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Preface 

The objectives of the project ‘Uncertainty in traffic forecasts’ that RAND Europe carried 
out for the Transport Research Centre of the Dutch Ministry of Transport, Public Works 
and Water Management were: 

To develop a methodology to estimate the amount of uncertainty in forecasting for 
new infrastructure (especially roads). 

To implement and test this methodology in two case-studies (using the Dutch 
National Model system LMS and the New Regional Models NRM respectively). 

This report presents the outcomes of all phases of this project: 

Literature review for public projects; 

Literature review for public-private partnership (PPP) projects; 

Development of a method to quantify the uncertainty in traffic forecasts for the LMS 

and NRM; 

Outcomes from a large number (100) of model runs with the LMS to derive 
uncertainty margins around the mean traffic forecasts; 

Outcomes from a large number (100) of model runs with the NRM for the Dutch 
province of Noord-Brabant to derive uncertainty margins around the mean traffic 
forecasts. 

This report was written for modellers with an interest in the uncertainty margins around 
the model forecasts and methods to quantify the uncertainty margins. 

RAND Europe is an independent not-for-profit policy research organisation that serves the 
public interest by improving policymaking and informing public debate.  This report has 
been peer-reviewed in accordance with RAND's quality assurance standards (see 
http://www.rand.org/about/standards/) and therefore may be represented as a RAND 
Europe product. 
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Summary 

Although thousand of papers on transport model forecasts can be found in journals, 
conference proceedings and reports, the literature on quantifying uncertainty in traffic 
forecasts is fairly limited. In this report we present an overview of the literature on 

uncertainty in transport modelling and outcomes of interviews with a number of experts. 
Furthermore we  provide the outcomes of our analysis of uncertainty in traffic forecasts 
from the Dutch national model system (LMS) and the regional model for (NRM) Noord-
Brabant. 

We distinguish between input uncertainty (e.g. on the future incomes) and model 
uncertainty (including specification error and error due to using parameter estimates 
instead of the true values). 

All methods encountered in the literature for quantifying the amount of iinput 
uncertainty use some form of repeated model simulation (sensitivity testing). Many of the 
studies investigated postulate statistical distributions for the input variables and then draw 
(usually at random, sometimes at specific percentiles) input values from these distributions. 
The resulting values are then used in model runs. Final outcomes for uncertainty are 
calculated from the variance over all the runs for the different input values. Most studies 
use univariate distributions for the input variables; correlation between inputs is ignored 
(unlike scenario studies that try to sketch consistent futures). More realistic estimates of 
uncertainty can be derived if one takes account of correlations between inputs (e.g. income 
and car ownership) by drawing from multivariate distributions, but this requires 
knowledge on the correlations.  

In our analysis of uncertainty in traffic forecasts from the LMS and the NRM Noord-
Brabant, we used existing time series as the key source of information on means, standard 
deviations and correlations of input variables, and applied these to get multivariate 
distributions for the model input variables.  

For quantifying mmodel uncertainty in transport forecasts, we found a wider diversity of 
methods than for input uncertainty. Some studies used analytic expressions for the 
variance of the endogenous variable that results from using parameter estimates for the 
influence of the exogenous variables. This can only be done if the model equations are 
relatively straightforward. For more complicated models, these expressions become very 
cumbersome and often only approximations (e.g. from Taylor series expansion) can be 
given. To obtain proper t-ratio’s or standard errors for the model coefficients in situations 
with specification error (such as repeated measurements in panel and SP data), the related 
Jackknife and Bootstrap method are sometimes used. After having calculated the proper t-
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ratios for these parameters, the new standard errors can either be used in an analytic 
calculation of the standard error (due to estimation) of the model outcomes, or be used as 
information on the statistical distribution of the parameters of the model, from which 
values can be drawn for model simulation runs, similarly to the method used for input 
uncertainty. Again, it is important to take account of the correlations (between the 
parameter estimates), either in the analytical equations or in sampling from a multivariate 
distribution. 

For quantifying the model errors we used the Bootstrap method to correct for specification 
error and Monte Carlo simulation for the uncertainty due to estimation, for the tour 
frequency and mode-destination choice models in the LMS and NRM.  

This method was used to quantify uncertainty due to input variables of the LMS (income, 
car ownership, car costs, labour force, population by age group, household size, number of 
students by type of education) and the model uncertainty in the tour frequency and mode 
and destination choice models. Short-term cyclical fluctuations in the input variables were 
removed by using 20-year moving averages; we are looking at long run impacts (for 2020). 
The method used also takes account of the correlation between the input variables. Sources 
of uncertainty that were not included are: uncertainty in the base matrices, uncertainty in 
the assignment procedures, uncertainty in the regional distribution of future input changes 
and uncertainty in the future distribution between part-time and full-time workers. 

Summarising the main outcomes we find substantial, but not very large, uncertainty 
margins for the total number of tours and kilometres (by mode) in the study area of the 
LMS and NRM and for the vehicle flows on selected links. The uncertainty margins for 
differences between a project and a reference situation are proportionally not much larger, 
unless these differences are of a small magnitude. In many cases, there is greater variation 
in vehicle hours lost due to congestion (Q-hours) than in hours travelled. The contribution 
of input uncertainty (e.g. in future incomes, car ownership levels) to these errors is 
generally much larger than that of model uncertainty (e.g. coefficients estimated with some 
error margin). 

A difference between the Monte Carlo simulation approach used here and a sensitivity 
analysis of traffic outcomes by running the model for a number of scenarios (consistent 
possible futures) is that the simulation approach can provide confidence intervals for the 
traffic outcomes where the scenario approach does not attach probabilities to the different 
runs. Both approaches can take account of correlations between input variables. Scenarios 
can be used however to study different ways of distributing given national totals over 
zones, and the input simulation can be used to generate specific scenarios (e.g. high, 
middle and low growth in factors explaining traffic growth), and so both methods could 
also be used in combination. 
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Samenvatting 

Hoewel er duizenden artikelen en rapporten over prognoses met transportmodellen zijn 
geschreven, is er maar weinig literatuur over de onzekerheidsmarges in verkeersprognoses. 
In dit rapport wordt een overzicht van deze literatuur  gegeven, aangevuld met de 

uitkomsten van interviews met enkele experts. Verder worden de uitkomsten gepresenteerd 
van de berekening van de bandbreedte van verkeersprognoses met het Landelijk Model 
Systeem (LMS) en het Nieuw Regionaal Model (NRM) Noord -Brabant. 

Hierbij maken we een onderscheid tussen onzekerheid in de invoervariabelen (bijvoorbeeld 
over de toekomstige inkomens) en modelonzekerheid (deze betreft zowel specificatiefouten 
als fouten door het gebruik van geschatte parameterwaarden in plaats van de werkelijke 
waarden). 

Alle methoden die we in de literatuur zijn tegengekomen over iinvoeronzekerheid maken 
gebruik van  herhaalde modelsimulatie (gevoeligheidanalyse). In diverse studies gebeurt dit 
door het veronderstellen van bepaalde statistische verdelingen voor de invoervariabelen, 
waaruit dan waarden voor de invoervariabelen worden getrokken (doorgaans a-select, soms 
bepaalde percentielwaarden). De modellen worden vervolgens doorgerekend met deze 
waarden uit de Monte Carlo simulatie. De uiteindelijke uitkomsten voor wat betreft de 
onzekerheid van de prognoses worden bepaald op basis van de variantie van de 
modeluitkomsten voor alle runs met het model. De meeste studies gebruiken univariate 
verdelingen voor de invoervariabelen, en gaan zo voorbij aan de correlatie die kan bestaan 
tussen de invoervariabelen (dit in tegenstelling tot scenariostudies waar geprobeerd wordt 
om een consistent toekomstbeeld te schetsen). Het realiteitsgehalte van de onzekerheids-
marges kan verhoogd worden door samenhangen tussen de invoervariabelen (zoals die 
tussen inkomen en autobezit) mee te nemen door het gebruik van multivariate verdelingen, 
maar dit vereist kennis over de correlaties. 

In onze analyses van de onzekerheidsmarges in de prognoses van LMS en NRM Noord-
Brabant, hebben we bestaand tijdreeksmateriaal gebruikt als de belangrijkste bron van 
informatie over gemiddelde, standaardafwijking en correlaties van de invoervariabelen, en 
hebben zo multivariate verdelingen voor de invoervariabelen opgesteld. 

Voor het kwantificeren van mmodelonzekerheid in de verkeersprognoses hebben we in de 
literatuur een breder scala aan methoden aangetroffen dan voor invoeronzekerheid. 
Sommige onderzoeken gebruiken analytische functies voor de variantie van de te verklaren 
variabele die het gevolg is van het gebruiken van parameterschattingen voor het effect van 
exogene variabelen. Dit is uitsluitend mogelijk als de vergelijkingen in het model relatief 
eenvoudig zijn. Voor complexere modellen worden de analytische functies snel te 
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ingewikkeld en vaak zijn slechts benaderingen (bijvoorbeeld via Taylor reeksen) te geven. 
Twee methoden die wel gebruikt worden om correcte standaardfouten en t-waarden voor 
modelparameters te bepalen als er sprake is van specificatiefouten (zoals het probleem van 
herhaalde metingen in stated preference en panel data) zijn de Jackknife en de Bootstrap. 
Nadat hiermee de juiste t-waarden voor de modelparameters zijn berekend, kunnen de 
standaardfouten voor de endogene variabelen berekend worden via hetzij de analytische 
methode, hetzij als informatie over de statistische verdeling van de modelparameters 
waaruit vervolgens trekkingen worden gedaan voor herhaalde modelsimulatie (net als bij de 
invoeronzekerheid). Ook hier is het van belang om rekening te houden met de correlaties 
(nu tussen de parameterschattingen). 

In de berekening van de modelonzekerheid in LMS en NRM hebben we de Bootstrap 
methode gebruikt om te corrigeren voor specificatiefouten en Monte Carlo simulatie voor 
de onzekerheid door schatting van het model. Het gaat hierbij om de modellen voor het 
aantal reizen (tours) en voor de keuze van vervoerwijze en bestemming. 

Voor LMS en NRM Noord-Brabant zijn de onzekerheid in de verkeersprognoses als gevolg 
van invoervariabelen (inkomen, autobezit, autokosten, werkgelegenheid, bevolking naar 
leeftijdsklasse, huishoudgrootte, aantal studentenplaatsen) en de modelonzekerheid 
gekwantificeerd. Korte termijn conjuncturele fluctuaties in de invoervariabelen zijn hierbij 
verwijderd door gebruik te maken van 20-jaars voortschrijdende gemiddelden: we zijn op 
zoek naar effecten op lange termijn (voor 2020). Ook de correlatie tussen deze 
invoervariabelen is meegenomen. Bronnen van onzekerheid die niet zijn opgenomen zijn: 
onzekerheid in de basismatrices, onzekerheid in de toedelingsprocedures, onzekerheid in de 
regionale verdeling van de invoervariabelen in de toekomst, en onzekerheid over de 
toekomstige aandelen van voltijds- en deeltijdswerkers. 

Hieronder vatten we de belangrijkste uitkomsten samen. We vinden bandbreedtes voor het 
aantal reizen en kilometers (per vervoerwijze) in het studiegebied van LMS en NRM en 
intensiteiten op geselecteerde wegvakken die niet te verwaarlozen zijn, maar toch 
betrekkelijk klein zijn te noemen. De onzekerheidsmarges voor verschillen tussen de 
referentiesituatie en de projectsituatie zijn proportioneel niet veel groter, tenzij het om 
absoluut kleine verschillen gaat (dan is de relatieve onzekerheid groot). In veel gevallen is 
de variatie in voertuigverliesuren (Q-hours) groter dan in het aantal gereisde uren. De 
bijdrage van de invoeronzekerheid (b.v. toekomstige inkomens, autobezit) aan de totale 
onzekerheidsmarges is doorgaans veel groter dan die van modelonzekerheid. 

Een verschil tussen de Monte Carlo simulatie methode die hier is gebruikt en een 
gevoeligheidsanalyse van de modelprognoses door het draaien van een aantal scenario's 
(consistente toekomstbeelden) is dat de simulatiemethode betrouwbaarheidsintervallen kan 
leveren, terwijl de scenario-methode geen kansen koppelt aan de verschillende 
toekomstbeelden. Beide methoden kunnen rekening houden met correlaties tussen de 
invoervariabelen. Scenario’s kunnen echter ook gebruikt worden voor het analyseren van 
verschillende manieren om een gegeven landelijk totaal over de zones te verdelen. De 
simulatiemethode kan ook weer gebruikt worden om specifieke scenario's te genereren 
(bijvoorbeeld laag, midden, hoog voor de factoren die de verkeersgroei bepalen). Zo 
kunnen beide methoden ook in combinatie gebruikt worden. 
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CHAPTER 1 Introduction 

1.1 Objectives of the project  

 

The National Model System LMS and the New Regional Models NRM are regularly used in The 
Netherlands to forecast the national and regional transport volumes and traffic flows on specific 
network links for a single or a limited number of scenarios. The same models are also used to give 
the likely impacts of transport infrastructure projects (e.g. new roads, wider roads, new railway 
lines) and transport policies (e.g. road pricing). All these predictions are point estimates, and, 
even when produced for several scenarios, do not give insight into the uncertainty margin that 
exists around these forecasts.   

The objectives of the project ‘Uncertainty in traffic forecasts’ that RAND Europe is carrying out 
for the Transport Research Centre of the Dutch Ministry of Transport, Public Works and Water 
Management are: 

To develop a methodology to estimate the amount of uncertainty in forecasting for new 
infrastructure (especially roads). 

To implement and test this methodology in two case-studies (using the Dutch National 
Model System LMS and the New Regional Models NRM respectively). 

Throughout this report, we distinguish between input uncertainty (e.g. on the future incomes) 
and model uncertainty (including specification error and error due to using parameter estimates 
instead of the true values). 

1.2 Role and contents of this report 

 

Chapter 2 of this report presents the main outcomes of two literature reviews on quantifying the 
amount of uncertainty in forecasting with transport models: 

Literature review for public projects; 

Literature review for public-private partnership (PPP) projects. 

In these reviews the national and international literature on methods to quantify the amount of 
uncertainty around the forecasts from transport models was described and assessed. Most relevant 
papers do not distinguish between public and PPP projects. Therefore we combined both phases 
into a single literature review on how to quantify uncertainty in transport modelling.  
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In Chapter 3, the method developed for the treatment of input uncertainty as well as for model 
uncertainty is described. Chapter 4 contains outcomes on uncertainty margins for the LMS, and 
Chapter 5 for the NRM Noord-Brabant. Finally, in Chapter 6 the conclusions from the project 
as a whole are listed and recommendations are given.  

A general discussion on uncertainty in policy modelling (not specifically dealing with transport 
issues and transport models) can be found in Appendix 1. This chapter is based primarily on 
Walker et al. (2003), and summarises RAND’s experience on the issue of uncertainty.  

Appendix 2 contains the short descriptions of the papers and reports on quantifying uncertainty 
in transport models, as identified in the review of the international literature. It also contains the 
outcomes of interviews with international experts. 

In Appendix 3, the analytic method is used to derive the equations for the variance for model 
uncertainty in the LMS mode-destination and tour frequency models. 

Detailed outcomes for the LMS and NRM on quantifying uncertainty in traffic forecasts are in 
Appendix 4. 
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CHAPTER 2 Integration and assessment of the literature 

A web-based search for papers and reports was carried out, using a pre-defined list of keywords. 
Moreover, a number of national and international journals and conference proceedings were 
scanned, focussing on the most recent years (going back ten years) for relevant articles. In 
Appendix 2, summaries can be found of the papers and reports identified in the web-based search 
and the journals and proceedings. As much as possible, a common format was used to describe 
the papers and reports. In this format we were seeking answers to the following questions:  

1. Which methods have been used for quantifying uncertainty in traffic forecasts? 

2. What type of uncertainty has been studied (uncertainty due to model inputs, the model 
itself or both)? 

3. For which variables is uncertainty studied (e.g. link flows, value of time)? 

4. How is uncertainty expressed? 

5. What is the order of magnitude of the uncertainty around the forecasts?  

Additionally we interviewed a number of experts on the issue of uncertainty in traffic forecasting. 
The detailed outcomes of this are in also in Appendix 2.In our review of the international 
literature, we did not find a large number of publications on calculating uncertainty measures for 
transport model forecasts, presumably because this topic has not been studied frequently. 
Although thousand of papers on transport model forecasts can be found in journals, conference 
proceedings and reports, the literature on quantifying uncertainty in traffic forecasts is fairly 
limited.  

We distinguish between input uncertainty (e.g. on the future incomes) and model uncertainty 
(including specification error and error due to using parameter estimates instead of the true 
values). 

In Table 1 below the outcomes from the literature review are integrated.  
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Table 1. Summary and integration of the literature on uncertainty of traffic forecasts (pkm: 
passenger kilometres; vkm: vehicle kilometres; VMT: vehicle miles travelled).  

 

Publication Methods to 
quantify 
uncertainty 

Type of 
uncertainty 
studied 

Variables for 
which 
uncertainty 
is studied 

How is 
uncertainty 
expressed 

Order of 
magnitude 
of 
uncertainty 

Armoogum, 
2003 

Jackknife 
and scenario 
analysis 

Model and 
input 
uncertainty 

Number of 
trips and 
pkm 

Variance and 
percentage 
deviation from 
reference 

Model 
uncertainty: 
for trips in 
2030 variance 

is 27% of the 
mean (pkm: 
6%).  

Ben-Akiva 
and 
Lerman, 
1985 

Analytic 
formula for 
model 
uncertainty 
in multi-
parameter 
model 

Model 
uncertainty 

Transport 
cost and time 
coefficients 
(as an 
example) 

95% 
confidence 
interval 

 

Beser 
Hugosson, 
2004 

Bootstrap 
sampling, 
repeated 
estimation 
and model 
application 

Parameter 
uncertainty 

Total and 
OD demand 
by mode, link 
flows, train 
lines and 
value of time 

95% 
confidence 
interval 

95% 
confidence 
interval 
mostly 

between 5% 

and 10% 

Boyce, 1999 Repeated 
model 
simulation, 
drawing 
from 
distributions 
for input 
variables 

Model and 
input 
uncertainty 
(focus on 
inputs) 

vkm Standard 
errors and 
ratio of 
forecasts 
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Publication Methods to 
quantify 
uncertainty 

Type of 
uncertainty 
studied 

Variables 
for which 
uncertainty 
is studied 

How is 
uncertainty 
expressed 

Order of 
magnitude 
of 
uncertainty 

Boyce and 
Bright, 
2003 

Repeated 
model 
simulation, 
drawing 
from 
distributions 

for input 
variables; 
Scenario 
analysis 

Model and 
input 
uncertainty 
(focus on 
inputs) 

Revenue 
from 
privately-
financed 
project  

Percentiles; 
private 
funders want 
to see 95-99% 
probability of 
no loss. 

Only the 
worst 
scenario fell 
below the 
first 
percentile 

Brundell-
Freij, 1997 

Repeated 
estimation 
on simulated 
datasets for 
different 
sample sizes 

Model 
uncertainty 

Parameters 
of modal 
split model, 
including 
costs, time 
and 
constants 

t-ratios and 
confidence 
intervals for 
estimated 
coefficients 

Even with 
850 
observations 
5 out of 11 
parameters 
are not 
significant. 

Brundell-
Freij, 2000 

As above; 

Bootstrap 
analysis 

Model 
uncertainty 
(specification, 
sampling, 
estimation) 

Value of 
time 

Standard error 
of the value of 
time 

Standard 
error between 
3 and 20% of 
in-vehicle 
value of time 

Ecorys, 
2003 

Sensitivity 
analysis 

Inputs, value 
of time 

Revenues Different 
revenue 
amounts 

Revenues 1.2 
or 3.9 mln 
depending on 
traffic growth 

Eriksson, 
2003 

One-
variable and 
multi-
variable 
sensitivity 
analysis 

Sensitivity to 
input variables 

Road traffic 
emissions 

Regression 
coefficients 
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Publication Methods to 
quantify 
uncertainty 

Type of 
uncertainty 
studied 

Variables 
for which 
uncertainty 
is studied 

How is 
uncertainty 
expressed 

Order of 
magnitude 
of 
uncertainty 

Fowkes, 
1995 

Repeated 
estimation 
on 
simulated 
datasets 

Model 
uncertainty 
(parameters) 

Coefficients 
of modal 
split model, 
including 
costs, wait 
time and in-

vehicle time; 

Willingness 

to pay 

Standard 
deviation of 
estimated 
coefficients; 

Confidence 
interval 
around mode 

benefit 

95% 
confidence 
interval for 
mode benefit 
ranges from 0 
to twice the 

average value. 

Garcia 
Ferrer et al., 
2003 

Deviation 
between 
different 
model 
forecasts 
and 
observed 

Model 
uncertainty 

Number of 
tickets and 
travel cards 
in public 
transport 

Root mean 
squared error 
RMSE and 
mean absolute 
error MAE 

RMSE varies 
between 0.04 
and 0.27; 
MAE 
between 0.04 
and 0.23. 

De Jong, 
1989 

Analytic 
formula for 
sampling 
and 
estimation 
variance 

Model 
uncertainty 
(sampling, 
parameters) 

Number of 
households 
with a car; 
number of 
car km/year 

Variation and 
standard error 

Estimation 
standard 
error between 
3 and 6% of 
predicted 
values 

De Jong et 
al, 1998 

Jackknife 
method and 
draws from 
multivariate 
normal 
distribution  

Model 
uncertainty 
(specification, 
parameters) 

Value of 
time 

Standard error Standard 
deviation 
between 6 
and 24% of 
average 
values of time 

Kroes, 1996 Repeated 
model runs 
for 
simulated 
inputs  and 
parameters 

Input 
uncertainty 
and model 
uncertainty 
(incl. model 
application) 

Link flows 
and 
revenues 

Standard error 
and other 
statistics 
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Publication Methods 
to quantify 
uncertainty 

Type of 
uncertainty 
studied 

Variables 
for which 
uncertainty 
is studied 

How is 
uncertainty 
expressed 

Order of 
magnitude of 
uncertainty 

Lempert et 
al, 2003; 

Lempert, 
2004 

Very many 
repeated 
model runs 
for an 
ensembles 
of scenarios 

Input 
uncertainty 

No 
transport 
applications 

Landscape of 
plausible 
futures 

 

Leurent, 
1996 

Repeated 
model runs 
for 
simulated 
inputs 

Input 
uncertainty 

Travel time;

Daily 
number of 
cars on a 
link 

Standard error Standard 
deviation is 
about 10% of 
predicted flow 

Lowe, et al., 
1982 

Random 
draws from 
distribution
s for inputs 
and model 
coefficients 

Input 
uncertainty 
(focus) and 
model 
uncertainty 

Link flows Percentiles Probability of 
5% that flow 
will be less 
than 14,000 
vehicles/day 

Ministerie 
van 
Financiën en 
CPB, 2003 

Add a risk 
paragraph 
in project 
assessment 

No 
distinction 
made between 
model and 
input 
uncertainty 

Financial 
outcomes of 
projects 

  

Research 
Results 
Digest, 2003 

Jackknife 
method 

Model 
uncertainty 
(parameters) 

Number of 
pavement 
sections 

Correlation 
coefficient, 
standard error 

 

Rodier and 

Johnston, 
2002 

Sensitivity 

analysis on 
number of 
input 
factors 

Input 

uncertainty 

Trips, 

VMT, 
vehicle 
hours delay, 
(emissions) 

Percentage 

over- and 
under-
prediction 

0-70% under- 

or 
overprediction 
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Publication Methods to 
quantify 
uncertainty 

Type of 
uncertainty 
studied 

Variables 
for which 
uncertainty 
is studied 

How is 
uncertainty 
expressed 

Order of 
magnitude of 
uncertainty 

Rodier, 2003 Comparison 
of predicted 
(with 
predicted or 
observed 
inputs) versus 

observed 

Model and 
input 
uncertainty 

Trips, 
VMT, 
vehicle 
hours, 
vehicle 
hours delay, 

Percentage 
over- and 
under-
prediction 

0-39% under- 
or 
overprediction 

Schrijver et 
al., 2003 

Random 
draws from 
inputs 
distributions 

Input 
uncertainty 

Travel time Interval 
around mean 
travel time 

 

Zhao and 
Kockelman, 
2001 

Random 
draws for 
inputs and 
parameters in 
4-stage model 

Model and 
input 
uncertainty 

Link flows Standard 
error 

Uncertainty 
propagates 
when going 
from trip 
generation to 
distribution and 
modal split, but 
is reduced in 
assignment. 

 

This overview led to the following observations, conclusions and recommendations.  

 

Methods: input uncertainty 

All methods encountered in the literature for quantifying the amount of input uncertainty use 
some form of repeated model simulation (sensitivity testing). The same model is applied over and 
over again, with different inputs. A commonly used method for generating different inputs is 
scenario analysis. However, in scenario analysis no probabilities are attached to the various 
scenarios under study. This makes calculation of overall standard errors or related uncertainty 
measures for the model outcomes impossible. Many of the studies investigated postulate statistical 
distributions for the input variables and then draw (usually at random, sometimes at specific 
percentiles) input values from these distributions. The resulting values are then used in model 
runs. Final outcomes for uncertainty are calculated from the variance over all the runs for the 
different input values. This seems to be the standard approach to produce input uncertainty. 
Most studies use univariate distributions for the input variables; correlation between inputs is 
ignored (unlike scenario studies that try to sketch consistent futures). More realistic estimates of 
uncertainty can be derived if one takes account of correlations between inputs (e.g. income and 
car ownership) by drawing from multivariate distributions, but this requires knowledge on the 
correlations. For the quantification of uncertainty in traffic forecasts from LMS and NRM, we 
used existing time series as the key source of information on means, standard deviations and 
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correlations of input variables, and applied these to get multivariate distributions for the model 
input variables. Lowe et al. (1982) used an experimental design (as in an SP survey) on the input 
variation, which can increase the efficiency of the process of running the model (not all 
combinations are needed). 

Some studies use information on the observed outcomes and/or inputs (Garcia Ferrer, et al. 2003; 
Rodier, 2003). This can of course only be done ex post. When forecasting for a future year, as in 
this project (and other ex ante project evaluations), such comparisons cannot be made and we 
have to calculate uncertainty in traffic forecasts on the basis of information from the past. 
 

Methods: model uncertainty 

For quantifying model uncertainty in transport forecasts, we find a wider diversity of approaches 
than for input uncertainty. Some studies used analytic expressions for the variance of the 
endogenous variable that results from using parameter estimates for the influence of the 
exogenous variables. This can only be done if the model equations are relatively straightforward. 
For more complicated models, these expressions become very cumbersome and often only 
approximations (e.g. from Taylor series expansion) can be given. To obtain proper t-ratio’s or 
standard errors for the model coefficients in situations with specification error (such as repeated 
measurements in panel and SP data), the Jackknife method and the related Bootstrap method are 
sometimes used. In the Jackknife, subsamples are created from an original sample by 
systematically omitting a small fraction of the data. The Bootstrap is applied by sampling at 
random from the original sample with replacement. After having calculated the proper t-ratios for 
these parameters, the new standard errors can either be used in an analytic calculation of the 
standard error (due to estimation) of the model outcomes, or be used as information on the 
statistical distribution of the parameters of the model, from which values can be drawn for model 
simulation runs, similarly to the method used for input uncertainty. Again, it is important to take 
account of the correlations (between the parameter estimates), either in the analytical equations or 
in sampling from a multivariate distribution. 

Some studies had objectives which come very close to those of our project. Beser Hugosson 

(2004), Boyce (1999), Boyce and Bright (2003), Lowe et al. (1982) and Zhao and Koppelman 
(2001) all study the problem of how a given transport model can not only produce a central 
estimate of traffic volume or revenues, but also uncertainty margins around these. Beser 
Hugosson (2004), Lowe et al (1982) and Zhao and Kockelman also study the same objective 
variable as we do (link flows). All these studies, with the exception of Beser Hugosson (2004), use 
relatively simple aggregate transport models. Beser Hugosson (2004) used the Bootstrap method 
on disaggregate mode-destination models, but leaves out input uncertainty, trip frequency models 
and congestion feedbacks. Analytical methods to calculate the uncertainty were not used in this 
paper on the Swedish passenger transport model. The LMS and NRM consist for a large part of 
disaggregate random utility models (including tour frequency, mode-destination choice). The last 
four studies mentioned use Monte Carlo simulation for the inputs and the parameter values 
instead of analytical methods. Zhao and Kockelman explicitly study the problem of propagation 
of errors: when a number of modules are used sequentially, errors can become bigger (reinforcing 
initial deviations) or smaller (equilibrium mechanisms).  

On the basis of the review of the literature we concluded that for quantifying the model errors we 
should use either the Jackknife/Bootstrap method to correct for specification error and Monte 
Carlo simulation for the uncertainty due to estimation, or the analytic method. The models for 
which we study uncertainty in this report are the tour frequency models and the mode-
destination choice model (called NSES or RSES) in the LMS and NRM. We investigated 
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whether analytic expressions can be used for the tour frequency models (which are relatively 
simple) and the mode-destination choice models. The analytic expressions can be found in 
Appendix 3. In the end we decided to use Monte Carlo simulation for the model uncertainty as 
well, principally because of the long run times required to evaluate the analytical expressions.   

 

How is uncertainty expressed? 

Uncertainty in forecasted values can be expressed in many ways, but measures that were often 
used in the literature are: 

The variance of the forecast; 

Its standard deviation (square root of the variance); 

Its 95% confidence interval [-1.96 times the standard deviation; +1.96 times the standard 
deviation]; 

Percentiles of its distribution, e.g. the lowest 1% or 5% for revenue or vehicle flow forecasts.  

All these measures will be provided in this project. 
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CHAPTER 3 Treatment of input and model uncertainty in 
the LMS and NRM runs 

3.1 List of key autonomous driving forces of transport demand 

 

First of all a list of most important autonomous variables influencing transport demand has been 

prepared (principally by going through the explanatory variables of the LMS/NRM tour 
frequency and mode-destination choice models, and the zonal targets in the QUAD procedure1). 
This list does not include the policy variables that can also be found in these models (such as 
public transport fares, parking costs, the speeds of the transport modes), that can be influenced by 
users of the models (government at different levels, public transport operators). The sensitivity of 
the link flows to such variables is usually handled through policy sensitivity runs: changing one 
policy variable at a time, relative to a reference case, or by comparing the outcomes for different 
policy packages. 

Licence holding is not included, as it is so high now (among the eligible age groups) that for the 
future only very limited variation is possible. The total amount of freight traffic, international 
traffic, the correction for changes in working hour practices and additional holidays will not be 
varied in the simulations with LMS and NRM. 

The list of the main autonomous forces for simulation of input uncertainty on transport demand 
(defined here as tour generation and mode-destination choice) is as follows: 

Household disposable income 

Car ownership 

Car cost per kilometre (only the fuel cost part, which is partly an autonomous and partly a 
policy variable, but not the toll and parking cost which are fully policy variables) 

Number of jobs (by sector), which serves as an attraction variable. 

Population by age group (or population and average age) 

Household size 

                                                      

1 QUAD is a computer routine within the LMS that produces the joint distribution of socio-economic attributes of the 
households, given the total population and the marginal distributions for these attributes, from external sources. 
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Occupation (employed or unemployed by gender) and education (number of students per 
type of education) 

Part-time versus full-time. 

The collection of the time series data on these variables, the time series analysis carried out and 
the results are discussed below. 

3.2 Method in general 

 

Variables that determine the tour generation and the mode destination models were examined 
and data over a long period, 1960-2000, were gathered. For some variables corrections had to be 
made, to ensure consistency over time or with the LMS/NRM. Checks were made to see whether 
the available statistics correspond with the base year for the LMS (1995). For one variable (part-
time working) no consistent data was available, in a few cases data was available only for 1970-
2000. All variables are expressed in the form of annual (year-to-year) growth rates. Based on the 
time series for the variables, means, minima, maxima and standard deviations were calculated and 
a covariance matrix was set up. These statistics were used as a starting point for determining the 
multivariate statistical distribution from which draws were made to simulate for input 

uncertainty. The numbers drawn were then converted into LMS and NRM input variables and 
these models were run for these values. These inputs are either explanatory variables in the tour 
frequency and mode/destination choice models, or target variables for the totals in the QUAD 
procedure that determines the joint distribution in terms of socio-economic variables for each 
zone in the LMS. Every LMS run has a different set of values for model coefficients, explanatory 
variables and QUAD targets. All variables for which uncertainty is studied refer to national totals. 
In the LMS runs, the percentage changes in these national totals were applied to the zonal 
variables (e.g., all zones get richer by x %). This means that the relative distribution of these 
variables over the zones did not change. For NRM applications the same proportionality method 
was used.   

3.3 Discussion per input variable 

 

3.3.1 Disposable household income  
The growth factor of disposable household income is input to the tour generation models (as well 
as NSES and QUAD and effectively car ownership). In applications of the model for future years 
the growth in Gross Domestic Product (in total, not per capita) is used as proxy for the growth of 
disposable household income. In this analysis GDP values of past years have been collected and 
corrected for inflation. 

3.3.2 Car ownership 
The CBS has statistics on the number of passenger cars owned in The Netherlands for 1960-
2000. Annual growth factors were calculated for the changes in the number of cars.  

3.3.3 Car costs 
The car costs are built up out of two statistics: 

Prices of petrol, diesel, and LPG; 
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Distribution of fuel usage by fuel type. 

Fuel prices are partly a policy variable (fuel taxes), and partly an autonomous variable 
(determined to a great extent by the oil market). We do not want to include policy variables in 
the input variation, which is meant to be the variation of autonomous inputs. Nevertheless the 
fuel prices were included in the input variables, because we expect the fuel costs to be an 
important determinant of travel demand. So for this variable we do not only include autonomous 
uncertainty, but also policy uncertainty. This will probably make the resulting uncertainty 
margins somewhat larger than would be the case purely on the basis of autonomous changes (but 
there could also be a damping if fuel taxes are increased only when oil is relatively cheap). 

Prices are available for the whole period. However the distribution over the three fuel types is 
only available back to 1983, and for the years 1980 and 1975. For the period before 1983 the 
distribution is interpolated and extrapolated using statistics from 1983, 1980 and 1975. 

3.3.4 Labour force 
Labour statistics (annual average total number of jobs of employees) are available for the period 
1950-2000. Statistics by sector (for retail and total services without retail) are available for the 
period 1969-2000. For the period 1950-1996 the CBS Historical Labour Accounts are available 
and for the period 1997-2000 the CBS National Accounts are used. Growth factors have been 
derived from these data. We are using a combination of these two sources, for the period 1960-
2000. 

3.3.5 Age 
The number of people by age group is known for the period 1960-2000. The midpoint of each 
age group (0-20, 20-40, 40-65, 65-80, 80+) is assumed to be the average age. People over 80 are 
assumed to have an average of 85. The average age of the total population is calculated for each 
year and growth factors have been derived. 

3.3.6 Household size 
The total population and the total number of households are available for 1960-2000. Household 
size is calculated based upon these numbers. 

3.3.7 Occupation/education 
Statistics on the labour force (male/female) were available only for 1970-2000. For the derivation 
of the covariance matrix, this no real obstacle since this period is still considered long enough and 
the Excel software used needs a minimum of two values for each variable. Time series of different 
length can be accommodated. 

Education in the LMS is divided into three categories: 

low (‘basisonderwijs’) 

medium (‘VO/MBO’) 

high (‘HBO/WO’) 

Statistics on the number of students in each of the categories are available for the whole period.  

3.3.8 Part-time/full-time workers 
We decided not to include this variable because data about the number of part-time/full-time 
jobs is only available for a few years (for 1987-2000 from the CBS National Accounts). 
Furthermore the definition used by the CBS (full time is >35 hours a week) is not the same as the 
definition used in the LMS (full time is >30 hours a week). 
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3.4 Overview of results 

 

The following table gives a summary of the variables for which the covariance matrix has been set 
up. All variables are expressed as relative annual growth factors. The development over time can 
be seen in Figure 1. 

Income (GDP in real terms) has grown by 3.4% per year in the period 1960-2000. The highest 
growth rate was +17% (in 1969) and the lowest –2.7% (1975). The range spanned by 1.96 times 
the standard deviation is no less than 7.6 percentage points on each side of the mean (15.2 
percentage points in total for the 95% confidence interval). 

The largest relative increases (up to +22% per year) in the number of cars in The Netherlands 
took place in the sixties. After 1980, the annual growth rate for the number of cars has not 
exceeded 4%. The word ‘saturation’ might not be fully appropriate here, but there is a clear 
levelling off of the car ownership growth in the observation period. 

Car costs (fuel costs) per kilometre has seen years with large increases (1974, 1980, 1981, 2000: 
over 30%) and decreases (1986: -43%). 

For the number of jobs in the service sector and average age, no declines in a single year are 
observed in the period 1960-2000. Both have been increasing steadily. The number of jobs in the 
service sector and in retail have been growing at a faster pace (+2.4% on average) than all jobs 
(+1.7%). These variables follow a cyclical pattern. 

For household size we see practically only reductions in this period (only for two single years 
there was an increase). 

Female labour participation has been growing clearly faster (+2.9% per year on average) than 
male labour force participation (+0.6%). However, in some years, both went down. These are 
highly cyclical variables. 

Table 2. Descriptive statistics for selected input variables (measured in annual growth rates) 

Variable Mean Minimum Maximum Standard 
Deviation 

Period Source 

Income 1.034 0.973 1.172 0.039 1960-2000 CBS Statline 

Car ownership 1.066 1.008 1.223 0.064 1960-2000 CBS Statline 

Car costs 1.046 0.574 1.352 0.102 1960/1983-
2000

CBS Statline
2

Total jobs 1.017 0.9815 1.037 0.013 1960-2000 CBS Statline 

Jobs retail 1.024 0.9651 1.060 0.023 1970-2000 CBS Statline 

Jobs services 1.024 1.000 1.046 0.010 1970-2000 CBS Statline 

Average age 1.004 1.000 1.011 0.003 1960-2000 CBS Statline 

Household size 0.989 0.979 1.003 0.006 1960-2000 CBS Statline 

Labour force 
(male) 

1.006 0.974 1.030 0.014 1970-2000 CBS Statline 

Labour force 
(female) 

1.029 0.996 1.087 0.023 1970-2000 CBS Statline 

Education (low) 0.996 0.958 1.018 0.017 1960-2000 CBS Statline 

Education 
(medium) 

1.010 0.897 1.059 0.030 1960-2000 CBS Statline 

Education (high) 1.043 0.978 1.115 0.034 1960-2000 CBS Statline 

 

                                                      

2 Additional information was used from CBS (1996) Auto’s in Nederland; CBS and Kluwer Voertuigtechniek, 
Heerlen/Deventer, and from SEO (1991) De kosten van de auto en het openbaar vervoer vergeleken 1962-1990, SEO, 
Amsterdam. 
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Figure 1. Rates of change over time of key input variables 
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The number of students in higher education witnessed a much faster (though structurally 
declining) growth (+4.3%) than medium (+1.0%) and low (-0.4%) education, but for all three 
there is considerable variation.  

In the long run however, periods of high growth and periods of low growth or even decline occur 
alternately (the business cycle). Therefore the income growth expectations for a 20-30 year 
horizon, which is likely to include a few of each, become smoothed. Other variables (number of 
jobs, number of cars, labour force) are also related to the business cycle. To express this 
phenomenon, we calculated 20-year moving averages (e.g. 1960-1979, 1961-1980, etc.). A time 
horizon of 20 years is not unusual for project evaluation. Often even longer periods (such as 30 
years) are applied. The outcomes for these 20-year moving averages are given in Table 3. 

The standard deviations of the 20-year moving averages are indeed much smaller than for the 
annual data of Table 2. The cyclical pattern has successfully been eliminated. Similarly the 
minimum and maximum values are much closer now to the mean values.  
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We propose to use the standard deviations (to make 95% confidence intervals) and/or the 
minimum and maximum values of the 20-year moving averages from Table 3 in the 
determination of the multivariate distribution from which the input values will be drawn. The 
idea is that the amount of variation in the input variables over the next 20 years is determined 
from all 20-year moving averages over the past 40 years. We also propose to use the multivariate 
(standard) normal distribution for this. 

An exception is made for the car ownership developments. When specifying the multivariate 
distribution of the input variables, from which the draws will be made, we cannot accept all 
variation that is represented in Table 3 at face value. For some variables, and especially for car 
ownership, certain trends can be observed, and for forecasting the next decades, some growth 
rates observed in the past are more likely than others. For car ownership, the growth rates of the 
sixties cannot be expected to come back; some tendency towards saturation can be expected. We 
propose to use values between 1% (the lowest annual growth rate in the past 40 years) and 4% 
(the overall mean from the moving averages, and the highest annual growth in the past 10 years). 

Table 3. Descriptive statistics for selected input variables (measured in 20-year moving averages) 

Variable Mean Minimum Maximum Standard 
Deviation 

Period Source 

Income 1.026 1.014 1.047 0.009 1960-2000 CBS Statline 

Car ownership 1.041 1.021 1.083 0.019 1960-2000 CBS Statline 

Car costs 1.043 1.025 1.078 0.018 
1960/1983-

2000
CBS Statline

3

Total jobs 1.013 1.009 1.020 0.003 1960-2000 CBS Statline 

Jobs retail 1.018 1.004 1.030 0.009 1970-2000 CBS Statline 

Jobs services 1.018 1.009 1.028 0.007 1970-2000 CBS Statline 

Average age 1.005 1.004 1.006 0.001 1960-2000 CBS Statline 

Household size 0.987 0.985 0.990 0.002 1960-2000 CBS Statline 

Labour force 
(male) 

1.002 0.996 1.009 0.004 1970-2000 CBS Statline 

Labour force 
(female) 

1.022 1.007 1.037 0.011 1970-2000 CBS Statline 

Education (low) 0.989 0.984 0.998 0.004 1960-2000 CBS Statline 

Education 
(medium) 

1.008 0.988 1.030 0.016 1960-2000 CBS Statline 

Education (high) 1.035 1.018 1.058 0.012 1960-2000 CBS Statline 

 

The correlations between the 20-year moving averages have also been calculated. These are often 
considerably higher than for the annual rates (e.g. a correlation coefficient between income and 
car ownership of 0.98).  

To increase efficiency we used a specific type of Halton draws instead of random or conventional 
Halton draws (Hess et al., 2003), as described in the next section. Due to running time 
constraints, the maximum number of LMS runs to calculate the uncertainty margins is 100. This 
number was selected for the LMS runs. 100 NRM runs were performed as well. 

                                                      

3 Additional information was used from CBS (1996) Auto’s in Nederland; CBS and Kluwer Voertuigtechniek, 
Heerlen/Deventer, and from SEO (1991) De kosten van de auto en het openbaar vervoer vergeleken 1962-1990, SEO, 
Amsterdam. 
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3.5 Generating random draws from a multivariate normal distribution 

 

In order to determine the input variables for the simulation with the National Model System and 
the New Regional Models, random draws from a multivariate normal distribution have to be 
drawn. Software is available (from the Internet; Alogit has no built-in facility of drawing from a 
multivariate normal distribution, although this could be programmed) to draw from a 
multivariate normal distribution. Built-in random number generators are used (depending on the 
programming language, in this case Delphi) to obtain multivariate random numbers using a 
Choleski decomposition (e.g. see Train, 2003). The Choleski decomposition is used here as a 
method to generate a multivariate normal distribution with correlation between the variables on 

the basis of uncorrelated univariate normal draws . Multivariate random draws  are then 

calculated using initial averages  and the corresponding Choleski factor (matrix ). The 
Choleski factor expresses K correlated terms as arising from K independent components, with 
each component “loading” differently onto each term (Train, 2003). For any pattern of 
covariance, there is some set of loadings from independent components that reproduces that 
covariance. Formula 1 shows the functional form for two variables. 

1 1 11 1

2 2 21 1 22 2

       (1) 

where 

 = the multivariate normal draw (vector) 

 = the initial average (vector) 

 = the Choleski factor matrix 

 =  the random draw (vector) generated from a univariate normal distribution 

 

The software freely available from the internet has been modified for the purpose of this project. 
However, the random number generator was replaced by Halton draws, which provides a better 
distribution (greater coverage, i.e. fewer empty spaces) over the ‘random’ space (see Hess, 2003). 

In addition to drawing ‘regular’ Haltons, the methods proposed by Hess (2003) of ‘shuffled’4 
Haltons and ‘shifted5 and shuffled’ uniform vectors were implemented in the tool. Tests with one 
hundred and one thousand draws for each method were carried out. Knowing in advance the true 
mean of the input variables, the best method out of the three, could be selected, using sums of 
squared difference between the draws and the true values of the parameters. For 100 draws the 
shuffled Haltons gave the best result and the shifted and shuffled uniform vectors the worst. For 
1000 draws the shifted and shuffled uniform vectors outperformed the other two methods.  

                                                      

4 In a multi-dimensional shuffled Halton sequence, the one-dimensional Halton sequences are randomly shuffled (the 
word refers to reordering the sequence within a deck of cards) before being combined into multi-dimensional 
sequences. This avoids correlation over the dimensions. 

5 A shifted and shuffled uniform vector is an alternative to a Halton sequence. It uses evenly spaced points to cover the 
number space, and then combines the one-dimensional sequences into multi-dimensional as described for shuffled 
Haltons above. 
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In this project, where the first twenty draws are selected, the shuffled Haltons seemed the best 
method, and this was selected. 

Twenty draws were made for the input variables which are used both for twenty LMS runs for 
the reference scenario and the twenty LMS runs with the new infrastructure project (paragraph 
3.6). For the model coefficients again twenty draws were made, which were used in 40 runs 
(reference and project situation) as well (3.7). The first ten draws for input variables were further 
combined with the first ten draws for the model coefficients for reference and infrastructure 
scenario (twenty runs in total). This sums to a total of 100 LMS runs, 50 reference runs and 50 
with the new infrastructure project. The 100 NRM runs are distributed in exactly the same way 
as the LMS runs. 

3.6 Varying the input data for the LMS and the NRM 

 

To analyse the effect of uncertainties in the input data on outcomes of the National Model 
System and the Regional Models twenty runs with different input were performed. The standard 
input was marked as the reference, and input was varied using random draws from a multivariate 
distribution described in the previous paragraph. Table 4 is the variance-covariance matrix used 
for the input variables. The correlations are given in Table 5 and the coefficients of variation in 
Table6. 

Table 4. Covariance matrix for the input variables (20 years average). 

Income Car 
ownership 

Fuel price Average 
age 

Average hh 
size 

Male 
labour f. 

Female 
labour f. 

Students 
low e. 

Students 
medium e. 

Students 
high e. 

Employm. 
serv/gov 

Employm. 
Retail 

Total 
employm. 

Income 
0.000085             

Car ownership 
0.000172 0.000356            

Fuel price 
0.000105 0.000244 0.000311           

Average age 
-0.000006 -0.000013 -0.000010 0.000001          

Average hh size 
-0.000008 -0.000015 -0.000006 0.000000 0.000003         

Male labour 
force -0.000029 -0.000059 -0.000044 0.000002 0.000005 0.000014        

Female labour 
force -0.000094 -0.000190 -0.000130 0.000007 0.000013 0.000039 0.000122       

Students low 
education 0.000025 0.000055 0.000053 -0.000003 0.000002 -0.000005 -0.000022 0.000018      

Students 
medium 
education 0.000136 0.000276 0.000181 -0.000010 -0.000019 -0.000054 -0.000170 0.000032 0.000245     

Students high 
education 0.000106 0.000221 0.000140 -0.000007 -0.000013 -0.000041 -0.000125 0.000026 0.000181 0.000147    

Employment 
services/gov. -0.000076 -0.000151 -0.000103 0.000005 0.000013 0.000033 0.000102 -0.000016 -0.000144 -0.000100 0.000092   

Employment 
retail -0.000052 -0.000103 -0.000064 0.000003 0.000009 0.000023 0.000070 -0.000009 -0.000097 -0.000069 0.000062 0.000046  

Total 
employment -0.000008 -0.000015 -0.000003 0.000000 0.000005 0.000008 0.000019 0.000006 -0.000026 -0.000017 0.000019 0.000014 0.000010 
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Table 5. Correlation matrix for the input variables (20 years average). 

Income Car 
ownership 

Fuel price Average 
age 

Average hh 
size 

Male 
labour f. 

Female 
labour f. 

Students 
low e. 

Students 
medium e. 

Students 
high e. 

Employm. 
serv/gov 

Employm. 
Retail 

Total 
employm. 

Income 
1.0000             

Car ownership 
0.9844 1.0000            

Fuel price 
0.6464 0.7312 1.0000           

Average age 
-0.8940 -0.9278 -0.7905 1.0000          

Average hh size 
-0.5083 -0.4632 -0.2009 0.2118 1.0000         

Male labour 
force -0.8381 -0.8478 -0.6689 0.6895 0.7676 1.0000        

Female labour 
force -0.9205 -0.9148 -0.6674 0.8032 0.7041 0.9576 1.0000       

Students low 
education 0.6374 0.6917 0.7098 -0.8891 0.2092 -0.3128 -0.4696 1.0000      

Students 
medium 
education 0.9417 0.9344 0.6542 -0.8134 -0.7254 -0.9390 -0.9824 0.4880 1.0000     

Students high 
education 0.9476 0.9624 0.6541 -0.8118 -0.6377 -0.9039 -0.9301 0.4993 0.9556 1.0000    

Employment 
services/gov. -0.8569 -0.8330 -0.6089 0.7323 0.7735 0.9324 0.9639 -0.3954 -0.9617 -0.8560 1.0000   

Employment 
retail -0.8339 -0.8076 -0.5386 0.6760 0.7578 0.9277 0.9399 -0.3143 -0.9206 -0.8464 0.9634 1.0000  

Total 
employment -0.2910 -0.2521 -0.0589 -0.0150 0.9121 0.6829 0.5615 0.4429 -0.5310 -0.4443 0.6204 0.6570 1.0000 

 

Table 6. Coefficients of variation (standard deviation divided by mean) for the input variables (20 years 
average). 

Income 
0.160 

Car ownership 
0.232 

Fuel price 
0.242 

Average age 
0.035 

Average hh size 
0.087 

Male labour force 
0.018 

Female labour force 
0.151 

Students low education 
0.084 

Students medium education 
0.070 

Students high education 
0.213 

Employment services/gov. 
0.119 

Employment retail 
0.123 

Total employment 
0.080 

 

It was decided to use the covariance matrix derived from the 20-year moving average data only, 
which has the benefit of greater internal consistency. 

Table 7 summarizes the growth changes for the relevant input variables between 1995 and 2020. 
The first column shows the indices for the reference run, following are the 20 randomized 
indices. 
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Table 7. Input variable changes between 1995 and 2020 for the 20 draws 

 20ref_1995 BB01 BB02 BB03 BB04 BB05 

Employment government/services 1.432 1.351 1.928 1.351 1.023 1.240 

Employment Retail 1.221 1.204 1.885 1.030 0.773 0.893 

Total employment 1.279 1.306 1.483 1.191 1.094 1.180 

Students low education 1.067 1.158 1.117 1.019 1.008 1.002 

Students medium education 1.209 1.389 0.619 1.533 2.027 1.645 

Students high education 1.176 1.463 0.660 1.251 1.475 1.318 

Male labour force 1.115 1.104 1.327 1.077 0.962 1.062 

Female labour force 1.600 1.391 2.493 1.408 1.029 1.371 

Average age 1.089 1.073 1.097 1.092 1.081 1.090 

Size of household 0.957 0.981 1.043 0.906 0.884 0.892 

Income 1.650 1.854 1.293 1.733 2.008 1.917 

Car ownership 1.573 1.986 1.282 1.586 2.069 1.716

Fuel price 1.050 1.128 0.563 0.844 1.365 0.996 

 

 20ref_1995 BB06 BB07 BB08 BB09 BB10 

Employment government/services 1.432 1.361 1.645 1.304 1.727 1.620 

Employment Retail 1.221 1.156 1.529 1.222 1.564 1.373 

Total employment 1.279 1.428 1.438 1.200 1.256 1.325 

Students low education 1.067 1.319 1.180 0.946 0.942 1.089 

Students medium education 1.209 1.501 0.823 1.167 0.722 1.208 

Students high education 1.176 1.582 0.878 1.239 0.748 1.287 

Male labour force 1.115 1.110 1.225 1.110 1.215 1.140 

Female labour force 1.600 1.451 2.019 1.722 2.087 1.698 

Average age 1.089 1.059 1.086 1.104 1.115 1.090 

Size of household 0.957 0.999 1.034 0.929 0.963 0.961 

Income 1.650 2.100 1.353 1.570 1.133 1.673

Car ownership 1.573 1.969 1.282 1.407 1.282 1.701

Fuel price 1.050 1.902 1.430 0.873 0.621 1.346 

 

 20ref_1995 BB11 BB12 BB13 BB14 BB15 

Employment government/services 1.432 1.339 1.609 1.609 1.023 1.269

Employment Retail 1.221 1.191 1.514 1.562 0.754 1.030

Total employment 1.279 1.237 1.383 1.357 1.139 1.317 

Students low education 1.067 0.977 1.090 1.043 1.123 1.234 

Students medium education 1.209 1.268 0.922 0.895 2.605 1.773

Students high education 1.176 1.292 1.042 1.039 2.043 1.583 

Male labour force 1.115 1.124 1.267 1.191 0.926 1.080

Female labour force 1.600 1.595 1.999 1.963 0.958 1.291 

Average age 1.089 1.101 1.095 1.095 1.063 1.061 

Size of household 0.957 0.933 0.992 0.993 0.879 0.953

Income 1.650 1.785 1.467 1.525 2.508 2.187 

Car ownership 1.573 1.604 1.282 1.315 2.079 2.011 

Fuel price 1.050 0.770 0.634 0.992 1.785 1.074 
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 20ref_1995 BB16 BB17 BB18 BB19 BB20 

Employment government/services 1.432 1.741 1.093 1.431 1.388 1.205 

Employment Retail 1.221 1.687 0.798 1.246 1.223 1.009 

Total employment 1.279 1.337 1.209 1.365 1.378 1.114 

Students low education 1.067 1.007 1.181 1.144 1.204 0.944 

Students medium education 1.209 0.687 2.167 1.179 1.129 1.260 

Students high education 1.176 0.749 1.557 1.223 1.070 0.995 

Male labour force 1.115 1.204 0.987 1.165 1.174 1.079 

Female labour force 1.600 2.334 1.078 1.763 1.618 1.459 

Average age 1.089 1.110 1.064 1.085 1.072 1.102 

Size of household 0.957 1.010 0.918 0.977 0.995 0.913 

Income 1.650 1.199 2.262 1.709 1.627 1.419 

Car ownership 1.573 1.282 2.039 1.683 1.576 1.282

Fuel price 1.050 0.706 1.544 1.168 0.931 1.036 

 

Because we do not want to rely on (extreme) outliers, the annual parameter change was restricted 
to the 95%-interval, i.e. draws that were outside the bandwidth of two times the standard 
deviation were cut off at this value. For car ownership the annual changes were restricted to the 
interval between +1% and +4% per year (see section 3.6). The bbold figures in Table 7 show in 
which scenario and for which variable this (reaching the 95% cut-off points or the +1% or +4% 
per year boundaries for car ownership) occurred. It turns out that the car ownership boundaries 
are attained in 50% of all cases. Nevertheless the range investigated for car ownership growth (the 
lowest annual growth rate in the past 40 years and the highest annual growth in the past 10 years) 
seems adequate, given that there is evidence for some saturation.  

The figures shown in italic are adjusted due to model restrictions: the total number of cars in 
2020 exceeded the limits of the car ownership that the current LMS can handle (there are 20 
differrent car ownership models within the LMS; the limit here is the number of cars of the car 
ownership model that can give the highest car ownership). It is recommended that these 
restrictions be removed in the future (e.g. by increasing the number of car ownership models used 
to more than 20). In this report we stay within the limits of the current LMS, since we are 
investigating the uncertainty margins of the existing LMS. The maximum number of cars given 
by the model was taken instead. In one case, the income growth was too low, relative to the 
number of licenses and cars owned. A minimum annual growth of 0.5% was assumed. 

The values for the 2020 reference were used as average input to the random generator that 
produced the 20 output values. The average of these twenty output values are summarized in 
Table8. 

Table 8. Reference values in 2020 and average values of the 20 draws 

Variable Employ. 
Gov/Services 

Employ. 
Retail

Total 
employ. 

Students 
l.e.

Students 
m.e

Students 
h.e.

2020 ref 1.4319 1.2209 1.2790 1.0674 1.2091 1.1756 

Average 20 
draws 1.4128 1.2321 1.2868 1.0864 1.3259 1.2248 

    

Variable
 Male l.f. Female l.f. 

Average 
age  Size of hh Income 

Car
ownership Fuel price 

2020 ref 1.1154 1.5998 1.0886 0.9572 1.6500 1.5727 1.0500 

Average 20 
draws 1.1264 1.6364 1.0867 0.9577 1.7162 1.7596 1.0854 
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When the number of draws is infinite the average should be the same as the reference values. 
Using only 20 draws, there are slight departures from the reference values. Car ownership differs 
most from the reference value, and also income, and the number of students for medium and 
high education show smaller deviations. The other variables are quite close. 

The following subparagraphs discuss the adjusted variables in more detail. The focus of this 
discussion is on the expected effect of the variable in the (different parts of the) model. All other 
variables in the National Model System remain unchanged. 

3.6.1 Employment (government/services, retail and total) 
Employment in the LMS/NRM serves as an attraction variable in the mode/destination choice 
model (NSES). The new employment statistics for each zone are calculated by adjusting the 
national reference growth factor with the national new growth factor. A national correction for 
employment (by category) has no effect on the zonal distribution. However, when in the three 

categories of the LMS/NRM different growth rates are used, a shift in attraction will occur. This 
will have an impact on the number of kilometres and the modal split for each purpose. 

3.6.2 Number of students 
The number of students influences the model on two levels. First, the number of tours for 
education (both children and higher education) are related to the number of students. In the 
mode/destination choice model, the number of students that the schools can handle is an 
attraction variable. Again, the zonal totals are calculated in the same way as employment, so only 
a shift in children/higher education purpose is to be expected. 

3.6.3 Male and female labour force 
The labour force has a significant impact on the number of tours for the purposes ‘home-work’, 
‘home-based business’ and ‘non-home-based business’. The tour frequency model of the LMS 
reacts to the level of the labour force. A zonal correction was made based on the national growth 
factor. 

3.6.4 Average age 
An increase of the age of the population will lead to more licence holders and potential car 
owners. This will impact the modal shift. Also, the number of tours for the various purposes will 
change, for example between ‘children education’ and ‘higher education’. The LMS works with 
four age bands. An average age per two age bands is assumed to calculate the national average age. 
Then, the national correction is applied and zonal ages are adjusted accordingly. 

3.6.5 Size of household 
A change in the size of household will have an impact on the number of cars. The trend of 
declining household size will lead to an increase in car ownership and hence an increase in car use 
in the modal split.  

A household size correction is made on a national level and disaggregated to zonal values. 

3.6.6 Income 
Income influences the number of licences and the number of tours. The change of household 

type to other income bands will alter the mode/destination model as well. An increase in income 
will lead to a change in destination choice, in general these destinations will be further away. 

The LMS has a specific tool that calculates zonal income bands (five for every household 
category). 
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3.6.7 Car ownership 
Income and car ownership are highly correlated. The national car ownership is set as a target for 
the car ownership models in the National Model System. The level of car ownership is a 
characteristic of the different household- and person types in the model, and has an impact on the 
mode/destination choice for each type. 

3.6.8 Fuel price 
The level of the fuel price has a direct impact on the kilometer costs for car driver. Other modes 
than car will benefit directly from an increase in the fuel price. The fuel price is an explanatory 
variable in the mode/destination choice model. 

3.7 Treatment of model uncertainty 

 

We assumed that the input uncertainty and the model uncertainty are two independent sources 
of error. Consequently we were able to provide both the share of the output uncertainty that is 
due to inputs and the share that is due to model uncertainty. 

 

The LMS and NRM consists of a series of submodels. In calculating the uncertainty around the 
link flows we focussed on the tour frequency models and the mode-destination choice models. 
We did not include specification and estimation error in the licence holding and car ownership 
models (but treated the future year national car ownership total as one of the input variables to be 
varied, as described above). Similarly, we treated the parameters in the time of day choice models 
and the assignment (e.g. the speed-flow curves) as having been determined without error. 
Watling’s studies on assignment uncertainty (see the literature review in this project) have shown 
that in general the error in the OD matrices is the dominant source of total link flow error. 
Applying his methods in the context of LMS/NRM would be very difficult. These methods try to 
calculate the derivative of the link flow errors from the derivatives of the errors in the matrices 
(through a process called ‘linearisation’, also see the literature review), which should be considered 
as the leading edge in traffic analysis. Moreover, he uses stochastic assignment. These methods 
cannot be used unchanged in assignment procedures that have a discrete nature, such as the non-
stochastic assignment in LMS and NRM.  

 

The general approach in this project therefore is that we study variations in the OD matrices (due 
to input variables and the tour frequency and mode-destination choice models) and assign these 
using the same assignment procedures, without introducing extra variation due uncertainties (e.g. 
through Monte Carlo draws) in the departure and route choice functions. In this project we study 
the impact on the predicted flows for a set of selected links (3-4 links in one direction). The 
assignment mechanism itself can change the amount of uncertainty (e.g. reduce it, as in Zhao and 
Kockelman, 2001), because larger transport demand leads to more congestion and this increases 
travel times, which reduces demand for specific routes, periods and modes, etc. This also implies 
that we had to run the full assignment procedure (with the normal number of iterations6). The 

                                                      

6 Recent LMS and NRM runs in other projects (Deltametropool, tollcases) have shown that at the normal number of 
iterations within the assignment and between NSES and assignment, convergence may not yet have been achieved, and 
counter-intuitive differences between various runs can occur for small input changes and at the link level. However, it 
would have been infeasible in terms of computer run time to do more than the standard number of iterations since we 
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result of the first iteration were stored separately, to see the effect without the congestion feedback 
mechanism.  Freight matrices for road transport were added to the OD matrices for cars that were 
varied in this project, but these freight matrices did not vary (fixed background vehicle loads). 

 

We re-estimated all tour frequency models (both the 0/1+ and the stop/go models) and one of the 
mode-destination models: the one for commuting. This slightly increased most of the standard 
deviations (decreased the t-ratios) of the tour frequency models, to reflect the additional 
uncertainty due to misspecification of the model (e.g. in the functional form, the independence 
and homoskedasticity assumptions on the error distribution, but also including misspecification 
due to omitted variables). The correlations between the parameter estimates were taken from the 
Bootstrap estimation as well. We found no systematic differences between the Bootstrap estimates 
of the commuting mode-destination model and the original estimates for this model (there were 
differences, usually small, in both directions). Therefore we used the standard deviations and 
correlations of the original estimation runs for the mode-destination models for all purposes other 
than commuting. 

3.8 Varying the model coefficients for the LMS and NRM 

 

For two types of models within the LMS and NRM the coefficients were changed: the tour 
frequency models and the mode destination models. An assumption was made that the 
coefficients of the two models are uncorrelated. Although this might not be true in reality, the 
two models were estimated separately in practice as well.  

For each of the 0/1+ and stop-repeat models and the eleven purposes in the tour frequency model 
coefficients were estimated (for a more detailed description, see the LMS 7.0 documentation). 
Twenty-two covariance matrices were derived based on the original estimations. 

The mode/destination model runs for eight purposes use different coefficients for each of these 
purposes. Eight covariance matrices were derived based on the original estimations. 

The procedure followed to set up 20 draws for the coefficients is practically the same as for the 
input variables. Using the bootstrap estimations of the tour frequency models and the commuting 
mode-destination model and the original estimates for the other mode-destination models, 
variance-covariance matrices for the model coefficients were produced. After this, the tool 
described in paragraph 3.5 was used to generate 20 random draws from a multivariate normal 
distribution using this variance-covariance matrix. 

In contrast to the 20 draws for the input variables, outliers of the coefficient draws were not 
corrected. Coefficients that have a fixed value (of one), such as structural coefficients for 
multinomial logit models and coefficients for the basic size variables, have not been changed. 

The covariance matrices and the coefficient files that results from the draws are not shown in this 
report. 

The growth module within the NRM used the same coefficient values for tour frequencies and 
mode-destination choice as the LMS. But it also has additional scaling coefficients to balance 
overall national behaviour with market shares observed in the region. In the simulations for the 

                                                                                                                                                        

had to perform 100 LMS and 100 NRM runs in this project. Also in this project, we are interested in the behaviour of 
the model under standard settings. 
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NRM only the coefficients that correspond to the LMS were varied, not the region-specific 
coefficients.  
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CHAPTER 4 Case study 1: the LMS 

4.1 Description of the project studied 

 

The project for which uncertainty in traffic forecasts is studied using the LMS is the extension of 
the A16 motorway in the Rotterdam area (see Figure 1). Since the focus of this project is on road 
link flows, we have selected a road project as a case study. It concerns a major new road. At 
present, the A16 enters the Rotterdam area from the South (Breda, Dordrecht) and continues 
until the Terbregseplein, where it meets the A20. The extension would continue north of the 
A20, and after a few kilometres it would go west until it meets the A13. This new road has three 
new links in the LMS, with several access links. It would form an alternative for several existing 
routes, but especially for the A20 between the Kleinpolderplein and the Terbregseplein.  

The uncertainty of the LMS forecasts is studied both at the national level and at link level: 

National level: number of tours and passenger kilometres, by mode and purpose, 
irrespective of whether this takes place on the network or not. This is output of the 
NSES mode-destination component of the LMS. Most of the NSES output that is 
studied in this report concerns the equilibrium situation after the demand-supply 
equilibration (congestion feedback: when there is congestion, new travel times are 
calculated on the networks and re-inserted into the travel demand models). 

Link level: traffic flow (in passenger car equivalent units), travel times (hours) and vehicle 
hours lost on a number of selected links (see below). 

A small number of one-directional links was selected from the road network (the numbers 
correspond to the link numbers in Figure 2): 

1. The northern part of the new extension of the A16 from the east (LMS node 44477) to 
west (node 44484).  

2. The northern part of the new extension of the A16 from the west (node 44488) to the 
east (node 44485). 

3. The A20 from the Terbregseplein (node 5060) to the Kleinpolderplein (node 4736), 
direction Gouda-Rotterdam. 

4. The A20 from the Kleinpolderplein (node 4729) to the Terbregseplein (LMS node 
5062), direction Rotterdam-Gouda. 

5. The A2 near Abcoude (in the Amsterdam area) from node 9204 to node 9350, direction 
Amsterdam-Utrecht (not in Figure 2), as a sort of ‘control group’. This link will not be 
influenced by the extension of the A16.  
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Figure 2. The road network in the Rotterdam area in 2020 (in red the project situation). 

 

 

Both results for the Reference scenario 2020 (the LMS reference run called 2020.RF5) and for 
the situation in 2020 with the project (extension of the A16) were studied. We also looked at 
differences (e.g. in link flows) between project run and the Reference 2020 (pairwise comparison: 
differences were calculated for runs that have identical inputs in all regards, but for the new road). 

 

In Total, 100 LMS runs were carried out in this project: 

50 runs for the Reference 2020; 

50 runs for the Reference 2020 with the extended A16 project. 

Each set of 50 runs consists of  

1. 20 runs for variation in the model input variables;  

2. 20 runs for variation in the model coefficients; 

3. 10 runs with variation in both model input variables and coefficients. 

In a number of tables and figures in this report (including those in Appendix 4), these numbers 1, 
2 and 3 are used to indicate these subsets of LMS runs. The sets for the Reference 2020 and for 
the project situation contain exactly the same variation in input variables and coefficients. Each 
time, the same run was done with and without the project. 
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4.2 Uncertainty in outputs at the national level (NSES) 

 

The detailed outcomes from NSES for the national level for the Reference situation 2020 and the 
project situation are in Appendix 4. In Table 9 and 10 these outcomes are summarised.  

For the Reference 2020, on average 11.7 mln tours are made by car drivers on a working day (all 
purposes; see Appendix 4). The standard deviation from the input variation runs yield a standard 
deviation around this mean of 1.4 mln (11.7% of the mean, also see Table 6). On the basis of the 
Normal distribution, the 95% confidence interval around the mean would be [9.1 mln, 14.4 
mln]. When using the observed distribution from the set of model runs (percentiles), we obtain a 
95% confidence interval [9.7 mln, 13.5 mln] for the input variation. 

In Table 9 are results for the Reference 2020 simulation with the LMS tour frequency and mode 
destination models, at the national level by mode for the sum of all purposes. 

 

Table 9. Standard deviation for input uncertainty and model uncertainty of tours for the reference 
situation. 

Standard deviation for input 
uncertainty in tours (% of mean) 

Standard deviation for model 
uncertainty in tours (% of mean) 

Standard deviation for input and model 
uncertainty in tours (% of mean) 

Car driver 11.7 0.8 12.1 

Car
passenger

6.3 0.9 6.0 

Train 15.3 2.4 16.2 

BTM 12.2 1.4 12.1 

Slow 
modes

4.1 0.5 4.3 

Total 1.8 0.6 1.9 

 

In assessing these input error margins, one should keep in mind the amount of variation in the 
input variables that was introduced in these LMS runs. The average income increase of 65% 
between 1995 and the Reference 2020 for instance was varied from a 13% increase to a 110% 
increase. 

The standard deviations for input variation at this level are between 4 and 16% (by mode). For 
the total number of tours over all modes, the standard deviation is even below 2%. The total 
across all modes does not include the distribution over modes from the mode destination models, 
and therefore it can be more forecast more precisely. 

The standard deviations that result from model uncertainty are clearly smaller than for input 
uncertainty. This happens for all of the modes and for the total over modes. For instance for car 
drivers this standard deviation is only 0.8% of the mean for tours, and for all modes together it is 
0.6%. Uncertainty in the input variables such as income and car ownership clearly dominates the 
uncertainty that is due to the uncertainty in the model coefficients. 

Table 10 presents the same results for the Reference scenario, but now for passenger kilometres.  
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Table 10. Standard deviation for input uncertainty and model uncertainty of passenger kilometres for the 
reference situation. 

Standard deviation for input 
uncertainty in passenger km (% 

of mean) 

Standard deviation for model 
uncertainty in passenger km (% 

of mean) 

Standard deviation for input and 
model uncertainty in passenger km 

(% of mean) 

Car driver 8.3 0.7 8.3 

Car
passenger

10.2 3.9 11.0 

Train 14.4 2.5 15.2 

BTM 10.4 2.1 10.0 

Slow modes 4.7 0.5 5.0 

Total 4.4 0.9 4.5 

 

For car driver kilometres, the standard deviation due to input uncertainty is 8.3% of the mean. 
The 95% confidence interval from the Normal is [287 mln, 399 mln] and from the percentiles 

[287 mln, 377 mln]. For car drivers, the relative input uncertainty for passenger kilometres is 
smaller than for tours (compare Tables 9 and 10). For car passenger and the slow modes however, 
the reverse in true.  

It is an interesting outcome that the errors in the kilometres are of the same order of magnitude 
as the errors in the numbers of tours, while for policy simulations that change travel times and 
costs, the kilometres are mostly more volatile than the tours (e.g. greater time and cost elasticities 
for kilometres). Since this happens for all modes, the explanation cannot (only) be the effect of 
congestion (that would dampen the kilometrage shifts). We conclude that runs that change time 
and cost affect destination choice more than mode choice, and tour frequencies not at all. The 
changes in the input variables performed here (of which income and car ownership are the most 
important) affect tour frequencies more than other choices, and therefore lead to broadly similar 
effects in terms of tours and kilometres.  

In most cases the standard deviations for input and model uncertainty are slightly higher than 
those for input uncertainty alone, but in some cases the standard deviations for both sources of 
uncertainty are the same or just below those for input uncertainty. This is probably an artefact of 
having only performed a limited number of LMS runs for the combination of the two sources of 
uncertainty. But, as for tours, the input uncertainty is substantially greater than the model 
uncertainty. 

For the situation with the project (see Appendix 4), the variation in tours and kilometres of the 
same order of magnitude as for the Reference Situation. Again, the uncertainty due to input 
variation dominates the output variation. 

Figure 3 and Figure 4 depict the outcomes as discussed above for all purposes graphically. Again, 
we can observe that the variation in tours and in passenger kilometres is of similar magnitude, 
that it affects all modes and that the input variation (labels (1)) is a much more important source 
of variation in tours and passenger kilometres than model uncertainty. 

In Figure 5 to Figure 9 the number of tours and passenger kilometres are given for each mode, by 
travel purpose (from the same NSES runs as the Tables and Figures above). All purposes have 
substantial variation in tours and kilometres. For tours, the variation is similar for all travel 
purposes. For passenger kilometres (especially as car driver), commuting and other travel are 
clearly more uncertain than non-home-based business travel, shopping and education.  
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Figure 3. Total tours by kilometers (NSES) for the reference situation 
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Figure 4. Total tours by kilometers (NSES) for the project situation 
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Figure 5. Number of tours by number of kilometers (NSES) for car driver for the reference scenario 
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Figure 6. Number of tours by number of kilometers (NSES) for car passenger for the reference scenario 
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Figure 7. Number of tours by number of kilometers (NSES) for train for the reference scenario 
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Figure 8. Number of tours by number of kilometers (NSES) for BTM for the reference scenario 
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Figure 9. Number of tours by number of kilometers (NSES) for car driver for the reference scenario 
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We also compared the differences between the project run and the corresponding Reference 2020 
run, from NSES at the national level. We found that the variation in the difference between two 
runs, both in terms of tours and kilometres, is much larger than the variation in the total number 
of tours or kilometres in either the project or the reference 2020 run. For instance the change 
caused by the project in car driver commuting tours varies between +1000 to +3500 tours. This is 
a large degree of variation relative to the mean change in tours, but at a low level: the variation is 
between 0.05% and 0.1% of all car driver commuting tours in the country. For car driver 
kilometres for commuting, the result of the project can be more kilometres (mode and 
destination choice effect) but also less kilometres (route choice effect: for some tours, the new 
motorway provides a shorter route). Here the maximum change (240,000 km) is 0.17% of the 
total number of kilometres for this mode and purpose. 

For home-based business travel, the route choice effect is often more important than the mode-
destination choice effect. For education, shopping and other travel, the mode-destination effect 
(leading to more car driver kilometres) dominates. 

4.3 Uncertainty in outputs before congestion feedback 

 

We also had a look at the simulation results at the national level for the Reference 2020 from 
NSES, without congestion feedback, to see whether the congestion feedback leads to a damping 
of the variation on tours and kilometres or to a propagation of errors (the detailed results are in 
Appendix 4).  

We can conclude that the uncertainty in the number of tours is the same with and without 
congestion feedback, and that with congestion feedback the variation in kilometres is slightly 
smaller (after including the feedback, the standard deviation for input uncertainty goes from 
9.6% to 8.3%; standard deviation for model uncertainty from 0.8% to 0.7%; standard deviation 
for combined uncertainty from 9.4% to 8.3%). 

4.4 Uncertainty in outputs at selected links 

 

Reference 2020 

In Tables 11-13 are the key outcomes for the vehicle flow (in passenger car equivalent units), the 
number of hours travelled and the vehicle hours lost (Q-hours) at the selected links in the 
Reference situation (in the Reference we only have three links, in the situation with the project 
we have five). All these variables refer to a full 24-hours day, not just to the peak hours.  
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Table 11. Standard deviation for input uncertainty and model uncertainty of vehicle flow for the reference 
situation. 

 Standard deviation for input 
uncertainty (% of mean) 

Standard deviation for model 
uncertainty (% of mean) 

Standard deviation for input and model 
uncertainty (% of mean) 

A20
Rotterdam-
Gouda

4.1 0.3 4.3

A20
Gouda-
Rotterdam

4.6 0.6 4.7

A2
Amsterdam-
Utrecht

8.3 1.3 8.3

 

Table 12. Standard deviation for input uncertainty and model uncertainty of hours travelled for the 
reference situation. 

 Standard deviation for input 
uncertainty (% of mean) 

Standard deviation for model 
uncertainty (% of mean) 

Standard deviation for input and model 
uncertainty (% of mean) 

A20
Rotterdam-
Gouda

4.5 0.5 4.6

A20
Gouda-
Rotterdam

13.2 2.7 13.8

A2
Amsterdam-
Utrecht

8.8 1.5 8.0

 

Table 13. Standard deviation for input uncertainty and model uncertainty of vehicle hours lost for the 
reference situation. 

 Standard deviation for input 
uncertainty (% of mean) 

Standard deviation for model 
uncertainty (% of mean) 

Standard deviation for input and model 
uncertainty (% of mean) 

A20
Rotterdam-
Gouda

22.3 16.9 12.5

A20
Gouda-
Rotterdam

16.9 4.8 22.8

A2
Amsterdam-
Utrecht

54.4 29.8 61.1

 

For input variation, the standard deviations of the link flows (Table 11) are between 4.1% and 
8.3% of the means. For model uncertainty these are between 0.3% and 1.3%. Consequently the 
variation in link flows is even smaller than the variation in total tours and kilometres. This is 
probably due to the equilibrium nature of the assignment stage, which dampens the variation 
somewhat. Again input uncertainty clearly dominates model uncertainty. The variation of the 
combined runs (inputs and model uncertainty) are the same or larger than for input uncertainty 
only.  

The input uncertainty in the number of hours (Table 12) varies between 4.5% and 13.2%, and 
the model uncertainty for hours travelled is between 0.5% and 2.7%. The variation in hours per 
link is the same or slightly greater than the variation in link flows.  

The variation in vehicle hours lost due to congestion, or Q-hours, (Table 13) is sometimes very 
large (much larger than the variation in flows and hours), especially where the absolute 
congestion levels are low. The standard deviation ranges from 13% of the mean for both types of 
uncertainty for the A20 Rotterdam-Gouda to more than 50% of the mean for the A2. For both 
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of these links, the absolute number of Q-hours in the reference situation were already low. Q-
hours are a volatile measure with a large degree of associated uncertainty. Again the input 
uncertainty is more important than the model uncertainty. On the A20, between the 
Kleinpolderplein and the Terbregseplein, the congestion (measured as Q-hours) is much more 
severe in the Gouda-Rotterdam direction than in the Rotterdam-Gouda direction (on an average 
working day). This happens because of the queues on links before The Kleinpolderplein leading 
to the A20 in the direction of Gouda: the traffic has been blocked earlier on. For the traffic in the 
opposite direction the blocking before the selected link does not occur at such a high level.  

 

The project situation 

For the project situation, we used the same sets of random numbers for input and model 
uncertainty as in the reference situation. The results in terms of uncertainty margins with the 
project for hours and flows for the ‘old’ routes (see Appendix 4 for the detailed outcomes) are  
mostly similar to the Reference 2020. The variation for the new link is relatively high: the 
standard deviation for input uncertainty is 12.7% and 15.9% (two directions) for hours (see 
Table 15) and 11.9% and 14.8% for the flow (see Table 14). For model uncertainty it is 1.3% 
and 0.8% for hours and 1.2% and 6.4% for flows. The extension of the A16 leads to a clear 
reduction in hours travelled on the A20-Gouda-Rotterdam, which is visible in all runs.  

 

Table 14. Standard deviation for input uncertainty and model uncertainty of vehicle flow for the project 
situation. 

 Standard deviation for input 
uncertainty (% of mean) 

Standard deviation for model 
uncertainty (% of mean) 

Standard deviation for input and model 
uncertainty (% of mean) 

A20
Rotterdam-
Gouda

3.9 0.6 4.0

A20
Gouda-
Rotterdam

4.8 0.5 4.5

A2
Amsterdam-
Utrecht

8.4 1.3 8.2

New link 
A16
A20-A13

11.9 1.2 12.3

New link 
A16
A13-A20

14.8 6.4 15.7
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Table 15. Standard deviation for input uncertainty and model uncertainty of hours travelled for the project 
situation. 

 Standard deviation for input 
uncertainty (% of mean) 

Standard deviation for model 
uncertainty (% of mean) 

Standard deviation for input and model 
uncertainty (% of mean) 

A20
Rotterdam-
Gouda

4.1 0.6 4.2

A20
Gouda-
Rotterdam

5.0 1.0 4.2

A2
Amsterdam-
Utrecht

8.9 1.5 8.8

New link 
A16
A20-A13

12.7 1.3 13.0

New link 
A16
A13-A20

15.9 0.8 16.8

 

 

The Q-hours in the project situation are very different from those in the Reference 2020. On the 
A20 in the direction Rotterdam-Gouda, there were not so many Q-hours in the reference 2020, 
and this is reduced to almost zero with the extended A16. The variation around the mean is 
relatively large here, but this is because most runs yield zero Q-hours on this link and an 
occasional run gives a small positive number (3) of Q-hours. On the A20 Gouda-Rotterdam, the 
Q-hours are reduced from 1481 on average to 276. The variation around the new value is not 
very large: a standard deviation of 6.7% of the mean for input uncertainty, 7.2% for model 
uncertainty (high relative to the input uncertainty) and 10.4% for both sources of uncertainty 
together. On the selected link on the A2, the Q-hours remain low, (as expected, the project does 
not lead to changes in congestion here) and the new extension of the A16 remains uncongested. 

 

Differences between the project situation and the Reference 2020 

We also studied the uncertainty in the differences between the project run and the corresponding 
Reference 2020 run for the selected links (only for the ‘old’ links, since there was no new link in 
the Reference). The standard deviations for the flows differences for the A20 Rotterdam-Gouda 
are 11.7% for input uncertainty, 5.9% for model uncertainty and 12.5% for the combined 
uncertainty. For the A20 Gouda-Rotterdam, the standard deviations of the flows are 8.0%, 4.9% 
and 7.2% respectively. For the flows, hours and Q-hours differences on the A2, the relative 
variation is much larger, because the absolute differences are so small.  

The standard deviation of the variation in differences in hours for the A20 Rotterdam-Gouda is 
11.3% (input), 4.7% (model) and 11.6% (both), which is very similar to the outcomes for 
differences in flow. For the A20 Gouda-Rotterdam the standard deviation of the flow differences 
are a larger fraction of the means (22.7%, 5.9%, 25.2%). 

On the A20 Rotterdam-Gouda, the standard deviation of Q-hour differences is 22.6% of the 
mean for input variation, 17.0% for model uncertainty and 12.5% (lower than the individual 
components) for the combined uncertainty. For the reverse direction these percentages are 
25.7%, 6.5% and 28.6%. Q-hour differences are more volatile (larger uncertainty) than flows 
and hours. 
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4.5 Conclusions 

 

Both the input variables and the model coefficients of the LMS tour frequency and mode-
destination models were varied. The resulting standard deviation for uncertainty due to input 
error for total car tours is 11% of the mean, and for total car kilometres it is 8% of the mean. The 
model uncertainty is much smaller: the standard deviation is 0.7% of the mean for both car tours 
and kilometres. The standard deviation for both sources of uncertainty together is 12% of the 
mean for car tours and 8% for car kilometres. 

For other modes the standard deviations for tours and kilometres are between 4% and 15% of the 
mean for input uncertainty and between 4% and 16% for combined uncertainty. The model 
errors again are much smaller than the input errors. The uncertainty margins for the different 
travel purposes are rather similar to those for all purposes together. 

The relative uncertainty around the difference in total car tours or kilometres (with and without a 
road project) from the NSES mode-destination models is much larger than the above shares, but 
this concerns small amounts of traffic (at the national scale). 

At the level of selected links of the road network, the standard deviations of the link flows are 
between 4% and 9% for input uncertainty, and around 1% for model uncertainty. For the 
number of hours travelled, the standard deviations are between 4 and 13% for input variation 
and 1-3% for model uncertainty. Q-hours (number of hours lost due to congestion) can have a 
much larger uncertainty, especially when the absolute numbers of Q-hours are low.  

The standard deviations for the differences in link flows for links competing with the new road 
between the situation with and without the road project are 8-12% for input uncertainty, 5-6% 
for model uncertainty and 7-13% for combined uncertainty. Again the Q-hour differences are 
very uncertain, and the difference in hours travelled are in between.  

With regards to the evaluation of the project (the A16 extension in this example): the flow on this 
new link is predicted with a substantial level of uncertainty: the link flows can be up to 29% 
higher or lower than in the most likely case. This means that for cost-benefit analysis of the 
project, relatively large variations in the benefits need to be evaluated to account for uncertainty 
in the inputs and models.  
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CHAPTER 5 Case study 2: the NRM 

5.1 Description of the project studied 

For the case study on quantifying uncertainty for NRM predictions, we used the NRM Noord-
Brabant (with permission from the Regional Directorate, who own this model system, and co-
operated in providing the appropriate input files). As for the LMS application, we selected a road 
project, in this case the Eindhoven eastern ringroad (‘Oostelijke Randweg’), that would complete 
the beltway around the city of Eindhoven.  

 

Figure 10. The road network in the Eindhoven area in 2020 (in red the project situation). 

 

 

The selected links for this case study are (the link numbers correspond to those in the Figure): 

1. Project link: Eindhoven eastern ringroad in the direction north to south (from node 
32375 to 32376). 
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2. Project link: Eindhoven eastern ringroad in the direction south to north (from node 
32403 to 32404). 

3. Competing link: Eindhoven A2-West in the direction north to south (from node 2106 
to 3015). 

4. Competing link: Eindhoven A2-West in the direction south to north (from node 3011 
to 3016). 

5. Control link: A58, between Bergen op Zoom and Roosendaal from west to east (not in 
the Figure) from node 13794 to 13804).  

 

50 NRM runs have been carried out for the project situation for 2020 and 50 for the Reference 
Scenario 2020. Each set of 50 runs consists of  

1. 20 runs for variation in the model input variables;  

2. 20 runs for variation in the model coefficients; 

3. 10 runs with variation in both model input variables and coefficients. 

5.2 Uncertainty in outputs at the regional level 

 

In Table 16 the outcomes from the mode-destination models within the NRM (called RSES) are 
given in terms of tours at the level of the region (study area) as a whole. For the mode car driver, 
the standard deviation for input uncertainty is 9.1% of the mean (in the LMS runs it was 
11.7%). The standard deviation for model uncertainty is 1.0% of the mean (this was 0.8% in the 
LMS). The combination of input and model uncertainty leads in this NRM application to a 
standard deviation of 9.2% of the mean (LMS: 12.1%). The outcomes for tours with the other 
modes are also similar to those of the LMS. Again, the relative magnitude of the uncertainty due 
to model inputs (such as income and car ownership) is clearly larger than the uncertainty in the 
model coefficients.  

Table16. Standard deviation for input uncertainty and model uncertainty of tours for the reference 
situation. 

 Standard deviation for input 
uncertainty in tours (% of mean) 

Standard deviation for model 
uncertainty in tours (% of mean) 

Standard deviation for input and model 
uncertainty in tours (% of mean) 

Car driver 9.1% 1.0% 9.2% 

Car
passenger 6.8% 3.4% 5.7% 

Train 13.1% 8.3% 10.2% 

BTM 8.8% 8.5% 9.4% 

Slow 
modes 3.9% 1.3% 4.6% 

Total 1.7% 0.6% 1.8% 

 

The RSES outcomes for passenger kilometres are in Table 17. The standard deviation for car 
driver for both sources of uncertainty together now is 6.9% of the mean (LMS: 8.3%). Here too 
we find that in general input uncertainty is more important than model uncertainty. The errors 
in the forecasts for passenger kilometres are of the same magnitude as for tours.  
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Table 17. Standard deviation for input uncertainty and model uncertainty of passenger kilometres for the 
reference situation. 

 Standard deviation for input 
uncertainty in passenger km (% 
of mean) 

Standard deviation for model 
uncertainty in passenger km (% 
of mean) 

Standard deviation for input and 
model uncertainty in passenger km 
(% of mean) 

Car driver 7.1% 0.7% 6.9% 

Car
passenger 11.4% 6.4% 10.3% 

Train 13.1% 9.2% 10.4% 

BTM 8.5% 8.8% 9.8% 

Slow modes 4.8% 1.2% 6.0% 

Total 
4.9% 1.7% 5.1% 

 

The variation in tours and kilometers in the project situation (see Appendix 4) is similar to that is 
the Reference Situation presented above. This can also be seen by comparing Figures 11 and 12. 
These figures also illustrate that input errors are usually larger than model errors. Figure 13 
depicts the Reference Situation, for car drivers only, by travel purpose. In terms of tours, the 
relative variation is similar for all travel purposes. For car driver kilometres, commuting and travel 
for other purposes have a larger variation (are more uncertain) than non-home-based business 
travel, shopping and education. 

5.3 Uncertainty in outputs before congestion feedback 

 

The results without congestion feedback for the Reference Situation can be found in Appendix 4. 
For the variation in tours, the congestion feedback does not lead to significant changes. The 
congestion feedback however reduces the variation in passenger kilometres somewhat (as in the 
LMS): for car driver the input uncertainty is reduced from 8.9% to 7.1%, the model uncertainty 
from 0.9% to 0.7% and the combined uncertainty from 8.6% to 6.9%.  

5.4 Uncertainty in outputs at selected links 

 

Reference 2020 

The outputs at the link level consist of vehicle flows, hours travelled and vehicle hours lost. All 
outputs here refer to a full 24-hours day. The vehicle flows are expressed in passenger car 
equivalent units. In Table 18, we can see that for the selected links that exist in the Reference 
Situation, the standard deviation for input uncertainty in the vehicle flows is between 0.9% and 
3.7% of the mean. This is noticeably smaller than for the LMS, where the range was from 4.1% 
to 8.3%.  This might be due to the finer network and zoning in the NRM. Also, the NRM study 
area is smaller and the traffic to/from the rest of The Netherlands is kept constant. Again the 
model uncertainty is considerably smaller than the input uncertainty. The variation in link flows 
for the NRM is smaller than for total study area tours and kilometres (as was found for the LMS), 
probably a result of the equilibrium properties of the assignment. 
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Figure 11. Total tours by kilometers (RSES) for the Reference Situation 

Total per mode in Reference 2020
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Figure 12. Total tours by kilometers (RSES) for the project situation 

Total per mode in Project situation 

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

# Tours

#
 K

il
o

m
e
tr

e
s

Car driver (1) Car driver (2) Car driver (3) Passenger (1) Passenger (2) Passenger (3) Train (1) Train (2)

Train (3) BTM (1) BTM (2) BTM (3) Slow (1) Slow (2) Slow (3)



Uncertainty in traffic forecasts                                                                                               RAND Europe 

 48

Figure 13. Number of tours by kilometers (RSES) for car driver for the Reference Situation 

Mode: car driver
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Table 18. Standard deviation for input uncertainty and model uncertainty of vehicle flow for the reference 
situation. 

 Standard deviation for input 
uncertainty (% of mean) 

Standard deviation for model 
uncertainty (% of mean) 

Standard deviation for input and model 
uncertainty (% of mean) 

A2 West 
Eindhoven
N-Z

1.8 0.3 1.7

A2 West 
Eindhoven
Z-N

0.9
0.5 0.7

A58 Bergen 
op Zoom - 
Roosendaal

3.7 0.3 3.9

 

Table 19. Standard deviation for input uncertainty and model uncertainty of hours travelled for the 
reference situation. 

 Standard deviation for input 
uncertainty (% of mean) 

Standard deviation for model 
uncertainty (% of mean) 

Standard deviation for input and model 
uncertainty (% of mean) 

A2 West 
Eindhoven
N-Z

5.9 3.3 5.3

A2 West 
Eindhoven
Z-N

1.2 0.7 1.3

A58 Bergen 
op Zoom - 
Roosendaal

8.0 1.2 8.0

 

Table 20. Standard deviation for input uncertainty and model uncertainty of vehicle hours lost for the 
reference situation. 

 Standard deviation for input 
uncertainty (% of mean) 

Standard deviation for model 
uncertainty (% of mean) 

Standard deviation for input and model 
uncertainty (% of mean) 

A2 West 
Eindhoven
N-Z

6.1 3.7 5.4

A2 West 
Eindhoven
Z-N

28.3 47.9 28.7

A58 Bergen 
op Zoom - 
Roosendaal

50.1 11.0 48.2

 

The variation in hours travelled (Table 19) is clearly larger than for the vehicle flows (and more 
similar to the  percentages found for the LMS). The variation in vehicle hours lost (Table 20) is 
much larger than the variation in vehicle flows or hours travelled. For the LMS we also found 
that the predictions for hours lost were more unstable than all other predictions studied. 

 

Project situation 

Results for vehicle flows, hours travelled and vehicle hours lost can be found in Appendix 4. 
These outcomes for the ‘old’ routes are similar to those for the Reference Situation. In the LMS 
application, the variation in the vehicle flows on the new link was relatively high, but in this 
NRM application it is within the range of the variation for the ‘old’ routes: 2.0-2.6% (depending 
on the direction) for input uncertainty, 0.2-0.4% for model uncertainty and 2.1-2.7% for 
combined uncertainty. In the project situation, the vehicle flows on the new eastern ringroad are 
nearly equal to those of  the western ringroad (A2) of Eindhoven: 44,000-45,000 vehicles per day 
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per direction. Vehicle flows and hours travelled are reduced on the A2 west of Eindhoven, 
especially in the direction north-south, in all model runs. 

At the same time, Q-hours (vehicle hours lost) are reduced on the A2 west of Eindhoven in all 
runs. For the A2 in the direction north to south it is reduced on average by a factor of more than 
3. The variation in the Q-hours for the A2 from north to south in the project situation is not very 
large: 7.9% for input uncertainty, 4.6% for model uncertainty and 9.2% for the combined 
uncertainty. For the A2 direction south to north the congestion in terms of vehicle hours lost is 
reduced to 0 in all model runs after the opening of the eastern ringroad (no variation whatsoever).  
For the ‘control’ link, congestion is almost the same in the project situation as in the Reference 
Situation. 

 

Differences between the project situation and the reference 2020 

The standard deviations for the differences in the vehicle flows between the project and the 
Reference situation are 13.3%. 8.5% and 11.2% (input, model and combined uncertainty 
respectively) for the A2 north-south. For the direction south-north, the absolute differences are 
smaller and the variation is larger: 33.8%, 22.6% and 55.8% respectively. For the direction 
north-south the variation for hours travelled and vehicle hours lost is also not very large, unlike 
for the opposite direction (again due to the small absolute differences between the situation with 
and without the project). But unlike the results for the LMS, the relative variation in the 
difference in the number of hours travelled and in Q-hours does not exceed the relative variation 
in the vehicle flow difference. For the control link, that is not substantially affected by the new 
project, the differences between the situation with and without the project are indeed very small, 
but the relative variation is large. 

5.5 Conclusions 

 

100 model runs were carried out with the New Regional Model (NRM) Noord-Brabant to 
quantify the effect of uncertainty in the inputs and of uncertainty in the model coefficients of the 
tour frequency and mode-destination models. For the uncertainty due to model inputs we found 
a standard deviation for total car tours in the study area of 9% of the mean. For total car 
kilometres this was 7% of the mean. These values are rather similar (just below) to what was 
found for the LMS. As in the LMS, the uncertainty due to model uncertainty is much smaller: 
for total car tours we obtained a standard deviation of 1.0% of the mean and for car kilometres of 
0.7% of the mean.  The combined model and input uncertainty is 9.2% for total car tours and 
6.9% for total car kilometres in the study area. 

The standard deviations in tours and kilometres  for other modes are between 2% and 13% of 
their means for input uncertainty and between 2% and 11% for combined input and model 
uncertainty. Again, the input errors are generally much larger than the model errors. This also 

holds for the different travel purposes separately.  

Half of the model runs were for the Reference Situation 2020, the other half for the situation 
with a specific road project (Eindhoven eastern ringroad). The conclusions on uncertainty for 
each of those two situations were very similar. Also the results for tours with and without 
congestion feedback were quite similar. The congestion feedback reduces the variation in total car 
kilometres in the study area somewhat. 
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A number of links of the road network were studied in more detail. The standard deviations for 
input uncertainty in vehicle flows on those links are between 1% and 4% (clearly smaller than in 
the LMS). For model uncertainty we found standard deviations up to 0.5% of the mean, and for 
combined uncertainty between 1% and 4% of the mean values. The error margins for the 
number of hours travelled are somewhat larger: between 1% and 8% for input uncertainty and 
between 1% and 3% for model uncertainty. The variation in the number of hours lost due to 
congestion (Q-hours) can be considerably larger (up to 50%), especially for links where 
congestion is low (small absolute number of Q-hours). 

For the differences in the link flows between the situation with and without the road project the 
standard deviation for input uncertainty is between 13% and 34% for the links most affected by 
the project. For these links, model uncertainty varies between 9% and 23% and combined 
uncertainty between 11% and 56%. For a link not substantially affected by the project, the 
relative standard deviation of the difference with and without the project can be even larger, but 
this concerns very limited absolute numbers of vehicles. The variations in the differences in the 
number of hours travelled and Q-hours here do not exceed those for the vehicle flows.  

With regards to the evaluation of the project (the Eindhoven eastern ringroad in this example): 
the link flows on the new link are predicted with a very small level of uncertainty: the link flows 
can be up to 5.5% higher or lower than in the most likely case. The impact of this project on 
travel times (reference compared to project) on competing links however has a considerably larger 
uncertainty margin. 
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CHAPTER 6 Conclusions 

This report presents the outcomes of all phases of the project ‘Uncertainty in traffic forecasts’ that 
RAND Europe undertook for the Transport Research Centre of the Dutch Ministry of 
Transport, Public Works and Water Management, namely: 

A literature review for public projects and public-private partnership (PPP) projects; 

Development of a method to quantify the uncertainty in traffic forecasts for the Dutch 
National Model system LMS and the New Regional Models NRM; 

Outcomes from a large number (100) of model runs with the LMS to derive uncertainty 

margins around the mean traffic forecasts; 

Outcomes from a large number (100) of model runs with the NRM for the Dutch province 
of Noord-Brabant to derive uncertainty margins around the mean traffic forecasts. 

 

Review of the literature 

We found that the literature on quantifying uncertainty in traffic forecasts is fairly limited. We 
distinguished between input uncertainty (e.g. on the future incomes and car ownership levels) 
and model uncertainty (including specification error and error due to using parameter estimates 
instead of the true values). 

For quantifying the amount of iinput uncertainty all contributions that we found in the 
literature use some form of repeated model simulation (sensitivity testing). Usually statistical 
distributions are postulated for the input variables and then random draws are made from these 
distributions. This generates input values that are used subsequently in model runs. The 
uncertainty is calculated from the variance over all the runs for the different input values. Most 
studies apply univariate distributions for the input variables (ignoring correlation between 
inputs).   

Several methods have been found in the litarature for quantifying mmodel uncertainty in 
transport forecasts. A few studies used analytic expressions for the variance of the endogenous 
variable that results from using parameter estimates for the influence of the exogenous variables. 
For complicated models, these expressions become very cumbersome. The Jackknife and 
Bootstrap method can be used to obtain proper t-ratio’s or standard errors for the model 
coefficients in situations with specification error (such as repeated measurements in panel and SP 
data). These proper standard errors of the parameters can either be used in the analytic 
calculation of the standard error of the model outcomes, or be used as information on the 
statistical distributions from which values can be drawn for model simulation runs. Again, it is 
important to take account of the correlations (between the parameter estimates). 

 



Uncertainty in traffic forecasts                                                                                               RAND Europe 

 54

Development of a method for LMS and NRM 

In our analysis of uncertainty in traffic forecasts from the Dutch national model system (LMS) 
and the regional model for (NRM) Noord-Brabant, we used existing time series as the key source 
of information on means, standard deviations and correlations of input variables, and applied 
these to get multivariate distributions for the model input variables, to account for correlation 
between the input variables.  

Analytic methods to quantify the model uncertainty were considered and the analytic expressions 
were worked out, but the evaluation of these expressions would take too much computer time. 
For quantifying the model errors we used the Bootstrap method to correct for specification error 
and Monte Carlo simulation for the uncertainty due to estimation, for the tour frequency and 
mode-destination choice models in the LMS and NRM.  

 

Outcomes for LMS and NRM 

Both the input variables and the model coefficients of the LMS and NRM tour frequency and 
mode-destination models were varied. The resulting standard deviation for uncertainty due to 
input error for total car tours in the LMS is 11% of the mean, and for total car kilometres it is 
8% of the mean. For the NRM application these relative standard deviations are slightly lower: 
9% and 7% for car tours and car kilometres in the study area. The model uncertainty is much 
smaller: the standard deviation is 0.7% of the mean for both car tours and kilometres in the LMS 
and 1% for car tours and 0.7% for car kilometres in the NRM. The standard deviation for both 
sources of uncertainty together is 12% of the mean for car tours and 8% for car kilometres in the 
LMS and 9% and 7% for the NRM. 

For other modes the standard deviations for tours and kilometres are between 2% and 15% of the 
mean for input uncertainty and between 2% and 16% for combined uncertainty. The 95% 

confidence intervals in Figure 14 (for the LMS) were calculated as 1.96 times the standard 
deviation. These are the uncertainty margins for the combined variance. The margins are smallest 
for car driver and the slow modes and largest for train and bus/tram/metro (BTM). 

In Figure 15 we can see again that the model errors (the second bar for each mode) again are 
much smaller than the input errors (the first bar for each mode). The third bar for each mode is 
for the combined error. 

Figure 16 and 17 give the same information for the NRM. 

Half of the model runs were for the Reference Situation 2020, the other half for the situation 
with a specific road project (extension of the A16 near Rotterdam for the LMS application, the 
Eindhoven eastern ring road for NRM). The conclusions on uncertainty for each of those two 
situations were very similar. Also  the results for tours with and without congestion feedback were 
quite similar. The congestion feedback reduces the variation in total car kilometres in the study 
area somewhat. 

At the level of selected links of the road network, the standard deviations of the link vehicle flows 
are between 4% and 9% for input uncertainty, and around 1% for model uncertainty in the 
LMS. For the NRM the variation in the link flows is smaller: between 1% and 4% for inputs and 
for combined uncertainty and up to 0.5% for model uncertainty. This could be a reflection of the 
finer network and zoning system in the NRM. For the number of hours travelled, the standard 
deviations are somewhat larger. Q-hours (number of hours lost due to congestion) can have a 
much larger uncertainty, especially when the absolute numbers of Q-hours are low.  
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Figure 14. 95% confidence interval for kilometres by mode in the LMS study area (the 
mean per mode is made equal to 100) 
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Figure 15. 95% confidence interval for kilometres by mode in the LMS study area (mean 
value=100): 1 = input error; 2 = model error; 3 = combined error. 
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Figure 16. 95% confidence interval for kilometres by mode in the NRM study area (the 
mean per mode is made equal to 100) 
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Figure 17. 95% confidence interval for kilometres by mode in the NRM study area (mean 
value=100): 1 = input error; 2 = model error; 3 = combined error. 
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The standard deviations for the differences in link flows for links competing with the new road 
between the situation with and without the road project are 8-12% for input uncertainty, 5-6% 
for model uncertainty and 7-13% for combined uncertainty in the LMS. For the NRM the 
variation in these differences in flows is larger: up to 56% (but the larger percentages refer to 
rather small absolute differences). For the LMS the Q-hour differences are very uncertain, and the 
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difference in hours travelled are in between. For the NRM, the variation in the differences in 
hours travelled and Q-hours does not exceed the variation in the link flow differences. 

Summarising the main outcomes we find substantial, but not very large, uncertainty margins for 
the total number of tours and kilometres (by mode) in the study area of the LMS and NRM and 
for the vehicle flows on selected links. The uncertainty margins for differences between a project 
and a reference situation are not much larger, unless these differences are of a small magnitude. In 
many cases, there is greater variation in Q-hours than in hours travelled. The contribution of 
input uncertainty (e.g. in future incomes, car ownership levels) to these errors is generally much 
larger than that of model uncertainty (e.g. coefficients estimated with some error margin). 

These outcomes for uncertainty in traffic forecasts include variation in most of the input variables 
for the LMS and NRM travel frequency and mode-destination choice models, as well as the error 
in these models. Sources of variation that were not included are: 

Uncertainty in the base matrices, that are combined with model outcomes for a base year 
and a future year to obtain forecasts for the future year7.  

Errors in the licence holding and car ownership models (note however that errors in the 

total number of cars were included in the input variation). 

Errors in the assignment and time-of-day procedures. These models are used in the LMS 
and NRM runs carried out (for different demand forecasts from the tour frequency and 
mode-destination models) but without varying their parameters.  

Uncertainty due to a different distribution over zones. In our simulations we applied the 
same proportional change for some variable in each zone. 

Uncertainty about the distribution of workers over part-time and full-time workers. 

Because in our method for quantifying uncertainty we relied on the llong-run 

equilibrium models LMS and NRM, we were not able to present the ttime path of the 
uncertainty estimates, but only final 2020 outcomes. Nevertheless, especially for PPP 
projects, the returns in the first years and the uncertainty attached to these are often very 
important. This would require ddynamic models. 

The distribution over zones can to some degree be incorporated in scenario studies, where 
different zonal distributions can be postulated. Scenario studies however do not include 
probabilities for the variables and future states that they describe and can therefore not be used to 
calculate uncertainty margins. Our study overlaps to some degree with a scenario approach in that 
both methods try to include correlations between attributes that characterise the future state. We 
went beyond scenarios by using a specific probabilistic approach so that we could produce 
quantitative uncertainty estimates. On the other hand a scenario approach could complement the 
approach used here, because it offers a way to include varying assumptions on the zonal 
distribution (e.g. of incomes). Conversely, the probabilistic simulation approach using 
information from past time series on input variables (including correlations) could also be used in 
the generation of scenarios, by selecting a limited number of settings for the input variables from 
the simulations (e.g. one in the middle, one where drivers of demand for travel take on low values 
and one where the drivers take high values). 

                                                      

7 The LMS base matrices were estimated on multiple data sources using formal maximum likelihood methods. This 
means that standard deviations for model uncertainty should be available and could be used in simulation methods to 
include uncertainty from the base matrices. 
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The method for quantifying uncertainty that was developed in this project can be used in the 
assessment of proposed transport projects where the LMS or NRM are used to provide the traffic 
demand changes. But since the method is very computer-intensive (requiring 100 model runs: 20 
for input error, 20 for model error and 10 for combined error, all in the reference, and the same 
for the project situation; a smaller number of runs would no longer be acceptable), this will only 
be feasible for the evaluation of major transport projects. For other projects, the quantitative 
outcomes for the applications presented in this report can provide guidance.  
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Appendix 1. Uncertainty in policy models 

This appendix summarizes and characterizes the various types of uncertainty that are encountered 
in policy modelling.  It is based primarily on a recent paper by Walker, et al. (2003), which 
distinguished three dimensions of uncertainty:  

 

1. the location of uncertainty – where the uncertainty manifests itself within the model 
complex;  

2. the level of uncertainty – where the uncertainty manifests itself along the spectrum 
between deterministic knowledge and total ignorance;  

3. the nature of uncertainty – whether the uncertainty is due to the imperfection of our 
knowledge or is due to the inherent variability of the phenomena being described.  

 

The types of uncertainty within each of the dimensions are described in detail below. 

The location of uncertainty (identified by the logic of the model formulation) 

One of the steps of the policy analysis process involves, for each alternative policy being 
considered, estimating the consequences that are likely to follow if that policy were to be 
implemented, where the consequences are measured in terms of the specified outcomes of 
interest. This step usually involves using a model or set of models representing the system and is 
usually performed for each scenario. Among the inputs to the model are the changes to the 
system represented by the policy variables and the scenario variables; among the outputs are the 
outcomes of interest.  The role of the system model in policy analysis can, therefore, be 
represented as shown in Fig.1. 
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Fig. 1 – The role of the system model in policy analysis

Walker, et al. (2003) have defined uncertainty as being any deviation from the unachievable ideal 

of completely deterministic knowledge of the relevant system. They discriminate among three 
dimensions of uncertainty: location, level, and nature. In terms of the simple depiction of Fig. 1, 
one can identify three primary locations of uncertainty related to the outcomes of interest 
produced by a system model (i.e. output uncertainty): 1) uncertainty about the model inputs (i.e. 

input uncertainty), 2) uncertainty about the model structure, the equations and the underlying 
assumptions (i.e. model uncertainty), and 3) uncertainty about parameter values (i.e. parameter 

uncertainty).8 These three locations of uncertainty are shown in Fig. 2 and are discussed in more 
detail below. 

 

 

Fig. 2 –Typology for the location of uncertainty 

 

Input uncertainty 

Input is associated primarily with data that describe the reference (base case) system and the 
external driving forces that have an influence on the system and its performance. The “input” 
location, therefore, includes two sub-categories:  

 

1. Uncertainty about the external driving forces that produce changes within the system 
(the relevant scenario variables and policy variables) and the magnitude of the forces (the 
values of the scenario and policy variables). The external forces driving system change 
(FDSCs) that are not under the control of the policymakers are of particular importance 

                                                      

8 In the main text, parameter uncertainty and model uncertainty were merged into one category, also called ‘model 
uncertainty’. 
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to policy analyses, especially if they affect the outcomes of interest. Not only is there 
great uncertainty in the FDSCs and their magnitudes, there is also great uncertainty in 
the system response to these forces. This is one of the factors that may lead to significant 
model structure uncertainty.  

 

2.  Uncertainty about the system data that ‘drive’ the model and typically quantify relevant 
features of the reference system and its behaviour  (e.g. land-use maps, data on 
infrastructure (roads, houses)).  Uncertainty about system data is generated by a lack of 
knowledge of the properties (including both the deterministic and the stochastic 
properties) of the underlying system and deficiencies in the description of the variability 
that can be an inherent feature of some of the phenomena under observation. 
Uncertainties due to variability are discussed in the ‘nature’ dimension below. 

 

Model uncertainty 

There are two major categories of uncertainty within this location of uncertainty: (1) model 
structure uncertainty, and (2) model technical uncertainty.  

 

Model structure uncertainty arises from a lack of sufficient understanding of the system (past, 
present, or future) that is the subject of the policy analysis, including the behaviour of the system 
and the interrelationships among its elements.  Uncertainty about the structure of the system that 
we are trying to model implies that any one of many model formulations might be a plausible 
representation of the system, or that none of the proposed system models is an adequate 
representation of the real system.  We may be uncertain about the current behaviour of a system, 
the future evolution of the system, or both.  Model structure uncertainty involves uncertainty 
associated with the relationships between inputs and variables, among variables, and between 
variables and output, and pertains to the system boundary, functional forms, definitions of 
variables and parameters, equations, assumptions and mathematical algorithms.  

 

Model technical uncertainty  is the uncertainty generated by  software or hardware errors, i.e. 
hidden flaws in the technical equipment. Software errors arise from bugs in software, design 
errors in algorithms and typing errors in model source code. Hardware errors arise from bugs, 
such as the bug in the early version of the Pentium processor, which gave rise to numerical error 
in a broad range of floating-point calculations performed on the processor (van der Sluijs, 1997). 

 

Parameter uncertainty 

Parameters are constants in the model, supposedly invariant within the chosen context and 
scenario. There are the following types of parameters: 

Exact parameters, which are universal constants, such as the mathematical 

constants π and e.  

Fixed parameters, which are parameters that are so well determined by previous 

investigations that they can be considered exact, such as the acceleration of 
gravity (g) at a particular location in earth. 
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A priori chosen parameters, which are parameters that may be difficult to identify 

by calibration and are chosen to be fixed to a certain value that is considered 
invariant. However, the values of such parameters are associated with uncertainty 
that must be estimated on the basis of a priori experience. 

Calibrated parameters, which are parameters that are essentially unknown from 

previous investigations or that cannot be transferred from previous investigations 
due to lack of similarity of circumstances. They must be determined by 
calibration, which is performed by comparison of model outcomes for historical 
data series regarding both input and outcome. The parameters are generally 
chosen to minimise the difference between model outcomes and measured data 
on the same outcomes.  

 

There is a relationship between model structure uncertainty and calibrated parameter uncertainty. 
A simple model with few parameters that does not simulate reality well may be calibrated with 
data obtained for both input and output under well-known conditions. In this case, model 
structure uncertainty will most likely dominate the result. In the case of a more complicated 
model with many parameters, the parameters may be manipulated to fit the calibration data 
beautifully, but the result may be dominated by parameter uncertainty. This would happen if the 
calibration data did not contain sufficient information to allow for the calibration of some 
parameters with an adequate degree of certainty. This could be revealed by attempting to validate 
the model using a different set of data. There is in principle an optimum combination of model 
complexity and number of parameters as a function of the data available for calibration and the 
information contained in the data set used for calibration. Increased model complexity with an 
increased number of parameters to be calibrated may in fact increase the uncertainty of the model 
outcomes for a given set of calibration data. This has been described in detail (see Harremoës and 
Madsen, 1999). The calibration data must contain variations of information fit to deal with all 
parameters chosen for calibration. Otherwise the parameter estimates become very uncertain and 
the model outcomes become uncertain accordingly.  Finally, even when the parameters are well 
calibrated, a residual uncertainty will often remain, and is usually treated as a parameter in itself.    

 

Calibrated parameter uncertainties result from an inability to assess exactly the parametric values 
from test or calibration data due to limited numbers of observations and the statistical 
imprecision attendant thereto.  These include data uncertainties deriving from measurement 
errors, inconsistency of data, data handling and transcription errors, and poor representativeness 
of sampling schemes due to time and space limitations. In the physical sciences, this type of 
uncertainty is often referred to as statistical uncertainty (or, sometimes, simply “uncertainty”). 

 

The most obvious example of statistical uncertainty is the measurement uncertainty associated with 
all data. Measurement uncertainty stems from the fact that measurements can practically never 
precisely represent the “true” value of that which is being measured.  Measurement uncertainty in 
data can be due to sampling error, or inaccuracy or imprecision in the measurements.  Sampling 

error is the error associated with the degree to which the sample is representative.  The location, 
the time and the circumstances at which the sample has been taken may not be completely 
representative of those of the “true” value. Inaccuracy is the deviation from the “true” value; i.e., it 
refers to how close a measured value is to the value considered “true”. Imprecision reflects 
variation of measurements around a mean value, which may or may not be the “true” value 
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because of sampling error or inaccuracy.  This is in fact a measure of the reproducibility of the 
result.  These terms belong to a well-established vocabulary that can be found in most textbooks 
on physical and chemical experimentation. A good primer on measurement uncertainty is 
(Kimothi, 2002). 

 

"Statistical uncertainty" may also relate to uncertainty in measuring the probabilities in a 
stochastic model (see section on variability below).  

 

Model outcome uncertainty  

This is the accumulated uncertainty caused by the uncertainties in all of the above locations that 
are propagated through the model and are reflected in the resulting estimates of the outcomes of 
interest. One of the best treatments of model outcome uncertainty is given in (Morgan and 
Henrion, 1990, Chapter 8: “The propagation and analysis of uncertainty”). Model outcome 
uncertainty is sometimes called prediction error, since it is the discrepancy between the true value 
of an outcome and the model’s predicted value. If the true values are known (which is rare, even 
for scientific models), a formal validation exercise can be carried out to compare the true and 
predicted values in order to establish the prediction error. However, practically all policy analysis 
models are used to extrapolate beyond known situations to estimate outcomes for situations that 
do not yet exist. For example, the model may be used to explore how a policy would perform in 
the future or in several different futures. In this case, in order for the model to be useful in 
practice, it is necessary to (1) build the credibility of the model with its users and with consumers 
of its results (see, for example, (Bankes, 1993)), and (2) describe the uncertainty in the model 
outcomes using a typology of uncertainties (e.g., that presented in (Walker, et al., 2003)) 

 

Figure 3 summarizes the information about the location of uncertainty in system modeling that 
was presented above. 

 

 

 

 

Fig. 3 – More detailed typology of location of uncertainty in modelling exercise 
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 Levels of uncertainty: A Progression from “Know” to “No-Know” 

Contrary to the common perception, an entire spectrum of different levels of knowledge exists, 
ranging from the unachievable ideal of complete deterministic understanding at one end of the 
scale to total ignorance at the other.  In many cases, decisions must be taken when there is not 
only a lack of certainty about the future situation or about the outcomes from policy changes, but 
also when some of the possible changes themselves remain unknown. Here, decisionmaking is 
faced with the continual prospect of surprise. It is in this grey area between the well known and 
what is not known that the degree of uncertainty and ignorance ought to affect the approach to 
decisionmaking. The ultimate goal of decisionmaking in the face of uncertainty should be to 
reduce the undesired impacts from surprises, rather than hoping or expecting to eliminate them 
(Dewar, 2002). Many different approaches are used in practice to cope with uncertainty. It is 
useful to try to match the approach to the level of uncertainty. For example, Schlesinger (1966) 
distinguishes between Captain Cook’s tour planning for circumnavigating the globe and Lewis 
and Clark’s tour planning for exploring the previously unexplored western United States. In 
Cook’s case, the future was sufficiently certain that one could chart a straight course years in 
advance.  By contrast, Lewis and Clark’s planning “acknowledges that many alternative course of 
action and forks in the road will appear, but their precise character and timing cannot be 
anticipated.” Thus, very uncertain situations call for robust plans (which will succeed in a variety 
of situations) (Lempert and Schlesinger, 2000) or adaptive plans (which can be easily modified to 
fit the situations encountered)  (Walker, Cave, and Rahman, 2001). For example, in the case of 

applying the precautionary principle, the level of uncertainty and ignorance should be accounted 
for by deciding on an appropriate level of proof as the basis for decisions to act or not act, if there 
is potential for large-scale and/or irreversible harm from an activity or a chemical (EEA, 2001).   

 

To distinguish between the various levels of uncertainty, Walker et al. (2003) employed the 
following terminology: determinism, statistical uncertainty, scenario uncertainty, recognised 
ignorance and total ignorance. This is illustrated in Figure 4.  

 

Fig. 4 – The progressive transition between determinism and total ignorance 

 

Determinism is the ideal situation in which we know everything precisely. It is not attainable, but 
acts as a limiting characteristic at one end of the spectrum. 

 

Statistical uncertainty is any uncertainty that can be described adequately in statistical terms. 
Statistical uncertainty can apply to any location in the model, even to model structure 
uncertainties, as long as the deviation from the true value can be characterised statistically.  

 

Statistical uncertainty is what is usually referred to as “uncertainty” in the natural sciences. An 

Scenario UncertaintyStatistical uncertainty Recognised Ignorance Total Ignorance
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exclusive focus on statistical uncertainty, however, implicitly assumes that the functional 
relationships in the given model are reasonably good descriptions of the phenomena being 
simulated, and the data used to calibrate the model are representative of circumstances to which 
the model will be applied.  If this is not the case, deeper forms of uncertainty supersede statistical 
uncertainty, and statistical uncertainty should not be accorded as much attention as other levels 
of uncertainty in the uncertainty analysis. 

 

The most obvious example of statistical uncertainty is the measurement uncertainty associated with 
all data. Measurement uncertainty stems from the fact that measurements can practically never 
precisely represent the “true” value of that which is being measured.  Measurement uncertainty in 
data can be due to sampling error, or inaccuracy or imprecision in the measurements.   

 

"Statistical uncertainty" may also relate to uncertainty in measuring the probabilities in a 
stochastic model (see section on variability below).  

 

Scenario uncertainty.  The use of scenarios is one approach used in policy analysis to deal with 
uncertainty related to the external environment of a system (usually its future environment) and 
its effects on the system (see, for example, RAND Europe, 1997 and van der Heijden, 1993). A 
scenario is a plausible description of how the system and/or its driving forces may develop in the 
future. To be plausible, it should be based on a coherent and internally consistent set of 
assumptions about key relationships and driving forces (e.g., technology changes, prices). 
Scenarios do not forecast what will happen in the future; rather they indicate what might happen 
(i.e., they are plausible futures).  Because the use of scenarios implies making assumptions that in 
most cases are not verifiable, the use of scenarios is associated with uncertainty at a level beyond 
statistical uncertainty.  

 

Contrary to statistical uncertainty, where the functional relationships are well described and a 
statistical expression of the uncertainty present can be formulated, scenario uncertainty implies 
that there is a range of possible outcomes, but the mechanisms leading to these outcomes are not 
well understood and it is, therefore, not possible to formulate the probability of any one 
particular outcome occurring.  There is a demarcation in the transition from statistical 
uncertainty to scenario uncertainty at the point where a change occurs from a consistent 

continuum of outcomes expressed stochastically to a range of discrete possibilities, where choices 
must be made with respect to the options to analyse without allocation of likelihood.      

 

Scenario uncertainty can manifest itself in various ways – for example, (a) as a range in the 
outcomes of an analysis due to different underlying assumptions, (b) as uncertainty about which 
changes and developments (e.g. in driving forces or in system characteristics) are relevant for the 
outcomes of interest, or (c) as uncertainty about the levels of these relevant changes. 

 

Recognised ignorance is fundamental uncertainty about the mechanisms and functional 
relationships being studied.  We know neither the functional relationships nor the statistical 
properties and the scientific basis for developing scenarios is weak.  

Uncertainty due to ignorance can further be divided into reducible ignorance and irreducible 
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ignorance.  Reducible ignorance may be resolved by conducting further research, which implies 
that it might be possible to somehow achieve a better understanding.  Irreducible ignorance 
applies when neither research nor development can provide sufficient knowledge about the 
essential relationships. Irreducible ignorance is also called indeterminacy. 

Total ignorance is the other extreme from determinism on the scale of uncertainty,, which 
implies a deep level of uncertainty, to the extent that we do not even know that we do not know. 
In Figure 4, the continuing arrow at this end of the scale is used to indicate that we have no way 
of knowing the full extent of our ignorance. 

 The nature of uncertainty: Inherent variability or lack of knowledge? 

An important feature of the nature of uncertainty is the distinction between two extremes:  

Epistemic uncertainty: The uncertainty due to the imperfection of our knowledge, 
which may be reduced by more research and empirical efforts.  

Variability uncertainty: The uncertainty due to inherent variability, which is especially 
applicable in human and natural systems and concerning social, economic, and 
technological developments.  

 

Assessing the nature of uncertainty may help to understand how specific uncertainties can be 
addressed.  In the case of epistemic uncertainty, additional research may improve the quality of 
our knowledge and thereby improve the quality of the output.  However, in the case of variability 
uncertainty, additional research may not yield an improvement in the quality of the output.  

Although the terminology used may differ, the above distinction in the nature of uncertainty is 
well recognised in the literature about uncertainty.  For example, the terms epistemic or 
epistemological uncertainty (from the Greek word for “knowledge”) have been used to refer to 
imperfection of knowledge, while the term aleatory uncertainty (from the Latin, meaning 
“gambler” or “die caster”), derived from physical science, has been used to describe uncertainty 
due to variability. An overview of terms used to characterise the nature of uncertainty is given in 
(Baecher and Christian, 2001). They stipulate that it is not always easy to clearly distinguish 
between these categories of uncertainty; it often remains a matter of convenience and judgement 
linked up to features of the problem under study as well as to the current state of knowledge or 
ignorance. 

Epistemic Uncertainty. This form of uncertainty is related to many aspects of modelling and 
policy analysis – e.g., limited and inaccurate data, measurement error, incomplete knowledge, 
limited understanding, imperfect models, subjective judgement, ambiguities, etc. With their 
NUSAP method, Funtowicz and Ravetz (1990) have introduced the concept of pedigree to 
systematically assess the imperfection in the knowledge base, thereby providing an indication of 
the degree to which uncertainty may be reducible. Pedigree conveys an evaluative account of the 
production process of information, and indicates different aspects of the underpinning of the 
numbers and scientific status of the knowledge used. Assessment of pedigree involves qualitative 
expert judgement. It should be noted that pedigree and degree of reducibility of uncertainty do 
not necessarily correspond to each other in a one-to-one fashion: increasing the pedigree by more 
research may either reduce or increase uncertainty. The latter can be the case if, for instance, 
unforeseen complexities are revealed by the research. Examples of pedigree analysis can be found 
in (Van der Sluijs et al., 2002) and on the website www.nusap.net.  
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Related to the NUSAP method are methods being developed to rate the strength of scientific 
evidence that are grouped under the heading of “evidence-based practice” (see, for example, 
(Research Triangle Institute, 2002)). These methods, which are primarily used in the health care 
field, are designed to protect against the use of study results in individual and policy-level health 
care decisions that contain selection, measurement, and confounding biases. 

Variability Uncertainty.  Many empirical quantities (measurable properties of the real-world 
systems being modelled) vary over space or time in a manner that is beyond control, simply due 
to the nature of the phenomena involved. Variability uncertainty is defined here as the inherent 
uncertainty or randomness induced by variation associated with external input data, input 
functions, parameters, and certain model structures.  

 

 

Fig. 5 – Detailed typology of sources of variability uncertainty 

Different sources of variability uncertainty can be distinguished. As shown in Fig. 5,9 van Asselt 
divides these into three categories:

Inherent randomness of nature: the chaotic and unpredictable nature of natural processes 
-- see also (Morgan and Henrion, 1990); 

Human behaviour (behavioural variability): ‘non-rational’ behaviour, discrepancies 

between what people say and what they actually do (cognitive dissonance), or deviations 
of ‘standard’ behavioural patterns (micro-level behaviour); 

Social, economic, and cultural dynamics (societal variability): the chaotic and 
unpredictable nature of societal processes (macro-level behaviour).  The need to 
consider societal and institutional processes as a major contributor to uncertainty due to 
variability can be inferred from various papers of Funtowicz, Ravetz, and de Marchi 
(see, for example (de Marchi, et al. 1993; de Marchi 1995)). 

 

Another source of variability uncertainty is: 

Technological surprise: New developments or breakthroughs in technology or unexpected 
consequences (‘side-effects’) of technologies. 

 

These sources may contribute to variability uncertainty, but it may be difficult to identify 
precisely what is reducible through investigations and research, and what is irreducible because it 

                                                      

9  See (Van Asselt, 2000) or (Van Asselt and Rotmans, 2002). 
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is an inherent property of the phenomena of concern. However, it is important to make an 
assessment, because the information may be essential to the political process. 

Models may use frequency distributions to represent variability uncertainty in case the property 
falls into the level of statistical uncertainty. From (Morgan and Henrion, 1990): “It is possible to 
have a high degree of certainty about a frequency distribution. For example, it is not hard to 
imagine obtaining the statistics on the weights of all newborns in Washington, D.C. during 2000 
and compiling a precise frequency distribution for the weight of newborn infants in Washington, 
D.C. during 2000. On the other hand, one may be quite uncertain about a frequency 
distribution, for example, the frequency distribution for newborn infants in Washington, D.C. 
during 2020". Uncertainty about a frequency distribution may be represented by probability 
distributions about its various parameters, such as its mean, standard deviation, or median.  

A common mistake is failure to distinguish between the uncertainty inherent in sampling from a 
known frequency distribution (variability uncertainty), and the uncertainty that arises from 
incomplete scientific or technical knowledge (epistemic uncertainty). For example, in throwing a 
fair coin, one knows that the outcome will be heads ½ the time, but one cannot predict what 
specific value the next throw will have (variability uncertainty). In case that the coin is not fair, 
there will also be epistemic uncertainty, concerning the frequency of the heads. 

Similarly, input functions can exhibit variability that can be described as a mathematical 
relationship with an associated uncertainty. Such functions may be considered part of the model 
structure or separate as an external input function. An example is seasonal variation, which can be 
described functionally (van Asselt, 2000) or the variation in time and space of extreme rainfall, 
giving rise to flooding (Mikkelsen et al., 1999). The location of this form of variability is in either 
the model structure or in input data. Input data can exhibit variability with an associated 
uncertainty. As with all locations of uncertainty, the uncertainty associated with variability of 
input data or model structure can fall into all four levels of uncertainty: statistical uncertainty, 
scenario uncertainty, recognised ignorance, or total ignorance. If the model is used for 
extrapolation (e.g. projection into the future), the uncertainty associated with variability is also 
due to the application of the model to circumstances different from those associated with the 
experience upon which the model and data were developed. 

 

Trading off Aleatory and Epistemic Uncertainty (from (Baecher and Christian, 2000)) 

In some cases, dividing uncertainty between aleatory and epistemic components is an active 

choice by the modeller and not an innate property of nature. A simple example from water 
management demonstrates this balancing.  Consider the variation of soil properties (e.g., soil 
strength) along the length of a dike. Say that the strengths increase gradually as a function of 
location. In making a limiting equilibrium calculation of dike stability and the risk of dike failure, 
one needs to assess an average strength and then add to it some measure of variation about the 
average. In the simplest case, one could use a fixed spatial average of soil strength (trend order = 
0) and add to it a relatively large variance about the average (relatively large epistemic 
uncertainty).  Alternately, one could fit a linear spatial trend (trend order = 1) to soil strength and 
add to it a reduced variance about the trend.  Indeed, as the order of the trend approaches the 
number of data points, the added variance about the trend would tend to zero (relatively large 
aleatory uncertainty).  On the other hand, the statistical confidence with which one can estimate 
the trend parameters becomes ever smaller – that is, the statistical uncertainty in the trend 
parameters becomes every larger – as the order of the trend curve increases.  As the order of the 
curve approaches the number of data points, the number of remaining degrees of freedom 
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approaches zero, and the parameter uncertainty increases without limit.  (Conceptually, there 
may be some optimum point in the middle.)   

Trading off Aleatory and Epistemic Uncertainty (from (National Research Council, 2000)) 

Although the distinction between natural variability and knowledge uncertainty is both 
convenient and important, it is at the same time hypothetical.  The division of uncertainty into a 
component related to natural variability and a component related to knowledge uncertainty is 
attributable to the model developed by the analyst. Consider flood frequency.  In the future – at 
least in principle – the sophistication of atmospheric models might improve sufficiently such that 
flood time series could be modelled and forecast with great accuracy.  All the uncertainty 
currently ascribed to natural variation might become knowledge uncertainty in the modelling, 
and thus reflect incomplete knowledge rather than randomness.  Modelling assumptions may 
cause “natural randomness” to become knowledge uncertainties, and vice versa.  

Analysts should be clear about which variables they treat as natural variability, which they treat as 
knowledge uncertainty, and why and how they make this distinction. Differences in the effects of 
these sources of uncertainty on risk calculations can be large.  For example, variations in stream 
flow, treated as natural variability, average out in a calculation from one year to the next (high 
flows in one year balance against low flows in another).  In contrast, uncertainty in the mean 
annual flow parameter, treated as knowledge uncertainty, introduces a systematic effect into a 
calculation.  If the mean flow is overestimated in one year, it is overestimated in every year of the 
calculation. 
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Appendix 2. Summaries of literature on uncertainty 
in traffic forecasts 

Measuring the impact of uncertainty in travel demand modelling with a 
demographic approach, J. Armoogum, paper presented at the European 
Transport Conference, 2003. 

 

Objective of the study described in this paper 

The objective of this paper is to discuss three sources of uncertainty, when predicting travel 
demand, in an age-cohort model: 

1. calibration errors 

2. the impact of behaviour of the future generations 

3. the impact of errors for demographic projections 

Here, the age-cohort approach can be treated as a model of analysis of variance, where a reference 
generation is set and other cohorts are measured against the difference from the reference cohort. 
The model explains the number of trips and the number of kilometres travelled from individual 
characteristics like age, gender, motorization and residential zone. The model was calibrated based 
on 4 years of census data. 

Method used to calculate uncertainty of model forecasts 

Calibration errors are measured using the Jackknife technique.  The Jackknife method corrects 
for all kinds of specification error (correlation between observations of the same respondent, but 
also for instance hetero-skedasticity). It belongs to the group of re-sampling methods, which also 
includes the Bootstrap method. The basic idea of the re-sampling methods is that of taking 
samples within the sample of observations available, and calculate statistics for each re-sample, 
and from those also average statistics for the original sample. The Jackknife method re-samples 
from the original sample by omitting one or a small number of observations each time. In Cirillo 
et al (1996), the Jackknife method is recommended as a solution to the repeated measurements 
problem. 

To measure the uncertainty of the impact of behaviour of future generations and the impact of 
errors for demographic projections three scenario’s were built and simulated in the model. 
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Type of uncertainty studied 

The type of uncertainty in this study deals with uncertainty within the model (calibration errors), 
as well as uncertainty within the input variables (behavioural uncertainty and demographic 
uncertainty). 

Variables for which uncertainty is studied 

This study focuses on the prediction of the number of trips and the number of kilometres 
travelled. 

How is uncertainty expressed? 

The uncertainty of the calibration errors is expressed by the variance of the variables, i.e. the 
number of trips and the number of kilometres travelled. The deviation from a reference scenario 
(in percentages) is used to express the uncertainty of the input variables. 

What is the order of magnitude of the uncertainty around the forecast? 

The impacts of uncertainty of calibration of the model were tested using the Jackknife technique. 
Here, four subdatasets are created by eliminating 1 year of census data each time. The variance 
and confidence intervals can be calculated of the projections of the four estimations. For the year 
2000 the variance of number of trips is 0.37 (average 3.48 trips) and for 2030 0.92 (average 3.45 
trips). The variance rises as the projection horizon augments. The same conclusion can be drawn 
for the number of kilometres travelled; the variance is 0.5 (average 16.7 km) for 2000 and 1.1 
(average 18.8 km) for 2030. Because the model predicts the number of kilometres travelled 

better, the confidence interval is narrower. 

The change in behaviour of future generations is measured by running the model for three 
scenarios: behaviour is stable (no change between new and old generations), behaviour is based 
upon the last three generations, and behaviour is based on the last two generations. The trip 
frequency is 3.73 when it is based on the last three generations and 3.93 based on the last two 
generations compared to stable behaviour in 2030 For distance travelled this is 19.8 km resp. 
19.0 km. Again, distance travelled performs better than trips frequency. The impact due to the 
change of behaviour remains within the confidence intervals estimated earlier. 

The third analysis focuses on the impact of errors in demographic projections. Four scenarios 
with different migration quotients (probability to move between type of residence: city, inner 
suburbs, outer suburbs) were set up. For 2030, the number of trips were underestimated by 3% 
for a scenario where the migration quotient was lowered by 0.001 for each age group, and 
overestimated by 3% when the migration quotient was increased 0.001 or set to 0. Practically the 
same results were found for travelled kilometres, -4% respectively 3%. 

Confidence region for Several Parameters Simultaneously, M.E. Ben-Akiva & 
S.R. Lerman, Discrete Choice Analysis, Chapter 6, page 162-165, The MIT Press, 
1985. 

 

Objective of the study described in this paper 

This is not a paper, but a paragraph in Chapter 6 from the book ‘Discrete Choice Analysis’. The 
aim of this paragraph is a theoretical discussion how to setup a confidence region for more than 
one variable. 
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In a discrete choice (transport) model coefficients can be evaluated using confidence intervals. 
These intervals are normally set up for individual parameters. When coefficients are estimated 
simultaneously, it would be more useful to study the confidence region that is spanned by the 
number of estimated coefficients, provided that the variables are not highly correlated. 

Method used to calculate uncertainty of model forecasts 

An asymptotic confidence region (interval) for one coefficient, where 1- ? is the confidence 
interval, can be defined as: 

/ 2 / 2

1
Pr 1t t

Var
 

For two or more parameters a similar formula can be set up (under the same conditions) where  ? 
now represents a vector of coefficients and  ? is the corresponding covariance matrix: 

/ 2 / 2

1
Pr 1t t  

For two coefficients the confidence region will have the form of an ellipse. For k-order confidence 
regions it will be a k-dimensional ellipse. 

Type of uncertainty studied 

The type of uncertainty studied relates to uncertainty within the model, especially the uncertainty 
of several parameters simultaneously. 

Variables for which uncertainty is studied 

In the chapter of Ben-Akiva and Lerman an example is given within a transport context for 
transport costs and transport time. The confidence region (ellipse) lies almost fully in the negative 
quadrant, meaning that both the transport cost coefficient and the transport time coefficient are, 
according to expectation, negative. 

How is uncertainty expressed? 

The uncertainty is expressed in confidence regions. 

 

What is the order of magnitude of the uncertainty around the forecast? 

No forecasts were carried out in this paragraph. 
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Quantifying uncertainties in the SAMPERS long distance forecasting model 
system, M. Beser Hugosson, paper presented at the World Conference on 
Transport Research, 2004. 

 

Objective of the study described in this paper 

The objective of the paper is to quantify the size of the standard errors in the forecasts (of the 
Swedish long distance model within the national passenger transport model SAMPERS), accruing 
from uncertainties in the sampling process. 

Method used to calculate uncertainty of model forecasts 

To calculate the error that is caused by the fact that the model parameters are estimated on a 

sample of the population only, the bootstrap method is used. This means that a large number 
(more than 800) of bootstrap samples is drawn from the original estimation data (with 
replacement). For every bootstrap sample, the mode-destination model is re-estimated using 
Alogit. This gives a new vector of parameter estimates for each bootstrap sample. Then, for this 
bootstrap sample, the demand by mode is computed at these parameters and assigned to the 
networks using EMME/2. Both for the demand by mode and for specific link flows, 95% 
confidence intervals around the mean are then calculated on the basis of the outcomes for all the 
bootstrap samples together. The frequency models are not included in this exercise, and therefore 
the uncertainty values obtained might be somewhat underestimated. On the other hand, a 
congestion feedback from assignment to demand is not used, which, when used, could have 
dampened the fluctuations. 

Type of uncertainty studied 

The author distinguishes between uncertainty in the forecasts due to scenario variables (income, 
demography, etc) and uncertainty due to the estimated model. The latter consists of a component 
related to model specification and uncertainty due to the fact that the model has been estimated 
on a sample. In this paper, only uncertainty due to the estimation of parameters on a sample of 
the population in studied.  

Variables for which uncertainty is studied 

The uncertainty is studied for total demand by mode, car demand on specific OD relations, 
specific link flows, specific train lines and values of time. 

How is uncertainty expressed? 

Three different ways to calculate the 95% confidence interval around the mean are used:  

Based on the standard error found and assuming a normal distribution (then the 95% 

confidence interval is x 1.96 , with x as the mean and  as the standard deviation from the 
bootstrapping). 

The pivot method using the empirical distribution. 

Directly on percentiles of the empirical distribution. 

The distribution of the forecasts turned out to be quite close to the normal, so the first (simple) 
approach provides a good approximation. 
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What is the order of magnitude of the uncertainty around the forecast? 

On the basis of the uncertainty due to using parameter estimates, the following confidence 

intervals are found.The 95% confidence interval for total demand by mode varies between 8.5% 

(car) to 13.3% (one of the train modes). For OD demand by car it varies between 6.5% and 

14% and for the link flows between 8.4% and 10.8%.  
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Risk analysis for privately funded transport schemes, A.M. Boyce, paper 
presented at the European Transport Conference, 1999. 

 

Objective of the study described in this paper 

The objective of the paper is to explore the causes of uncertainty in traffic forecasts and their 
significance. 

Method used to calculate uncertainty of model forecasts 

Uncertainty in this paper is measured based on the risk analysis approach, which combines data 
and forecasting uncertainties and produces a central estimate and an overall range of uncertainty.  

Sensitivity functions for key parameters are derived based on a standard aggregate traffic model. 
The key parameters are then varied according to their corresponding distribution. Based on the 
sensitivity functions and distribution functions, simulation results can be obtained from a 
spreadsheet varying (a range of) input parameters. 

Type of uncertainty studied 

In this risk analysis uncertainty due to the input of the model (and the specification of the model 
itself) is studied. The following input variables are determined as key parameters when 
 modelling traffic: 

Base year factors Forecast year factors 

Accuracy of Base Flows GDP Growth 

Model Specification Car Ownership/GDP Elasticity 

Values of Time Value of Time growth 

Model Estimates of Journey Time Distribution of Growth 

Matrix Estimation Techniques Generated Traffic 

Motorway Bonus Modelling of Increased Congestion 

Route Choice Methodology Strategic Effects 

 

For each key parameter a distribution is chosen. These distributions vary around the expected 
value of each parameter. The issue of correlation between the key parameters is not studied.  

Variables for which uncertainty is studied 

The uncertainty is studied for the change in vehicle-kilometres modelled as a result of a privately-
financed project. 

How is uncertainty expressed? 

From the distribution of each input variable values are drawn. Within this study a Monte Carlo 
simulation process (10,000 iterations) is used to calculate the central estimate (or forecast) of the 
number of vehicle kilometres modelled .  The statistics that can be generated are minimum and 
maximum values, the mean, standard errors and percentiles. 
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What is the order of magnitude of the uncertainty around the forecast? 

The following table shows the difference between the central forecast (from the Monte Carlo 
simulation) and the expected forecast (i.e. using the mean of each input variable). When the 
model is non-linear, the expected forecast will theoretically never give a good forecast. 

Year Central forecast (expected 
model forecast 1996=100) 

Expected model 
forecast (1996=100) 

Central forecast/ expected 
model forecast 

1996 99.152 100 99.15 

2000 121.88 120.64 101.03 

2010 193.04 186.07 103.75 

2020 257.81 251.62 102.46 

 

 

From: Boyce (1999) 

 



Uncertainty in traffic forecasts                                                                                               RAND Europe 

 78

Reducing or managing the forecasting risk in privately-financed projects, A.M. 
Boyce and M.J. Bright, paper presented at the European Transport Conference, 
2003 

 

Objective of the study described in this paper 

The objective of this paper is to convince investors and lenders that better tools should be used in 
order to reduce or manage the risk in privately-financed projects. The probability of a certain 
revenue should be estimated with more care. 

Method used to calculate uncertainty of model forecasts 

The uncertainty of the model forecasts is calculated by a probability distribution around the 
median traffic and revenue using formal Risk Analysis, (see Risk Analysis for Privately Funded 
Transport Schemes). Correlations (existing or expected) between input factors (e.g. higher 
incomes usually coincide with higher values of time) are taken into account.  

An alternative method to Risk Analysis is scenario testing, where different scenarios are set up and 
fed into the model. The authors state that in scenario-analysis there are no probabilities attached 
to the scenarios and there can be many implicit correlations between the variables. 

Type of uncertainty studied 

The uncertainty of each individual parameter is studied and its effect on the potential variability 
in the forecasts. A distinction is made between factors that influence the base year and factors 
influencing the forecast year, see the table below. These parameters deal with uncertainty due to 
the model as well as input for the model. 

Base year factors Forecast year factors 

Quality of the base data GDP 

Matrix development GDP/car ownership elasticities 

Model specification growth in value of time 

Estimates of journey time savings effect of other road schemes 

Value of time estimates induced traffic 

Assignment/route choice techniques  

 

Variables for which uncertainty is studied 

The uncertainty is studied for revenue of a privately-financed project, where revenue is closely 
related to the number of vehicle-kilometres  modeled  as a result of the project. 

 

How is uncertainty expressed? 

Uncertainty is given in percentiles (50th, 5th and 1st percentile). Private funders are especially 
interested in not losing money with 95-99% certainty. 
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What is the order of magnitude of the uncertainty around the forecast? 

Four scenario’s were tested varying GDP (-0.5% GDP, -1.0% GDP) and traffic capture (-10% 
and –20% capture in combination with –0.5% GDP). Each scenario was evaluated against the 
base scenario. Only the worst scenario (-20% capture and –1% GDP) fell below the 1st percentile, 
i.e. indicating a high risk investment. 
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How good is an estimated logit model? Estimation accuracy analysed by Monte 
Carlo simulations, Karin Brundell-Freij, paper presented at the European 
Transport Conference, 1997. 

 

Objective of the study described in this paper 

The objective of the study is to discuss the kind of errors related to model imperfections and 
sample size. The impact of the errors on individual assessment as well as prediction of policy 
effects are studied here as well. 

Method used to calculate uncertainty of model forecasts 

First, a base mode choice model was estimated on an existing dataset (n=850) of commuters in 

Sweden. To calculate the uncertainty a Monte Carlo simulation was set up (500 simulations). For 
each simulation a sub-sample from the observed dataset was drawn (N=850, 210, 85 and 40) and 
a ‘synthetic’ choice was derived, where choices were made based upon deterministic utilities 
varied by a random component following a Gumbel distribution. A model was then estimated 
using this ‘synthetic’ sample. 

Type of uncertainty studied 

The type of uncertainty modelled is uncertainty due to the model: specification error and 
estimation accuracy and over-specification. 

Variables for which uncertainty is studied 

The model that is studied is a modal split model (car, carpool, train and bus), where cost, time 
and alternative specific constants are the explanatory variables. 

How is uncertainty expressed? 

Estimation errors are presented in a standardized way: 

*

*

( )

var( )

i i

i

 

where i* is the i’th estimated parameter from the Monte Carlo simulations, and i is the base 
model parameter (on the observed data) that had been used to generate the choice. A confidence 
interval can be set up for this measure. Any coefficient that falls outside this interval will then be 
biased. 

To evaluate estimation accuracy the variance in the observed simulations is compared to the 
estimated asymptotic variance (that is commonly used in logit models, but has desirable 
properties only in large samples) at each sample size. For large enough samples the asymptotic 
variance should be close to the observed. 

Over-specification (defined here as including a variable that does not in reality influence choice) 
can be measured by the quasi-T-test. Normally, a variable will be included if the ordinary T-test 
is met, where the test statistic is T-distributed at infinity. For smaller sample size the T-test 
should be adjusted: the quasi-T-test. 
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What is the order of magnitude of the uncertainty around the forecast? 

For N=850 five of eleven parameters fall outside the confidence interval set up earlier. For smaller 
samples all parameters are biased.  

The difference between observed variance and estimated asymptotic variance is close for N=850, 
however there is systematic underestimation of the asymptotic variance. For N=85 estimated 
variance is 10-15% below the observed variance. 

In this paper the effective critical region (quasi-T-test) for the cost coefficient has been calculated. 
The ‘standard’ t-test (at p=0.05) has limits of –1.96 to 1.96. The critical region for this parameter 
is –1.72 and 1.58 for N=210 and –1.69 and 1.42 for N=42, indicating that the model might be 
overspecified if the standard t-test is used. 
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Sampling, specification and estimation as sources of inaccuracy in complex 
transport models – some examples analysed by Monte Carlo simulations and 
Bootstrap, Karin Brundell-Freij, paper presented at European Transport 
Conference, 2000. 

 

Objective of the study described in this paper 

The objective of the study is to discuss inaccuracy and bias when developing a transport model 
caused by model formulation, sampling and the estimation method, thus encompassing the 
reliability that is commonly studied  by looking at the standard errors of the parameter estimates. 

‘Inaccuracy’ and ‘uncertainty’ are similar expressions within model estimation, i.e. how reliable 
are the estimates. 

Method used to calculate uncertainty of model forecasts 

Two methods are used to calculate uncertainty: 

Monte Carlo simulation: random numbers are generated following a predefined 
distribution and the function is evaluated for those random numbers. Repeating this 
process (a large number of times) will lead to a discrete distribution of observed function 
values. In this application of Monte Carlo simulation, the synthetic choice observations 
are generated according to the deterministic utilities defined by the base model (that was 
estimated on observed data for 845 commuters in Sweden), with Gumbel distributed 
error terms added. The model is then estimated based on these synthetic observations. 

Bootstrap: Repeated subsamples are drawn from the original sample (with replacement: 
each observation can occur more than once in a subsample). The model is then estimated 
for each subsample. 

Type of uncertainty studied 

Three types of uncertainty (inaccuracy) are studied in this paper: 

model formulation as a source of uncertainty 

sampling as a source of uncertainty 

estimation as a source of uncertainty 

The input data for the analyses in this paper remain constant. 

Variables for which uncertainty is studied 

In this study, an indirect parameter, value-of-time, measures the quality of the model 
(estimations). Value-of-time is often used in behaviourial interpretation and applications, more 
than the direct parameters are. 

How is uncertainty expressed? 

The author distinguishes between 32 different model specifications, with different sets of mode-
specific and personal variables included in the model. From this, a base model was selected based 
on predefined criteria (as commonly used: correct signs, proper t-values, etc,) using the full set of 
observed data. Both Monte Carlo and Bootstrap methods create new (sub-)samples and the 
procedure for the selection of the preferred model specification was rerun each time (100 
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repetitions). Uncertainty is expressed in the VOT and its standard error based on the hundred 
iterations. 

After each model selection, the Monte Carlo and Bootstrap methods were re-run with the new 
model formulation. Uncertainty can then be expressed in different VOT estimates and their 
corresponding standard errors.  

This procedure gives the impacts of uncertainty through the selection of the preferred model 
specification and within the selected model. 

What is the order of magnitude of the uncertainty around the forecast? 

As a first indication of uncertainty due to model formulation, the Monte Carlo simulations only 
selected the originally (on the observed full data) preferred base model specification again 42 out 
of the 100 runs; for the Bootstrap simulations this was 62 out of the 100. 

The following table displays the VOT for in-vehicle and waiting time for males in this study, for 
the base model, the Monte Carlo simulations, the Monte Carlo simulation for the selected 
models, the Bootstrap simulations and the Bootstrap simulations for the selected models10. 

 Base model Monte Carlo 
(selection) 

Monte Carlo 
(selected) 

Bootstrap 
(selection) 

Bootstrap 
(selected) 

VOT in-
vehicle 

78.96 79.86 123.17 80.62 86.82 

s.e. 15.47 1.98 23.06 2.32 2.79 

VOT wait 51.71 40.41 40.42 25.69 44.63 

s.e. 16.92 1.03 1.80 1.39 1.63 

The results obtained from the table indicate a bias-by-selection. When the model specification is 
changed, the estimates of VOT in-vehicle and VOT –waiting are larger. The analyses in this 
study showed that substantial bias and increased variability may be introduced by a restrictive 
search for model specification. 

                                                      

10 ‘Selection’ means: model specification similar to the base model specification (estimation on the full observed 
dataset). ‘Selected’ means: model specification might differ from the base model, as more or less variables become 
significant. 
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Doorstroomroute A4, Ecorys, 2003. 

 

Objective of the study described in this paper 

The objective of this report is to present the  cost-benefit assessment results of a specific road 
infrastructure project in The Netherlands (concerning the A4 Motorway and tolling). We 
included this report in this literature review of uncertainty in traffic forecasts, because it is a good 
example of the state of practice (or even ‘best practice’) of transport project evaluation in The 
Netherlands and the way uncertainty in forecasts is handled  for major projects. 

Method used to calculate uncertainty of model forecasts 

Two different assumptions were used in the cost-benefit analysis for the annual traffic growth rate 
after 2010: low (1%) and high (2%). These are the two base-cases. Also  different calculations 
have been  modeled out (called ‘sensitivity analyses’ in the Ecorys report), for each of the two 
base-cases: 

different toll rates 

different road maintenance costs 

different interest rates for discounting the future 

different length of the new toll road.  

The toll rates and the length of the toll road affect the traffic intensities and could be called 
‘policy variants’, as have been simulated in many other studies. This is another matter as trying to 
calculate the margin around the predicted traffic intensities that is due to uncertain exogenous 
inputs and model errors. Such calculations are missing in this report. What is included in the 
Ecorys report is the use of a value of time distribution instead of a fixed value by travel purpose, 
but this too cannot be regarded as calculating an uncertainty margin around the traffic forecasts. 
For the future values of time, three different assumptions (unchanged, +1% per year, +2% per 
year) are tested. The report thus contains a substantial number of variants for exogenous variables 
and behavioural parameters instead of a single ‘central’ forecast, and as such can be regarded as an 
example of best practice. Nevertheless this is a pretty standard form of sensitivity analysis (per 
single variable), not a systematic treatment of uncertainty.     

Type of uncertainty studied 

In this report sensitivity analyses are presented that focus on the input variables (income, policy 
variables such as the toll levels) and include only the value of time as behavioural model 
parameter. 

Variables for which uncertainty is studied 

The output variable that is studied are the (social) revenues from the project and the benefit-costs 
ratio. 

How is uncertainty expressed? 

Sensitivity is expressed in terms of different revenue amounts (without assigning a probability to 
the likelihood of these outcomes). 
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What is the order of magnitude of the uncertainty around the forecast? 

The total discounted lifetime revenues with low traffic growth after 2010 are 1.2 billion Euros 
and with high traffic growth after 2010 3.9 billion Euros. 
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Sensitivity analysis methods for road traffic emission models, Olle Eriksson, 
paper, 2003.  

 

This paper summarizes the findings of three related papers from the same author: 

A new program for fast emission calculations based on the COPERT III model (2003); 

Basic sensitivity analysis methods for road traffic emission models, applied on the 

COPERT III model (2003); 

Global sensitivity analysis methods using response surface descriptions for road traffic 
emission models, applied on the COPERT III model (2003). 

In this summary, the findings of the overall paper will be extended with detailed descriptions and 
results of the three related papers, especially the second and third. 

Objective of the study described in this paper 

The objective of this paper is to discuss derivative–like sensitivity methods for emissions from 
road traffic. 

Method used to calculate uncertainty of model forecasts 

The first method used analyses the sensitivity of the margin means (average emission values) to 
one explanatory (input) variable at a time (OAT: one at a time). Different values are selected for 
all input variables called a grid. When more values than normal are selected, this is called a fine 
grid. For all possible combinations of input variables, emissions are calculated. To analyse the 
sensitivity of one variable, emissions are averaged over all cells (margin mean) except the variable 
studied, and the mean values are regressed onto the selected levels of the studied variable using 
the following formula: 

2
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where Y is the average emission level, and X is the corresponding covariate level (explanatory 
variable), for each value k that the covariate can take, keeping all other influences constant. 

Three sensitivity measures are then calculated: 

a straight line, where the sensitivity measure is 1  

a quadratic line, where the sensitivity measure is 1  + 2 2 *A with A a predetermined 

representative point, because of the non-linearity 

a straight line with a more refined grid for variable k, where the sensitivity measure is 1  

 The second method is to analyze global sensitivity, i.e. the sensitivity of all input variables at 
once. The Response Surface Method (RSM) is used in this paper. The response function (shape 
of the surface) is unknown and has to be estimated. The observations vary around the surface by a 
random component, with expected value 0. 
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where the x’s are the variables to be analysed and i  is the factor for legislation class I, and j  is 

the factor for engine capacity class j. 

Two sensitivity measures are calculated here: 

Straight plane, where the sensitivities are equal to the slopes 

Quadratic plane with a more refined grid, where the sensitivity is equal to 1  + 2 2 *A 

with A a predetermined representative point, because of the non-linearity 

When all x’s are uncorrelated, the two methods (OAT and RSM) are theoretically equivalent for 
the first sensitivity measure. 

Type of uncertainty studied 

In this paper the objective is to study sensitivity rather than uncertainty. The sensitivity analyses 
focus on the input variables, not on the model parameters. 

Variables for which uncertainty is studied 

The study focuses on road traffic emissions from vehicles by legislation class and engine capacity 
class. 

How is uncertainty expressed? 

Sensitivity is expressed in estimated coefficients from a regression model. The uncertainty is 
captured in the distribution of the random component. 

What is the order of magnitude of the uncertainty around the forecast? 

As there is no uncertainty modeled, there is no indication of magnitude. The five sensitivity 
measures proposed are compared based on the COPERT III model and the conclusion is that 
there is not much difference in the outcomes. The recommended method here for sensitivity 
analysis is the RSM method without quadratic terms as it is the most natural, and computational 
easiest measure. 
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The influence of modelling  error on the shapes of estimated demand functions, 
Tony Fowkes, paper presented at the European Transport Conference, 1995. 

 

Objective of the study described in this paper 

The objective of the paper is to investigate the influence of modelling error on conclusions drawn 
regarding traveller benefits and ‘willingness to pay’. 

Method used to calculate uncertainty of model forecasts 

The uncertainty is calculated using simulations, where random errors were drawn from a double 
exponential (Weibull) distribution. A Stated Preference survey was designed where artificial 
respondents were given the choice between two modes (one existing, one new mode) while 
varying costs, in-vehicle time and walk/wait time. A total of 900 simulated responses (9 SP-
questions, 100 respondents) were determined. The simulations were repeated 50 times, resulting 
in 50 sets of 900 responses. The uncertainty was calculated by the average and standard 
deviations based on 50 estimations using the 50 simulated datasets. 

Type of uncertainty studied 

The accuracy of the estimated coefficients is studied here, where synthetic utility functions are set 
up and coefficients are estimated. The uncertainty is measured by comparing the average standard 

error of coefficients with the standard error of all estimated coefficients. The effect of uncertainty 
on traveller  benefits is analysed as well. 

Variables for which uncertainty is studied 

A simple two-modes model has been set up for this study, where one is a newly introduced mode. 
The modal split can be influenced by the uncertainty in the estimated coefficients. Benefits of the 
introduction of the new mode are estimated as well. 

How is uncertainty expressed? 

Uncertainty is expressed by the standard deviation of the 50 estimated coefficients and the 
standard deviation of the standard deviation belonging to the coefficients in these 50 estimations. 

The standard deviation of mode benefits reflects the uncertainty in the value of a new mode. 

What is the order of magnitude of the uncertainty around the forecast? 

The following table gives the standard error based on: (1) the 50 estimates of the cost, wait and 
in-vehicle time coefficients and (2) the mean standard errors of the 50 estimates of the  
coefficients. 

Coefficient Standard error 1 Standard error 2 

Cost 0.001908 0.001778 

Wait 0.017261 0.017612 

Time 0.009075 0.011322 

 

A statistical test reveals that there is no significant difference between the two standard errors.  

Depending on the cost of the new mode, the benefits can be estimated. With the cost of the new 
mode at 200, the mode benefit per person is 71 pence per person with a confidence level of 95%. 
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However, the confidence interval is coincidentally plus or minus 71 pence as well (i.e. twice the 
standard error of 35.5), or [0;142]. To reduce the bandwidth of the estimated benefits much 
larger sample sizes are needed than the 900 presented here. 
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Forecasting public transportation in large cities, A. Garcia Ferrer et al., paper, 
Dept. Analisis Economica: Economia Cuantitativa, 2003. 

 

Objective of the study described in this paper 

In this paper the problem of forecasting the demand for a large number of bus and metro tickets 
is studied in the Madrid Metropolitan Area. A dynamic transfer function causal model and a 
dynamic harmonic regression model (DHR) are used to produce forecasts. Forecasts accuracy is 
measured with traditional root mean squared error (RMSE) and mean absolute error (MAE). 

Method used to calculate uncertainty of model forecasts 

Uncertainty of accuracy of the model forecasts is measured with RMSE and MAE: 
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where N is the number of forecasts, T is the number of observations used in the estimation and e 
is the forecast error defined as true value minus forecast produced with model I (causal model or 
DHR) and h is the forecast horizon (h indicates a certain step size in terms of time t). The initial 
estimation sample ends in December 1999. 1, 6, 12 and 24 months ahead forecasts are made. 
Each time a data point was added and new predictions were made until the last sample data point 
was available (November 2002 for a 1-month forecast, June 2002 for a 6-month forecast, 
December 2001 for a 12-month forecast and December 2000 for a 24-month forecast).  

Type of uncertainty studied 

The type of uncertainty that this paper deals with is uncertainty due to the model, not that due to 
the inputs to the model.  

Variables for which uncertainty is studied 

The model forecasts the number of tickets and travel cards for a certain forecasting horizon. The 
accuracy of the predicted number of tickets and travel cards is studied here. 

How is uncertainty expressed? 

The uncertainty is expressed in RMSE and MAE with values between 0 and 1. 

What is the order of magnitude of the uncertainty around the forecast? 

The following table gives an example of the RMSE and MAE, where the number of metro tickets 
is predicted for 1 month, 6 months, 12 months and 24 months. 
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Single metro ticket 

Causal model DHR model 

1 month  

RMSE 0.037 RMSE 0.043 

MAE 0.031 MAE 0.035 

6 months  

RMSE 0.051 RMSE 0.066 

MAE 0.046 MAE 0.054 

12 months  

RMSE 0.088 RMSE 0.100 

MAE 0.078 MAE 0.085 

24 months  

RMSE 0.174 RMSE 0.265 

MAE 0.156 MAE 0.233 

 

The RMSE measure gives higher values of prediction error than the MAE measure. However, the 
conclusions based on each of these measures is the same. The causal model outperforms the DHR 
model or each forecasting horizon. The prediction error increases is the horizon increases, which 
is to be expected. 
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Some joint models of car ownership and car use, Gerard de Jong, Ph.D. Thesis, 
Faculty of Economic Science and Econometrics, University of Amsterdam, 1989. 

 

Objective of the study described in this paper 

This study was carried out to develop models that simultaneously determine car ownership and 
use. In this Ph.D. thesis these models were also used to predict for 2010 and 2020 and for policy 
simulation. For two models, the so-called ‘statistical model’ and the ‘indirect utility model’, 
predictions of car ownership and use for the unweighted estimation sample were produced. 

Method used to calculate uncertainty of model forecasts 

The sampling variation in the number of car-owning households in the sample is calculated as: 
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where m is the expected number of car-owning households in the sample and the P’s give the 
estimated probabilities of car ownership for a household I (which is standard for a binomial 
distribution). 

This variance only reflects the probability characteristics of the model used. Another variance 
denoted vare(m) is the result of using parameter estimates instead if the true values: 
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where the first term between brackets is a vector of length J (the number of parameters) and the 
second term between brackets is the estimated variance-covariance matrix of the parameters. 

Equation (2) was also used to estimate the standard error of annual car kilometrage per 
household, due to using parameter estimates instead of the true values. 

Type of uncertainty studied 

The type of uncertainty that this thesis deals with is uncertainty due to the model, not that due to 
the inputs to the model. Within model error, both sampling error and the complete variance-
covariance structure of the model parameters are taken into account. 

Variables for which uncertainty is studied 

This thesis investigated the uncertainty in the sample prediction for the number of households 
with a car as well as the sample prediction for the number of kilometers per year per car. 

How is uncertainty expressed? 

The measures of uncertainty are the standard error of the number of car-owning households in 
the sample and the standard error in the annual car kilometrage.  
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What is the order of magnitude of the uncertainty around the forecast? 

The sampling standard error for car ownership was only 1% of the predicted car ownership in 
both models. The standard error due to using parameter estimates instead of true values in both 
models is 3%. For annual car kilometrage the standard errors due to using parameter estimates 
are between 4 and 6% of the predicted kilometrage. 
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Preparatory research into updating values of travel time in The Netherlands, 
Gerard de Jong, Dick Ettema and Hugh Gunn (Hague Consulting Group) and 
Francis Cheung and Henk Kleijn (Transport Research Centre), Paper presented 
at WCTR conference, Antwerp, 1998. 

 

Objective of the study described in this paper 

This study was carried out in 1997 to prepare for a new value of time study in passenger transport 
in The Netherlands to update the values from the 1988 study. The specification of the model and 
the sample size that is required for the new model were investigated on the basis of the 1988 data. 
The reason that uncertainty of the value of travel time is studied here stems from the desire to 
calculate the sample size that is required for the update study to produce values of time that will 
not differ from the 1988 estimates by more than 10% (only taking into account stochastic 
factors). The update study was carried out in 1997/1998, using the calculated sample sizes from 
this preparatory study (except for business travel, where a very large and costly sample would have 
been required). The resulting differences between the values of time in 1988 and 1997/1998 can 
safely be interpreted as real changes instead of random differences. 

Method used to calculate uncertainty of model forecasts 

First the Jackknife method was applied on the 1988 models to correct for specification bias. The 
t-ratios after applying the Jackknife method could have been used to calculate the variance, but 
this would lead to very messy equations, since the variance of a ratio (time parameter divided by 
cost parameter) is a rather complex function of the variances of the parameters and their 
covariance (an this only by a Taylor series approximation). Furthermore, both the time parameter 
and the cost parameter were multiplicative functions of various parameters. Instead of the 
analytical method, Monte Carlo simulation was used, based on the Jackknife variances of the 
parameter estimates. Also, the correlation structure from the original estimates was used. 
Together this produced a multivariate normal distribution from which the parameter values were 
drawn many (1,000) times. For each draw (complete set of parameters), the VOT and its variance 
were calculated. Then we averaged over all 1,000 draws, to get an average VOT (by purpose and 
income group; by mode and income group and by purpose and mode) and average standard 
deviation of the VOT. 

Type of uncertainty studied 

The type of uncertainty that this paper deals with is uncertainty due to the model, not that due to 
the inputs to the model. Within model error, both specification error (through use of the 
Jackknife) and the complete variance-covariance structure of the model parameters are taken into 
account. 

Variables for which uncertainty is studied 

This paper investigated the uncertainty in the value of travel time (the marginal utility of travel 
time divided by the marginal utility of travel costs). 

How is uncertainty expressed? 

The measure of uncertainty is the standard deviation of the value of time.  

What is the order of magnitude of the uncertainty around the forecast? 
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For commuting, the standard deviation on the 1988 data was between 6 and 11% (depending on 
the travel mode) of the average value of time. A 95% confidence interval would therefore be not 
wider than [-22%, +22%]. For business the standard deviation was between 16 and 24% of the 
average value of time and for other between 4 and 7% of the average value of time. The widest 
95% confidence intervals for business and other travel would be [-48%, +48%] and [-14%, 
+14%]. 
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Some Issues in Traffic Forecasting for Privately Financed Infrastructure, Eric P. 
Kroes, paper presented at the European Transport Conference, 1996. 

 

Objective of the study described in this paper 

The objective of the paper was to explore the specific methodological requirements of privately 

financed infrastructure with respect to traffic forecasting, including in particular issues like 
accuracy, uncertainty and time profile of the forecasts. 

Method used to calculate uncertainty of model forecasts 

The paper does not provide a specific worked-out method, but describes the element that is of 
particular importance for privately financed infrastructure: uncertainty. The two main sources 
are: (1) uncertainty in the model procedure, and (2) uncertainty in the model inputs. It describes 
a pragmatic 5 step procedure based upon simulation to estimate  the combined effect of a series of 
model input variables.   

Type of uncertainty studied 

The following input variables are mentioned as key parameters when creating traffic forecasts: 

Quality of the input data, including: 

o Existing and future travel behaviour, based upon SP and RP, including VOT; 

o Existing and future transport system performance, including accurate travel 
times;  

o Existing and future traveling population. 

Quality of the model system, including: 

o Detailed description of mode choice, destination choice, route choice, timing 
(and season) of travel and frequency of travel; 

o Complete and comprehensive causal model structure; 

o Account for relevant taste variation; 

o Detailed network simulation with toll roads. 

Quality of the application system, including: 

o Speed of computation; 

o Quality of display and editing software (GIS capabilities). 

 

Variables for which uncertainty is studied 

The paper is focused on specific link flow volumes, and revenues generated by means of tolls. 

How is uncertainty expressed? 

The paper contains a description of a general method (that has later been worked out and applied 
in a case study in Lyon). 

First the key input variables influencing the outcome are identified (say 10 variables). Then for 
each individual variable 3 anchor points are specified: a low estimate, a medium (most likely) 
estimate and a high estimate. Subjective probabilities of occurrence are attached to each of these 
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points (these are experts’ judgements for say the 10th, 50th and 90th percentile for each input 
variable). Then the available transport model system is applied to provide, for each input variable 
separately and with all other variables set at their medium level, the expected vehicle flows and 
revenues for the different levels (univariate simulations). This requires 3x10=30 runs. Then using 
the results of these univariate simulations, the combined flow and revenue effect is estimated for 
all possible combinations of the levels (310=59,049 in total), assuming independence between the 
variables. Finally the result is plotted in a cumulative graph, taking account of the associated 
probabilities. This enables an analysis of the statistics of the distribution of the outcomes. 

What is the order of magnitude of the uncertainty around the forecast? 

The paper does not provide numerical results of an application of the method. 
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Shaping the Next 100 Years: New Methods for Quantitative, Long-Term Policy 
Analysis, Lempert, R.J., S.W. Popper, and S.C. Bankes (2003), RAND, MR-
1626-RP 

The Robust Decisionmaking (RDM) Approach, Lempert, R.J. (2004); presentation 
given at the RAND Europe Seminar, Leiden, May 10, 2004. 

 

A recent development in the area of scenario methods is the use of  assumption-based planning, 
also called exploratory analysis or robust decisionmaking. On May 10 2004 a RAND Europe 
Sponsored Seminar was held in Leiden where Robert Lempert presented his Robust Decision 
Making Approach to a number of invited experts. In this approach fast strategic computer models 
are being used to simulate very large numbers of ensembles of scenarios. In order to direct and 
evaluate these computer based experiments and to present their results RAND has developed 
specific software: Computer Assisted Reasoning (CAR). CAR is not only used to explore the 
spectrum (“landscape”) of end results, but also and particularly to highlight which assumptions or 
actions are most crucial (in that they have a large influence on the final results). These insights 
can then be used to design a more robust policy strategy. Normally the analysis is carried out in 
an iterative procedure, where each test is followed by a counter-test and the process zooms in 
continually on the most crucial variables. This approach is particularly useful for taking very 
complex decisions, in situations with a large amount of uncertainty (“deep uncertainty”) and 
where there are many hedging actions possible to counter unwanted effects. Lempert contrasts his 
RDM approach with what he calls the more traditional “predict-then-act” approach, which he 
thinks is more appropriate for situations where there is limited uncertainty and limited 
possibilities for hedging actions.  

 

The RDM approach is clearly related to what is being pursued in the Bandbreedte project, but 
the focus is different. In fact three important differences can be mentioned: 

1. The RDM approach is focused primarily on the development of policy strategies; the 
bandbreedteproject, on the contrary, is focused primarily on the quantification of the 
uncertainties surrounding the estimated effects of pre-specified policy measures. 

2. In the RDM approach time-dynamics are very important, particularly in relation to the 
timing of decisionmaking and taking hedging actions; in the bandbreedteproject the 
uncertainty of the end-result, in the target-year, is much more important. 

The RDM approach is based upon the simulation of very large numbers (up to millions) of 
possible futures, and for obvious reasons the run times of the computer models used has to 
remain limited; this forces the use of fairly global models, with little detail; in the 
bandbreedteproject the LMS and NRM are really in a central position, with all the associated 
detail, and it is obvious that run time is clearly a limiting factor. 

For these reasons the use of the RDM approach is not really an option for the bandbreedte 
project. Of course elements of the methodology may be of use anyway. 
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An analysis of modelling error, with application to a traffic assignment model 
with continuously distributed values of time, Leurent, M., paper presented at the 
ETC, 1996. 

 

Objective of the study described in this paper 

The objective of this paper is to describe and analyse the error of a model an to provide detection 
criteria and corrective treatments. Five types of error are identified in this article as potential 
sources of error: 

design errors 

formulation errors 

algorithm errors 

estimation errors 

exogenous errors 

The focus in this study lies on exogenous errors and the propagation of exogenous errors in a 
simulation model. 

Method used to calculate uncertainty of model forecasts 

Exogenous errors influence the estimated coefficient(s) in a model. Uncertainty is calculated by 
taking standard errors of the estimated coefficient(s) and the standard errors of the input data.  

Type of uncertainty studied 

The uncertainty studied here is uncertainty due to exogenous errors, i.e. input errors and 
propagated errors, i.e. exogenous errors propagated through the simulation model. 

Variables for which uncertainty is studied 

A linear function for travel time per km (reciprocal of speed) is assumed and the coefficients are 
estimated using standard Ordinary Least Squares (OLS). Travel time (per km) is assumed to 
depend solely on a constant and the flow on a specific link (in the absence of any queuing effect).  

The impact of the propagated uncertainty on the number of cars per day is analysed. 

How is uncertainty expressed? 

Uncertainty is first expressed as the sum of squared deviations in travel time (per km) from their 
mean. A measure for the relative uncertainty is expressed by dividing the standard error by the 
mean: 

x

x
 

What is the order of magnitude of the uncertainty around the forecast? 

The travel time function is estimated first with only a constant and secondly by also including a 
slope-coefficient. The average travel time estimated with only a constant is 0.549 with a standard 
deviation of 0.052. After including the slope coefficient the standard deviation drops to 0.046, 
indicating less uncertainty. 



Uncertainty in traffic forecasts                                                                                               RAND Europe 

 100

To evaluate the propagation of errors, three input errors were defined, error in the measurement 
of journey time, error in the measurement of O-D volumes, and error in the distribution of the 
Value-of-Time. A simulation model was run predicting the number of cars per day. 1220 
cars/day on average passed the link, with a standard deviation of 123 cars, resulting in 10.1% as 
uncertainty measure. This uncertainty was mainly due to demand volumes (83%) and to a lesser 
degree journey times (14%) and the distribution of the Value-of-Time (3%). 
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Uncertainties in Highway Appraisal: the development of systematic sensitivity 
testing, S. Lowe, D. Morrell and G. Copley, paper presented at the PTRC SAM in 
Warwick, 1982. 

 

Objective of the study described in this paper 

This paper describes a fully-developed systematic sensitivity testing procedure and the application 
of this procedure to a real highway scheme. Predictions of flows on a new bypass road and two 
existing links are made based on zonal and socio-economic factors. The main sources of 
uncertainty are identified and suggestions on how this can be incorporated in standard highway 
appraisal practice are made. 

Method used to calculate uncertainty of model forecasts 

Uncertainty is calculated by drawing randomly from the distributions belonging to the 
appropriate factors. The paper does not say how these distributions were derived. This was 
repeated ten times to obtain means and standard deviations for the factors. They also use an 
experimental design for the simulations that can provide the information for establishing the 
main and interaction effects of 17 factors. 

Type of uncertainty studied 

The type of uncertainty studied here is mainly due to the input to the model: zonal 
characteristics, fuel price and GDP growth. Two model coefficients are studied as well, the route 
choice coefficient in the base year and the route choice elasticity. The link speeds were varied as 
well. 

Variables for which uncertainty is studied 

The sensitivity analysis was carried out at a local level, where the impact of a new by-pass route 
on the traffic flows of three links (including the new by-pass) was studied.  

How is uncertainty expressed? 

The uncertainty is expressed for each individual factor when a factor was changed to the 10th or 
90th percentile of the appropriate distribution by the average change in number of vehicles per 
day on the links. The standard deviation of the effect is also given. 

Given the probability distribution of the individual effects, an overall cumulative distribution of 
the total link flow can be built. 

What is the order of magnitude of the uncertainty around the forecast? 

The magnitude of uncertainty depends on the standard deviation of the factors that determine 
the number of vehicles passing a link each day. From the overall cumulative distribution a 
probability of 5% can be derived, that the flow on the new by-pass will be less than 14.000 
vehicles per day. 

The probability of the flow on the existing High Street being less than 16.500 vehicles is 2.5% 
when only the study area effects are considered. When the random effects (link speed and base 
year trip matrix), which have high standard deviation, are added this probability rises to 27.5%.  

The most important determinants of uncertainty in the link flow predictions were found to be 
factors at the level of the study area as a whole, especially income growth, fuel prices and the 
factor for consistency with national forecasts. The influence of the spatial distribution was 
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negligible and the interaction effects were not of great importance either. The key determinants 
of uncertainty can be accounted for in a simplified procedure that requires eight model runs. 
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Risk valuation of public investment projects, Dutch Ministry of Finance/Central 
Planning Bureau, 2003. 

 

Objective of the study described in this report 

The objective of this study is to recommend how one should evaluate risk in future public (or 
public-private) investment projects. This report is more a policy guideline than an analysis of risk 
in model forecasts. This summary only states the final conclusions and recommendations. 

In this report risk is defined as uncertainty about the (financial) outcomes of a project. The 
distribution around the expected outcome of a project gives an indication of the uncertainty. 
When a (bell-shaped) normal distribution is assumed, with an expected value of zero, no losses on 
a project are expected. Because individuals have a general risk aversion, the incorporation of 
uncertainty in a project will skew the distribution, which might lead to a negative expected value 
on the outcomes. 

Two types of risks are distinguished: 

macro economic risk: each project will have a general risk-premium and a project-

specific multiplier, which adds a risk-premium to the general risk-premium. 

diversifiable risk: costs and benefits are not structurally, but stochastically related with 
benefits from other sources: risks can be spread. There are, however, two diversifiable 
risks that can have a negative effect on the outcome of a project: 

Concentrated risks, when (a group of) individuals carry more risks than others. 
Asymmetrical risks, where financial implications are (mostly negatively) skewed, 
e.g. decreasing marginal value of income. 

Each cost-benefit analysis that is carried out before the start of a project should be aware of the 
implications project risks have on financing. A CBA should contain a paragraph on risk, where 
the following subjects are addressed: 

macro economic risks 

diversifiable risks 

scenario analyses 

sensitivity analyses 
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Jackknife Testing – An experimental Approach to Refine Model Calibration and 
Validation, Research Results Digest, National Cooperative Highway Research 
Program, 2003. 

 

Objective of the study described in this paper 

The objective of the study in this paper is to illustrate the jackknifing procedure for calibration 
and validation using simulations of rutting performance (road surface degradation) based on 
measured data from in-service pavement sections at the Minnesota Road Research Project. 

Method used to calculate uncertainty of model forecasts 

Prediction accuracy of the models was evaluated using four types of measures: 

calibration accuracy 

n-1 Jackknifing 

n-2 Jackknifing 

split-sample jackknifing 

The n-1 Jack-knife procedure uses n-1 observations to calibrate the model and the withheld 
observation is used to predict. This is repeated for the entire dataset. Goodness-of-fit measures 
can be set up for the errors made in the predictions. The same procedure applies for n-2 
Jackknifing, where 2 observations are withheld each time. Split-sample jackknifing divides the 
sample into two equal samples, one to calibrate and one to predict. 

Type of uncertainty studied 

The uncertainty studied here deals with the accuracy of the estimated parameters in the model 
due to repeated measurements in the data collection. 

Variables for which uncertainty is studied 

Uncertainty is studied for the number of pavement sections in a region, i.e. the number of data 
collection points. 

How is uncertainty expressed? 

Uncertainty is expressed in a correlation coefficient and a standard error ratio. 

What is the order of magnitude of the uncertainty around the forecast? 

Four different goodness-of-fit measures are compared. The n-1 and n-2 Jackknifing procedures 
indicate that the standard errors are underestimated by the original model estimations. The 
underestimation increases when the sample size decreases. The split-sample  jackknifing is a poor 
measure of prediction accuracy, except possibly for large samples. 
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Uncertain socioeconomic projections used in travel demand and emissions 
models: could plausible errors result in air quality nonconformity?, Caroline J. 
Rodier and Robert A. Johnston, Transportation Research Part A, Volume 36, 
613-631, 2002. 

 

Objective of the study described in this paper 

The objective of the study is to conduct a sensitivity analysis for the effect of plausible errors in 
population, employment, fuel price, and income projections on travel demand and emissions as 
predicted by models for the Sacramento region. 

Method used to calculate uncertainty of model forecasts 

The error in the annual population growth rates is analysed using the following measures: 

Algebraic percentage point error: 

( ) *100i i i iALPE P A  

where P is the projected annual growth rate, A is the actual population annual growth rate and I 
is the number of counties in the Californian region. 

Mean algebraic percentage error: 
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Sensitivity analyses have been carried out for a variety of combinations of socioeconomic factors 
in population and employment, household income and fuel price. 

Type of uncertainty studied 

In this study, the focus is on errors (uncertainty) in the socioeconomic projections, i.e. model 
input. 

Variables for which uncertainty is studied 

Uncertainty is studied for population attributes. Sensitivity analyses are conducted for percentage 
change of trips, vehicle-miles-travelled and vehicle-hours-delay (and vehicle emissions). 

How is uncertainty expressed? 

Uncertainty for the population is expressed in the standard deviation of the algebraic percentage 
error. The sensitivity analyses give an indication of the volatility of model outputs when model 
inputs are varied. 
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What is the order of magnitude of the uncertainty around the forecast? 

For a five year interval the ALPE of projected annual growth rates (from the California 
Department of Finance) and the observed annual growth rates (from census counts) is calculated. 

The following table summarizes the MALPE and the standard deviation of the MALPE for the 
59 counties in the Sacramento region (corrected for outliers): 

Projection year MALPE S.D. MALPE 

1960 -0.28 1.30 

1965 0.95 1.09 

1970 -0.75 1.13 

1975 -0.42 0.76 

1980 0.31 1.01 

1985 -0.30 0.88 

1990 0.66 0.73 

   

Average (all data) 0.05 1.14 

 

The range of the standard deviation in projected county annual growth rates is 0.73-1.30%, 
where the average is approximately 1%. 

Below are the percentage change results of the sensitivity analyses performed for the metropolitan 
transportation organization in the Sacramento region for the projection year 2005. Each scenario 
consists of only one change in modelling input, the reference scenario is no change in any of the 
socioeconomic inputs. Population and employment are changed simultaneously. 

% Change in… TRIPS VMT VHD 

Population and 
Employment 

   

-2.0 -16.7 -12.0 -39.2 

-1.5 -12.8 -9.1 -30.3 

-1.0 -8.7 -6.2 -21.4 

-0.5 -4.4 -3.1 -11.9 

0.0 0.0 0.0 0.0 

0.5 4.6 3.2 12.7 

1.0 9.4 6.6 29.2 

1.5 14.4 10.0 47.7 

2.0 19.7 13.6 68.8 

Household income    

0.0 0.0 0.0 0.0 

10.0 0.0 0.1 0.5 

20.0 0.0 0.2 1.1 
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30.0 0.1 0.3 1.4 

32.8 0.1 0.3 1.8 

Fuel price    

-7.11 0.0 0.1 0.5 

-3.50 0.0 0.0 0.4 

0.0 0.0 0.0 0.0 

3.50 0.0 -0.1 -0.1 

8.78 0.0 -0.1 -0.4 

 

The predictions appear to be rather insensitive to uncertainties in household income and fuel 
price. Errors in projections of population and employment generate relatively large changes in 
travel. As is expected VHD (vehicle hours delay) are much more volatile than trips and vehicle 
miles travelled. 
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Verifying the Accuracy of Regional Models Used in Transportation and Air 
Quality Planning, Caroline Rodier, publication of the Mineta Transportation 
Institute, 2003. 

 

Objective of the study described in this paper 

This study describes three simulations in order to test model accuracy, the effects of errors in 
socioeconomic/land use projections and induced travel. This summary focuses on the first two 
model forecasts. A historical forecasting case study in the Sacramento, California region is 
performed using the original version of the Sacramento regional travel demand model. 

Method used to calculate uncertainty of model forecasts 

Model predictions of 2000 with the original 1991 version of the travel demand model were 
performed in 2003, called historical forecasting. Observed data in 2000 can than be evaluated 
against the ‘historical’ predictions. 

The uncertainty (accuracy) of the model forecasts is measured in the following ways: 

Model accuracy: 

Model Error = (Forecast1_2000-Observed_2000)/Observed_2000 * 100 

where Forecast1_2000 is the model prediction based on observed socioeconomic and land use 
data. 

Projection accuracy: 

Model & Projection Error = (Forecast2_2000-Observed_2000)/Observed_2000 * 100 

where Forecast2_2000 is the model prediction based on 2000 socioeconomic and land use data 
predicted for 2000 in 1991. 

Projection error  = Model & Projection error – Model Error 

Type of uncertainty studied 

The type of uncertainty studied is here is uncertainty within the model as well as uncertainty due 
to model input. 

Variables for which uncertainty is studied 

Number of trips by purpose, the modal split and vehicle miles travelled, vehicle hours travelled  
and vehicle hours delay are the variables for which uncertainty is studied. 

How is uncertainty expressed? 

Uncertainty is expressed in percentages of under- or overestimation from the model values 
compared with observed values (model error and projection error). 

What is the order of magnitude of the uncertainty around the forecast? 

The following table summarizes the model and projection errors, when forecasts are compared 
with observed values from 2000 by trip generation, mode choice and daily vehicle travel. 
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In percentages Model error Model & prediction 
error 

Prediction error 

Trip generation 

Home-Work 0.6 8.0 7.4 

Home-Shop 25.3 36.9 11.6 

Home-Other -8.5 -0.8 7.6 

Work-Other -10.5 -4.5 6.0 

Other-Other -19.1 -10.3 8.8 

Home-School -9.1 -1.6 7.5 

Total -6.1 2.0 8.1 

Mode choice 

Drive-alone 7.7 6.7 -1.0 

Shared-Ride 2 -2.9 -2.7 0.2 

Shared-Ride 3+ -17.5 -17.0 0.5 

Transit-Walk -14.8 -5.9 8.8 

Transit-Drive -8.8 26.2 35.1 

Walk 35.3 38.8 3.5 

Bicycle 13.0 13.4 0.3 

Daily Vehicle Travel 

Vehicle Miles Travelled 5.7 11.8 6.1 

Vehicle Hours Travelled 4.2 12.8 8.6 

Vehicle Hours Delay 17.1 38.4 21.3 

 

For total trip generation model, error is slightly smaller than prediction error. Overall model and 
prediction error is only 2.0%, because the underestimation in model error is offset by the 
overestimation in prediction error. 

In mode choice, the model error seems larger when the range of model error (-17.5 to 35.3 
percent) is compared with prediction error (-1.0 to 35.1 percent).  

Daily vehicle travel is overestimated due to model error as well as prediction error. The sum of 
these errors overestimates VMT by 11.8%, VHT by 12.8% and VHD by 38.4%, which indicates 
that VHD is much more volatile than VMT (as is expected). 
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Het voorspellen van betrouwbaarheid van reistijd met een 
vervoerprognosemodel: SMARA, Schrijver, J.M., Meeuwissen, A.M.H. en 
Hilbers, H., paper presented at the CVS, 2003. 

 

Objective of the study described in this paper 

The objective of the study is to describe a model that calculates bandwidth’s for travel times 
within the Netherlands. The SMARA model(Strategic Model for Analyzing the Reliability of 
Accessibility) uses Monte Carlo simulations to construct reliability intervals of travel times. 

Method used to calculate uncertainty of model forecasts 

Draws from a given distribution are taken for each factor that influences the modelled traffic 

demand and the capacity of the infrastructure (weather, season, events, accident or road works)11. 
Correlation between these factors is not discussed. In this study 400 draws are taken to construct 
a reliable bandwidth.  

Type of uncertainty studied 

This paper investigates the uncertainty due to the inputs to the model, both demand driven 
inputs and inputs from the supply side. 

Variables for which uncertainty is studied 

The travel times between 250,000 O-D relations are studied in this paper. 

How is uncertainty expressed? 

The uncertainty will be expressed in bandwidth around the mean travel time, when the SMARA 
model is finished. 

What is the order of magnitude of the uncertainty around the forecast? 

No statistics were given at the time the paper was submitted. 

                                                      

11 SMARA also uses inputs from the Dutch national model system for traffic and transport 
(LMS). 
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The propagation of uncertainty through travel demand models: an exploratory 
analysis, Yong Zhao and Kara Maria Kockelman, paper submitted to Annals of 
Regional Science, 2001. 

 

Objective of the study described in this paper 

The study’s objective is to compare point estimates under input variation. Monte Carlo 
simulation and sensitivity analysis are used to investigate error propagation in a traditional four-
stage transport model applied to the Dallas-Fort Worth metro region. 

Method used to calculate uncertainty of model forecasts 

A traditional four-stage transport model has been set up to forecast link flows in the DFW-
region. The standard deviation of the coefficients in each stage has been fixed to 0.30 of the mean 
of the coefficients and a lognormal distribution of the coefficients is assumed. One hundred 
different sets of input and parameter values were set up resulting in one hundred model forecasts. 

Type of uncertainty studied 

In this study, uncertainty due to model input and model parameters is analysed. The exogenous 
inputs are varied, while the possible erroneous data that is processed within the four-stage model 
is varied as a result of the different values for the model coefficients. 

Variables for which uncertainty is studied 

The effect of uncertainty on the link flows in the DFW-network is studied here, in particular two 
selected links. 

How is uncertainty expressed? 

Uncertainty is expressed in standard deviation divided by the mean value, which is fixed at the 
starting point of the model at 0.30. Different input/parameter uncertainty levels are tested, i.e. 

0.1, 0.3 and 0.5. 

What is the order of magnitude of the uncertainty around the forecast? 

All the input uncertainties are set to the same value of 0.30, however due to the actual simulation 
data drawn, the 5% and 95%-values of demographic input uncertainty are 0.2592 and 0.3397, 
respectively. 

The figures below (from Zhao and Kockelman, 2000) show the propagation of uncertainty in the 
four-stage transport model. For the given value of 0.30 an increasing average of uncertainty in the 
first three steps is apparent. The 5% and 95% bound expands indicating an increasing variability 
of uncertainty. Because the assignment model is a user-equilibrium assignment, the compounded 
uncertainty is reduced, although not lower than the input uncertainty. 
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Un

certainty propagation through 4-step model. 

 

The input uncertainty values have been varied to 0.10 and 0.50. The pattern of propagated 
uncertainty is similar, only the absolute uncertainty values increase. 

 

Uncertainty propagation through 4-step model with different input/parameter uncertainty levels. 
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Notes of Telephone Interview (19th April, 2004) of Geoff Copley – 
FaberMaunsell – UK by Eric Kroes  

 

Geoff indicated that he had not been involved for a long time in exploring and quantifying the 
inaccuracy of, or uncertainty associated with model forecasts. The last time he worked in this area 
was in the early 1980’s when he worked with Ashley and Lowe. Ashley had applied Monte Carlo 
techniques to carry out sensitivity analysis, Geoff’s main contribution had been the development 
of a systematic type of analysis, involving the use of an experimental design to specify the 
simulation runs. This had served to reduce the number of simulation model runs necessary to 
estimate all main effects and relevant interactions of the uncertainty associated with the different 
model input elements. Following the work reported in 1982 the Department of Transport had 
decided they were no longer interested in pursuing this, as they felt the work was too model 
intensive. More recently this view has been abandoned, as the Green Book in the UK prescribes 
the use of an @risk analysis for forecasts. @risk is software designed specifically to quantify the 
uncertainty associated with a combination of variables, which are specified in terms of their 
individual variances and their correlations with other variables. He referred to Alan Boyce for 
further information about @risk. 
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Notes of Telephone Interview (21th April, 2004) with Alan Boyce of 
FaberMaunsell  by Eric Kroes 

 

Alan explained that he had been working in this area particularly in the context of privately 
financed infrastructure, where he had been retained by banks and other parties to assess the 
uncertainties associated with traffic forecasts, particularly looking at toll roads. He had worked in 
this area a lot with Martin Bright, the co-author of their 2003 ETC paper. 

Alan explained that the process of estimating the uncertainties in traffic forecasts for toll roads 
consisted of two distinct parts: 

Part 1 is to provide the best possible estimate of how much traffic would use the road now, what 
would be the capture rate, taking account of the values of time, the toll level and the congestion 
on other roads. Then look at the potential uncertainties associated with the input.  Parameters 
such as VOT can be very uncertain. The effect of this uncertainty can be addressed by varying the 
VOT and reassigning the traffic model to obtain estimates of how the traffic volume is affected: 
an upside case and a downside case should be run to establish the sensitivity of the forecast flows 
to changes in VOT. 

Part 2 is to make an assessment of what is most likely to happen in the future: make your best 
assessment of future demand growth, any development patterns which will affect demand, and 
the future VOT and run the forecasting model to estimate the saved travel time and obtain the 
most likely future situation.  Then undertake sensitivity tests for the forecast variables to establish 
the extent to which variability in these values results in variability yin the forecast flows. Use 
@risk standard software (see www.@risk.com ). What this does is to calculate (by means of 
Monte Carlo simulation) the combined probability distribution of a number of input variables 
and their impact on the forecasts. For each input variable a probability distribution needs to be 
specified, which can be e.g. a triangular distribution (lowest point, most likely point, highest 
point) or a normal distribution (mean and standard deviation). Correlations between input 
variables can also be specified. @risk then calculates the combined probability density 
distribution. 

Alan said he usually starts with the standardized traffic flow (index 100) and looks at the 
percentages variability of the base year factors, also looking at how they might be correlated. Key 

factors are clearly the VOT, the travel time savings and the accuracy of the OD matrix (obviously 
the larger the survey is on which the matrix was based, the smaller the relative variance). Then the 
combined probabilities are determined, by using an additive or multiplicative procedure. @risk 
does this, typically by randomly selecting values from each distribution for 10.000 iterations. This 
gives the final distribution for the base year. When all the variables are independent, one variable 
with a wide distribution tends to affect the final result most; correlated  variables tend to 
compensate each other.  

Then the future year distribution is obtained, by factoring in the effects of GDP growth and the 
relation between GDP growth and traffic volumes (through car ownership). The forecast of GDP 
growth is obviously very uncertain on a year to year basis, but the average growth over a 10 year 
period is much more stable, and normally distributed. Another element of uncertainty is the 
growth in VOT. In the past a proportional growth to GDP was assumed, but nowadays half the 
GDP growth is used to account for the fact that the new car owners will tend to have less than 
average VOT.  
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By combining the distributions for the base year and for the forecast year the total forecast 
distribution is obtained, for the first year (10.000 draws). Then the combined (= forecast and 
base) relative (= to a central forecast) distribution is taken, and multiplied with the central model 
forecast, to obtain the uncertainty margins for each year modelled. Typically the uncertainty 
distribution gets wider over time, but slowly, because there is already a lot of variability in the 
base year, and there is a lot of compensation. If a new toll road is already open, the base year 
uncertainty is very small, and all future year traffic volumes are more accurate (but now the 
distribution may get wider more rapidly). This process is then repeated for year 2, 3, etc. up to a 
target year. Depending upon the amount of time available, a simple model (GDP growth and 
demand elasticities) or a more comprehensive forecasting model may be used to provide the key 
points of the distribution. Typically an application is based upon a mix of simple and detailed 
model simulations (also called: sensitivity tests) to generate the inputs for obtaining the combined 
distribution using @risk. The results are presented in the form of percentiles.  

Alan has a lot of practical experience in the area, and would be willing to assist in further 
elaboration or to participate in a workshop if desired (provided his costs are covered, of course). 
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Notes of personal interview with David Watling – ITS Leeds, on assignment 
errors by Andrew Daly   

 

The LMS, OGM and most other traffic forecasting systems contain an assignment phase, which, 
like other model components, produces forecasts which contain error.  While assignment errors 
are not the central focus of this project, they are an essential component of the overall model 
error and an overview of modelling error would not be complete without considering assignment 
error. 

To set this study in the context of theoretical analyses of assignment error, it is necessary to note 
the objective of the LMS and OGM to model a representative working day.  That is, we are not 
interested in day-to-day or seasonal variation but in estimating average conditions.  Of course 
average conditions are affected by variation, particularly because of the non-linearity of the 
functions involved, so that average travel time is higher than travel time with average flow, but 
the objective is to supply single representative values rather than to assess variations.  

 

Components of assignment error 

As with other sub-models, assignment error can be divided into two components: 

that caused by error in the inputs provided to that procedure and 

that caused by error in the assignment procedure itself. 

 

Input error can in turn be considered as having two components: error in the matrix to be 
assigned and error in the description of the network, i.e. in the description of the links or, for 
public transport assignment, in the lines operated.  Matrix error is essentially the focus of the 
main part of the Bandbreedte project and its causes will not be discussed in further detail here.  
However, an important point to note is that matrix error will contain important correlations, 
whether between cells in a matrix to be assigned or between matrices for different scenarios.  

These correlations will need to be considered in calculating assignment error as they will affect the 
calculation of errors in assignment outputs (link flows, travel times etc.) either at the level of a 
scenario, where flows from different matrix cells are added in calculating the flow on a link, or 
between scenarios, where correlated flows on links or travel times are compared across the 
scenarios.  Expert opinion is that matrix error is likely to be more important than network 
description error in influencing the accuracy of assignment outputs. 

Errors in the description of the network can be considered in three components: 

errors in the topological description of the network; 

errors in the length of the link; and 

errors in link capacities. 

 

It might be thought that errors in the topological description of the network would be better 
described as ‘mistakes’ than as errors, i.e. coding error etc., and of course this is partly true.  
However, it also has to be recognised that modelled networks inevitably represent abstractions of 
the true network.  Zones are represented as single points, with a limited number of connector 
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links; minor roads are omitted from the network; public transport lines are simplified; etc..  Thus 
in addition to coding error – which ought to be eliminated as far as possible – there is also an 
irreducible topological error remaining in networks, which can probably be treated as constant 
across all the scenarios. 

Errors in the length of links can reasonably be assumed to be small relative to the other errors in 
the model.  However, the introduction of new links in future scenarios will inevitably introduce 
further error of this type so that there will be a slight difference between scenarios arising from 
this error component. 

Errors in link capacities, however, are quite complex.  An error in the number of lanes should be 
treated as a coding mistake, but there are a number of other sources of error in link capacity: 

error in the speed-flow curves representing the average speeds for specific vehicle types 
on links with given flow volumes; 

error, or perhaps more accurately, local variation, introduced by specific local physical 
circumstances and road layout, meaning that a ‘link type’ description is only an 
approximation; 

variation at local or national level in traffic management practices; 

variation in the mix of traffic on the road, above what might be indicated by purpose 
and vehicle type (car, LGV, HGV) splits; for example, commuters would have better 
knowledge of the road and therefore perhaps a higher driving speed than drivers for 
other purposes; 

variation in average driver and vehicle performance, particularly between base and 
forecast years. 

Obtaining information on the magnitude of these errors and how they might change over time is 
quite challenging, but some information may be available from UK sources. 

Error in the assignment procedure can be further considered in two components: failure of the 
computational process to deliver the model as specified and inaccuracy in the model itself. 

The assignment procedure is modelled as an equilibrium in which each network user chooses the 
path which offers minimum travel cost.  This equilibrium can be approximated by a 
computationally intensive process which has to be terminated arbitrarily to meet exogenous run 
time constraints.  The extent of error remaining because of failure to achieve the true equilibrium 
can itself be approximated.12  The use of a fixed number of iterations will generally mean that 
there is more convergence error in highly congested than in less congested scenarios, so that it 

may be preferable to use a fixed convergence criterion to improve consistency between scenarios. 

Within the assignment model, a number of issues arise for which solutions are adopted that may 
give rise to error: 

most fundamentally, the assignment process may not be an equilibrium process but some 
more complicated day-to-day evolution that never achieves equilibrium – how this 
should be modelled has been substantially clarified in theory13; this theory could be used 

                                                      

12 The error indicated here is error within the assignment process.  In supply-demand equilibrium models, such 
as LMS and OGM, there is a further error arising from equilibration between the assignment and the demand model 
(matrix calculation).  This supply-demand equilibration error can also be calculated approximately. 

13 See Watling, D. and Hazelton, M. (2003) The dynamics and equilibria of day-to-day assignment models, 
Networks and Spatial Economics, 33, pp 349-370, which also gives a list of references to earlier research.  Further 
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to develop computer software but there is still a lack of empirical evidence on which 
quantitative forecasts could be based; 

error in the algorithms used (e.g. in QBLOK) to calculate the impact of flows on one 
link on driving conditions on other links; 

the assignment process is based on a model of drivers’ route choice which is a 
considerable simplification of reality – drivers consider more variables than are 
represented in the model, there is considerable variation between drivers, even when 
separate user classes are represented in the assignment and, as in the case of the matrix 
forecasting, the average values of the route choice parameters are estimated with error; 
one solution to these problems is to use a stochastic assignment procedure. 

These errors mean that the route choice predictions for drivers are not correct, giving rise to 
errors in link flows.   

The role of dynamic assignment methods in relation to these errors needs to be clarified.  
Dynamic assignment allows demand profiles to be modelled and can improve the representation 
of route choice in spatial and temporal dimensions.  Relative to ‘static’ assignments, the nature of 
the errors is changed and the intention is to make a reduction in the error, but of course none of 
the errors is entirely eliminated. 

All of these errors need to be quantified in order to assess their impact on the assignment results.  
Moreover, any correlations between them also need to be quantified, although in general the 
error sources discussed are somewhat independent and many correlations can be taken to be zero. 

The next issue, assuming that the basic errors can be quantified, is to calculate their impact on the 
assignment. 

 

Calculating error in assignment output 

The essential outputs from assignment may be considered as the following: 

link flows and queues at local level, which are required to check the accuracy of the 
assignment and to indicate potential ‘pinch-points’ in the network; 

travel times and costs at matrix cell level, used as ‘feed-back’ to the demand model as part 

of the iterative process; 

evaluation criteria, such as total travel times, ‘queue hours’, etc., possibly disaggregated to 
regional level, which are used to assess the success of scenarios. 

 

Each of these output criteria is subject to error as a function of the sources described in the 
previous section, but the calculation of these errors is not straightforward.  Fortunately, many of 
the calculation procedures necessary have been developed by David Watling and his associates at 
Leeds and use can be made of this work. 

The core of the Leeds work is a ‘linearisation’ procedure which relates errors in input matrices 
and in link parameters, i.e. capacities etc., to errors in the assignment outputs.  Linearisation also 
exploits the derivatives of specific functions, in this case the functions formalising the fixed-point 

                                                                                                                                                        

discussion is given by Hazelton, M. and Watling, D. (2004) Computation of equilibrium distributions of Markov 
traffic assignment models, Trans. Science, in press. 
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specification of equilibrium in the assignment.  The idea is quite similar to that proposed for 
predicting error in matrices. 

It is important to note that linearisation in a conventional user equilibrium assignment is a 
difficult procedure, but that if a stochastic assignment using MNL is undertaken then the 
procedure is quite different and substantially easier to undertake.  Using other forms of stochastic 
assignment will however again give more difficult models, remaining distinct from the 
equilibrium assignment issues.  For example, when a probit model is used the issue arises of the 
possible singularity of the covariance matrix of route utilities. 

A further useful aspect of the Leeds work is to relate error in link flow to error in link cost, 
through analysis of the speed-flow curve.  Given a level of error in the predicted flow on a link, 
the differential of the speed-flow curve can be used to indicate the approximate error in the link 
cost.  There are considerable complications when link flows are inter-related, as in QBLOK, and 
because of correlation between flows – and hence costs – on successive links.  By adding up the 
link cost errors, errors can be obtained in path costs, and hence in path choice, and in assignment 
outputs for scenario evaluation. 

The final step in the Leeds work is the use of these formulae to indicate the critical parameters 
which determine the accuracy of the assignment process. 

For use for LMS and OGM assignment error calculation, the Leeds procedures would require 
some amendment to adapt to the specific algorithms (QBLOK or dynamic procedures) used in 
The Netherlands.  However, it appears that the theoretical development is largely in place.  
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Appendix 3. Derivation of analytical expressions for 
the model uncertainty 

To find confidence intervals for the flow on individual links and groups of links on the Dutch 
transport network, it is necessary to know the variance of the estimates from the LMS model. The 
aim of this section to derive that variance for a mode-destination-time period model for a specific 
trip purpose (namely commuter trips), subsequent sections will consider the trip frequency 
models, and the interrelation between trip purposes. 

 

Since the model is applied in an iterative manner, there is an element of feedback in the error. 
Rather than calculating variances directly, they will ultimately have to be found as the solution to 
a matrix equation; the solution will be the full covariance matrix for the flow on the links of the 
network14. Therefore, at each stage in the derivation, a full set of covariances must be considered. 

 

Below is a discussion on the analytical derivatives of the mode-destination models. This 
discussion is more general than the impact of errors in the model coefficients on link flow error, it 
also deals with the impact of errors in the input variables. However the conclusions on  model 
error are also valid for the –more restricted- situation in which we take the input values as given 
(but different in different simulations). 

 

 A3.1 Form of the mode-destination model 

 

The LMS mode-destination-time choice model for commuter trips is a nested logit model. The 
non-choice variables it considers are origin zone o and demographic segment n. These form a 
single model segment N. Therefore, the choice set available in this model is three dimensional: 
time period t, mode m and destination d. These form a choice vector C. So we have: 

 

dmtC

onN

,,

,
 

 

                                                      

14 Alternatively, an intermediate matrix could be found 
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We can also define the following terms: 

 

NsegmentfromCchoiceofutilityObservedCNV  

Nsector|CchoicePP CN  

 

A nested logit model may be decomposed into sequential logits. In this case, mode choice is made 
after destination choice, so we have: 

 

Nsegmentanddndestinatio|Cchoice| PP dCN  

ddmtNdmtN PPP |,,|),( Nsegmentanddndestinatio|mmode

 

and 

 

Nsegment|dndestinatioPP dN  

 

Although time period choice is theoretically made after mode choice, the structural coefficient in 
this case is 1. Therefore, time period and mode choice can be considered simultaneous. 

 

The model is linear in parameters: 

 

i

iCNiCN xV  

 

and we must consider the full set of covariances: 

 

iiCN

iCNiCN
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x
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,cov

 

 

It is assumed that the full covariances of the  terms, the coefficients, can be found by the 
standard estimation or bootstrap estimation of the model. These represent sampling and 
specification errors. The covariances of the x terms, the explanatory variables, are also to be 
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found. Note that these covariances are not the correlation of the variables themselves across the 
sample, but describe errors in their measurement or forecasting. In the case of level-of-service 
variables, these may be functions of errors in the input to the network assignment process. 

 

The nested logit model also contains a tree coefficient, , so we must consider: 

 

,cov

,cov

i

iCNx
 

 

Again, it is hoped that the second of these can found by jack-knife or bootstrap. 

 A3.2 Zero covariances 

 

It would be helpful to assume that the remaining covariances are zero, namely: 

 

0,cov

0,cov

iCN

iiCN

x

x
 

 

The coefficients  and  are derived from an estimation run of the model, based on observed 
level-of-service values. In a forecasting model run in equilibrium they are fixed, and level-of-
service variables are derived from network assignment. The input and hence output of network 
assignment will depend on the values of the coefficients. 

 

For example, suppose a coefficient of trip cost is overestimated, so that fewer trips are predicted to 
distant destinations, and more to closer destinations. Then in assignment there should be less 
traffic flow on large, long-distance roads, and more on smaller, local roads. The level-of service 
variables will change accordingly. 

 

In other cases, it seems more reasonable to assume zero covariance: forecast public transport 
prices are unlikely to depend on the model outputs. 

 

To properly address this issue requires detailed theoretical or practical analysis, for example the 
whole model could be run several times with different values of the coefficients. In the meantime 
we may assume these covariances are all zero.  
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 A3.3 Covariance of the utility functions 

 

Whether the full covariance matrix of the coefficients and explanatory variables (the inputs) is 
estimated, or whether several values are assumed to be zero, the covariance matrix of the utility 
functions can be derived as a result. The true covariances of the utility functions are not obvious, 
however a linear approximation is possible. It is easy to calculate: 
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This gives rise to the linear approximation: 
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Assuming zero covariance between variables and coefficients, and adopting matrix notation, this 
becomes: 

 

CN
T
CNxx

T
CNCN xxVV

CNCN ,,cov  

 

where  is the covariance matrix. 
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We also have: 

 

,,,cov T
CNx

T
CN xV

CN
 

 

which may be zero. 
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A3.4 Derivatives of the choice probabilities 

 

The choice probabilities for the nested logit model are given by: 

 

m,dtC
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This can be decomposed into two sequential logits: 
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The derivatives with respect to the utility functions are: 
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We also need the derivative with respect to : 
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 A3.5 Derivatives of the choice frequencies 

 

The number of people from segment N predicted to make choice C is the product of the choice 
probability from the mode-destination choice model and the total number of trips output by the 
trip frequency model, and the derivatives of this product can be calculated: 

 

CNNCN PT  
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The second term is zero:  is not a function of V, although they both depend on the same 
explanatory variables x and therefore may be correlated. This could give rise to a covariance, to be 
examined when studying the trip frequency model, however this would certainly be very small 
and may be considered zero. 

 

Similarly, we have: 
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 A3.6 Covariance of the choice frequencies 

The covariance of two choice frequencies can be estimated using a first order approximation, 
which briefly is: 

 

,,,,,cov VTVTTT CNV

T

CNCNCN  

 

where T’ is the vector of first derivatives with respect to the variables V,  and , and  is the 
covariance matrix of those variables. 

 

Ignoring zero derivatives (but including covariances that may be zero) this is: 
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where: 
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and: 
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Ci and Cj range over all time-mode-destination triples, of which there are 3 5 1308=19620, so 
the covariance is the sum of (19620+2)2>385,000,000 terms; and that for only one pair of output 
values. Taking one term as an example (and this assuming zero covariance between explanatory 
variables and coefficients): 
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The P terms here are output by the model, and  and  are known, so the first and third 
components are easy to calculate; there are 19620 for each segment N. Still, there are at least 
1308 segments, since the segment incorporates origin zone. This results in over 25 million 
calculations. An added complication is wrought by the demographic segmentation, but since this 
is largely implemented through on-off variables, huge simplifications may be possible. 

 

The second component of the product is a cell of the covariance matrix, and will differ for each 
choice pair Ci and Cj, and each pair of segments N and N’. Since the segment N incorporates 
origin zone o, the explanatory variables for different segments will differ significantly. Even if we 

disregard demographic segmentation, there are 13082 5 3>25m origin-destination-mode-time 

sets, and a separate calculation is necessary for each pair of these: over 6.5 1014. 

 

Since modern processors perform at rates of around 1Gflops (109 floating point operations per 
second), and even considering no division is necessary, a full set of covariances would take a 
matter of weeks to calculate. Incorporating all six trip purposes would be expected to increase this 
time by a factor of 36. It would take, as the saying goes, “all year”. 

 

Our goal though is not only to calculate the covariance matrix of model output for a given 
covariance of the inputs, but also to solve an equation for the covariances of an iterated supply-

demand model that is in equilibrium. Since we will know the equilibrium values of , P, ,  

and x, and claim to know the covariance of , perhaps having theoretically derived any cross 

covariance cov( , x), the product above is in fact a first order function of the covariance of the 
explanatory variables: 
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or simply: 
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CAB xT  

 

The same is true of the other terms in the equation: those coming from the variances of  and . 

This is no accident; it is caused by our using linear approximations for the covariance 
calculations. 

 A3.7 Covariance of the flow on a link 

 

The flow assigned to a link L of the transport network at a given time period t depends on the 
number of trips predicted between each origin-destination pair, regardless of demographic 
segment, and is a linear combination of these values: 

 

do n

dMton

tL

do

tL TF
,

),,(),(  

 

This formula needs comment. Firstly, the choice frequencies T are summed over demographic 
population segments n. In certain forecasting scenarios, for example if a monetary toll were 
enforced on parts of the network, this would not be possible. For the sake of this analysis though, 
we shall assume route choice is independent of demographics. 

 

Then  is the fraction of travellers from origin o to destination d choosing routes that include 
link L. Mode m here has been replaced by M, which is taken to represent car travel. We are only 
interested in car journeys in this project. 

 

 is not a constant, it depends on all (or at least some) of the values of T. It is hoped that we 

can estimate the derivatives of  with respect to the values of T, or rather the sums T, at least 
for a given assignment when the model is in equilibrium. This is an area of debate, and is 
considered by Watling to be possible for a probabilistic assignment process. If it is possible, then 
given: 
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 where  

 

(where the bar indicates that this is a numerical value; we will not know an analytical formula) we 
can derive: 
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This is independent of n, as would be expected. We can use another first order approximation to 
find the covariance of the flow on two links, possibly in two different time periods. There are two 
approaches at this stage: we can either use the formula above for the derivative of F with respect 

to each T; or treat F as a function of the S = T terms, and find the covariance of these terms. 
Computationally these approaches are equivalent, the second is presented here: 
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where as above for T: 
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Again, this is a linear function of the covariance of the T terms by design. It is also 

computationally intensive; we appear to need the derivative of |L| 5m  terms (where |L| is the 
number of links on the network, around 40,000) with respect to 1m S terms in each case.  

 

However, many of these will be zero. For any origin-destination pair, only a small number of 
links will be used by the routes considered in assignment. The assignment program can identify 

these links for us, all other  values will be zero. Conversely, for any non-zero , we need only 
find derivatives with respect the traffic demand between origin-destination pairs that that use the 
corresponding link. 
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If a is the maximum number of links that a given o-d pair can feasibly use, and b the number of o-

d pairs that can feasibly use a given link, then we calculate at most a b 5m derivatives, which is 

much fewer than the |L| 5 1012 suggested above, since a<<|L| and b<<1m. 

 A3.8 Completing the circle 

 

We now have a formula for the covariance matrix of the flow on the links of the network, as a 
first order function of the covariance of the explanatory variables: 

 

BA xF  

 

It is now hoped that we can express the covariance of the explanatory variables in terms of the 
covariance of the network flow. This really requires understanding of the assignment process. 
However, let us consider one explanatory variable. Suppose the time of a journey on link L in 
time period t is a known function of the flow on that link: 

 

)( tLtLtL F  

 

The predicted time of travel from origin zone o to destination zone d by mode m will be: 

 

M,d)(tC

L
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A linear approximation for the covariance of the explanatory variables must be possible if the 
derivatives of the cost functions are known, and we will have an equation: 

 

0)( BIA

BA

F
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If ((A - I) is invertible, then the equation has a unique solution. Rather than invert such a large 
matrix though, it may be easier to find fixed points of the transformation AAX+B by other means, 
especially since we know AA as the product of several matrices that we have calculated separately. 
An exploration of efficient numerical algorithms might be useful. 
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 A3.9 Summary on the NSES models 

 

It is theoretically possible, using first order approximations, to estimate the covariance matrix of 
the flow assigned to the links of the transport network, given the covariance of the coefficients of 
the mode-destination-time period model which arises out of specification and sampling error. 
From this, confidence intervals for the flow on individual links and groups of links could be 
derived. 

 

However, this involves finding and possibly inverting a matrix, which is at least as large as the 
square of the number of links on the network. Considering time period increases this size by a 
factor of nine. This is around 1010 entries. Even assuming a lot of intermediate values to be zero, 
the number of calculations involved is absolutely prohibitive. If other methods for generating 
confidence intervals are available, they should be preferred. We recommend to use simulation 
methods for the NSES model error instead of analytical derivatives. 

 A3.10 Form of the Trip Frequency Models 

 

The following text describes calculations that would produce estimates of variance and covariance 
for the output of the LMS trip frequency models, along with projections of the amount of 
computer processing time required. These projections assume around one billion operations per 
second. 

 

There are eleven trip frequency models for the LMS, corresponding to eleven trip purposes15; 
each consists of two sub-models which are estimated and run separately. The first determines the 
probability that an individual makes any trips at all for the relevant purpose, while the second is a 
stop-go model which determines, for n>1, the probability of making an nth trip given that (n-1) 
have already been made. 

 

The explanatory variables for the models are determined by demographic population segment; 
there is no segmentation over origin zone and nor are any level-of-service variables used. We can 
assume moreover that they are the same for each model; if not they may be treated as separate 

variables, this is merely a matter of notation. 

 

All of the sub-models are binary logit models, and linear in parameters. The expected trip 
frequency per person output for purpose p, segment n is therefore: 

 

                                                      

15 Commuter trips for workers and non-workers, for example, are treated as separate purposes. 
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The explanatory variables x are all Boolean on-off indicators, so we shall assume that they are 
known exactly. Any error will be dealt with by simulation, when considering the number of 
people in each population segment. The constant term in the utility functions is treated as a 
coefficient, with corresponding variable fixed to one. 

 

It is worth commenting that, for a well specified model, the coefficients  take exact values. 
Therefore it makes no sense to calculate their variance, or the variance of other values derived 
from them. However, we are interested in the variance of their estimators, which in this case are 

maximum likelihood estimators. We should really write: 

 

i

inippn xV ˆˆˆ   (although we are treating x as fixed) 

 

We could use this notation throughout the document, but since all the variables studied are 
estimators it is unnecessary to make any distinctions. Similarly, it is confusing to express variances 
and covariances as functions of random variables; they should take precise values. However, we 
are actually expressing estimators of variance as functions of estimators. 

 A3.11 Derivation of Variance 

 

The variance and covariance of the estimators of coefficients  or  will be found for each sub-

model by a bootstrap resampling technique. Cross-model covariances such as cov( , ), and 

cov( , ) for different purposes, might also be found. We can calculate directly: 
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n

T
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npnpn xxWW
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and possibly the cross-model terms including most generally: 

 

n

T

npnpn xxWV
pp ,,cov  

 

In many cases we will not be able to calculate cross-purpose covariances, for example where the 
models apply to disjoint subsets of the population. It will be both necessary and possibly correct 
to assume that these are zero. 

 

Suppose that we calculate covariances within each sub-model, and between the two separate sub-

models for each purpose. This would require at most |n|2 3|p| covariance calculations, each 
derived as a sum of |i|2 terms, where |n| is the number of population segments, |p|=11 the number 
of purposes, and |i|=38 the maximum number of explanatory variables that enter any model 
(including the constant). The number |n| of population segments is not immediately obvious, as 
it is determined by the specification of the explanatory variables.  

 

In reality, the Boolean nature of the explanatory variables means that the vast majority of the 
terms will be zero, and selection of those that are not will be simple. The largest model16 has 38 
explanatory variables, but they occur in 10 categorical groups within each of which at most one 
variable will be non-zero. This means we need add only 10 terms per pair of segments, not 
382=1444. This model implicitly defines almost 1 million “segments” through these variables 
though – but many of those may be empty. In the worst case scenario that there were a million 

segments, we would need at most 3.3 1014 additions to calculate the full set of covariances (for all 

purposes and across the two sub-models). This should be possible within a week, or at very most 
two. 

 

Given the variance and covariance of the utility functions, we wish to perform similar calculations 
for the functions P and R, as in equation (2). Without knowing the sampling distributions of V 
and W, only approximations can be used. We use a standard first order approximation, first 
calculating the derivatives exactly: 
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16 Or at least, the model with the most variables. 
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pnpnpnpnpnpnpnpn PPVVPPPP 1,cov1,cov  

 

1,cov1,cov pnpnpnpnpnpn RWWRRR  

 

1,cov1,cov pnpnpnpnpnpnpn RWVPPRP  

 

The variance of an individual term is just a special case where n=n’. Allowing again for a very 

worst case scenario of a million segments, there are 33 1012 covariance calculations here. To 
perform them we must know in total 22 million P and R values. This will take a day or two at 
most. 

 

It remains to calculate the covariance of the  values, as in equation (1). It would be consistent 
with the previous calculations to use another first order approximation, which is very simple: 
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The number of calculations here is similar to the previous stage, and again a couple of days may 
be required. 

 

It is worth stating explicitly the special case for variance: 

 

pnpnpnpnpnpnpnpnpn RPPRRPPR ,cov2varvarvar 22
 

 

This can be compared with an exact formula if P and R are independent: 
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The second line replaces the expectations of the estimators of R and P with their values. It is 
certainly true that any statistic is an unbiased estimator of it’s own expectation. 

 

We can see the magnitude of the error brought about by using an approximation; it is 

approximately var(P) var(R). The smaller the variances themselves, the less significant this error 
will be. 

 A3.12 Inputs to the mode-destination model 

 

The mode destination choice models use fewer demographic segments than the trip frequency 
models. They take as input total trip counts, rather than trip counts per person. Therefore the 
inputs are: 

 

Nn

pnnpN  

 

Here  is the number of people in trip frequency segment n, and the sum is over trip frequency 
segments which are a subset of the given mode-destination segment N. 

 

Errors in the values of  will be handled by simulation, so in this analysis we can consider them 

fixed. The expression for the covariance of  is therefore exact: 

 

Nn Nn

npnpnnpNpN ,cov,cov  

 

Each pair of trip frequency segments n and n’ will be included in exactly one pair of mode-

destination segments N and N’, so the number of calculations is no more than 1.1 1013, which 
should take less than a day to perform. 

 A3.13 Overall processing time for the tour frequency models 

 

The predicted processing times in the text above are very pessimistic, and yet predict a total 
computer processing time of only around two weeks. Calculations for each purpose could be 
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performed independently, and perhaps 24 hours would be needed for each. This is feasible, but 
still rather long. For this reason, and to be consistent with the procedure used for the mode-
destination models, it was decided not to use the analytic methods for model uncertainty, but to 
use simulation methods. 
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Appendix 4. Detailed simulation outcomes 
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Table A4.1 LMS NSES simulation results at a national level for the reference situation (with congestion). (1) 
Input uncertainty, (2) Model uncertainty, (3) Both. 

Total Car driver Car
passenger

Train BTM Slow 
Total  

Scenario Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers 

Mean 11704962 343362408 3899493 106871986 700622 71352153 709868 20761188 15392973 80110208 32407918 622457941

Median 11739404 344608185 3960201 106446048 696777 70234959 692583 20363086 15343995 79884268 32474231 623133774

Minimum 9361704 272488228 3343520 88154416 555926 57687749 615142 18389135 14476592 74835762 31362100 573369065

Maximum 13731458 385846069 4308965 128423936 885335 90814915 854440 24506992 16915291 89678397 33291106 676961110

St. deviation 1025047 21204826 204475 8956772 82900 7946380 66688 1656062 473259 2875377 458827 21558267 

Percentile 5 9870036 299886757 3473376 91785036 568546 58369185 618934 18584399 14633749 76087248 31594922 583909863

Percentile 20 10644098 338761769 3752997 100993953 646850 65957299 668882 19714659 15135798 78297424 31998336 610589123

Percentile 80 12332377 359242395 4018936 112488193 795959 80030907 791648 22883731 15520655 80542112 32727877 634273707

Percentile 95 13298717 374541424 4153534 123939509 830452 83325049 840220 23961031 16464636 85904288 33086322 659928364

             

(1) Car driver Car
passenger

Train BTM Slow Total  

Scenario Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers 

Mean 11743430 342817888 3789352 105193837 700645 71153691 718028 20912244 15405249 80253005 32356703 620330665

Median 12107122 348043725 3835753 106113232 673047 68225641 683491 20019271 15238549 79519377 32477110 624132193

Minimum 9433600 272488228 3343520 88154416 555926 57753818 615142 18389135 14476592 74835762 31362100 573369065

Maximum 13731458 385846069 4161919 125939629 864797 87393387 854440 24506992 16840643 89410463 33114260 671489756

St. deviation 1371745 28428148 240878 10808622 107503 10256395 88155 2182409 630490 3748600 575570 27591406 

Percentile 5 9666051 287260481 3354641 88856206 560922 58007013 616047 18399436 14484657 75291398 31384360 578512920

Percentile 20 10330603 325323254 3627077 96462272 579055 59555650 622953 18644880 15065763 77696081 31883008 591824190

Percentile 80 13073349 360742260 3968482 112833419 817126 82498321 810827 23152719 15758287 83325218 32940726 638521641

Percentile 95 13510353 376749415 4148677 121717154 830235 83474123 844940 24172488 16801392 87200542 33078828 664833632

             

(2) Car driver Car
passenger

Train BTM Slow Total  

Scenario Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers 

Mean 11704730 344384801 3991079 107584407 696903 70933522 698117 20492879 15374718 79819162 32465547 623214769

Median 11723400 344253447 3995040 106446048 704165 71308540 696728 20455834 15377525 79865158 32472659 623005750

Minimum 11545587 339794722 3932082 101679125 653676 67288643 681905 19719053 15223594 78956579 32125519 614291122

Maximum 11841625 348291673 4046001 114680354 718996 73477516 721200 21632004 15520973 80526137 32762906 633929125

St. deviation 91017 2256386 35087 4215577 16794 1797091 9507 428529 80012 428658 180407 5607201 

Percentile 5 11563461 340339260 3936361 102061137 671035 67700583 684698 19883505 15255001 79154711 32240833 614925703

Percentile 20 11623000 343103666 3957805 103757421 683630 69463520 691443 20237890 15302385 79435344 32279047 618519069

Percentile 80 11791493 346357355 4018936 112228911 707978 72591549 704171 20683613 15430157 80101338 32663870 628936598

Percentile 95 11832040 347615203 4041638 113286476 717905 73317917 711933 21147580 15507309 80491297 32698344 629926869

             

(3) Car driver Car
passenger

Train BTM Slow Total  

Scenario Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers 

Mean 11628492 342406660 3936602 108803442 708015 72586338 717051 20995695 15404930 80406705 32395091 625198839

Median 11912344 347885214 3938544 106288936 668734 69063775 685908 19973697 15266155 80119538 32482066 623901573

Minimum 9361704 273755101 3531537 93619676 569644 57687749 618021 18759541 14486198 75513543 31586843 578963607

Maximum 13355913 372483576 4308965 128423936 885335 90814915 844190 24371992 16915291 89678397 33291106 676961110

St. deviation 1403185 28284780 239746 11954983 114907 11007019 86637 2112806 660140 4039436 601499 28067822 

Percentile 5 9765486 294994771 3609476 94818326 571115 59195788 619838 18815839 14714519 76284054 31641053 589630920

Percentile 20 10329855 335131240 3761905 99531229 618054 64696147 637450 19017972 15042056 77319127 31783322 604229117

Percentile 80 13106525 360841426 4148273 116195672 827052 83321086 804386 23016140 15648406 82577296 32952629 640910584

Percentile 95 13286065 368083745 4241066 128085635 861387 87446769 831636 23840662 16492727 86759208 33202399 666604641



Uncertainty in traffic forecasts                                                                                               RAND Europe 

 142

TableA4.2. LMS NSES simulation results at a national level for the project situation (with congestion). (1) 
Input uncertainty, (2) Model uncertainty, (3) Both. 

Total Car driver Car
passenger

Train BTM Slow 
Total  

Scenario Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers 

Mean 11708471 343603601 3900473 106925765 700118 71316613 709572 20752721 15389285 80087925 32407918 622686624

Median 11743362 344921357 3961296 106526261 696238 70196033 692301 20354627 15340151 79863682 32474230 623400929

Minimum 9365827 272667457 3343754 88165525 555300 57655106 614876 18376273 14472326 74819683 31362100 573764890

Maximum 13733954 386037312 4310303 128496106 884635 90762789 854199 24500247 16911387 89652444 33291106 677233494

St. deviation 1024958 21187221 204618 8965476 82856 7943640 66676 1655621 473283 2874675 458827 21551281 

Percentile 5 9873557 300165485 3473912 91819379 568022 58345166 618681 18575336 14629828 76063675 31594922 584197727

Percentile 20 10648179 339043972 3754122 101048387 646454 65923324 668615 19706538 15131292 78274974 31998336 610967190

Percentile 80 12335006 359386651 4019741 112543998 795452 80001483 791426 22874194 15516787 80517153 32727877 634488575

Percentile 95 13301973 374809395 4154782 124028303 829907 83293788 839880 23951309 16461017 85880880 33086322 660132692

             

(1) Car driver Car
passenger

Train BTM Slow Total  

Scenario Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers 

Mean 11746854 343056970 3790258 105238344 700144 71119374 717740 20904015 15401708 80231240 32356703 620549944

Median 12110093 348320699 3836703 106160491 672574 68193863 683244 20013508 15234897 79495972 32477110 624367803

Minimum 9436254 272667457 3343754 88165525 555300 57707256 614876 18376273 14472326 74819683 31362100 573764890

Maximum 13733954 386037312 4163171 126023659 864335 87363257 854199 24500247 16837712 89391740 33114259 671846732

St. deviation 1371780 28421940 241123 10824682 107467 10253795 88143 2181792 630529 3748065 575570 27574824 

Percentile 5 9669258 287515818 3355252 88895602 560742 57994584 615663 18390917 14481856 75264887 31384360 578689984

Percentile 20 10334069 325550134 3627658 96497780 578550 59519494 622657 18641353 15062805 77677145 31883008 592126171

Percentile 80 13076558 360815494 3969464 112868046 816574 82450472 810485 23144263 15754346 83300580 32940726 638637866

Percentile 95 13514910 377112359 4150109 121811241 829720 83430149 844632 24162383 16797994 87178893 33078828 664944655

             

(2) Car driver Car
passenger

Train BTM Slow Total  

Scenario Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers 

Mean 11708212 344623727 3992133 107644513 696396 70897503 697821 20484379 15370985 79796922 32465547 623447043

Median 11726590 344629618 3996076 106526261 703571 71279179 696444 20446666 15373918 79842685 32472659 623328950

Minimum 11549018 340010757 3933153 101728315 653193 67253220 681602 19710545 15219973 78933975 32125519 614428584

Maximum 11844304 348552236 4046917 114736984 718409 73449642 720956 21625203 15516695 80502458 32762906 634156769

St. deviation 90830 2248632 35066 4209041 16785 1797207 9513 428752 80031 428938 180407 5629276 

Percentile 5 11566830 340604984 3937457 102122582 670549 67668298 684379 19875182 15251194 79133053 32240835 615128009

Percentile 20 11626624 343443839 3958935 103830983 683183 69427824 691128 20229948 15298781 79412200 32279047 618611130

Percentile 80 11794539 346433299 4019741 112291409 707456 72555323 703888 20676038 15426570 80077211 32663870 629144062

Percentile 95 11834963 347898832 4042290 113347385 717469 73280127 711642 21139245 15503514 80465633 32698344 630163687

             

(3) Car driver Car
passenger

Train BTM Slow Total  

Scenario Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers Tours Kilometers 

Mean 11632222 342656611 3937582 108863110 707510 72549310 716739 20986817 15401038 80383300 32395091 625439148

Median 11916501 348146784 3939150 106318855 668203 69024240 685575 19963720 15261981 80097201 32482066 624010808

Minimum 9365827 274130900 3532523 93687513 569223 57655106 617703 18753927 14482431 75490329 31586843 579290751

Maximum 13360005 372629118 4310303 128496106 884635 90762789 843831 24360567 16911387 89652444 33291106 677233494

St. deviation 1402978 28246572 239797 11960919 114816 11002287 86621 2112459 660236 4038455 601499 28063065 

Percentile 5 9770033 295256110 3610678 94879031 570796 59169165 619544 18808143 14710775 76263535 31641053 589897186

Percentile 20 10332599 335369695 3762857 99574308 617564 64659494 637175 19008850 15038283 77297488 31783322 604461017

Percentile 80 13109537 361099984 4149229 116260076 826608 83292610 804037 23006127 15643787 82547929 32952629 641180462

Percentile 95 13289535 368283502 4242292 128161517 860747 87402420 831260 23832447 16489374 86738431 33202399 666915700
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Table A4.3. LMS NSES simulation results at a national level for the reference situation (without 
congestion feedback). (1) Input uncertainty, (2) Model uncertainty, (3) Both. 

Total Scenario Tours Kilometers 

Mean 11794237 359837735.7 

Median 11834011 361645260.5 

Minimum 9394905 275860878 

Maximum 13856394 411430726 

St. Deviation 1056449 25950401.99 

Percentile 5 9907141 306382722.5 

Percentile 20 10797649 355402508 

Percentile 80 12413220 378215700.4 

Percentile 95 13392356 397475705.2 

   

(1) Scenario Tours Kilometers 

Mean 11828979 358976705.2 

Median 12196028 363309857 

Minimum 9462508 275860878 

Maximum 13856394 411430726 

St. Deviation 1385011 34394148.68 

Percentile 5 9663120 290132914.2 

Percentile 20 10406062 338235651.6 

Percentile 80 13169227 382155785.6 

Percentile 95 13628865 400703369.7 

   

(2) Scenario Tours Kilometers 

Mean 11796223 361027201.7 

Median 11815039 360978186.5 

Minimum 11636467 355509893 

Maximum 11933067 365835606 

St. Deviation 91730.23 2719292.685 

Percentile 5 11651570 356062534.6 

Percentile 20 11715883 359594100 

Percentile 80 11885719 363229067.4 

Percentile 95 11924422 365106793.6 

   

(3)  Scenario Tours Kilometers 

Mean 11720780 359180864.9 

Median 12007062 365419021.5 

Minimum 9394905 277778198 

Maximum 13469660 395653691 

St. Deviation 1414342 33884801.02 

Percentile 5 9825038 302164926.1 

Percentile 20 10401533 350798610.2 

Percentile 80 13209729 381095752.8 

Percentile 95 13379958 391559605.9 
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Table A4.4. Selected link results for Reference 2020: hours and flows 

TOTAL 
A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam A2 Amsterdam-Utrecht  

Scenario Hours Flow (Total) Hours Flow (Total) Hours Flow (Total) 

Mean 2466.66 83338.7 4550.5 86660.68 5428.28 114703.78 

Median 2464.5 83474 4579 86746 5451.5 115138 

Minimum 2227 75428 3195 77465 4295 92406 

Maximum 2688 90199 5728 94711 6332 133304 

St. deviation 84.505 2663.013 467.038 3053.015 366.358 7289.782 

Percentile 5 2315.4 78342.1 3692.7 81021.1 4729.25 100911.8 

Percentile 20 2441 82828.4 4394.2 85625.6 5294 111960.4 

Percentile 80 2522 84558.2 4858.4 88339 5649 118935.4 

Percentile 95 2600.15 87274.25 5206 91103.05 5937.75 124879 

       

(1)
A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam A2 Amsterdam-Utrecht  

Scenario Hours Flow (Total) Hours Flow (Total) Hours Flow (Total) 

Mean 2469.5 83305.25 4549.65 86697.25 5428.5 114780.6 

Median 2484 84147 4704.5 87728.5 5558 117122 

Minimum 2227 75428 3195 77465 4303 92567 

Maximum 2688 90199 5728 94711 6332 133304 

St. deviation 110.146 3481.372 599.491 3999.851 479.134 9577.602 

Percentile 5 2280.2 77162.7 3468.6 79612.95 4543.35 97192.55 

Percentile 20 2377.6 80476.6 4082.8 83642.6 5047.8 107287.8 

Percentile 80 2531.4 85602.4 4882 88948.4 5657.4 119704.4 

Percentile 95 2635.75 88444.35 5343.25 92260 6095.45 128326.95 

       

(2)
A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam A2 Amsterdam-Utrecht  

Scenario Hours Flow (Total) Hours Flow (Total) Hours Flow (Total) 

Mean 2462.75 83369.55 4550.9 86636.45 5421.4 114506.9 

Median 2464 83388.5 4534 86522.5 5408.5 114356.5 

Minimum 2441 82818 4402 85910 5256 111078 

Maximum 2487 83904 4826 87876 5600 117745 

St. deviation 13.094 281.247 124.382 549.449 78.678 1532.135 

Percentile 5 2441 82830 4407 86027 5296 112040 

Percentile 20 2452 83216 4435 86176 5375 113472 

Percentile 80 2472 83589 4647 87033 5472 115627 

Percentile 95 2484 83716 4783 87537 5537 116577 

       

(3)
A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam A2 Amsterdam-Utrecht  

Scenario Hours Flow (Total) Hours Flow (Total) Hours Flow (Total) 

Mean 2468.8 83343.9 4551.4 86636 5441.6 114943.9 

Median 2487 83870.5 4675.5 87740.5 5620.5 118606 

Minimum 2230 75520 3221 77576 4295 92406 

Maximum 2633 88486 5382 91864 5994 126175 

St. deviation 113.351 3584.945 629.439 4040.985 482.418 9515.805 

Percentile 5 2293.45 77747.5 3548.6 80069.45 4645.1 99371.55 

Percentile 20 2400.6 81372.4 4172.2 84758.6 5237 110727.4 

Percentile 80 2547.6 85841 5028.4 89382.6 5721.6 120372 

Percentile 95 2595.65 87347.95 5230.8 90759.25 5885.1 123723.85 
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Table A4.5. Selected link results for Reference 2020: Q-hours and flows 

Total A20 Rotterdam-Gouda  A20 Gouda-Rotterdam A2 Amsterdam-Utrecht  

Scenario Q-hours Flow (total) Q-hours Flow (total) Q-hours Flow (total) 

Mean 37.26 83338.7 1481.08 86660.68 15.02 114703.78 

Median 35 83474 1490.5 86746 16 115138 

Minimum 25 75428 818 77465 0 92406 

Maximum 57 90199 2083 94711 29 133304 

St. deviation 7.323 2663.013 251.098 3053.015 6.912 7289.782 

Percentile 5 28.45 78342.1 1017.55 81021.1 2.25 100911.8 

Percentile 20 31 82828.4 1361.8 85625.6 11 111960.4 

Percentile 80 44 84558.2 1657.2 88339 22 118935.4 

Percentile 95 51.55 87274.25 1856.15 91103.05 23.55 124879 

       

(1) A20 Rotterdam-Gouda  A20 Gouda-Rotterdam A2 Amsterdam-Utrecht 

Scenario Q-hours Flow (total) Q-hours Flow (total) Q-hours Flow (total) 

Mean 40 83305.25 1488.15 86697.25 13.3 114780.6 

Median 36.5 84147 1570.5 87728.5 14 117122 

Minimum 25 75428 818 77465 0 92567 

Maximum 57 90199 2083 94711 24 133304 

St. deviation 8.903 3481.372 320.894 3999.851 7.241 9577.602 

Percentile 5 28.8 77162.7 913.95 79612.95 0 97192.55 

Percentile 20 33.8 80476.6 1207.4 83642.6 5.8 107287.8 

Percentile 80 47.8 85602.4 1677.6 88948.4 18 119704.4 

Percentile 95 56.05 88444.35 1941.45 92260 23.05 128326.95 

       

(2) A20 Rotterdam-Gouda  A20 Gouda-Rotterdam A2 Amsterdam-Utrecht 

Scenario Q-hours Flow (total) Q-hours Flow (total) Q-hours Flow (total) 

Mean 34.75 83369.55 1470.6 86636.45 16.8 114506.9 

Median 31 83388.5 1460 86522.5 16 114356.5 

Minimum 28 82818 1368 85910 11 111078 

Maximum 47 83904 1624 87876 28 117745 

St. deviation 5.857 281.247 70.700 549.449 5.012 1532.135 

Percentile 5 28 82830.35 1380.35 86026.85 11 112040.35 

Percentile 20 31 83215.8 1413.4 86176.2 11 113472.4 

Percentile 80 38.8 83589.2 1513.8 87033 22 115627 

Percentile 95 45.1 83715.9 1589.8 87536.85 23.25 116577.45 

       

(3) A20 Rotterdam-Gouda  A20 Gouda-Rotterdam A2 Amsterdam-Utrecht 

Scenario Q-hours Flow (total) Q-hours Flow (total) Q-hours Flow (total) 

Mean 36.8 83343.9 1487.9 86636 14.9 114943.9 

Median 36.5 83870.5 1548 87740.5 16 118606 

Minimum 30 75520 826 77576 0 92406 

Maximum 44 88486 1970 91864 29 126175 

St. deviation 4.614 3584.945 339.009 4040.985 9.098 9515.805 

Percentile 5 30.9 77747.5 966.4 80069.45 2.25 99371.55 

Percentile 20 33.6 81372.4 1239.6 84758.6 5.8 110727.4 

Percentile 80 40.6 85841 1756.8 89382.6 23 120372 

Percentile 95 43.55 87347.95 1875.5 90759.25 26.3 123723.85 
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Table A4.6. Selected link results for project situation 2020: hours and flows 

total A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam

A2 Amsterdam-
Utrecht

A20-A13 A13-A20

Scenario Hours Flow (total) Hours Flow 
(total)

Hours Flow (total) Hours Flow 
(total)

Hours Flow (total) 

Mean 2230.74 77227.98 2399.54 74000.46 5409.9 114316.72 967.58 37553.8 764.26 30263.92 

Median 2223.5 77038.5 2393.5 73522.5 5429 114742 972 37806.5 769.5 30645.5 

Minimum 2054 71155 2167 67168 4295 92374 685 26923 471 19277 

Maximum 2426 83361 2704 82787 6303 132554 1145 43890 966 37764 

St. deviation 70.557 2332.071 89.545 2707.880 366.716 7259.484 93.926 3428.976 93.240 3667.518 

Percentile 5 2115.35 73295.65 2251.15 69865.4 4687.35 100224.7 782.15 30724.6 589.4 21963 

Percentile 20 2202.2 76298 2351.4 72737 5279 111499.6 929.8 36184.6 755.8 29555 

Percentile 80 2268 78486.8 2441.2 75669 5618.4 118901.8 1024.8 39624.8 818.2 32329 

Percentile 95 2355.3 81205.3 2553.2 78700.7 5923.15 124631.25 1114.85 42752 900.35 35362.45 

           

(1) A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam

A2 Amsterdam-
Utrecht

A20-A13 A13-A20

Scenario Hours Flow (total) Hours Flow 
(total)

Hours Flow (total) Hours Flow 
(total)

Hours Flow (total) 

Mean 2238.2 77448.8 2408.45 74514.3 5408.55 114380.75 968.2 37534.75 763.85 30398.15 

Median 2245.5 77753.5 2403.5 74811 5520.5 116510.5 999 38611 783.5 31239 

Minimum 2060 71367 2167 67471 4317 92863 685 26923 471 19294 

Maximum 2426 83361 2704 82787 6303 132554 1145 43890 966 37764 

St. deviation 91.651 3024.347 120.761 3543.811 482.363 9577.032 122.676 4475.479 121.109 4492.017 

Percentile 5 2085.65 72268.55 2218.3 69030.9 4488 96468.25 731.55 28932.25 535.6 21829.55 

Percentile 20 2162.2 74904.4 2332.6 71803.4 5030.8 106907.4 871.4 34158.6 675 27157.2 

Percentile 80 2286.2 79132.2 2477.6 76191.6 5659.6 119676.6 1057.8 40901.4 843.8 33289.2 

Percentile 95 2420.3 83176.7 2598.55 80374.95 6058.85 127528.5 1127.9 43219.3 942.25 36866.25 

           

(2) A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam

A2 Amsterdam-
Utrecht

A20-A13 A13-A20

Scenario Hours Flow (total) Hours Flow 
(total)

Hours Flow (total) Hours Flow (total) Hours Flow (total) 

Mean 2220.75 76929.75 2380.35 73275.5 5407.6 114181.8 966.8 37576.85 766.25 30118.15 

Median 2219.5 76884 2380 73348 5406.5 114170.5 967.5 37628.5 765 30485 

Minimum 2195 76058 2341 72689 5243 110906 944 36705 757 21963 

Maximum 2248 77798 2418 73949 5573 117187 998 38472 778 31033 

St. deviation 12.793 438.345 24.487 357.347 80.509 1533.685 12.800 440.699 6.034 1932.164 

Percentile 5 2204 76343 2345 72712 5286 111611 951.6 37015.65 757 29778.65 

Percentile 20 2211 76600 2360 72939 5351 113046 955.6 37152.8 761.8 30353.2 

Percentile 80 2230 77268 2403 73558 5467 115466 974.4 37914.6 772.6 30684.8 

Percentile 95 2240 77645 2417 73710 5556 116261 985.65 38083.45 775.15 30913.3 

           

(3) A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam

A2 Amsterdam-
Utrecht

A20-A13 A13-A20

Scenario Hours Flow (total) Hours Flow 
(total)

Hours Flow (total) Hours Flow 
(total)

Hours Flow (total) 

Mean 2235.8 77382.8 2420.1 74422.7 5417.2 114458.5 967.9 37545.8 761.1 30287 

Median 2231 77304 2437 75563.5 5586 117947 978.5 37959 795 31677 

Minimum 2054 71155 2205 67168 4295 92374 693 27392 471 19277 

Maximum 2394 82288 2573 79130 5956 125484 1130 43487 935 36622 

St. deviation 93.012 3092.243 100.690 3344.709 476.668 9394.414 126.142 4617.108 127.559 4760.661 

Percentile 5 2106.2 72968.95 2250.9 68970.25 4632.5 99084.4 773.55 30425 557.4 22641.65 

Percentile 20 2180.4 75545.2 2394.2 72858.6 5195.4 110040.4 912 35550.4 685.4 27572.4 

Percentile 80 2299.2 79583.6 2466.2 76114 5716 120105.2 1052 40625 825.4 32600 

Percentile 95 2355.3 81205.3 2539.7 78181.4 5867.8 123344.7 1112.9 42780.5 897.2 35242.3 
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Table A4.7. Selected link results for project situation 2020: Q-hours and flows 

Total A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam

A2 Amsterdam-
Utrecht

A20-A13 A13-A20

Scenario Q-hours Flow (total) Q-hours Flow 
(total)

Q-hours Flow (total) Q-
hours

Flow (total) Q-hours Flow (total) 

Mean 0.06 77227.98 276.62 74000.46 15.02 113906.14 0.16 37553.8 0 30263.92 

Median 0 77038.5 278 73522.5 16.5 114701 0 37806.5 0 30645.5 

Minimum 0 71155 234 67168 0 92374 0 26923 0 19277 

Maximum 3 83361 330 82787 51 132554 2 43890 0 37764 

St. deviation 0.424 2332.071 21.722 2707.880 8.679 7663.148 0.548 3428.976 0.000 3667.518 

Percentile 5 0 73295.65 246.45 69865.4 0 96658 0 30724.6 0 21963 

Percentile 20 0 76298 257.8 72737 10 110870.6 0 36184.6 0 29555 

Percentile 80 0 78486.8 292 75669 18 118901.8 0 39624.8 0 32329 

Percentile 95 0 81205.3 315 78700.7 23.55 124631.25 2 42752 0 35362.45 

           

(1) A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam

A2 Amsterdam-
Utrecht

A20-A13 A13-A20

Scenario Q-hours Flow (total) Q-hours Flow 
(total)

Q-hours Flow (total) Q-
hours

Flow (total) Q-hours Flow (total) 

Mean 0.15 77448.8 269.05 74514.3 12.55 114380.75 0.2 37534.75 0 30398.15 

Median 0 77753.5 272 74811 12 116510.5 0 38611 0 31239 

Minimum 0 71367 234 67471 0 92863 0 26923 0 19294 

Maximum 3 83361 299 82787 24 132554 2 43890 0 37764 

St. deviation 0.671 3024.347 18.069 3543.811 6.809 9577.032 0.616 4475.479 0.000 4492.017 

Percentile 5 0 72268.55 241.6 69030.9 0 96468.25 0 28932.25 0 21829.55 

Percentile 20 0 74904.4 248.8 71803.4 6 106907.4 0 34158.6 0 27157.2 

Percentile 80 0 79132.2 286 76191.6 17.2 119676.6 0 40901.4 0 33289.2 

Percentile 95 0.15 83176.7 289.5 80374.95 23.05 127528.5 2 43219.3 0 36866.25 

           

(2) A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam

A2 Amsterdam-
Utrecht

A20-A13 A13-A20

Scenario Q-hours Flow (total) Q-hours Flow 
(total)

Q-hours Flow (total) Q-
hours

Flow (total) Q-hours Flow (total) 

Mean 0 76929.75 279.1 73275.5 18.1 113155.35 0.2 37576.85 0 30118.15 

Median 0 76884 281 73348 17 114102 0 37628.5 0 30485 

Minimum 0 76058 246 72689 0 96658 0 36705 0 21963 

Maximum 0 77798 317 73949 51 116212 2 38472 0 31033 

St. deviation 0.000 438.345 20.016 357.347 9.199 4114.621 0.616 440.699 0.000 1932.164 

Percentile 5 0 76343 246.95 72711.8 10.45 110193.6 0 37015.65 0 29778.65 

Percentile 20 0 76600.4 258.8 72939.2 16 112875.2 0 37152.8 0 30353.2 

Percentile 80 0 77268 297 73558.2 22 115147.4 0 37914.6 0 30684.8 

Percentile 95 0 77645.05 309.4 73709.6 24.4 115803.5 2 38083.45 0 30913.3 

           

(3) A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam

A2 Amsterdam-
Utrecht

A20-A13 A13-A20

Scenario Q-hours Flow (total) Q-hours Flow 
(total)

Q-hours Flow (total) Q-
hours

Flow (total) Q-hours Flow (total) 

Mean 0 77382.8 286.8 74422.7 13.8 114458.5 0 37545.8 0 30287 

Median 0 77304 285.5 75563.5 14 117947 0 37959 0 31677 

Minimum 0 71155 250 67168 0 92374 0 27392 0 19277 

Maximum 0 82288 330 79130 36 125484 0 43487 0 36622 

St. deviation 0.000 3092.243 27.888 3344.709 9.864 9394.414 0.000 4617.108 0.000 4760.661 

Percentile 5 0 72968.95 253.15 68970.25 2.25 99084.4 0 30425 0 22641.65 

Percentile 20 0 75545.2 259.4 72858.6 5.8 110040.4 0 35550.4 0 27572.4 

Percentile 80 0 79583.6 315 76114 17.2 120105.2 0 40625 0 32600 

Percentile 95 0 81205.3 323.25 78181.4 27.9 123344.7 0 42780.5 0 35242.3 
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Table A4.8. Difference between project and reference situation in hours and flows at selected links. 

TOTAL 
A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam A2 Amsterdam-Utrecht  

Scenario Hours Flow (Total) Hours Flow (Total) Hours Flow (Total) 

Mean -235.92 -6110.72 -2150.96 -12660.22 -18.38 -387.06 

Median -240.5 -6126 -2180.5 -12818 -26 -499.5 

Minimum -269 -7209 -3024 -14755 -89 -1550 

Maximum -167 -4061 -1016 -9994 81 1095 

St. deviation 21.868 644.482 389.203 1004.027 27.471 472.999 

Percentile 5 -265.1 -6872.1 -2677.35 -14083.85 -51.55 -972.5 

Percentile 20 -251.4 -6657.4 -2427 -13537.8 -37.2 -718.6 

Percentile 80 -222 -5817.6 -1993 -11917 2.8 -20.4 

Percentile 95 -198.25 -5046.45 -1433 -10776.8 21 316.9 

       

(1)
A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam A2 Amsterdam-Utrecht  

Scenario Hours Flow (Total) Hours Flow (Total) Hours Flow (Total) 

Mean -231.3 -5856.45 -2141.2 -12182.95 -19.95 -399.85 

Median -230 -5953.5 -2295.5 -11986.5 -29 -524 

Minimum -269 -7139 -3024 -13823 -89 -1550 

Maximum -167 -4061 -1028 -9994 81 1095 

St. deviation 25.992 683.863 486.682 970.243 35.098 587.533 

Percentile 5 -264.25 -6853.05 -2744.7 -13542.75 -60.5 -1108.25 

Percentile 20 -254.6 -6167.8 -2473.4 -13185.2 -37.6 -755.6 

Percentile 80 -212.2 -5380.2 -1753.2 -11829.4 3.2 127 

Percentile 95 -194.55 -4894.15 -1250.3 -10582.05 17.35 335.95 

       

(2)
A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam A2 Amsterdam-Utrecht  

Scenario Hours Flow (Total) Hours Flow (Total) Hours Flow (Total) 

Mean -242 -6439.8 -2170.55 -13360.95 -13.8 -325.1 

Median -243.5 -6496 -2133.5 -13168 -19 -417 

Minimum -263 -7209 -2447 -14755 -52 -1222 

Maximum -219 -5852 -1995 -12128 29 604 

St. deviation 11.309 380.998 127.750 655.693 22.369 424.345 

Percentile 5 -260.15 -6906.9 -2389.05 -14215.4 -42.5 -786.9 

Percentile 20 -251 -6723.2 -2276.2 -14027.2 -29.4 -615.8 

Percentile 80 -233.6 -6025.6 -2062.2 -12923.2 6.8 -7.2 

Percentile 95 -221.85 -5884.3 -2013.05 -12422.5 21.4 347.5 

       

(3)
A20 Rotterdam-
Gouda

A20 Gouda-
Rotterdam A2 Amsterdam-Utrecht  

Scenario Hours Flow (Total) Hours Flow (Total) Hours Flow (Total) 

Mean -233 -5961.1 -2131.3 -12213.3 -24.4 -485.4 

Median -239 -6136.5 -2205.5 -12099.5 -28.5 -541 

Minimum -267 -6671 -2809 -13577 -45 -835 

Maximum -176 -4365 -1016 -10408 8 2 

St. deviation 27.717 747.288 537.339 879.839 18.957 299.242 

Percentile 5 -266.55 -6663.35 -2720.8 -13434.35 -45 -819.7 

Percentile 20 -249.2 -6572.4 -2575.4 -12839.2 -41 -727.4 

Percentile 80 -220.2 -5352.8 -1778 -11858.2 -7.2 -273.6 

Percentile 95 -187.25 -4778.55 -1297.7 -11005.15 4.4 -13.3 
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Table A4.9. Difference between project and reference in Q-hours and flows at selected links. 

Total A20 Rotterdam-Gouda  A20 Gouda-Rotterdam A2 Amsterdam-Utrecht  

Scenario Q-hours Flow (total) Q-hours Flow (total) Q-hours Flow (total) 

Mean -37.2 -6110.72 -1204.46 -12660.22 0 -797.64 

Median -35 -6126 -1203.5 -12818 0 -587.5 

Minimum -57 -7209 -1794 -14755 -16 -14420 

Maximum -25 -4061 -535 -9994 28 2575 

St. deviation 7.354 644.482 249.268 1004.027 6.931 2320.772 

Percentile 5 -51.55 -6872.1 -1591.25 -14083.85 -11 -2191.5 

Percentile 20 -44 -6657.4 -1379.6 -13537.8 -6 -1460.4 

Percentile 80 -31 -5817.6 -1076.4 -11917 6 105.4 

Percentile 95 -28.45 -5046.45 -763.4 -10776.8 7 1775.7 

       

(1) A20 Rotterdam-Gouda  A20 Gouda-Rotterdam A2 Amsterdam-Utrecht 

Scenario Q-hours Flow (total) Q-hours Flow (total) Q-hours Flow (total) 

Mean -39.85 -5856.45 -1219.1 -12182.95 -0.75 -399.85 

Median -36.5 -5953.5 -1302.5 -11986.5 0 -524 

Minimum -57 -7139 -1794 -13823 -11 -1550 

Maximum -25 -4061 -570 -9994 6 1095 

St. deviation 9.016 683.863 313.285 970.243 5.250 587.533 

Percentile 5 -56.05 -6853.05 -1667.65 -13542.75 -10.05 -1108.25 

Percentile 20 -47.8 -6167.8 -1424.4 -13185.2 -6 -755.6 

Percentile 80 -33 -5380.2 -937.4 -11829.4 5.2 127 

Percentile 95 -28.8 -4894.15 -671.65 -10582.05 6 335.95 

       

(2) A20 Rotterdam-Gouda  A20 Gouda-Rotterdam A2 Amsterdam-Utrecht 

Scenario Q-hours Flow (total) Q-hours Flow (total) Q-hours Flow (total) 

Mean -34.75 -6439.8 -1191.5 -13360.95 1.3 -1351.55 

Median -31 -6496 -1186 -13168 0 -1369.5 

Minimum -47 -7209 -1343 -14755 -16 -14420 

Maximum -28 -5852 -1080 -12128 28 2575 

St. deviation 5.857 380.998 74.128 655.693 9.286 3600.239 

Percentile 5 -45.1 -6906.9 -1331.6 -14215.4 -11.25 -5724.65 

Percentile 20 -38.8 -6723.2 -1228.4 -14027.2 -5.2 -1750.4 

Percentile 80 -31 -6025.6 -1132.6 -12923.2 6 1248.4 

Percentile 95 -28 -5884.3 -1097.1 -12422.5 11.85 2324.2 

       

(3) A20 Rotterdam-Gouda  A20 Gouda-Rotterdam A2 Amsterdam-Utrecht 

Scenario Q-hours Flow (total) Q-hours Flow (total) Q-hours Flow (total) 

Mean -36.8 -5961.1 -1201.1 -12213.3 -1.1 -485.4 

Median -36.5 -6136.5 -1253 -12099.5 0 -541 

Minimum -44 -6671 -1669 -13577 -6 -835 

Maximum -30 -4365 -535 -10408 7 2 

St. deviation 4.614 747.288 344.423 879.839 3.872 299.242 

Percentile 5 -43.55 -6663.35 -1595.65 -13434.35 -6 -819.7 

Percentile 20 -40.6 -6572.4 -1503.6 -12839.2 -5.2 -727.4 

Percentile 80 -33.6 -5352.8 -933.8 -11858.2 0 -273.6 

Percentile 95 -30.9 -4778.55 -685.3 -11005.15 3.85 -13.3 
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Table A4.10 NRM RSES simulation results at the study area level for the reference situation (with 
congestion). (1) Input uncertainty, (2) Model uncertainty, (3) Both. 
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TableA4.11. NRM RSES simulation results at the study area level for the project situation (with 
congestion). (1) Input uncertainty, (2) Model uncertainty, (3) Both. 
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Table A4.12. NRM RSES simulation results at the study area level for the reference situation 
(without congestion feedback). (1) Input uncertainty, (2) Model uncertainty, (3) Both. 
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Table A4.13. Selected link results for Reference 2020: hours and flows 
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Table A4.14. Selected link results for Reference 2020: Q-hours and flows 
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Table A4.15. Selected link results for project situation 2020: hours and flows 
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Table A4.16. Selected link results for project situation 2020: Q-hours and flows 
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Table A4.17. Difference between project and reference situation in hours and flows at selected 
links. 
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Table A4.18. Difference between project and reference in Q-hours and flows at selected links. 
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