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This paper analyzes costly information acquisition in asset markets with Knightian
uncertainty about the asset fundamentals. In these markets, acquiring information not only
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lack knowledge of this distribution cannot correctly interpret the information other investors
impound into the price. We show that, due to uncertainty aversion, the incentives to reduce
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1. INTRODUCTION

A basic tenet of financial economics holds that asset markets help summarize information
dispersed across individual investors. But what information do asset prices transmit?
Grossman and Stiglitz (1980) argue that, as more agents acquire information, it becomes
easier to free-ride on the (costly) learning of others merely by observing the asset price.
The value of information diminishes with information acquisition.

The case for such a well-articulated role of the asset price relies on a number
of assumptions that have become standard. This paper relaxes what is arguably the
most standard of them: that uncertainty can be quantified probabilistically. We consider
a model in which the market fundamentals are subject to ambiguity, or Knightian
uncertainty (Keynes, 1921; Knight, 1921). In this market, aversion to ambiguity provides
incentives to acquire information, incentives that increase with information acquisition.
This property leads to a host of new conclusions about the informational role of asset
prices.

Our results rely on a framework in which uninformed investors face Knightian
uncertainty while attempting to glean information from the equilibrium price. We solve
for the equilibrium in this asset market with asymmetric information, and then analyze
endogenous information acquisition. The central element of our analysis is the agents’
attitude vis-à-vis the information that prices reveal: How much of a price change can be
attributed to new information, and how much to a liquidity shock? When uninformed
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investors are uncertain about the true distribution of the information held by the
informed, this question cannot be given a precise probabilistic answer. In this market, the
value of acquiring information has two components. The first accounts for the marginal
value of reducing the riskiness of the fundamentals for any given prior distribution of
returns—the standard Grossman and Stiglitz component. The second relates to how
valuable it is for an ambiguity averse agent to resolve his ambiguity—the “value of
parameter uncertainty.” We show that the value of parameter uncertainty increases
precisely as prices become more informative. If uncertainty is high enough, it dominates
the standard Grossman-Stiglitz free-riding effect. Information complementarities result:
the larger the mass of informed agents, the higher the benefits of becoming informed.

Why is resolving ambiguity more valuable when there are more informed agents? As
it turns out, the value of parameter uncertainty lies in the benefit of forming portfolio
decisions based on the true distribution of the information revealed by the price. This
benefit is high precisely when prices incorporate more information on the fundamentals.
Consider two polar cases:

In the first, no agent pays for information, and so the equilibrium price at t = 1, say,
contains no information and is unambiguous (albeit risky because of liquidity trading)
from an ex ante perspective (i.e., prior to trading and before the arrival of information, at
t = 0). However, returns from trading are ambiguous from an ex ante perspective because
they amount to the ambiguous asset payoff less the unambiguous price. In this case,
knowledge of the true return distribution at t = 1 provides an informational advantage
only when the true expected returns differ from those the uninformed investors impound
into the equilibrium price. Ex ante, however, this informational advantage cannot be
quantified probabilistically because the true return distribution is ambiguous. Thus, an
ambiguity averse agent will give this advantage little weight as he formulates his choice
over whether to pay for information. The value of parameter uncertainty is small.

At the other extreme, if all agents pay for information, then the price encodes
important information about payoffs and is therefore ambiguous from an ex ante
perspective. In contrast to the previous case, the anticipated returns are less ambiguous
ex ante: they are the difference between the ambiguous payoff and the ambiguous price,
and so the ambiguity “cancels out” as the price fully incorporates information about the
asset payoff. However, knowledge about the probability distribution of the asset payoffs
is valuable, because it provides the uninformed investors with a “code” for correctly
interpreting the information conveyed through the price.

This feature of our model is illustrated by the following example. The 3-color Ellsberg
urn contains 30 red balls and a total of 60 black and yellow balls.1 Informed decision
makers know the ratio of black to yellow balls, while the uninformed do not. At date-0,
decision makers face a bet that pays 0 if a red ball is drawn and $1 otherwise—a clearly
unambiguous bet. The bet will be resolved at date-2. However, there is an interim date-1
at which it will become known whether the drawn ball is black or not. If the drawn ball
is black, then the date-2 payoffs are known at date-1. However, if the drawn ball is not
black, then at date-1 the decision maker knows that the drawn ball will be either red
or yellow, but does not know which one it will be. Informed decision makers can use
Bayes’ law and determine the probability of red or yellow, but the uninformed cannot,
as the payoffs are no longer unambiguous. That is, learning about the ratio of black and

1. Similar examples have been employed in the decision theory literature (e.g., Epstein and
Schneider 2003; Hanany and Klibanoff 2007, 2009; Siniscalchi 2011).
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yellow balls is valuable for forecasting the outcome of the bet precisely because of the
information available at date-1.

In our model, the asset payoff is f = θ + ε, where θ is ambiguous (its mean is
unknown), but can be learnt at some cost, and where ε has a known distribution. When all
agents are informed, the price, p, moves one-to-one with the investors’ private information
θ, i.e., p = θ− z, where z is the random asset supply. Asset returns, R, are unambiguous
as a result, R = f − p = ε+ z. Even if the returns are unambiguous (tantamount to the
unambiguous bet that places $1 on “not-red” in the urn example), p reveals information
that is useful for forecastingR:R and p have z in common. However, p contains ambiguous
information, θ, and is not very useful unless one knows the probability distribution of
θ (just as the information “not-black” is not very useful unless one knows the original
composition of balls in the urn in Ellsberg’s example). For instance, a low realization of
p should not be interpreted as good news for future returns if the unknown mean of θ
is very low (just as the information “not-black” does not imply high chances of getting
$1 if there are few yellow balls in the urn). An uninformed agent’s portfolio decision will
reflect his aversion to this uncertainty. However, whether the resulting decision correctly
accounts for the true meaning of the price realization ultimately depends on the true
distribution of θ, which is ambiguous ex ante. Hence, while assessing the implications
of remaining uninformed, an ambiguity averse investor fears making the wrong portfolio
decision in light of price information. The value of parameter uncertainty is higher when
prices incorporate information than when they do not.

A key prediction of our model is that in markets with ambiguity aversion, the value
of parameter uncertainty increases when asset prices are sufficiently informative. Note
that what is crucial is not merely the ambiguity, but the aversion to it. Critically, we show
that in the smooth ambiguity extension of our baseline model (see below), higher-order
uncertainty does not lead to information complementarities, unless agents are ambiguity
averse.

It is well known that information complementarities can lead to multiple equilibria
(see Section 5). Our model and its extensions do indeed predict multiple equilibria.
Outcomes such as history-dependent prices, market crashes, rebounds and overshoots
can result even from small changes in the uncertainty about the fundamentals. These
properties help isolate new testable predictions regarding a largely unexplored issue:
the market reaction to positive uncertainty shocks. Our model predicts that the initial
reaction to a series of uncertainty shocks will be a market drop, led by reduced market
participation, and followed by a sustained rally. The rally occurs because the increased
uncertainty induces the uninformed agents to learn about these shocks, which fuels
complementarities in information acquisition and price overshoots.

Our main model relies on a market in which agents have maxmin expected utility,
as in Gilboa and Schmeidler (1989). In this market, uninformed investors extract
information from the equilibrium price through full Bayesian learning, by updating
each initial prior. Uninformed investors are also sophisticated, in that they correctly
anticipate their future choices (portfolio policies) in light of new information (the
equilibrium price), an assumption that has been known as consistent planning since Strotz
(1955-6). However, our main conclusions are resilient to a variety of model extensions
and alternative treatments of ambiguity, including (i) maximum likelihood updating,
(ii) portfolio policies to which agents pre-commit prior to trading, and (iii) smooth
specifications of ambiguity aversion as in Klibanoff, Marinacci and Mukerji (2005), which
allow us to disentangle ambiguity from ambiguity aversion within the context of our study.

The paper is organized as follows. The next section provides perspective on our
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contribution in light of the existing literature. Section 3 sets the model assumptions and
analyzes the asset market equilibrium. Section 4 characterizes the value of information in
the asset market with Knightian uncertainty. Section 5 analyzes endogenous information
acquisition and deals with information complementarities, multiple equilibria and the
asset price swings that occur as a result. Section 6 provides the extensions. Section 7
concludes. The appendices contain details omitted from the main text. Proofs for Section
6 are in the Online Appendices D to F.

2. RELATED LITERATURE

This paper contributes to two strands of literature. First, it analyzes how Knightian
uncertainty about fundamentals affects assets and information markets in an otherwise
standard noisy rational expectations equilibrium (REE) model. Second, it provides
insights into the economic incentives for mitigating model uncertainty through costly
information acquisition. To date, much of the literature on Knightian uncertainty does
rely on a representative agent framework;2 on the other hand, the REE literature typically
ignores the distinction between risk and ambiguity. Some exceptions are Caskey (2009)
and Ozsoylev and Werner (2011), who rely on noisy supply for partial revelation, as in
our paper, and Condie and Ganguli (2011, 2012) and Easley, O’Hara, and Yang (2011),
who do not. While these papers deal with informational properties of asset prices in
markets with ambiguity, our focus is on the value of fundamental information in these
markets.

In the existing REE literature, information complementarities can occur because,
as more agents acquire information, the price actually becomes less informative, making
it more valuable for uninformed agents to acquire private information. This property
can arise due to different mechanisms. In Barlevi and Veronesi (2008), it is a negative
correlation between noisy supply and fundamentals. In Chamley (2010), it is the
possibility of independent jumps in noise trading and fundamentals. In Breon-Drish
(2010), it is departures from normality of noise trading and fundamentals that lead to a
failure of the monotone likelihood ratio property (MLRP) of the signal conveyed by the
price.3 In Rahi and Zigrand (2014), the mechanism is the heterogeneity in agents’ private
asset valuations. In Avdis’ (2012) dynamic model, more informed investors lead to prices
being more informative about dividends but less informative about the liquidity shocks
that drive short-term price movements. Finally, Ganguli and Yang (2009) and Manzano
and Vives (2011) show the existence of multiple linear equilibria in the price function
when agents have private information about both dividends and supply. In one of these
equilibria, the price signal-to-noise ratio decreases in the fraction of informed agents;
when agents coordinate on this equilibrium, there are complementarities in information
acquisition.

In contrast to the previous papers, information complementarities arise in our model
despite the fact that more information acquisition leaves the uninformed agents with
lower conditional risk and lower conditional ambiguity.

2. Cao, Wang and Zhang (2005) and Easley and O’Hara (2009) contain early analyses of how
ambiguity affects participation in Walrasian markets with heterogeneous agents.

3. Breon-Drish (2010) also provides a numerical example of complementarities in a setup in which
the MLRP holds but uninformed agents’ demands are backward-bending over some range. This feature
of backward-bending demands further differentiates our paper—the uninformed demand is downward
sloping in all versions of our model.
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Other models also predict complementarities despite the price signal-to-noise ratio
increasing with information acquisition. However, the mechanisms in these models hinge
on different channels. In Veldkamp (2006), the mechanism relies on a cost of information
that decreases with information demand. In Garćıa and Strobl (2011), the mechanism
relies on consumption complementarities that result from relative wealth concerns. In
the sequential trade model of Chamley (2007), more informed trading makes current
prices more informative but future prices more uncertain; the latter effect may increase
the value of information for short-term investors. Our channel relies on the incentives
to form portfolio decisions based on the true distribution of the fundamentals. Due to
ambiguity aversion, these incentives increase when more investors acquire information
and impound it into the asset price.

3. THE MODEL

3.1. Agents and assets

We consider a market for a risky asset, with payoff equal to f = θ+ε, where θ ∼ N (µ, ωθ)
and ε ∼ N (0, ωε). As in Grossman and Stiglitz (1980), the market is populated by a
continuum of agents, with a fraction λ of informed and a fraction 1 − λ of uninformed
agents. Informed agents observe θ at cost c > 0. We initially take λ as given and
consider endogenous information acquisition in the following sections. The asset supply
is z ∼ N (µz, ωz). We assume that ωθ > 0 (asymmetric information), ωε > 0 (partial
resolution of risk by private information), ωz > 0 (partial information revelation), and
that all variables are independent. A riskless asset is also available for trading; it is in
perfectly elastic supply, and yields a rate of return equal to zero. All agents have negative
exponential utility u with constant absolute risk aversion τ , i.e., u (W ) = −e−τW . Initial
wealth is normalized to zero.

3.2. Ambiguity and ambiguity aversion

Our point of departure from Grossman and Stiglitz (1980) is the assumption that all
agents are ex ante uncertain about the expected value of the fundamentals f . Although
they are unable to assess what µ is, they believe it belongs to some interval, µ ∈ [µ, µ̄].

We assume that µ = µ0 − 1
2∆µ and µ̄ = µ0 + 1

2∆µ, for some ∆µ ≥ 0, and set µ0 = 0.
In this and the following two sections, we assume that agents display preferences

in the form of the maxmin expected utility model of Gilboa and Schmeidler (1989).
This assumption does not allow us to disentangle the notion of uncertainty from that
of the attitude towards it. For example, we cannot tell whether an increased length of
interval, ∆µ, reflects more uncertainty or more uncertainty aversion. Unless otherwise
stated, we shall favor a cognitive interpretation of ∆µ. In Section 6.3, we rely on the
smooth ambiguity model of Klibanoff, Marinacci and Mukerji (2005), which allows for a
separation of tastes and beliefs. Our conclusions about complementarities and multiple
equilibria remain unaffected in this framework.4

4. Other non-smooth models include, among others, the Choquet expected utility model of
Schmeidler (1989) and the α-maxmin expected utility model of Ghirardato, Maccheroni and Marinacci
(2004). The latter has the property of separating ambiguity and ambiguity attitude. Gilboa and Marinacci
(2011) provide a survey of the decision-theoretic literature on ambiguity.
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3.3. Informed agents

By observing the realization of θ, informed agents resolve their ambiguity straight away.
They choose portfolio holdings xI to maximize the expected utility of their final wealth
WI = (f − p)xI − c, where p is the observed asset price. Standard arguments yield

xI (θ, p) =
E (f | θ, p)− p
τV ar (f | θ, p)

=
θ − p
τωε

. (3.1)

Naturally, while informed agents are able to dissipate their ambiguity, they cannot
eliminate risk. Conditional upon θ, the fundamentals, f , are still normally distributed
with expectation θ and variance ωε.

3.4. Uninformed agents

Uncertainty about the expected value of the fundamentals, µ, leads the uninformed agents
to choose portfolio holdings so as to maximize

min
µ∈[µ,µ̄]

Eµ
(
−e−τWU

∣∣ p) = −e−τ minµ∈[µ,µ̄] Eµ(WU |p)+ 1
2 τ

2var(WU |p), (3.2)

where WU = (f − p)xU , xU is the asset demand, and Eµ (·) is the expectation operator
taken under the assumption that E (θ) = µ.

The criterion underlying Eq. (3.2) is the maxmin expected utility axiomatized
by Gilboa and Schmeidler (1989). While formulating portfolio decisions, agents learn
from the price and update each of their beliefs. This rule is known as full Bayesian
updating. It was proposed by Jaffray (1992), among others, and axiomatized by Pires
(2002). In Section 6.1, we solve for an alternative updating rule, based on the maximum
likelihood principle. This alternative assumption does not affect our main conclusions on
information acquisition based on full Bayesian updating.

We conjecture that, for every pair (θ, z), the equilibrium price function is P (θ, z).
We look for an equilibrium in which the uninformed agents sell the asset when the
price is sufficiently high and buy the asset when the price is sufficiently low, in a sense
made precise below. This search process leads to a simpler problem, that of determining
the expectation of the fundamentals when the agents buy and when the agents sell.
Accordingly, we introduce the following notation:

Ebuy (f |P (·, ·) = p) ≡ Eµ (f |P (·, ·) = p) , Esell (f |P (·, ·) = p) ≡ Eµ̄ (f |P (·, ·) = p) .

We conjecture that the solution to the uninformed agents’ problem is

xU (p, P (·, ·)) =



Ebuy (f |P (·, ·) = p)− p
τV ar (f |P (·, ·) = p)

, for p < Ebuy (f |P (·, ·) = p)

0, for p ∈
[
Ebuy (f |P (·, ·) = p) , Esell (f |P (·, ·) = p)

]
Esell (f |P (·, ·) = p)− p
τV ar (f |P (·, ·) = p)

, for p > Esell (f |P (·, ·) = p)

(3.3)

That is, the uninformed agents do not participate in the market unless the
equilibrium price is “favorable” enough. Precisely, the uninformed agents enter the market
as buyers (sellers) only if the price realization, p, is lower (higher) than the agents’
worst-case scenario expectation of the asset value, conditional on p. Hence, participation
involves a fixed-point problem in which the expectation of the asset value, conditional
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on the price realization, is equal to the same price realization:

Ebuy
(
f |P (·, ·) = p

)
= p and Esell (f |P (·, ·) = p̄) = p̄. (3.4)

The uninformed agents buy the asset when the price realization, p, is below p, and sell the
asset when p is above p̄. They do not trade if the price realization is such that p ∈ [p, p̄].
Such situations of portfolio inertia were first linked with Knightian uncertainty by Dow
and Werlang (1992). In our model, the cutoffs p and p̄ are determined in equilibrium,
and so is the extent of the uninformed agents’ market participation.

3.5. Equilibrium

We conjecture that the equilibrium price function is P (θ, z) = P (s (θ, z)), where s (θ, z)
is the compound signal, defined as

s (θ, z) =
λ

τωε
θ − (z − µz) . (3.5)

From the market-clearing condition,

(1− λ)xU (p, P (·)) + λxI (θ, p) = z, (3.6)

we see that the compound signal is observationally equivalent to the equilibrium price.
Therefore, the equilibrium in this market is also one in which uninformed agents condition
the expectation of the asset value upon the observation of the compound signal.

We have:

Proposition I (Asset market equilibrium). The equilibrium price is piecewise linear in
the compound signal s given in Eq. (3.5), as follows:

P (s) =



a+ bs, for s < s

a+
τωε
λ
s, for s ∈ [s, s̄]

ā+ bs, for s > s̄

(3.7)

for constants a, ā, a, b given in Appendix A. The threshold values for the compound signal,
s, s̄, satisfy

s =
λ

τωε
µ+

ωs
ωz
µz, s̄− s =

λ

τωε
∆µ, (3.8)

where ωs is the variance of s. Finally, we have p = a+ bs and p̄ = ā+ bs̄, with p < p̄.

Figure 1 depicts the equilibrium price described in Proposition I when the fraction
of informed agents is respectively λ = 0.2 (top panel) and λ = 0.5 (bottom). The solid
line is the price in the presence of ambiguity, ∆µ > 0, and the dashed line is the price in
the Grossman and Stiglitz (1980) model.

The portfolio choice given in Eq. (3.3) reflects returns expected in worst-case
scenarios. In equilibrium, the uninformed agents buy if s < s (sell if s > s̄) but they
buy or sell less than they would do in the absence of ambiguity. As a result, the price is
lower (higher) than in Grossman and Stiglitz for low (high) realizations of the compound
signal, s. Naturally, the price impact of the uninformed agents is reduced as λ increases.

When the signal realization lies within the range [s, s̄], the uninformed agents do not
participate. Note that both s and s̄ increase with the average asset supply µz, reflecting
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Figure 1

This figure depicts the equilibrium asset price given in Proposition I, as a function
of the compound signal, s. Both panels compare the price function with the
Grossman-Stiglitz linear function (the dashed line), which arises in the absence
of ambiguity, i.e. when ∆µ = 0. The region delimited by the vertical dashed lines
corresponds to the uninformed agents’ non-participation region. The parameter
values are ∆µ = 2, ωθ = ωε = ωz = τ = 1, and µz = 0. In the top panel, the
proportion of informed agents, λ = 0.2, and in the bottom panel, λ = 0.5.

an increased probability that the uninformed agents will be buyers. Proposition I also
tells us that the threshold difference, s̄−s, equals the size of the ambiguity, ∆µ, weighted
by the risk-bearing capacity of the informed agents, λ

τωε
. Indeed, consider the following

comparative statics. If µ increases, Ebuy (f |P (·, ·) = p) increases as well, for each price
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realization p. Thus, the threshold equilibrium price p has to increase (and, hence, so does
s), according to the fixed-point problem in (3.4); similarly, s̄ decreases as µ̄ decreases.

While the size of the non-participation region is proportional to the informed risk-
bearing capacity, the comparative statics of the probability of non-participation for a
fixed prior µ ∈ [µ, µ̄] can display non-monotonicities depending on parameter values.
This probability is determined by both the size of the non-participation region, s̄ − s,
and the distribution of the signal defined in Eq. (3.5), both of which depend on the
informed risk-bearing capacity, λ

τωε
. For example, larger values of λ increase both the non-

participation region and the variance of the signal. However, if the average asset supply
µz is small, then a more volatile signal (for a fixed s̄−s) implies that non-participation is
less likely. When λ is small, the signal’s volatility has second-order effects, such that the
probability of non-participation increases with λ. When λ is sufficiently high, the effects
of the signal’s variability may dominate, such that the probability of non-participation
could decrease with λ.

4. THE VALUE OF INFORMATION

This section analyzes how ambiguity affects the incentives to acquire fundamental
information. Agents decide whether to become informed prior to trading, as in Grossman
and Stiglitz (1980), and assess their information choices based at worst-case scenarios.
The value of acquiring information reflects not only a reduction in the payoff risk, but
also the agents’ aversion to ambiguity. We decompose the value of information into two
components that summarize these two effects.

4.1. Informed agents

Acquiring private information allows an agent to observe the ambiguous portion of the
asset payoff. Thus, information acquisition reduces the conditional risk and eliminates the
conditional ambiguity of the payoff. Because information is only known after it has been
paid for, a would-be informed agent faces ambiguity ex ante regarding the distribution
of the θ that he will observe at the trading stage. In Appendix B, we show that his ex
ante utility is,

UI (c, λ) = min
µ∈[µ,µ̄]

Eµ

[
−e−τŴI

]
= eτc

√
ω f |θ

ω f |s
· ŪU (λ) , (4.9)

where ŴI is the wealth generated by the portfolio choice given by Eq. (3.1), ω f |θ = ωε,
and ω f |s is the variance of f conditional on s (see Eq. (5.15) below); finally, the two
expressions,

ŪU (λ) ≡ min
µ∈[µ,µ̄]

Eµ

[
−e−τ C̄(s;µ)

]
, −e−τ C̄(s;µ) = max

x
Eµ

[
−e−τx(f−p)

∣∣∣ s] , (4.10)

denote the ex ante utility (ŪU ) and the expected utility at the trading stage (−e−τ C̄)
conditional only on (i) the equilibrium price p (equivalently, the compound signal s) and
(ii) full knowledge (at the trading stage) of the otherwise ambiguous expected value of θ,
µ. Equivalently, C̄ is the certainty equivalent at the trading stage for a hypothetical
uninformed agent who only faces risky choices. This representation of the informed
utility plays a crucial role in explaining the main determinants of information acquisition.
Appendix B provides closed-form expressions for the expectations in Eq. (4.10) and the
certainty equivalent C̄.
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4.2. Uninformed agents and consistent planning

An agent who remains uninformed anticipates making portfolio choices while lacking
knowledge of the payoff distribution. Aversion to this uncertainty affects his ex ante
utility. We describe this effect in terms of a welfare loss with respect to the benchmark
in which the agent only faces risky portfolio choices, ŪU (λ) in Eq. (4.10).

Let us denote by xU (s) ≡ xU (p, P (θ, z)) the portfolio choice of the uninformed
agent in Eq. (3.3), and by x̄U (s;µ) the solution to the maximization problem in Eq.
(4.10),

xU (s) = x̄U (s;µ) +
Eµ∗(s) (f | s)− Eµ (f | s)

τω f |s
, µ∗ (s) = arg min

µ∈[µ,µ̄]
|Eµ (f | s)− P (s)| .

(4.11)
Note that Eµ∗(s) (f | s) is the worst-case scenario estimate of the asset value that

the uninformed agent formulates while trading in state s (e.g., µ∗ (s) = µ when the
agent buys; see Section 3). While evaluating his ex ante welfare, the uninformed agent
anticipates that his future portfolio choice in state s will reflect such a worst-case scenario
estimate. When gauged through a generic prior µ, this estimate is deemed biased, in that
it leads to a portfolio decision that conflicts with the choice he would have made had he
known µ at the trading stage. Clearly, xU (s) 6= x̄U (s;µ) in all states s in which µ∗ (s)
differs from µ. In Appendix B, we show that this bias can be accounted for as a discount
on C̄ (s;µ). Precisely, we show that the ex ante utility of an uninformed agent can be
expressed as

UU (λ) = min
µ∈[µ,µ̄]

Eµ

[
−e−τŴU

]
= min
µ∈[µ,µ̄]

Eµ

[
−e−τ(C̄(s;µ)−T (s;µ))

]
, (4.12)

where ŴU denotes the wealth generated by the portfolio choice given in Eq. (3.3), and

T (s;µ) ≡ 1

2τω f |s

(
Eµ∗(s) (f | s)− Eµ (f | s)

)2
. (4.13)

The term inside the expectation in the second equality of Eq. (4.12) is the expectation
under prior µ of terminal utility conditional on price information. It has two terms: one
accounting for the risk-only profit certainty equivalent C̄ (s;µ) in Eq. (4.10), and another
relating to ambiguity effects, T (s;µ). If the agent knew the true distribution at the
trading stage (i.e., µ), xU (s) in Eq. (4.11) would collapse to x̄U (s;µ) or, equivalently,
the discount T (s;µ) would be trivially zero, and UU (λ) would collapse to ŪU (λ). The
term T (s;µ) is given a closed-form expression in Appendix B (see Eq. (B11)). It links
to the intertemporal tussles described by Strotz (1955-6), in contexts where preferences
may conflict at different decision points.

Violation of dynamic consistency is a well known phenomenon arising in contexts
with ambiguity (Epstein and Schneider, 2003). Appendix B illustrates that, in our model
with asymmetric information, there exist alternative state-contingent portfolio policies
to xU (·) in Eq. (4.11), yielding an ex ante utility higher than UU (λ). Intuitively, a state-
contingent portfolio policy xU (s) could be chosen such that the uninformed agents could
buy or sell more than indicated by Eq. (4.11) and achieve a higher ex ante utility (see
the parametric example in Appendix B, Eq. (B13)). The loss T (s;µ) arises because the
uninformed agents take into account that their state-contingent portfolio policy deviates
from the one they would formulate ex ante. In other words, agents are sophisticated, in
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that they adopt a strategy described by Strotz (1955-1956) as one of consistent planning.5

Committing to a predetermined portfolio policy is an alternative way of dealing with these
intertemporal conflicts. This strategy is described by Strotz as one of pre-commitment.
In Section 6.2, we extend our results to a model with pre-commitment.

4.3. Equilibrium demand for information

The value of acquiring private information can be decomposed into two parts: one relating
to the benefits of resolving ambiguity prior to trading, and another summarizing the value
of learning the realization of θ in addition to the unknown distribution (i.e., µ) prior to

trading. Let G (c, λ) ≡ − 1
τ ln

(
UI(c,λ)
UU (λ)

)
denote the net gain from becoming informed,

defined as the difference between the ex ante profit certainty equivalent of the informed
and that of the uninformed. By Eqs. (4.9), (4.10) and (4.12), it is given by

G (c, λ) = −1

τ
ln

(
UI (c, λ)

ŪU (λ)

)
− 1

τ
ln

(
ŪU (λ)

UU (λ)

)

=
1

2τ
ln

(
ω f |s

ω f |θ

)
− c︸ ︷︷ ︸

Grossman-Stiglitz effect

+
1

τ
ln

EµU
[
e−τ(C̄(s;µU )−T (s;µU ))

]
EµI

[
e−τ C̄(s;µI)

]


︸ ︷︷ ︸
Value of parameter uncertainty

, (4.14)

where µI and µU solve the two problems described in Eqs. (4.9) and (4.12).
The R.H.S. of Eq. (4.14) measures the value of information, net of the cost c,

for a given fraction λ of informed agents. An equilibrium with endogenous information
acquisition is defined in the standard way. An interior equilibrium is a fraction of informed
agents λ∗ ∈ (0, 1) that causes any agent to be ex ante indifferent over whether to be
informed or not, i.e. G (c, λ∗) = 0. The non-interior equilibria are λ∗ = 0 such that
G (c, 0) ≤ 0, and λ∗ = 1 such that G (c, 1) ≥ 0.

The value of information has two components, as anticipated. The first is the
marginal value of reducing the riskiness of the fundamentals for any given prior
distribution of returns. It is monotonically decreasing in λ, as explained below (see Eq.
(5.15)). It actually coincides with the standard Grossman and Stiglitz (1980) value of
information, summarizing the usual trade-off between the cost of acquiring information
and its benefits in a market without ambiguity, i.e. where ∆µ = 0.

The second component, labeled “value of parameter uncertainty,” summarizes how
valuable it is for an ambiguity averse agent to resolve ambiguity prior to trading. It
measures the ex ante value to an uninformed agent of making future portfolio choices
based on the true probability distribution (as opposed to worst-case scenarios) when
confronted with price information. This value links to the uninformed ex ante evaluation
of the welfare loss T (s;µ) implied by his portfolio choice. Note that if T (s;µU ) were zero
in all states, then the value of parameter uncertainty would be nil because the informed
agents’ welfare is also appraised based on the worst-case scenario. However, the next
proposition establishes that this value is always positive:

5. Siniscalchi (2011) develops a decision-theoretic treatment of consistent planning based on trees
rather than temporal acts. His approach goes beyond the “multiple-selves” approach introduced by
Strotz to deal with intertemporal conflicts.
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Proposition II (Value of parameter uncertainty). Let ∆µ > 0. Then, the value of
parameter uncertainty in Eq. (4.14) is strictly positive. That is, information is more
valuable in a market with ambiguous fundamentals ( ∆µ > 0) than in a market without
ambiguity (∆µ = 0).

One implication of Proposition II is that the amount of resources spent on collecting
information is higher in markets with ambiguity than in markets without, as formalized
by Corollary B.1 in Appendix B.

Which component of the value of information in Eq. (4.14) becomes most relevant
as more agents acquire information? It is an important issue, as the value of parameter
uncertainty can dwarf the familiar Grossman-Stiglitz effect and result in information
complementarities: the higher the number of informed agents, the higher the incentives
to acquire information. These issues are analyzed next.

5. INFORMATION ACQUISITION

5.1. Information revelation

What information does the asset price transmit to uninformed agents? How much
information does the price reveal as the number of informed agents increases? Regarding
risk, Appendix B (see Eq. (B6)) shows that the variance of the fundamental, conditional
on price information, is as in Grossman and Stiglitz (1980), namely

var(f |P (·) = p) ≡ ω f |s = ωε + (1− χ)ωθ, χ =

(
λ
ωετ

)2

ωθ(
λ
ωετ

)2

ωθ + ωz

. (5.15)

Regarding ambiguity conditional on price information,

Eµ̄ (f |P (·) = p)− Eµ (f |P (·) = p) = (1− χ) ∆µ ≤ ∆µ ≡ Eµ̄ (f)− Eµ (f) , (5.16)

where the first equality follows from Eqs. (A2)-(A3) in Appendix A. The L.H.S. of
the equality in Eq. (5.16) is the uncertainty remaining after an agent has observed
the equilibrium price. It is less than the unconditional ambiguity, ∆µ. That is, price
information helps reduce ambiguity. Due to noisy supply (ωz > 0), information revelation
is partial. Furthermore, since the parameter χ in Eq. (5.15) is increasing in λ, the model
predicts that information acquisition always leads to more informative prices, in terms
of both risk and ambiguity. Despite the latter intuitive property, the next section shows
that, due to ambiguity aversion, information complementarities arise in this market.

5.2. Ambiguity aversion and information complementarities

The value of private information can be split into the benefit of reducing risk and the
value of parameter uncertainty (see Eq. (4.14)). The latter is the value an uninformed
agent would be willing to pay ex ante for making future trading decisions based on the
true distribution of the fundamentals. This value increases as the price becomes more
informative. In the following examples, we provide intuition by comparing the welfare of
an uninformed agent, UU (λ), to that of a hypothetical uninformed agent who only faces
risky choices at the trading stage, ŪU (λ), as defined in Section 4.1.

Consider two polar cases in which either a few agents are informed or many are. To
simplify exposition, we assume that the asset is in positive supply. Define the equilibrium
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asset return per share as the difference between the fundamentals f and the price P (s)
given by Eq. (3.7),

R ≡ θ + ε− P (s (θ, z)) . (5.17)

When there are no informed agents, the price does not incorporate information on
the ambiguous θ. Because an uninformed agent’s portfolio choice (xU in Eq. (3.3)) is
only a function of the price, there is no ambiguity regarding the choice he will make.
That is, he will face ambiguity at the trading stage, and evaluate the asset based
on the worst-case scenario µ∗ (s) = µ; however, his actual portfolio choice will only
depend on the realization of the asset supply (not θ). Profits from trading, xU · R,
are ex ante ambiguous though. Indeed, the price is uninformative and the expected
returns are unknown, depending as they do on the unknown mean of the fundamentals,
Eµ (R) = µ − E (P ). Anticipating holding the per-capita supply, the ambiguity averse
uninformed agent will then appraise the expected returns under the worst-case scenario
µU = µ.

What is the ex ante value of resolving ambiguity regarding µ in this case? On the
one hand, the agent would make portfolio decisions based on the true (not worst-case)
expected return. He would then benefit from an informational advantage that would
grow with µ − µ ≥ 0, the difference between the true µ and the prior impounded into
the price by the uninformed agents, µ. On the other hand, the true µ is unknown when
information decisions are made. Thus, the agent’s ambiguity aversion makes him evaluate
(ex ante) this advantage based on the worst-case scenario µI = µ. That is, the informed
agent anticipates making exactly the same portfolio choice and profits as the uninformed
agent. Resolving ambiguity regarding µ has no value in this example. Formally, we have:

Lemma 1. In a market with no informed agents, i.e. where λ = 0, there exists a µ̄z > 0
such that for all µz ≥ µ̄z, the ex ante prior of both the uninformed and the informed
agents is µU = µI = µ.

In other words, when prices are not very informative, and the average supply
µz is high enough,6 the ex ante beliefs of the informed and the uninformed are the
same. The beliefs coincide with the uninformed worst-case scenario at the trading stage,
µI = µU = µ∗ (s) = µ, such that the welfare loss T (s;µU ) = 0 in the most likely region
of the state space. The value of parameter uncertainty in Eq. (4.14) is small as a result.

As the number of informed agents increases, the price becomes more responsive to
changes in θ. Consider the limiting case in which everyone is informed, as in the example
provided in the Introduction. In this case, the price fully incorporates information on the
fundamentals, such that returns become unambiguous albeit still risky: P = θ − τωεz,
and R = ε + τωεz. Returns are independent of θ (and thus unambiguous). Yet, lacking
knowledge of the distribution of θ, the uninformed agent would now be exposed to
ambiguous profits, xU · R, through his own portfolio choices, xU . How this happens is
easily seen. Note that P still contains information about R. Thus, while formulating his

6. When µz is high, there is a high probability that an uninformed agent will be long the asset,
which matches the intuition in these examples with positive asset supply. By contrast, because the
asset supply is Gaussian in the model, lower values of µz increase the probability of the event that the
uninformed agents are short the asset. In this event, the prior incorporated into the price is µ̄, such
that the informed agent anticipates making a different portfolio choice than the uninformed agent. The
ensuing informational advantage is small (it is assessed at worst-case scenario) but positive. A large µz
facilitates our proofs, although it is not needed to generate complementarities, as we explain below (see
Figure 2).



14 REVIEW OF ECONOMIC STUDIES

portfolio decision xU in Eq. (3.3), the uninformed agent forms his prior-to-prior estimate
of R given the price:

Eµ (R| p) = E (R) +
cov(R, p)

var(p)
(p− Eµ (p)) . (5.18)

Eq. (5.18) allows us to elaborate on the question raised in the Introduction: “How
much of a price change can be attributed to new information, and how much to a liquidity
shock?” To give a precise probabilistic answer, the true mean of p must be known. Lack
of this knowledge leads an uninformed agent to update his beliefs based on worst-case
scenarios: the agent’s expectation Eµ (p) in Eq. (5.18) is Eµ∗(s) (p), where µ∗ (s) = µ when
the agent is long the asset and µ∗ (s) = µ̄ when he is short. This makes the distribution
of p − Eµ∗(s) (p) (and therefore the distribution of his own portfolio choice) dependent
on µ, which is unknown at the time of making the information decision.

How does the agent gauge the welfare implications of remaining uninformed? The
agent’s ambiguity aversion leads him to evaluate his future portfolio choice according to
the worst-case scenario, that is, as if his beliefs at the trading stage will be “unwarranted.”
Precisely, the uninformed ex ante beliefs are µU = µ̄ if the probability of being long
(and, hence, that µ∗(s) = µ at the trading stage) is sufficiently high; by contrast, the
agent’s utility is independent of µ if he becomes informed. The ensuing welfare loss,
T (s;µU ) > 0, is what makes the value of parameter uncertainty positive in Eq. (4.14).
The following lemma summarizes our conclusions regarding the agents’ ex ante beliefs in
these informationally rich markets:

Lemma 2. There exists a µ̄z > 0 and a level of information acquisition λ̄ ∈ (0, 1)
depending on µz, such that for all µz ≥ µ̄z, the ex ante prior of the uninformed agents
is µU = µ̄ for all λ ∈ (λ̄, 1]. Moreover, for λ = 1, the ex ante utility of the informed
agents is independent of µ.

Lemmas 1 and 2 say that the prior of the uninformed agents’ makes a switch from
low (µU = µ) to high (µU = µ̄) as markets become more informative. Thus, they suggest
that the value of parameter uncertainty increases from zero to positive as the number
of informed agents increases. Naturally, the fact that the value of parameter uncertainty
increases with information acquisition does not imply information complementarities.
Complementarities arise once uncertainty is high enough for this increase to dominate
the Grossman-Stiglitz effect in Eq. (4.14):

Proposition III (Information complementarities). There exist a level of uncertainty
∆µ > 0 and an average asset supply µ̄z > 0, such that there are complementarities in
information acquisition for all ∆µ > ∆µ and µz > µ̄z.

The left panel of Figure 2 illustrates Proposition III. For the value of information to
be higher in λ = 1 than in λ = 0, ∆µ needs to be large enough. However, progressively
lower values of ∆µ are needed as µz increases. Indeed, a higher probability of being
a buyer lowers the value of parameter uncertainty when λ = 0 and increases it when
λ = 1 as discussed previously.7 Therefore, when µz is large, the increase in the value of
parameter uncertainty dwarfs the Grossman-Stiglitz effect even when ∆µ is small.

7. See, e.g., Footnote 6.
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Figure 2

This figure depicts the loci of ∆µ and µz leading to information
complementarities. The shaded area in the left panel contains the loci for which
the value of information when all agents are informed is higher than that when
all agents are uninformed, i.e., (∆µ, µz) : G (c, 1) > G (c, 0). The shaded areas
of the right panel depict the loci in markets with varying levels of informational
efficiency. The loci are such that the value of information in a given market
exceeds that in a slightly less informed market, i.e., (∆µ, µz) : G (c, λ) >
G (c, λ− ε), with ε = 0.05, and λ ranging from λ = 0.05 (lightest area) to λ = 1
(darkest). The remaining parameters are ωθ = ωε = ωz = τ = 1.

The right panel of Figure 2 depicts the loci of ∆µ and µz such that information
complementarities arise for any open interval of λ. The pattern and its rationale are the
same as in the left panel, with two additional features. First, when µz is sufficiently large,
information complementarities are triggered by lower values of λ as ∆µ increases, as will
be further explained in Section 5.4 (see Figure 3). Second, complementarities arise also
when the asset is in zero average supply, µz = 0, but for low values of λ.

The intuition behind the first feature is the same as that underlying the left panel
of Figure 2. The value of parameter uncertainty is small when λ = 0, but it increases
even after a small increase in λ, provided ∆µ is high enough.

The intuition behind the second feature is as follows. When the average asset supply
is small or zero, and λ is small, an uninformed agent has comparable odds of being
either a buyer or a seller. When the number of informed agents grows, an uninformed
agent now faces a higher chance of not participating at all, as explained in Section 3. The
value of parameter uncertainty increases as a result of foregone investment opportunities.
Moreover, opportunities that are foregone due to not participating are high precisely when
λ is low—expected profits flatten in a market with many informed agents. Therefore,
when µz is small, information complementarities result precisely when there are few
informed agents.
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5.3. Value of price information

More information acquisition leads to more informative prices. We now address a further
issue: How valuable is the information that these prices contain? It is known that dynamic
inconsistency can lead to a negative value of information both in contexts without
ambiguity (e.g., Carrillo and Mariotti, 2000; and Eichberger, Grant and Kelsey, 2007) and
with ambiguity (see, e.g., Siniscalchi, 2011). Our focus is on information that is revealed
in equilibrium. We show that, in our model, the value of information accounted for by
the price can turn negative when the value of parameter uncertainty is high enough.

We denote by U0 (λ) the ex ante utility of a hypothetical agent whose portfolio choice
is unconditional, in that it does not rely on price information:8

U0 (λ) = min
µ∈[µ,µ̄]

Eµ
(
−e−τx0R

)
, where x0 = arg max

x

(
min
µ∈[µ,µ̄]

Eµ
(
−e−τxR

))
. (5.19)

We define the value of price information as Gp (λ) ≡ − 1
τ ln

(
UU (λ)
U0(λ)

)
. It is the ex ante

certainty equivalent gain of forming portfolio choices based on price information relative
to making unconditional portfolio choices. Note that the value of price information and
that of parameter uncertainty in Eq. (4.14) add up to the value of price information for
an agent who only faces risky choices at the trading stage, that is,

Gp (λ) = −1

τ
ln

(
ŪU (λ)

U0 (λ)

)
︸ ︷︷ ︸

Value of price information for interim risky trades

−
[
−1

τ
ln

(
ŪU (λ)

UU (λ)

)]
︸ ︷︷ ︸

Value of parameter uncertainty

, (5.20)

where ŪU (λ) is the ex ante utility in Eq. (4.10).
In Appendix C, we solve for the unconditional portfolio choice in Eq. (5.19) (see

Proposition C.1). We also show that, in the Grossman and Stiglitz (1980) model, the
value of price information simply reflects the reduction of risk, thus always being positive,
i.e.,

Ggs
p (λ) ≡ Gp (λ)|∆µ=0 =

1

2τ
ln

(
V ar (R)

V ar (R| p)

)
. (5.21)

When is the value of price information negative in our model? Intuitively, Eq.
(5.20) suggests that Gp (λ) is negative when the value of parameter uncertainty is high
enough. Now, as the number of informed agents increases, the asset returns become risky
only, not ambiguous, such that the first term on the R.H.S. of Eq. (5.20) approaches
Ggs
p (·). Therefore, when λ is high, not only is the value of price information lower than

in Grossman-Stiglitz, but it can in fact be negative, provided the value of parameter
uncertainty is high enough. The next proposition shows that, for large µz, this is the
case when uncertainty ∆µ is high enough:

Proposition IV (Negative value of price information). There exist a level of uncertainty
∆µ > 0 and an average asset supply µ̄z > 0, and a given fraction of informed agents
λ̄ ∈ (0, 1), such that the value of price information is negative for all ∆µ > ∆µ, µz > µ̄z,
and λ ∈ (λ̄, 1].

8. Interestingly, x0 can also be interpreted as the portfolio chosen by an uninformed agent in a
pre-commitment equilibrium when λ = 1, provided uncertainty ∆µ is high enough (see Section 6.2).
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This figure depicts the value of information, G (c, λ), as a function of the fraction
of informed agents, λ, for a given cost of information, c. The uppermost, solid
and thick line is the value of information obtained with ∆µ = 2. The two dashed
lines below it depict the value of information when ∆µ = 1.50 and ∆µ = 1.00.
The lower, solid and thin line depicts the value of information in the benchmark
case with no ambiguity, i.e. when ∆µ = 0. The remaining parameter values are
ωθ = ωε = ωz = τ = 1, µz = 2, and c = 0.3.

5.4. Multiple equilibria and the impact of an uncertainty shock

Information complementarities can lead to multiple equilibria when information decisions
are discrete choices, as in our model.9 Figure 3 illustrates instances of the value of
information, G (c, λ) from Eq. (4.14), plotted as a function of the fraction of informed
agents, λ, and obtained with four degrees of ambiguity, ∆µ.

The lower, solid and thin line is the value of information in the Grossman and
Stiglitz (1980) model, i.e. when ∆µ = 0. As we increase ∆µ from the benchmark value
of 0 to 1, then 1.50 and finally 2, G (c, λ) increases progressively, which is consistent
with Proposition II. When ∆µ = 1, there is a unique interior, and stable, equilibrium,
where the fraction of informed agents is higher than in the benchmark case. As ∆µ
increases to 1.50, the market displays two interior equilibria: the leftmost and stable
equilibrium (λ∗ = λS), and the rightmost and unstable equilibrium (λ∗ = λU ).10 Note
that, when ∆µ = 1.50, there is a third and stable equilibrium: λ∗ = 1. The kink in the

9. See Hellwig and Veldkamp (2009) and Myatt and Wallace (2012) for results regarding
information complementarities and multiple equilibria under different information structures.

10. The rightmost equilibrium is unstable in that (i) for all λ ∈ (λS , λU ), the informed agents
would be better off once uninformed, and (ii) for all λ ∈ (λU , 1], it would be in the interest of the
uninformed agents to acquire information.
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The left panel depicts the proportion of informed agents in the stable equilibria,
λ, as a function of the ambiguity size, ∆µ. The right panel is the unconditional
expectation of the equilibrium price corresponding to each λ in the left panel.
The parameter values are ωθ = ωε = ωz = τ = 1, µz = 2, and c = 0.3.

value of information arises as the prior of the uninformed agents’ shifts from µ to µ̄ as λ

increases, as explained in Section 5.2 (see Lemmas 1 and 2).11

As ∆µ increases in Figure 3, the value of information increases for each λ, and shifts
the stable (interior) equilibria to the right, and the unstable one to the left. When ∆µ
is sufficiently high, there remains one equilibrium only, at λ∗ = 1. The uppermost, thick
line, which corresponds to ∆µ = 2, depicts an example of such a situation.

The right panel of Figure 4 depicts the unconditional expectation of the price as a
function of ∆µ, when the proportion of agents who acquire information is determined
endogenously as in the left panel. When ∆µ is small, an increase in ∆µ leads to a positive
but modest increase in λ, and hence a lower average price, reflecting less aggressive
trading of the uninformed agents. As ∆µ becomes sufficiently large, the market shifts to
its “information frenzy” regime, in which all agents become informed. The average price
jumps up as a result, and then remains flat as ∆µ increases further.

Therefore, the model predicts a non-monotonic relation between the degree of
Knightian uncertainty and the average asset return. When uncertainty is low, the
price falls, on average, following a series of positive changes in ∆µ—a sequence of
“uncertainty shocks.” When uncertainty is sufficiently high, the price rebounds as a
result of information acquisition. It jumps back to the equilibrium in the lower branch
of Figure 4 when uncertainty becomes sufficiently low. Furthermore, the price exhibits
path-dependence and different jump sizes, according to whether uncertainty is increasing
or decreasing. For all ∆µ belonging to the area delimited by the two arrows, the average
price is in the lower branch conditional on a history of positive uncertainty shocks, and
in the upper branch otherwise.

11. While these shifts in the prior are relevant to information complementarities in the context of
the maxmin model of this section, they do not not appear in the smooth ambiguity extension of the model
(see Section 6.3), in which ambiguity aversion operates through the agents’ aversion to mean-preserving
spreads in expected utility values.
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Note, then, the model’s prediction regarding asset price volatility. After the market
has undergone an information frenzy and a highly volatile rally, the equilibrium price is,
on average, in the upper branch of Figure 4. In this regime, the asset price is insensitive
to further uncertainty shocks (both positive and negative) and is, on average, higher
than in the lower branch’s regime. Once uncertainty resettles to sufficiently low levels,
the market experiences subsequent longer term “reversals,” with the price undergoing
the low information regime of the lower branch of Figure 4.

6. EXTENSIONS

This section considers three extensions, aiming to analyze departures from some of the
model assumptions made so far.

The first extension is learning. Full Bayesian updating is not the only learning
mechanism available while dealing with ambiguity. In Section 6.1, we consider a different
rule from the prior-by-prior updates of the previous sections, and discusses additional
alternatives.

The second extension is commitment. The uninformed agents would be better off
were they able to pre-commit to state-contingent portfolio decisions at the trading stage,
as discussed in Section 4.2. In Section 6.2, we consider a model with pre-commitment.

The third extension is the separation of tastes and beliefs. Maxmin preferences do
not allow us to disentangle the cognitive notion of ambiguity from the attitude towards
it, as mentioned in Section 3.2. In Section 6.3, we adopt the smooth ambiguity model of
Klibanoff, Marinacci, and Mukerji (2005), which enables us to implement comparative
statics of changing ambiguity or ambiguity aversion.

6.1. Maximum likelihood updates of prior beliefs

With full Bayesian updating, no learning occurs regarding the original set of priors, which
means that the uninformed agents retain all their initial priors. The set of posterior beliefs
on θ given the price is the set of prior beliefs on θ, with each prior updated according to
Bayes’ rule. This section considers an updating rule based on the maximum likelihood
principle, whereby the uninformed agents do not necessarily retain all of their initial priors
after observing the price. Maximum likelihood updating was axiomatized by Gilboa and
Schmeidler (1993). It captures the main flavor of classical statistical inference, as further
discussed by Gilboa and Marinacci (2011).

The literature contains alternative learning approaches to those we consider in this
paper. A popular approach is set out by Epstein and Schneider (2003), who consider
a discrete-time extension of the multiple priors model that is recursive and, hence,
dynamically consistent. Epstein and Schneider (2007, 2008) are examples of learning
models within this context, in which agents have theories of multiple likelihoods that link
signals to true parameters. Likewise, Hanany and Klibanoff (2007, 2009) retain dynamic
consistency by allowing the update rule to depend not only on new information, but also
on prior choices, in the spirit of early work by Machina (1989). In contrast, while distinct
from full Bayesian updating, our analysis of this extension still considers uninformed
agents who deal with preference conflicts at different decision nodes through consistent
planning.12

12. For example, see Eq. (D15) in Online Appendix D for an expression of the welfare loss that
arises in this version of the model, corresponding to T (s;µ) in Eq. (4.13).
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While updating their beliefs through maximum likelihood, the uninformed agents
retain those priors within their initial set that assign the highest probability to the
occurrence of the observed events. That is, conditional on the observed equilibrium price
having taken a value of p, the set of retained priors is

Mp ≡
{
µ ∈ [µ, µ̄]

∣∣∣µ ∈ arg maxµ∈[µ,µ̄] Prob (P (·) = p)
}
. (6.22)

The retained priors are then updated according to Bayes’ rule.
We solve the model in Online Appendix D, where we extend the analysis of the

previous sections to this new setting. In particular, we show that the equilibrium price is
piecewise linear in the compound signal (Proposition D.1), that the value of information
is strictly higher than in the Grossman and Stiglitz (1980) benchmark without ambiguity
(Proposition D.2), and that information complementarities arise when uncertainty is high
enough (Proposition D.3).

6.2. Equilibrium with pre-commitment

In our model, uninformed agents would be better off were they able to pre-commit
to portfolio policies (see Section 4.2). Moreover, the value of price information can be
negative when enough agents acquire information (see Section 5.3). A natural question
then arises as to whether our conclusions on the value of information and learning
complementarities are specific to the assumption of consistent planning. In this section,
we analyze a market in which uninformed agents do pre-commit to a contingent portfolio
choice p 7→ xU (p), in equilibrium. (The possibility of pre-committing is not relevant
to the informed agents, as shown in Online Appendix E.) The model, solved in Online
Appendix E, leads to two main conclusions.

First, in the equilibrium with pre-commitment, the value of information is
represented as in Eq. (4.14), with a positive value of parameter uncertainty. This value is
strictly positive, unless two conditions hold simultaneously: namely, that the uninformed
agents (i) optimally pre-commit to a linear portfolio policy,

xU (p) =
Eµ∗ (f | p)− p
τV ar (f | p)

, for some constant µ∗ ∈ [µ, µ̄], (6.23)

and (ii) gauge their ex ante utility at the very same µ∗. This is a fixed point problem: the
prior µ̂ minimizing ex ante utility depends on µ∗, and at the same time has to be equal
to µ∗ in Eq. (6.23) (see Lemma E.2). Proposition E.1 shows that there exists a threshold
∆µ∗, determined in closed form (see Eq. (E9)), such that a fixed point exists if and only
if ∆µ ≤ ∆µ∗. The threshold goes to zero as λ → 1: the value of parameter uncertainty
is always strictly positive when sufficiently many agents are informed.

Second, information complementarities may also arise in an equilibrium in which
uninformed agents are bound to pre-commit to linear strategies. We provide conditions
such that the value of information in the λ = 1 case exceeds that in λ = 0 case,
conditions that link to the unconditional portfolio problem in Section 5.3. When λ = 1,
an agent who remained uninformed would pre-commit to a portfolio policy xU (p), which
becomes less and less sensitive to the equilibrium price p as ∆µ increases, flattening
out to the unconditional portfolio choice in Eq. (5.19) in the limit when ∆µ is large
(see Lemma E.5). That is, by pre-committing, the uninformed agents mitigate concerns
due to the uncertainty regarding the information contained by the price. However, by
pre-committing, the uninformed agents also face much higher risk, precisely due to their
policy now being unresponsive to p. Under conditions given by Proposition E.2, the value
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of information is higher in the case where λ = 1 than when λ = 0, reflecting the much
higher risk to which the uninformed agents are exposed under higher levels of λ.

6.3. Smooth ambiguity aversion

Maxmin preferences do not allow us to disentangle ambiguity from ambiguity aversion.
We now assume that agents display smooth ambiguity preferences, as in Klibanoff,
Marinacci, and Mukerji (2005) (KMM, hereafter). Given a set of priors Q over µ, a
utility function U , and an increasing and concave function h : R→ R, a KMM decision
maker prefers act x′ to act x if and only if

EQ[h(Eµ(U(W x′)))] ≥ EQ [h (Eµ (U(W x)))] , (6.24)

where U (W x) denotes the utility of wealth W x drawn from act x—a portfolio choice,
in our context. Concavity of h means that a decision maker dislikes mean-preserving
spreads in expected utility values, such that he may be defined as ambiguity averse.
Only if h is linear will the decision maker be ambiguity neutral. One example of the
function h in Eq. (6.24) is h (u) = − 1

σ (e−σu − 1), where the parameter σ is a measure of
absolute ambiguity aversion. If σ = 0, the model collapses to a description of a Bayesian
decision maker. Maxmin expected utility obtains under the assumption that σ is large
(see Proposition 3 in KMM).

We assume that the prior µ ∼ N (µ0, ωµ), and that the function h in Eq. (6.24)
exhibits constant relative ambiguity aversion (CRAA), i.e. h (u) = − (−u)

α
, for some

constant α ≥ 1. In this setup, ωµ summarizes the extent of parameter uncertainty about
µ, and α is a measure of ambiguity aversion, with the decision maker being Bayesian if
α = 1, and ambiguity averse if α > 1. The model is solved in Online Appendix F. Its
main predictions are that the value of information is higher in a market with uncertainty
than in one without, and that there are complementarities in information acquisition,
multiple equilibria, and possibly a negative value of price information—just as in the
maxmin case.

By disentangling parameter uncertainty from aversion to it, the model allows us
to single out the effect of ambiguity aversion on the value of parameter uncertainty.
In Online Appendix F, we establish that, if agents are Bayesian, i.e. if α = 1, the
value of parameter uncertainty is strictly positive (Lemma F.1), but it also decreases
with information acquisition (Proposition F.1), such that information choices can only
be strategic substitutes. Furthermore, we show that information complementarities
and multiple equilibria (Proposition F.1), and a negative value of price information
(Proposition F.2), arise only if agents are ambiguity averse, i.e. if α > 1. Note that
these properties arise even if, unlike in the maxmin model of Sections 3-5, portfolio and
information choices are not based on the worst-case scenario.13 They do arise, however,
through the same mechanism as that in the maxmin model—the value of parameter
uncertainty increases with information acquisition.

Figure 5 depicts the comparative statics regarding the market behavior after a
change in the uncertainty aversion parameter, α. Each panel is the counterpart to the
right panel in Figure 4, and plots the average price against the uncertainty size, ωµ,
when the fraction of informed agents is endogenous. Similarly as in the maxmin model,
the price decreases with uncertainty, on average, reflecting less aggressive trading by
the uninformed agents. Once ωµ is sufficiently large, information complementarities are

13. For instance, and regarding the formulation of portfolio choices, see Eq. (F4).
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Figure 5

This figure depicts the unconditional expectation of the equilibrium price
corresponding to the endogenous fraction of informed agents, λ∗, as a function
of the uncertainty size, ωµ, for two values of the ambiguity aversion parameter,
α. The left panel sets α = 2.5 and the right panel sets α = 6. Other parameter
values are ωθ = ωε = ωz = τ = 1, µz = 4, µ0 = 10, and c = 0.6.

triggered, with an “information frenzy” that leads to a discontinuity in the average
equilibrium price and then to a positive “price drift,” determined by further information
acquisition that occurs in a smooth fashion.

An increase in ambiguity aversion has clear implications in this market: (i) it
increases the price impact of changes in uncertainty, ωµ, (ii) it reduces the critical value of
ωµ that triggers learning complementarities, and (iii) it leads to wider price swings. The
higher price impact in (i), and the ensuing properties (ii) and (iii), are consistent with
the intuition that increased ambiguity aversion leads to less aggressive asset demand.
Gollier (2011) shows that this intuitive property of asset demand might not be robust
to alternative specifications of h in Eq. (6.24), which go beyond the CRAA case of this
section.

7. CONCLUSION

This paper departs from the literature in its focus on the value of information in markets
with Knightian uncertainty. How valuable is it to acquire information that other investors
already have? In their seminal work, Grossman and Stiglitz (1980, p. 405) conclude
that “[...] there is a fundamental conflict between the efficiency with which markets
spread information and the incentives to acquire information.” In markets with Knightian
uncertainty, this conflict takes a novel form.

In our model, more information acquisition implies that prices have more information
content: as the number of informed investors grows, those who remain uninformed trade
with less risk and less ambiguity. The incentives to reduce risk by acquiring information
thus diminish with information acquisition, just as in Grossman and Stiglitz, but the
incentives to reduce ambiguity do not. The benefit of reducing ambiguity is to allow
an ambiguity averse agent to correctly interpret the information revealed by the asset
prices (the “value of parameter uncertainty”). Because asset prices become increasingly
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informative as more investors acquire information, the value of parameter uncertainty
increases with information acquisition.

When uncertainty is high enough, these ambiguity effects overwhelm those arising
from risk. Information acquisition decisions become strategic complements: the more
investors acquire information, the higher are the incentives to become informed. These
markets then respond to even small changes in uncertainty with episodes of large price
fluctuations, driven by hasty changes in information demand. Our model suggests that
investors’ fear of dealing with Knightian uncertainty can lead to new information-based
explanations of asset market volatility.

APPENDICES

Appendix A: Proofs for Section 3

Proof of Proposition I. By the market-clearing condition, Eq. (3.6), the equilibrium price
arising when the uninformed agents do not participate is:

P (s) = −τωε
λ
µz +

τωε
λ
s,

which is the second line in Eqs. (3.7). Next, we compute the uninformed agents’ expectation of
the asset payoff, in the states of nature where these agents participate. Denote the conditional
expectation µ f |s (s;µ) ≡ Eµ (f |S = s). We have,

µ f |s (s;µ) = (1− χ)µ+

(
λ

τωε

)−1

χs, χ ≡

(
λ
τωε

)2

ωθ(
λ
τωε

)2

ωθ + ωz

. (A1)

Using Eq. (A1), and ωs =
(

λ
ωετ

)2

ωθ + ωz, straightforward computations leave:

Ebuy (f |S = s) =
τ2ω2

εωz
λ2ωθ + τ2ω2

εωz
µ+

λτωεωθ
λ2ωθ + τ2ω2

εωz
s (A2)

Esell (f |S = s) =
τ2ω2

εωz
λ2ωθ + τ2ω2

εωz
µ̄+

λτωεωθ
λ2ωθ + τ2ω2

εωz
s (A3)

Next, we plug Eqs. (A2)-(A3) into the demand schedule, Eq. (3.3), replace the result into the
market-clearing condition, Eq. (3.6), conjecture the piece-wise linear price function in Eqs. (3.7),
and solve for undetermined coefficients, obtaining,

a =
−λ2µzτωεωθ +

(
µ (1− λ)ωε − µzτωε (ωε + ωθ)

)
τ2ωzωε

λ2ωθ + λτ2ωθωzωε + τ2ωzω2
ε

ā = a+
∆µ (1− λ) τ2ωzω

2
ε

λ2ωθ + λτ2ωθωzωε + τ2ωzω2
ε

a = −τωε
λ
µz

b =

(
λωθ + ωzτ

2ωε (ωθ + ωε)
)
τωε

λ2ωθ + λτ2ωθωzωε + τ2ωzω2
ε

Finally, we determine the threshold for the compound signal, s and s̄. We use the cutoff
conditions in Eq. (3.4). As for s, consider the first equation, Ebuy

(
f |P (·, ·) = p

)
= p. For s ≤ s,
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the conjectured price function is linear in s. Therefore, we solve for p by equivalently solving for
s in the following condition,

Ebuy (f |S = s) = p = a+ bs,

where Ebuy (f |S = s) is given by Eq. (A2), and the second equality holds by the first line of
the conjectured price function in Eqs. (3.7). We do the same to determine s̄, by solving,

Esell (f |S = s̄) = p̄ = ā+ bs̄,

where Esell (f |S = s̄) is given by Eq. (A3). The expressions for s and s̄ given in Proposition I
then follow by simple computations. Finally, we calculate the threshold prices p̄ and p. We plug

Eqs. (A2)-(A3) into Eq. (3.4), use the price function in Eqs. (3.7), and obtain p = µ+ λωθ
τωεωz

µz

and p̄ = µ̄+ λωθ
τωεωz

µz, which confirm that p < p̄. �

Appendix B: Proofs for Section 4

Derivation of the ex ante utilities

Informed agents. Let µ θ|s (s;µ) and ω θ|s denote the conditional expectation and variance of θ
given s,

Eµ (θ| s) = µ θ|s (s;µ) = µ f |s (s;µ) , ω θ|s =
ωzωθ
ωs

, (B1)

where µ f |s (s;µ) is as in Eq. (A1). We have,

Eµ
[
−e−τŴI

]
= Eµ

[
E
(
−e−τŴI

∣∣∣ θ, s)] = Eµ
[
e−τ(C(θ,s)−c)

]
, (B2)

where ŴI is the informed agent’s wealth,

C (θ, s) ≡ 1

2

(θ − P (s))2

τωε

is the certainty equivalent for the expected utility of the informed agent at the trading stage
and, finally, P (s) is the equilibrium price of Proposition I. By conditioning upon the signal s in
Eq. (B2),

Eµ
[
−e−τŴI

]
=

∫ ∞
−∞

Eµ
(
−e−τ(C(θ,σ)−c)

∣∣∣σ) dΦ (σ;ms (µ) , ωs) , (B3)

where Φ (·;m,ω) denotes the cumulative distribution function of a normal variable with mean
m and variance ω, and ms (µ) and ωs denote the mean and variance of the compound signal s
in Eq. (3.5), with

ms (µ) ≡ Eµ (s) =
λ

τωε
µ, (B4)

and:

Eµ
(
−e−τ(C(θ,σ)−c)

∣∣∣σ) = eτc
∫ ∞
−∞

(
−e−τC(θ,σ)

)
dΦ(θ;µ θ|s (σ;µ) , ω θ|s) = −eτc

√
ωε
ω f |s

e−τ C̄(σ;µ)

(B5)
where

C̄ (s;µ) =
1

2

(Eµ (θ| s)− P (s))2

τω f |s
,

and

ω f |s = ωε +
ωzωθ
ωs

. (B6)
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By replacing P (s) and the expression for µ θ|s (s;µ) in Eq. (B1) into the expression for C̄ (s;µ)

leaves, for ŝ = 1
2

(s+ s̄),

e−τ C̄(s;µ) =



exp

(
−1

2

δ2

ω f |s

(
s− s− δ̂

δ

λ

τωε

(
µ− µ

))2)
, for s < s

exp

(
−1

2

δ̂2

ω f |s

(
s− ŝ− λ

τωε
µ

)2
)
, for s ∈ [s, s̄]

exp

(
−1

2

δ2

ω f |s

(
s− s̄+

δ̂

δ

λ

τωε
(µ̄− µ)

)2)
, for s > s̄

(B7)

where

δ =
τ3ωzω

3
ε

(
λ2ωθ + τ2ωzω

2
ε + τ2ωzωθωε

)
(λ2ωθ + λτ2ωzωθωε + τ2ωzω2

ε ) (λ2ωθ + τ2ωzω2
ε )
, δ̂ =

τωεωz
λωs

. (B8)

Finally, substituting Eqs. (B5) and (B7) into Eq. (B3), and integrating, leaves the following
closed-form expression for the expectation in Eq. (4.9) of the main text,

Eµ
[
−e−τ(C(θ,σ)−c)

]
= eτc

√
ωε
ω f |s

·
∑

`∈{buy,np,sell}

I`µ, (B9)

where, denoting Φ (·) ≡ Φ (·; 0, 1),

Ibuy
µ = −κ exp

−δ2
(
ωs
ωz
µz + γ0

(
µ− µ

))2

2
(
ω f |s + δ2ωs

)
Φ

(
κ√
ωs

(
ωs
ωz
µz − γ1

(
µ− µ

)))

Inp
µ = −κ̂ exp

(
−

δ̂2(ωs
ωz
µz)

2

2(ω f |s + δ̂2ωs)

)

×
[
Φ

(
κ̂√
ωs

(
ωs
ωz
µz + γ2 (µ̄− µ)

))
− Φ

(
κ̂√
ωs

(
ωs
ωz
µz − γ2

(
µ− µ

)))]

Isell
µ = −κ exp

−δ2
(
ωs
ωz
µz − γ0 (µ̄− µ)

)2

2
(
ω f |s + δ2ωs

)
[1− Φ

(
κ√
ωs

(
ωs
ωz
µz + γ1 (µ̄− µ)

))]
and:

κ =

√
ω f |s

ω f |s + δ2ωs
, κ̂ =

√
ω f |s

ω f |s + δ̂2ωs
,

γ0 =

(
δ̂

δ
− 1

)
λ

τωε
, γ1 =

(
1 + δ

δ̂ωs
ω f |s

)
λ

τωε
, γ2 =

(
1 + δ̂

δ̂ωs
ω f |s

)
λ

τωε
. �

Uninformed agents. We derive the expression for T in Eq. (4.13), and a closed-form expression
for the expectation in the second equality of (4.12). We have:

Eµ
[
−e−τŴU

∣∣∣ s] = Eµ
[
−e−τxU (s)(f−P (s))

∣∣∣ s]
= − exp

(
−τxU (s)

(
µ f |s (s;µ)− P (s)

)
+
τ2

2
x2
U (s)ω f |s

)
, (B10)

where ŴU is the uninformed agent’s wealth,

xU (s) =
µ f |s (s;µ∗ (s))− P (s)

τω f |s
,
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and µ∗ (s) is defined as in second of Eqs. (4.11) in the main text. Replacing the previous
expression for xU (s) into Eq. (B10) leads to the second equality of Eq. (4.12), where:

T (s;µ) =



(
µ− µ

)2
(1− χ)2

2τω f |s
, for s < s

C̄ (s;µ) , for s ∈ [s, s̄]

(µ̄− µ)2 (1− χ)2

2τω f |s
, for s > s̄

(B11)

and χ is defined as in Eq. (A1). Finally, we use Eqs. (B7) and (B11) to determine the expectation
in the ex ante utility for the uninformed in Eq. (4.12),

Eµ
[
−e−τ(C̄(s;µ)−T (s;µ))

]
=

∑
`∈{buy,np,sell}

J`µ, (B12)

where

Jbuy
µ = exp

((
µ− µ

)2
(1− χ)2

2ω f |s

)
· Ibuy
µ ,

Jnp
µ = −

[
Φ

(
s̄−ms (µ)√

ωs

)
− Φ

(
s−ms (µ)√

ωs

)]
,

Jsell
µ = exp

(
(µ̄− µ)2 (1− χ)2

2ω f |s

)
· Isell
µ ,

and Ibuy
µ and Isell

µ are the same as in Eq. (B9). �

State contingent plans dominating consistent planning. We show that xU (s) ≡
xU (p, P (θ, z)) in Eq. (3.3) is dominated by alternative portfolio policies, in that the latter
deliver a higher ex ante utility than UU (λ) in Eq. (4.12). We aim to tilt xU (·) by a function
such that the resulting tilted asset demand schedule generates a higher ex ante utility.

Consider the following alternative contingent portfolio rule,

x̂ (s, t) =
µ f |s (s;µ∗(s) + th(s))− P (s)

τω f |s
, (B13)

where µ f |s (s;µ) is defined as in Eq. (A1), t ≥ 0 and h(s) is any continuous function such that:
(i) h(s) ≥ 0 for s ≤ s, (ii) h(s) = 0 for s ∈ [s, s̄], and (iii) h(s) ≤ 0 for s ≥ s, with h(s) being
strictly different from zero on some open set for both s ≤ s and s ≥ s̄. Note that by construction,

xU (s) = x̂ (s, 0) for all s. (B14)

Denote with Û(t) the ex ante utility corresponding to x̂(·, t). Define

f (µ, t) = Eµ

−e− (µ f|s(s;µ)−P (s))2

2ω f|s
+

(µ∗(s)+th(s)−µ)2
(1−χ)2

2ω f|s

 .
Using the definition of µ∗ (·) in (4.11), and that of h (·), we obtain:

∂f(µ, t)

∂t

∣∣∣∣
t=0

=

∫ s

−∞
e
−

(µ f|s(s;µ)−P (s))2

2ω f|s
+

(µ−µ)2
(1−χ)2

2ω f|s

(
(µ−µ)(1−χ)2

ω f|s
h(s)

)
φ

(
s;

λ

τωε
µ, ωs

)
ds

+

∫ ∞
s̄

e
−

(µ f|s(s;µ)−P (s))2

2ω f|s
+

(µ−µ̄)2(1−χ)2

2ω f|s
(

(µ−µ̄)(1−χ)2

ω f|s
h(s)

)
φ

(
s;

λ

τωε
µ, ωs

)
ds,

where φ denotes the normal density, dΦ ≡ φds. Given that µ−µ ≥ 0 and and h(s) ≥ 0 for s ≤ s,
with the inequality being strict on some open set, the first term is strictly positive for all µ > µ

and zero for µ = µ. Given that µ− µ̄ ≤ 0 and h(s) ≤ 0 for s ≥ s̄, with the inequality being strict
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on some open set, the second term is strictly positive for all µ < µ̄ and zero for µ = µ̄. Therefore,
∂f(µ,t)
∂t

∣∣∣
t=0

> 0 for all µ, which implies that there exist sufficiently small values of t > 0 such

that f (µ, t) > f (µ, 0) for all µ, and, then, Û(t) = minµ∈[µ,µ̄] f (µ, t) > minµ∈[µ,µ̄] f (µ, 0). But

by Eq. (B14), Û(0) = UU . It follows that for t small enough, Û(t) > UU . �

Proof of Proposition II. Consider the definition of the value of information for any λ in Eq.
(4.14). We wish to show that for ∆µ > 0,

EµU

[
−e−τ(C̄(s;µU )−T (s;µU ))

]
EµI

[
−e−τ C̄(s;µI )

] > 1.

Because EµI [−e−τ C̄(s;µ)] and EµU [−e−τ(C̄(s;µ)−T (s;µ))] are both strictly negative, the previous
inequality holds true if:

EµI

[
−e−τ C̄(s;µI )

]
> EµU

[
−e−τ(C̄(s;µU )−T (s;µU ))

]
, (B15)

where we define, as in the main text:

µI ∈ arg min
µ∈[µ,µ̄]

Eµ
[
−e−τ C̄(s;µ)

]
, µU ∈ arg min

µ∈[µ,µ̄]
Eµ
[
−e−τ(C̄(s;µ)−T (s;µ))

]
.

To show that the inequality (B15) is true, suppose the contrary, i.e. that:

EµI

[
−e−τ C̄(s;µI )

]
≤ EµU

[
−e−τ(C̄(s;µU )−T (s;µU ))

]
. (B16)

Because T (s;µ) is non-negative and strictly positive on an open set of values of s (see Eq.
(B11)), we have that,

EµI

[
−e−τ C̄(s;µI )

]
> EµI

[
−e−τ(C̄(s;µI )−T (s;µI ))

]
. (B17)

Combining (B16) with (B17) yields,

EµI

[
−e−τ(C̄(s;µI )−T (s;µI ))

]
< EµI

[
−e−τ C̄(s;µI )

]
≤ EµU

[
−e−τ(C̄(s;µU )−T (s;µU ))

]
,

contradicting that µU minimizes Eµ
[
−e−τ(C̄(s;µ)−T (s;µ))

]
. �

The next corollary follows directly by Proposition II:

Corollary B.1. Information is purchased by more agents in the presence of ambiguity than in
markets without ambiguity, and strictly so unless the equilibrium fraction of informed agents in
both markets is either zero or one.

Proof. Let λ∗(∆µ) ∈ (0, 1] solve the indifference condition, G (c, λ) = 0. Assume now that
λ∗(0) ≥ λ∗(∆µ), for some ∆µ > 0. By Proposition II and the fact that the first term
in the R.H.S. of Eq. (4.14) is decreasing in λ, this cannot be the case as we would have,
G (c, λ∗(∆µ)) > 0. Furthermore, since G (c, λ)|∆µ>0 > G (c, λ)|∆µ=0 for all λ by Proposition

II, then λ∗(∆µ) = 0 implies λ∗(0) = 0, and λ∗(0) = 1 implies λ∗(∆µ) = 1. �

Appendix C: Proofs for Section 5

We prove Proposition III by relying on Lemmas 1 and 2 in the main text. We prove these two
lemmas first.

Proof of Lemma 1. We first show that for λ = 0, there exists a µ̂z > 0, such that for all

µz ≥ µ̂z, the ex ante utility of the informed agents occurs at µ = µ, i.e. UI (c, 0) = Eµ[−e−τŴI ].
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Note that because Inp
µ = 0 when λ = 0, it is sufficient to show that for all µz ≥ µ̂z,

arg minµ∈[µ,µ̄]

(
Ibuy
µ + Isell

µ

)
= µ. When λ = 0, by Eq. (B9) we have,

Ibuy
µ = −c0 exp

(
−c

2
0

2

(
τωfµz +

(
µ− µ

))2
ωf

)
Φ

(
c0√
ωz

(
µz − τωz

(
µ− µ

)))
(C1)

Isell
µ = −c0 exp

(
−c

2
0

2

(τωfµz − (µ̄− µ))2

ωf

)[
1− Φ

(
c0√
ωz

(µz + τωz (µ̄− µ))

)]
(C2)

where ωf = ωθ + ωε, and c0 =
(
1 + τ2ωfωz

)− 1
2 .

We show that µ 7→
(
Ibuy
µ + Isell

µ

)
is increasing when µz is sufficiently large. We have,

c−1
0

∂

∂µ
Ibuy
µ = e

−
c20
2

(τωfµz+(µ−µ))2

ωf

(
c20
τωfµz +

(
µ− µ

)
ωf

)
Φ

(
c0√
ωz

(
µz − τωz

(
µ− µ

)))

+ e
−
c20
2

(τωfµz+(µ−µ))2

ωf φ

(
c0√
ωz

(
µz − τωz

(
µ− µ

)))
c0τ
√
ωz, (C3)

and,

c−1
0

∂

∂µ
Isell
µ = e

−
c20
2

(τωfµz−(µ̄−µ))2

ωf c20
τωfµz − (µ̄− µ)

ωf

[
1− Φ

(
c0 (µz + τωz (µ̄− µ))√

ωz

)]

− e
−
c20
2

(τωfµz−(µ̄−µ))2

ωf φ

(
c0√
ωz

(µz + τωz (µ̄− µ))

)
c0τ
√
ωz

≡ Bsell
1 +Bsell

2 . (C4)

The term Bsell
1 is strictly positive for all µ whenever µz > µ∗z ≡ ∆µ

τωf
. After tedious but

straightforward computations, we find that

c−1
0

∂

∂µ
Ibuy
µ +Bsell

2 = exp

(
−c

2
0

2

(
τωfµz +

(
µ− µ

))2
ωf

)
· (H1 (µ) +H2 (µ)) ,

where,

H1 (µ) ≡

(
c20
τωfµz +

(
µ− µ

)
ωf

)
Φ

(
c0√
ωz

(
µz − τωz

(
µ− µ

)))
H2 (µ) ≡ φ

(
c0√
ωz

(µz + τωz (µ̄− µ))

)
exp

(
c20
(
µzτ − µτ2ωz

)
∆µ
)

×

[
1− exp

(
c20∆µ

(
1 + τ2ωzωf

)
ωf

µ

)]
c0τ
√
ωz.

The function H1 (µ) is clearly positive for all µ whenever µz > µ∗z. The function H2 (µ) is zero for
µ = 0, positive for µ < 0, and negative for µ > 0. Therefore, the function H (µ) ≡ H1 (µ)+H2 (µ)
is positive for all µ ≤ 0. If, instead, µ > 0, we have, clearly, that minµ∈(0,µ̄] H2 (µ) = H2 (µ∗) ≡
H̄2 > −∞, for some µ∗ ∈ (0, µ̄] and limµz→∞H2 (µ) = 0 for all µ ∈ [µ, µ̄]. Moreover, for

each µ, the function H1 (µ) is increasing in µz, with limµz→∞H1 (µ) = ∞. Therefore, for each
µ > 0, there exists a finite µ̂z, such that H (µ) ≥ H1 (µ) + H̄2 > 0 for all µz ≥ µ̂z. Take
µ̃z = max {µ∗z, µ̂z} to conclude about the informed agents’ choice.

Next, we show that for λ = 0, there exists a µ̌z > 0, such that for all µz ≥ µ̌z, the ex ante

utility of the uninformed agents also occurs at µ = µ, i.e. UU (0) = Eµ[−e−τŴU ]. When λ = 0,

we have, by Eq. (B12), that,

Jbuy
µ + Jsell

µ = exp

((
µ− µ

)2
2ωf

)
· Ibuy
µ + exp

(
(µ̄− µ)2

2ωf

)
· Isell
µ ,
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where Ibuy
µ and Isell

µ are as in Eqs. (C1)-(C2). We need to show that A1 + A2 > 0 for all µ,
where,

A1 ≡ c−1
0

∂

∂µ

(
exp

((
µ− µ

)2
2ωf

)
· Ibuy
µ

)
= e

(µ−µ)2

2ωf ·
(
µ− µ
ωf

(
−c−1

0 Ibuy
µ

)
+ c−1

0

∂

∂µ
Ibuy
µ

)
,

and,

A2 ≡ c−1
0

∂

∂µ

(
exp

(
(µ̄− µ)2

2ωf

)
· Isell
µ

)
= e

(µ̄−µ)2

2ωf ·
(
µ̄− µ
ωf

(
−c−1

0 Isell
µ

)
+ c−1

0

∂

∂µ
Isell
µ

)
,

and the terms, ∂
∂µ
Ibuy
µ and ∂

∂µ
Isell
µ , are as in Eqs. (C3)-(C4). By Eqs. (C1) and (C3),

µ− µ
ωf

(
−c−1

0 Ibuy
µ

)
+ c−1

0

∂

∂µ
Ibuy
µ

=

(
c20
τωfµz +

(
µ− µ

)
ωf

−
µ− µ
ωf

)
exp

(
−c

2
0

2

(
τωfµz +

(
µ− µ

))2
ωf

)
Φ

(
c0√
ωz

(
µz − τωz

(
µ− µ

)))

+ exp

(
−c

2
0

2

(
τωfµz +

(
µ− µ

))2
ωf

)
φ

(
c0√
ωz

(
µz − τωz

(
µ− µ

)))
c0τ
√
ωz

≡ A11 +A12,

such that A11 > 0 for all µ whenever µz > µ∗∗z ≡ ∆µ

c20τωf
(1 − c20) = ∆µτωz. Next, we show that

for µz large enough, A3 ≡ exp

(
(µ−µ)2

2ωf

)
A12 +A2 > 0, for all µ, thereby completing the proof.

We use Eqs. (C2) and (C4), and use the resulting expressions for A2 to obtain, after tedious but
straightforward computations,

A3 = exp

((
µ− µ

)2
2ωf

)
exp

(
−c

2
0

2

(
τωfµz +

(
µ− µ

))2
ωf

)
φ

(
c0√
ωz

(
µz − τωz

(
µ− µ

)))
×
c0τ
√
ωz√

2π
(1− exp (−A31 ·∆µ))

+ exp

(
(µ̄− µ)2

2ωf

)
exp

(
−c

2
0

2

(τωfµz − (µ̄− µ))2

ωf

)
×
[(

µ̄− µ
ωf

+ c20
τωfµz − (µ̄− µ)

ωf

)(
1− Φ

(
c0 (µz + τωz (µ̄− µ))√

ωz

))]
≡ A32 +A33

and,

A31 ≡ c0τ (c0 +
√
ωz)µz +

(
ω−1
f + c20ω

−1
f − τ

2ω
3
2
z c0

)
µ.

We have that (i) A33 > 0 for all µ whenever µz > µ∗z = ∆µ
τωf

, and (ii) for all µ, A32 > 0 ⇐⇒
A31 > 0. Inspection of the definition of A31 reveals that there exists a µ∗∗∗z > 0 such that
A31 > 0 for all µ whenever µz > µ∗∗∗z . Now take µ̌z = max {µ∗z, µ∗∗z , µ∗∗∗z } to conclude about
the uninformed agents’ choice. �

Proof of Lemma 2. We first show that for λ = 1, the ex ante utility of the informed agents is
independent of µ. By a direct calculation,

I1 ≡ lim
λ→1

∑
`∈{buy,np,sell}

I`µ = −c1
√
ωθ + τ2ωzωεωf

c2
exp

(
−1

2
τ2ωεc

2
1µ

2
z

)
, (C5)

where c1 =
(
1 + τ2ωzωε

)− 1
2 and c2 = τ2ωzω

2
ε + ωθ, which is independent of µ, as claimed.

Next, we show that there exist a µ̆z > 0 and a λ̄ ∈ (0, 1) such that for all µz ≥ µ̆z and

λ ∈ (λ̄, 1], the ex ante utility of the uninformed agents is UU (λ) = Eµ̄[−e−τŴU ]. By Eq. (B12),
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we need to show that the mapping, µ 7−→ (Jbuy
µ +Jnp

µ +Jsell
µ ) is decreasing when µz is sufficiently

large and λ is sufficiently close to one. By Eq. (B12) and the definition of I`µ in Eq. (B9),

∂

∂µ
Jbuy
µ

= −ζ(µ;µz)

(
µ− µ

)
(1− χ)2

ω f |s
e

(µ−µ)2
(1−χ)2

2ω f|s Φ

(
κ√
ωs

(
ωs
ωz
µz − γ1

(
µ− µ

)))

+ ζ(µ;µz)e
(µ−µ)2

(1−χ)2

2ω f|s φ

(
κ√
ωs

(
ωs
ωz
µz − γ1

(
µ− µ

))) κ√
ωs
γ1

+ ζ(µ;µz)γ0

δ2
(
ωs
ωz
µz + γ0

(
µ− µ

))
ω f |s + δ2ωs

e
(µ−µ)2

(1−χ)2

2ω f|s Φ

(
κ√
ωs

(
ωs
ωz
µz − γ1

(
µ− µ

)))
≡ ζ(µ;µz)

(
jbuy
1 + jbuy

2 + jbuy
3

)
,

and,

∂

∂µ
Jnp
µ = ζµz

λ

τωε
√
ωs
ζ−1
µz

[
φ

(
s̄−ms (µ)√

ωs

)
− φ

(
s−ms (µ)√

ωs

)]
≡ ζµz (jnp

1 + jnp
2 ) ,

and,

∂

∂µ
Jsell
µ

= ζ(µ̄;µz)
(µ̄− µ) (1− χ)2

ω f |s
e

(µ̄−µ)2(1−χ)2

2ω f|s

[
1− Φ

(
κ√
ωs

(
ωs
ωz
µz + γ1 (µ̄− µ)

))]
− ζ(µ̄;µz)e

(µ̄−µ)2(1−χ1)2

2ω f|s φ

(
κ√
ωs

(
ωs
ωz
µz + γ1 (µ̄− µ)

))
κ√
ωs
γ1

+ ζ(µ̄;µz)γ0

δ2
(
ωs
ωz
µz + γ0 (µ− µ̄)

)
ω f |s + δ2ωs

e
(µ̄−µ)2(1−χ)2

2ω f|s

[
1− Φ

(
κ√
ωs

(
ωs
ωz
µz + γ1 (µ̄− µ)

))]
≡ ζ(µ̄;µz)

(
jsell
1 + jsell

2 + jsell
3

)
,

where:

ζµz = exp

− δ2
(
ωs
ωz
µz
)2

2
(
ω f |s + δ2ωs

)
 , ζ (x;µz) ≡ κ exp

−δ2
(
ωs
ωz
µz + γ0 (µ− x)

)2

2
(
ω f |s + δ2ωs

)
 .

We have that: for all µ > µ, limµz→∞ j
buy
1 < 0, limµz→∞ j

buy
2 = 0 and limµz→∞ j

sell
1 =

limµz→∞ j
sell
2 = 0. Note, also, that limµz→∞

∂
∂µ
Jnp
µ ≤ 0 for all µ, which it does whenever

limµz→∞ j
np
1 = 0. It is the case, since straightforward calculations leave: jnp

1 ∝ e
−(c1µ2

z+c2µz+c3)

for three constants ci, and c1 strictly positive. Therefore, there exists a µ̆z > 0 such that, for all
µz > µ̆z, we have jbuy

1 + jbuy
2 + jsell

1 + jsell
2 + jnp

1 + jnp
2 < 0. Next, we write

∂

∂µ

(
Jbuy
µ + Jnp

µ + Jsell
µ

)
= ζµz ·

(
ζ(µ;µz)

ζµz

(
jbuy
1 + jbuy

2 + jbuy
3

)
+ jnp

1 + jnp
2 +

ζ(µ̄;µz)

ζµz

(
jsell
1 + jsell

2 + jsell
3

))
≡ ζµz · j̄.

Because limλ→1 γ0 = 0 and, hence, for all finite µz, limλ→1 j
buy
3 = limλ→1 j

sell
3 = 0 and

limλ→1 ζ (x;µz) = ζµz for all x, such that for any finite µz larger than µ̆z there exists λ̄ depending
on µz such that j̄ < 0. Therefore, we have shown that for all µ strictly higher than µ, the function
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Jµ ≡ Jbuy
µ + Jnp

µ + Jsell
µ is decreasing in µ. Because Jµ is continuous in the closed and bounded

interval [µ, µ̄], then, by Weierstrass theorem, Jµ takes its absolute maximum on [µ, µ̄]. Suppose
that Jµ is the global maximum, and then the proof follows. Suppose that Jµ is not the global

maximum; then, there exists an open interval of [µ, µ̄] on which Jµ is increasing in µ, which
contradicts that Jµ is decreasing in µ for all µ > µ. �

Proof of Proposition III. We show that for all µz ≥ µ̄z, where µ̄z is as in Lemma 1,
G (c, 1) > G (c, 0), or equivalently

UI (c, 0)

UU (0)
>
UI (c, 1)

UU (1)
. (C6)

We utilize the expressions for Ibuy
µ , Inp

µ and Isell
µ given in Appendix B and calculate that for

λ = 0,

Jbuy
µ = Ibuy

µ = −c0 exp

(
−τ

2ωfc
2
0

2
µ2
z

)
Φ

(
c0√
ωz
µz

)
,

Jnp
µ = Inp

µ = 0,

Jsell
µ = exp

(
∆µ2

2ωf

)
Isell
µ , Isell

µ = −c0 exp

(
−c

2
0

2

(τωfµz −∆µ)2

ωf

)
Φ

(
− c0√

ωz
(µz + τωz∆µ)

)
.

Therefore, for µz large enough, and Lemma 1,

UI (c, 0)

UU (0)
= eτc

√
ωε
ωf

Ibuy
µ + Isell

µ

Jbuy
µ + Jsell

µ

= eτc
√
ωε
ωf

1 +
Isell
µ

I
buy
µ

1 + exp
(

∆µ2

2ωf

) Isell
µ

I
buy
µ

,

where limµz↑∞(Isell
µ /Ibuy

µ ) = 0, by the L’Hôpital’s rule. Therefore,

lim
µz↑∞

UI (c, 0)

UU (0)
= eτc

√
ωε
ωf
. (C7)

Next, we show that, for λ = 1,

lim
µz↑∞

UI (c, 1)

UU (1)
= eτc

√
ωε

ω f |s,λ=1

exp

(
−∆µ2 (1− χ1)2

2ω f |s,λ=1

)
, (C8)

where ω f |s,λ=1 = limλ→1 ω f |s and χ1 = limλ→1 χ. By the expressions for J`µ and I`µ in Appendix
B and Lemma 2, we have that for µz large enough,

Jbuy
µ̄ = exp

(
∆µ2 (1− χ1)2

2ω f |s,λ=1

)
· I1Φ

(
κ

√
ωs,λ=1

(
ωs,λ=1

ωz
µz − γ̄∆µ

))
,

Jnp
µ̄ = −

[
Φ

(
s̄1 −ms (µ̄)
√
ωs,λ=1

)
− Φ

(
s1 −ms (µ̄)
√
ωs,λ=1

)]
,

Jsell
µ̄ = I1

[
1− Φ

(
κ

√
ωs,λ=1

ωs,λ=1

ωz
µz

)]
,

for some γ̄ > 0 independent of µz, where ωs,λ=1 = limλ→1 ωs, s̄1 = limλ→1 s̄, s1 = limλ→1 s,
and I1 is as in Eq. (C5) in the proof of Lemma 2. Hence, we have

UI (c, 1)

UU (1)
= eτc

√
ωε

ω f |s,λ=1

I1

Jbuy
µ̄ + Jnp

µ̄ + Jsell
µ̄

= eτc
√

ωε
ω f |s,λ=1

exp

(
−∆µ2 (1− χ1)2

2ω f |s,λ=1

)
1

Z (µz)
,

(C9)
where, by straightforward calculations,

Z (µz) ≡ Φ

(
κ

√
ωs,λ=1

(
ωs,λ=1

ωz
µz − γ̄∆µ

))
+

[
Jnp
µ̄

I1
+ Φ

(
− κ
√
ωs,λ=1

ωs,λ=1

ωz
µz

)]
exp

(
−∆µ2 (1− χ1)2

2ω f |s,λ=1

)
.
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We have, by the L’Hôpital’s rule,

lim
µz↑∞

Jnp
µ̄

I1
= c̄ · lim

µz↑∞

φ
(
s̄1−ms(µ̄)
√
ωs,λ=1

)
− φ

(
s1−ms(µ̄)
√
ωs,λ=1

)
µze
− 1

2
τ2ωεc

2
1µ

2
z

= 0, (C10)

for some constant c̄ > 0, where the last equality follows by comparing the loadings of µ2
z of

the exponentials in the numerator and the denominator, and using the definition of c1 in Eq.
(C5). Therefore, limµz↑∞ Z (µz) = 1 such that Eq. (C8) holds, due to Eq. (C9). Proposition III
follows from Eq. (C7) and Eq. (C8) and ∆µ large enough. �

Proof of Eq. (5.21). We rely on the following lemma, which we give without proof, as it can
be derived by well known properties of the normal distribution.

Lemma C.1. Let Fs and Ft be two nested information sets, Fs ⊆ Ft, and let R be normally
distributed with respect to Fs and Ft, and assume V ar (R| Ft) is constant. Then,

x (Ft) ≡ arg max
x

E
(
−e−τxR

∣∣∣Ft) = arg max
x

x
(
E (R| Ft)− x

τ

2
V ar (R| Ft)

)
=

E (R| Ft)
τV ar (R| Ft)

,

and

E [− exp (−τx (Ft)R)| Fs] = −
(
V ar (R| Ft)
V ar (R| Fs)

)1/2

exp

(
− E (R| Fs)2

2V ar (R| Fs)

)
.

As for the proof of Eq. (5.21), we have that in the no-ambiguity benchmark, ∆µ = 0, asset
returns are unconditionally normally distributed, so Lemma C.1 implies that the ex ante utility
deriving from the unconditional portfolio choice x0 is,

U0 (λ) = − exp

(
−1

2

E (R)2

V ar (R)

)
. (C11)

Next, let Fi denote agent-i information set at the trading stage and, accordingly, let xi (Fi) be
his optimal demand conditional on Fi and Ui (λ) his ex ante utility. If the asset return R is
normally distributed with respect to Fi and also unconditionally, then,

Ui (λ) = −
(
V ar (R| Fi)
V ar (R)

)1/2

exp

(
−1

2

E (R)2

V ar (R)

)
=

(
V ar (R| Fi)
V ar (R)

)1/2

U0 (λ) , (C12)

where the first equality holds by Lemma C.1 and second from the expression of U0 (λ) in Eq.
(C11). Given returns R are normally distributed both conditional on price information and
unconditionally for ∆µ = 0, these results imply that Eq. (5.21) holds. �

Finally, we derive the unconditional portfolio choice in Eq. (5.19) in the general case of a
market with ambiguity. We have:

Proposition C.1. The unconditional portfolio choice, x0, is implicitly defined by

x0 =



Eµ

(
Eµ(R|s)
τω f|s

e
−τx0Eµ(R|s)

)
Eµ

(
e
−τx0Eµ(R|s)

) , for Eµ (R) > 0

0, for Eµ (R) ≤ 0 and Eµ̄ (R) ≥ 0

Eµ̄

(
Eµ̄(R|s)
τω f|s

e−τx0Eµ̄(R|s)
)

Eµ̄

(
e−τx0Eµ̄(R|s)

) , for Eµ̄ (R) < 0

Moreover, x0 ∈
(

0,
Eµ(R)

τω f|s

)
for Eµ (R) > 0 and x0 ∈

(
Eµ̄(R)

τω f|s
, 0
)

for Eµ̄ (R) < 0.

We prove Proposition C.1 through the following lemma.

Lemma C.2. The inner minimization problem in Eq. (5.19) is solved by µ = µ for x0 > 0 and
by µ = µ̄ for x0 < 0.
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Proof. Note that,

min
µ∈[µ,µ̄]

Eµ
[
−e−τxR

]
= min
µ∈[µ,µ̄]

Eµ
[
Eµ
[
e−τx(E(R|s)−x τ

2
V ar(R|s))

∣∣∣ s]]
= min
µ∈[µ,µ̄]

Eµ
[
−e−τx((µ θ|s(s;µ)−P (s))−x τ2 ω f|s)

]
= min
µ∈[µ,µ̄]

[∫ s

−∞
h (t, µ, x) dt+

∫ s̄

s

h (t, µ, x) dt+

∫ ∞
s̄

h (t, µ, x) dt

]
,

where

h (t, µ, x) ≡ −e−τx((µ θ|s(t;µ)−P (t))−x τ2 ω f|s)f (t;ms (µ) , ωs) ,

and ms (µ) is defined in (B4). The integrand h (t, µ, x) is a continuous function of t and µ over
the ranges of integration, and so is its partial derivative with respect to µ,

∂

∂µ
h (t, µ, x)

= e−τx((µ θ|s(t;µ)−P (t))−x τ2 ω f|s)
(
τx(1− χ)f (t;ms (µ) , ωs) +

λ

τωε

∂

∂t
f (t;ms (µ) , ωs)

)
.

Hence, differentiating under the integral sign and rearranging, leaves:

∂

∂µ
Eµ
(
−e−τxR

)
=

∫ ∞
−∞

e−τx((µ θ|s(t;µ)−P (t))−x τ2 ω f|s)
(
τx(1− χ)f (t;ms (µ) , ωs) +

λ

τωε

∂

∂t
f (t;ms (µ) , ωs)

)
dt.

(C13)

Integrating the second term by parts and simplifying gives,∫ ∞
−∞

e−τx((µ θ|s(t;µ)−P (t))−x τ2 ω f|s) λ

τωε

∂

∂t
f (t;ms (µ) , ωs) dt

= −
∫ ∞
−∞

(
∂

∂t
e−τx((µ θ|s(t;µ)−P (t))−x τ2 ω f|s)

)
λ

τωε
f (t;ms (µ) , ωs) dt

=

∫ ∞
−∞

τx

(
χ− λ

τωε

∂

∂t
P (t)

)
e−τx((µ θ|s(t;µ)−P (t))−x τ2 ω f|s)f (t;ms (µ) , ωs) dt.

Plugging back into Eq. (C13) yields:

∂

∂µ
Eµ
(
−e−τxR

)
= τx

∫ ∞
−∞

e−τx((µ θ|s(t;µ)−P (t))−x τ2 ω f|s)
(

1− λ

τωε

∂

∂t
P (t)

)
f (t;ms (µ) , ωs) dt.

By the equilibrium price function defined by Eqs. (3.7), it is immediate that λ
τωε

∂
∂t
P (t) ≤ 1,

with the inequality being strict outside the non-participation region. Therefore, we have:

sign

(
∂

∂µ
Eµ
(
−e−τxR

))
= sign(x),

which proves the original claim. �

Proof of Proposition C.1. We begin by proving that the maximization problem in Eq. (5.19)
has a strictly positive solution x0 > 0 if and only if Eµ (R) > 0. By Lemma C.2 we look for
x0 > 0 which solves

x0 = arg max
x

Eµ
(
−e−τxR

)
= arg max

x
Eµ
(
e−τx(Eµ(R|s)−x τ

2
ω f|s)

)
. (C14)
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As a first step we show that we can differentiate under the integral sign the maximand in Eq.
(C14),

Eµ
(
e−τx(Eµ(R|s)−x τ

2
ω f|s)

)
=

∫ ∞
−∞

e−τx((µ θ|s(t;µ)−P (t))−x τ2 ω f|s)f
(
t;ms(µ), ωs

)
dt

=

∫ s

−∞
h
(
t, µ, x

)
dt+

∫ s̄

s

h
(
t, µ, x

)
dt+

∫ ∞
s̄

h
(
t, µ, x

)
dt

which we can, as h
(
t, µ, x

)
and ∂

∂x
h
(
t, µ, x

)
are continuous functions of t and x over the ranges

of integration. Because Eµ (R| s) = µ θ|s(s;µ) − P (s) is linear in s over the very same ranges

of integration, the expression Eµ
(
Eµ (R| s) e−τx(Eµ(R|s)−x τ

2
ω f|s)

)
is also differentiable under

the integral sign. Then, the first-order condition for the maximization problem in Eq. (5.19) for
x > 0 gives

G (x) ≡ Eµ
[(
Eµ (R| s)− xτω f |s

)
e−τx(Eµ(R|s)−x τ

2
ω f|s)

]
= 0, (C15)

with second-order condition

G′ (x) = −τEµ
[(
ω f |s +

(
Eµ (R| s)− xτω f |s

)2)
e−τx(Eµ(R|s)−x τ

2
ω f|s)

]
< 0. (C16)

Notice that

G (0) = Eµ
(
Eµ (R| s)

)
= Eµ (R) ,

which, together with Eq. (C16) implies that a strictly positive solution to G(x) = 0 exists only
if Eµ (R) > 0. Hence, take Eµ (R) > 0 and define

x̄ ≡
Eµ (R)

τω f |s
.

We will show that G (x̄) < 0, or equivalently,

G (x̄) < 0⇔ Eµ
[(
Eµ (R| s)− x̄τω f |s

)
e−τx̄Eµ(R|s)

]
< 0⇔ Eµ (R) > EP̃µ

(
Eµ (R| s)

)
, (C17)

where
dP̃

dP

∣∣∣∣
F(s)

≡ e−τx̄Eµ(R|s)

E
[
e−τx̄Eµ(R|s)

] .
Given that Eµ (R| s) is a strictly decreasing function of s and x̄ > 0, the measure P̃ assigns larger

weight to states s in which Eµ (R| s) is negative and lower weight to states s in which Eµ (R| s)
is positive, which implies EP̃µ

(
Eµ (R| s)

)
< Eµ

(
Eµ (R| s)

)
and therefore the last inequality in

(C17). Since G (0) > 0 and G (x̄) < 0, then there exists a value x0 ∈
(

0,
Eµ(R)

τω f|s

)
that solves

Eq. (C15); since G′(x) < 0 the solution to Eq. (C15) is unique. Rearranging Eq. (C15) and
simplifying gives

x0 =
Eµ
(
Eµ(R|s)
τω f|s

e−τx0Eµ(R|s)
)

Eµ
(
e−τx0Eµ(R|s)

) .

The case for Eµ̄ (R) < 0 and x0 < 0 is similar ad is omitted. Finally, for both Eµ (R) ≤ 0 and

Eµ̄ (R) ≥ 0, the function minµ∈[µ,µ̄] Eµ
(
−e−τxR

)
is decreasing (increasing) in x for all x ≥ 0

(x ≤ 0) such that the unconditional portfolio problem is solved by x0 = 0. �

Finally, to prove Proposition IV, we rely on the following lemma:

Lemma C.3. Let λ > 0. Then for each ` ∈ R, there exists a µ̂z > 0 depending on ` such that
for all µz ≥ µ̂z, the equilibrium price in Eqs. (3.7) satisfies Eµ (P (s)) < ` for all µ ∈ [µ, µ̄].
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Proof. By market-clearing, and the definition of the compound signal s in Eq. (3.5), the
equilibrium price satisfies:

P (s) =

(
λ

τωε

)−1(
−µz + s+ (1− λ)

µ f |s (s;µ∗ (s))− P (s)

τω f |s

)
, (C18)

where, using Eqs. (A2)-(A3) and the expression for the equilibrium price in Eqs. (3.7),

µ f |s (s;µ∗ (s))− P (s) =


δ (s− s) , for s < s

0, for s ∈ [s, s̄]

δ (s̄− s) , for s > s̄

(C19)

where δ is as in the first of Eqs. (B8). Plugging Eqs. (C19) into Eq. (C18), and taking expectation
under a generic prior µ,

λ

τωε
· Eµ (P (s))

= −µz +ms (µ) + (1− λ) δ
Eµ ((s− s) Is<s + (s̄− s) Is>s̄)

τω f |s

= −µz +ms (µ)

+ (1− λ) δ
sΦ
(
s−ms(µ)√

ωs

)
+ s̄

(
1− Φ

(
s̄−ms(µ)√

ωs

))
−ms (µ) +

∫ s̄
s
tdΦ (t;ms (µ) , ωs)

τω f |s
(C20)

where, using the property of the truncated normal distribution,∫ s̄

s

tdΦ (t;ms (µ) , ωs)

= ms (µ)

(
Φ

(
s̄−ms (µ)√

ωs

)
− Φ

(
s−ms (µ)√

ωs

))
−
(
φ

(
s̄−ms (µ)√

ωs

)
− φ

(
s−ms (µ)√

ωs

))
√
ωs

and ms (µ) is as in (B4). Replacing this expression into Eq. (C20), and rearranging terms, yields,

Eµ (P (s))

=

(
λ

τωε

)−1 [(
−µz +ms (µ) +

(1− λ) δ
√
ωs

τω f |s

(
g

(
s−ms (µ)√

ωs

)
− g

(
s̄−ms (µ)√

ωs

)))]
,

(C21)

where for any t ∈ R, we define the function, g (t) ≡ tΦ (t) + φ (t). The claim follows by taking
the limits in Eq. (C21). �

Proof of Proposition IV. We first establish that for µz large, there exists a λ̄ ∈ (0, 1), such
that the value of price information in Eq. (5.20),

Gp (λ) = − 1

τ
ln

(
UU (λ)

U0 (λ)

)
,

is continuous in λ for all λ ∈ (λ̄, 1]. By Eq. (B12) UU (λ) is continuous in λ over some some range
(λ̄, 1] if µU is constant over (λ̄, 1]; indeed, for µz large, by Lemma 2 there exists a λ̄ such that
µU = µ̄ for all λ ∈ (λ̄, 1]. By Lemma C.3, Eµ (R) > 0 for µz large, and therefore by Proposition

C.1 and Lemma C.2, U0 (λ) = Eµ
(
−e−τx0R

)
for all λ, where by Eq. (C15) and the implicit

function theorem, x0 is a continuous function of λ for all λ > 0.
Second, we establish that for µz large Gp (1) is negative for ∆µ sufficiently high. Note that,

Gp (1) = − 1

τ
ln

(
UU (1)

UI (c, 1)

)
− 1

τ
ln

(
UI (c, 1)

U0 (1)

)
. (C22)
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Moreover, in λ = 1, the asset realized returns are independent of θ, such that by Lemma C.1
and Eq. (C12),

UI (c, 1)

U0 (1)
= eτc

√
V ar (R| θ, p)
V ar (R)

∣∣∣∣
λ=1

= eτc
√

ωε
V ar (R)|λ=1

,

and by Eq. (C8),

lim
µz↑∞

UU (1)

UI (c, 1)
= e−τc

√
V ar (R| p)|λ=1

ωε
exp

(
∆µ2 (1− χ1)2

2ω f |s,λ=1

)
.

Therefore, taking the limit in Eq. (C22) and rearranging terms leaves:

lim
µz↑∞

Gp (1) =
1

2τ
ln

(
V ar (R)|λ=1

V ar (R| p)|λ=1

)
− ∆µ2 (1− χ1)2

2τω f |s,λ=1

. (C23)

Eq. (C23) and continuity of Gp (λ) on λ ∈ (λ̄, 1] imply that there exist values µz > 0 and ∆µ > 0

such that Gp (λ) < 0 for all µz > µz and ∆µ > ∆µ and λ ∈ (λ̄, 1]. �
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