall the radar measurements corre-

sponded well with the synthetic radar measurements

calculated from the 2DVD-observed DSDs. Although

the radar data were quality controlled, there were some

negative ZDR and KDP measurements due to random

errors and estimation errors, which may have affected

the quality of the DSD retrieval.

Figure 11 shows the comparison of the retrieved

physical parameters using four different approaches

against the observations during the precipitation event

on 12 July 2014. The green circles show the EMA-based

retrieval using the three-parameter GM, the black tri-

angles show the conventional retrieval using EXP, and

the blue squares and the red dots show the results of the

EMA-based retrieval using C-G with and without KDP

measurements respectively. The quantitative compari-

son between radar-derived rain physical parameters and

TABLE 2. The performance of the estimated physical parameters (R, W, Dm, and Nt) for rain with different sKDP
used in the error

minimization analysis (EMA)-based retrieval.

sKDP
(8 km21) 0.1 0.2 0.3 0.4 0.5

R (mmh21) CC 0.876 0.924 0.93 0.928 0.927

FE 0.517 0.491 0.49 0.491 0.491

RMSE 7.655 5.643 5.423 5.511 5.616

BIAS 1.135 0.875 0.859 0.875 0.89

W (gm23) CC 0.778 0.839 0.846 0.843 0.842

FE 0.689 0.659 0.657 0.658 0.658

RMSE 0.57 0.445 0.431 0.438 0.443

BIAS 0.07 0.051 0.05 0.051 0.052

Dm (mm) CC 0.773 0.775 0.775 0.775 0.775

FE 0.199 0.198 0.198 0.198 0.198

RMSE 0.231 0.23 0.23 0.23 0.23

BIAS 0.019 0.02 0.02 0.02 0.02

log10[Nt (m
23)] CC 0.664 0.666 0.667 0.666 0.667

FE 0.18 0.18 0.18 0.18 0.18

RMSE 0.635 0.633 0.632 0.632 0.632

BIAS 20.253 20.255 20.255 20.255 20.255
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2DVD observations were show in Table 3. For R and

W estimates, differences mainly existed when ZH mea-

surements were large (.45dBZ; Fig. 11). When KDP

measurements were not used, the R and W estimates of

EMA-based retrieval using C-G showed obvious over-

estimation, corresponding to the large RMSE and BIAS

values. This overestimation also existed in the results of

the conventional retrieval using EXP. When the KDP

measurements were used in the retrieval (denoted with

blue squares), the results of EMA-based retrieval using

C-G were more consistent with the 2DVD observations

and the overestimations in R and W were diminished.

The results of the above three approaches were not

significantly different when the echo intensity was lower

(ZH, 45dBZ; Fig. 11). However, theR andW estimates

using three-parameter GM showed larger errors. The

corresponding CC values were low, and the errors (FE

and RMSE values) were high. In the Dm estimates, the

results from EMA-based retrieval using C-G with and

without KDP measurements showed comparable accu-

racy, which was cross verified with the conclusions from

section 4. Even though the CC values corresponding to

these two kinds of estimates were not high, the low er-

rors (FE, RMSE, and BIAS values) showed generally

good consistency with the observation. For the Dm

values, no valid values were obtained by the conven-

tional retrieval using EXP when ZDR measurements

were negative. In addition, because the constraint in

EXP (m 5 0) was not completely suitable for the geo-

graphical region in this research, theDm estimates from

EXP showed lower accuracy than those from EMA-

based retrieval using C-G. The retrieval using the three-

parameter GM showed the lowest CC values and largest

errors (FE, RMSE, and BIAS values). The estimates of

Nt were the worst among the four physical parameters.

This is mainly becauseNt is the zerothmoment of DSDs,

which is quite different from themoment orders of radar

reflectivity (;sixth moment; Brandes et al. 2004a). This

result is also consistent with the results shown in Figs. 4

and 6. The Nt estimates from the EMA-based retrieval

using C-G with and without KDP measurements

showed comparable accuracy, while EXP-based re-

trieval showed lower accuracy. Then the Nt estimates

from EMA-based retrieval using the three-parameter

FIG. 9. Plan position indicator (PPI) images at 0.58 elevation for (a) ZH, (b) ZDR, (c) rhv, and (d) FDP from the

Lishui radar at 0640 UTC 12 Jul 2017.
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GM showed nearly no correlation with the observations

(CC ; 0). The errors (FE, RMSE, and BIAS values)

were also very large when compared with the results of

the other methods.

The statistical comparison for another precipitation

event that happened on 3–4 July 2014 was also shown in

Table 3. In this event, the performance of radar-derived

estimates (at 0.58 elevation) from the four approaches

was similar to that in the event on 12 July 2014. The

estimates from the EMA-based retrieval using the

three-parameter GM also showed very large differences

from the observations, which confirmed the conclusions

from the simulation experiments. The conventional re-

trieval using EXP showed much better performance

than the three-parameter GM especially for R, W, and

Dm. For the EMA-based retrieval using C-G, slight

improvements in R and W (decrease in The RMSE and

BIAS) were found if the KDP measurements were in-

cluded, which was also consistent with the results shown

in Fig. 7.

6. Conclusions and discussion

Estimating DSD parameters from polarimetric ra-

dar data facilitates precipitation microphysics re-

search. It is important to know the error characteristics

of the retrieval when using different methods. The

three-parameter GM, C-G, and EXP are the three

commonly used models for representing rain DSD re-

trieval. In this study, a general EMA-based approach

was used to estimate DSDs based on these models. The

performance of the DSD retrievals was investigated

through simulation experiments and with real radar data.

First, the feasibility of directly retrieving the DSDs

from polarimetric measurements based on the three-

parameter GM was studied. The accuracy of the DSD

model was determined by comparing the physical pa-

rameters (R, W, Dm, and Nt) estimated from polari-

metric data with those calculated from the 2DVD

observations. The results based on the C-G and EXP

were used as references. It was found that the three-

parameter GM was not suitable for directly retrieving

DSDs from ZH, ZDR, and KDP. Even if there was no

error in the polarimetric data, the estimates still de-

viated from the truth because the three-parameter GM

does not contain the statistical microphysical charac-

teristics of the DSDs. When there were errors in

the radar measurements, the retrievals based on the

three-parameter GM were even worse. This unsatis-

factory performance prevents the three-parameter GM

from being used directly in the retrieval of DSDs.

With some additional constraints (e.g., the m–L re-

lation), statistical DSD properties could be retained.

Some other DSD models, for example, the generalized

FIG. 10. Comparisons of radar measurements (a) ZH, (b) ZDR, and (c) KDP denoted with red

dots vs those calculated from the 2DVD data (black lines).
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gamma distribution with normalization (Lee et al. 2004;

Thurai and Bringi 2018) and the gamma distribution

constrained by a statistical Dm–sm relation (Williams

et al. 2014; Zhang 2015), have similar effect.

From the comparisons of the estimated physical

parameters with and without KDP measurements

used in the retrievals, it was found that the retrievals

based on the EXP became worse when more in-

formation was used. Retrieval methods based on C-G

could make full use of all the polarimetric measure-

ments since the constraints of C-G suppressed the

effect of KDP errors and thus performed better than

those only using the ZH and ZDR measurements. It

was also demonstrated that, when errors were con-

tained in KDP measurements, the accuracy of W

could be further enhanced when an accurate sKDP
was

used in the EMA, especially when ZH . 35 dBZ. The

sKDP
term in the EMA indicates the reliability of KDP

measurements. If the KDP is overly trusted (sKDP
too

small), measurement errors can reduce the accuracy

of the estimates. On the other hand, if the sKDP
values

used are too large, the useful information in KDP

measurements cannot be efficiently utilized. It is

therefore important to use an accurately estimated

sKDP
to obtain more accurate DSD estimates. The

effects of the errors in ZH and ZDR measurements

were not investigated but are expected to have sim-

ilar effects.

Finally, polarimetric radar measurements and 2DVD

observations from two precipitation events were used

to verify the performance of these approaches. The re-

trieval using the three-parameterGM showed the lowest

accuracy as compared with the other three approaches.

When only ZH and ZDR were used in the EMA-based

retrieval using C-G, R and W were sometimes sub-

stantially overestimated. However, the overestimation

problem was solved by using all three measurements

(ZH, ZDR, and KDP) in retrievals, indicating the advan-

tage of making full use of all available information. The

conventional retrieval using EXP showed decreased

FIG. 11. Comparisons of radar retrieved (a)R, (b)W, (c)Dm, and (d)Ntwith those calculated

from the 2DVD data (black lines). The red dots and blue squares represent the results from

EMA-based retrieval using C-G with/without KDP measurements included. The green circles

denote the results of EMA-based retrieval using the three-parameter GM and the black tri-

angles denote the results of conventional retrieval using EXP.
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performance because that the model was not tuned for

the specific research region and that the measured in-

formation was not fully utilized.

The performance of the DSD models depends on

what physical parameters we are interested in. For ex-

ample, besides W, R, Dm, and Nt, reflectivity (Z, sixth

moment of DSD) was also calculated from the DSDs to

evaluate the performance of different models. No mat-

ter which model was used, all the retrieved Z values

were generally close to the real values in all the exper-

iments in sections 2 and 3. This is mainly because theZH

measurements are close to the sixth moment of DSD.

The retrieval of Z suffered less from the truncation er-

rors and the measurement errors, and the impact of the

DSD models was minor. Thus, when evaluating the

other DSD models for retrieval, further experiments

should be done through comparisons on the physical

parameters of interest.

In the above analysis, the gamma distribution con-

strained by a statistical m–L relation (C-G) had advan-

tages over the unconstrained-gamma distribution in

DSD retrieval. However, the C-G also had its own dis-

advantage because the determination of an accurate

statistical m–L relation is not easy. The m and L are not

DSD moments and are usually determined by the

moment-fitting method (Vivekanandan et al. 2004).

Since the DSD moments suffers from the sampling er-

rors of 2DVD (Tokay et al. 2001, 2013, 2014; Thurai

et al. 2017), the values of m and L can be biased. To

reduce the effect of sampling errors, the moments of

median orders were used in estimation of the DSD

parameters (themoment-fittingmethod; Cao andZhang

2009).The method of sorting and averaging based on

two parameters (SATP) might also be a way to mitigate

the sampling errors (Cao et al. 2008). Since the sampling

errors cannot be completely eliminated by this method,

the only way is tominimize its effect as much as possible.

In addition, due to the limits of L (less than 20) used in

the EMA analysis, there was a lower limit forDm (about

0.7mm) for the retrieval based on the C-G. In the DSD

dataset (21 739 samples) used for simulation, there were

3088 DSD samples (about 14%) with Dm values less

than 0.7mm.Within these samples, only 967 (about 4%)

samples showed larger differences (.0.2mm) from the

Dm estimated based on the C-Gmodel in the simulation

experiment with no measurement errors assumed

(Fig. 2). Thus, the lower limit due to the C-G model was

acceptable considering the other advantages of the C-G.

In addition, explicitly constraining the DSD models

by fixed relations is not the only way to introduce

physical constraints to retrievals. Based on the Bayesian

theorem, the climatic information of the DSD parame-

ters (N0 andL) was used to obtain better DSD estimates

by Cao et al. (2010). Similarly, climatic statistics ofN0,m,

and L can be added to the EMA as a priori information

to constrain the retrieval, in which the EMA becomes

the variational analysis, which is a potential way to ob-

tain accurate DSD estimates on the basis of the three-

parameter GM. In addition, an extra term, which adjusts

the DSD parameters to a statistical constraint (e.g., the

m–L relation), may be included in the cost function of

EMA or a variational analysis. On the other hand, it is

TABLE 3. The statistical comparisons of the radar-derived physical parameters (R,W,Dm, and Nt) and the 2DVD observations in two

real events. Four methods were included for comparison (i.e., the EMA-based retrieval using C-G with and without theKDP included, the

EMA-based retrieval using the three-parameter GM, and the conventional retrieval using EXP).

0000–0900 UTC 12 Jul 2014 1500 UTC 3 Jul–0600 UTC 5 Jul 2014

C-G with

KDP

C-G without

KDP GM

Conventional

EXP

C-G with

KDP

C-G without

KDP GM

Conventional

EXP

R (mmh21) CC 0.87 0.86 0.58 0.86 0.82 0.81 0.16 0.81

FE 1.25 1.35 2.68 1.97 1.05 1.06 10.84 1.41

RMSE 16.31 64.92 28.1 74.96 5.52 7.77 25.81 9.72

BIAS 21.53 10.92 0.68 15.12 0.82 1.15 7.28 2.19

W (gm23) CC 0.85 0.87 20.06 0.87 0.78 0.78 20.07 0.72

FE 1.34 1.43 65.85 2.91 1.12 1.13 408.43 2.14

RMSE 0.91 3.2 73.08 4.14 0.31 0.42 81.61 0.7

BIAS 20.06 0.59 13.08 1.05 0.06 0.08 19.17 0.23

Dm (mm) CC 0.59 0.59 0.48 0.66 0.51 0.51 0.33 0.49

FE 0.22 0.22 0.34 0.29 0.23 0.23 0.37 0.24

RMSE 0.32 0.32 0.58 0.42 0.3 0.3 0.56 0.37

BIAS 20.09 20.1 20.15 20.31 0.01 0.01 20.14 20.19

log10[Nt] CC 0.54 0.58 0.04 0.23 0.53 0.53 0.02 0.34

FE 0.18 0.17 0.54 0.41 0.18 0.18 0.72 0.38

RMSE 7 6.86 23.91 13.14 5.71 5.72 30.19 11.79

BIAS 21.35 21.13 6.41 9.12 21.11 21.1 11.67 8.63
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not necessary to calculateKDP fromFDP measurements

before the DSD retrieval. The FDP measurements can

be directly used if the DSDs in a ray are simultaneously

retrieved based on the EMA or a variational analysis.

In the future, a promising way to retrieve DSDs could

be to use all the available information, including clima-

tology statistics, all measurements, time evolution of

the weather systems, spatiotemporal continuities of

precipitation properties, and physical constraints in a

statistics-based framework (e.g., EMA, variational anal-

ysis) or the Bayesian theorem–based analysis. With the

correct characterization of the uncertainties of these

sources of information, the DSD parameters and the

corresponding physical parameters can be optimized.
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APPENDIX

The EMA-Based DSD Retrieval

Measurements of polarimetric variables can be out-

side the variables’ physical bounds, due to measurement

errors. For these measurements, no valid estimates can

be obtained using the explicit equation-solving ap-

proaches. Extra considerations are required for this kind

of problem. The algorithms based on forward operators,

which calculate polarimetric variables from DSDs, are

suitable for dealing with measurement errors (Rodgers

2000); see Eqs. (1)–(3). Physical constraints are implied

in the forward operators, and they help to eliminate the

effects of erroneous measurements. Bayesian theory

and its variant variational analysis are usually used to-

gether with the forward operators to optimally estimate

DSDs. Because we did not consider the a priori in-

formation in our retrieval, a variant of the variational

analysis method was used as a general method for DSD

retrieval in this study. In this method, any one of the

three-parameter GM, EXP, and C-G distributions can

be used as the DSD model. The basic concept can

be interpreted as follows. The a priori term in the

variational analysis is omitted in the variant and we refer

to it as the EMA approach.

First assume a DSD model, the three-parameter GM,

EXP, or C-G. Then the DSD parameters are denoted

with a state vector x, x5 [N0;L]
T for EXP and C-G and

x5 [N0,L,m]
T for the three-parameter GM. The su-

perscript T means a transpose. The state vector x is

optimized when the cost function is minimized:

J(x)5
1

2
[H(x)2 y]TR21[H(x)2 y] , (A1)

where the forward operators are represented by H(�),

which predicts the polarimetric variables ZH, ZDR, and

KDP from x; y is the observation vector [ZH, ZDR, or

KDP]
T; and R is the error covariance of y. In this study,

we assumed the errors in ZH, ZDR, and KDP were in-

dependent and R was diagonal (Cao et al. 2010), which

was expressed as

R5

2

6

6

4

s2
ZH

0 0

0 s2
ZDR

0

0 0 s2
KDP

3

7

7

5

, (A2)

where sZH
, sZDR

, and sKDP
are the standard deviations of

the errors inZH,ZDR, andKDP. The forwardmodelH(�)

first calculates N(D) from x based on the assumed DSD

model, and then calculatesZH,ZDR, andKDP using Eqs.

(1)–(3). To minimize Eq. (A1), its corresponding gra-

dient is given by

g(x)5H
T
R

21[H(x)2 y] , (A3)

where H is the Jacobian matrix composed of the par-

tial derivative of the predicted variables. As we know,

the forward operators are nonlinear, so x is mini-

mized iteratively using the linearized forward opera-

tors H(x)5H(xk)1HT
3 (x2 xk), where the subscript

of xmeans x at the kth iteration. By setting the gradient

to zero, the optimized x, which minimizes the linearized

cost function at the k 1 first iteration, is given by

x
k11

5 x
k
1A

21(HT
R

21
dy) , (A4)

where 5H
T
R

21
H, and dy5 y2H(x). We use N0 5

83 103 m23 mm21, L5 5mm21, and m5 0 for the first

iteration. Note that the optimization method is not very

sensitive to the choice of these values. A x2 convergence

test can be used for the termination of the iteration.

In this study, we used another way to solve the prob-

lem, which was to minimize Eq. (A1) directly using the

bounded nonlinear optimization algorithm, for exam-

ple, the limited-memory Broyden–Fletcher–Goldfarb–

Shanno algorithm for bound-constrained large-scale
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nonlinear optimization (L-BFGS-B; Byrd et al. 1995).

With Eqs. (A1) and (A3), the Hessian is approximately

estimated with the optimization procedures. One of the

advantages of these bounded optimization algorithms is

their ability to constrain the DSD parameter solutions

within given upper and lower limits to avoid solutions

without a physical meaning. The limits for the DSD

parameters used in this study were 1024
# N0 # 1015,

0.01#L# 20, and23.5# m# 15 (Cao et al. 2008). The

DSD parameters and N(D) were considered to be sta-

tistically optimized when the state variable xminimized

Eq. (A1) (Rodgers 2000). Note that, for C-G and EXP,

ZDR monotonically changes with L; ZH and KDP

monotonically change with L (N0) if N0 (L) is fixed.

Thus, there is a one-to-one mapping between the DSD

parameter sets and the polarimetric variables. In such a

case, the cost function is concave and EMA analysis

can always reach global minimization. For the three-

parameter GM, similar monotonic relationships between

the polarimetric variables and DSD parameters generally

exist except when KDP (ZDR) is close to 08km21 (0dB).

When KDP (ZDR) is close to 08km21 (0dB), non-

monotonicity can exist. Thus, the cost function is linear-

ized and converted to a quadratic function in this study,

which helps to avoid the local minimization.

One of the keys for EMA-based retrieval is its error

terms (sZH
, sZDR

, and sKDP
). They denote the reliability

of the measurements. If we assume no errors exist in the

polarimetric data, the corresponding error terms should

be very small, for example, sZH
5 0:0001 dB, sZDR

5

0:000 02 dB, and sKDP
5 0:000 038 km21. For practical

applications, the error terms denote the measurement

errors, which are mainly decided from the radar digital

signal processing or estimation processes. If one of the

error terms is enlarged, the corresponding polarimetric

measurements are less trusted and less information is

contained in the results.
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