UNCERTAINTY, INFORMATION, AND SEQUENTIAL EXPERIMENTS!

By M. H. DeGroor
Carnegie Institute of Technology

1. Introduction and summary. Consider a situation in which it is desired to
gain knowledge about the true value of some parameter (or about the true
state of the world) by means of experimentation. Let Q@ denote the set of all
possible values of the parameter 8, and suppose that the experimenter’s knowl-
edge about the true value of 8 can be expressed, at each stage of experimentation,
in terms of a probability distribution & over Q. .

Each distribution £ indicates a certain amount of uncertainty on the part
of the experimenter about the true value of 4, and it is assumed that for each &
this uncertainty can be characterized by a non-negative number. The ¢nformation
in an experiment is then defined as the expected difference between the uncer-
tainty of the prior distribution over Q and the uncertainty of the posterior dis-
tribution.

In any particular situation, the selection of an appropriate uncertainty func-
tion would typically be based on the use to which the experimenter’s knowledge
about 6 is to be put. If, for example, the actions available to the experimenter
and the losses associated with these actions can be specified as in a statis-
tical decision problem, then presumably the uncertainty function would be de-
termined from the loss function. In Section 2 some properties of uncertainty and
information functions, and their relation to statistical decision problems and loss
functions, are considered.

In Section 3 the sequential sampling rule whereby experiments are performed
until the uncertainty is reduced to a preassigned level is studied for various un-
certainty functions and experiments. This rule has been previously studied by
Lindley, [8], [9], in special cases where the uncertainty function is the Shannon
entropy function.

In Sections 4 and 5 the problem of optimally choosing the experiments to be
performed sequentially from a class of available experiments is considered when
the goal is either to minimize the expected uncertainty after a fixed number of
experiments or to minimize the expected number of experiments needed to
reduce the uncertainty to a fixed level. Particular problems of this nature have
been treated by Bradt and Karlin [6]. The recent work of Chernoff [7] and Albert
[1] on the sequential design of experiments is also of interest in relation to these
problems.

2. Uncertainty and information functions. Let Q denote the set of all possible
values of some parameter 8. For simplicity, it is assumed that @ is finite and
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consists of the % distinct points 6;, --- , 6, ¥ = 2. Our approach throughout
the paper is Bayesian in that it is assumed that an experimenter can, at all times,
assign a probability distribution over © that represents his beliefs about the true
value of 4.

Let E denote the space of all probability distributions £ over Q. That is, & is
the (k — 1)-dimensional simplex of all vectors £ = (&, ---, &) such that
£20,6=1,---,kand D5, & = 1.

An uncertainty function U is a non-negative measurable function defined on =.
Intuitively, the value U(¥) is meant to represent the uncertainty of an experi-
menter (measured in some appropriate units) about the true value of § when
his probability distribution over @ is & Thus, a typical uncertainty function U
would take the value 0 at those distributions £ = (&, -+« , &) for which & = 1
for some value of 7, and might attain its maximum value at or near the dis-
tribution (1/k, ---, 1/k). In general, however, the maximum value could be
attained at any distribution in E. Examples are given below.

An experiment X is a random variable (not necessarily real-valued), defined
on some probability space, with specified conditional probability distribution
given each possible value of 4. Since every finite set of probability distributions
is dominated by an appropriate s-finite measure, say u, there is no loss of gen-
erality in representing the conditional distributions by their probability density
functions fy , - - - , fr with respect to u. Performing the experiment X and taking
an observation on the random variable X are two ways of saying the same thing.

If the distribution over @ prior to performing the experiment X is
£= (&, -, &), then after having performed the experiment and observing the
value X = &, the posterior distribution, £(z) = (&(z), -+, &(x)), over Q is,
from Bayes’ Theorem,

E‘L(x) = k&fz(x) 3 .
t=1.-,k
,; & fi(x)

When £ is the distribution over , the marginal density function of X is > &5,
and hence, the denominator of (2.1) vanishes with probability 0. The definition -
of £;(x) on this null set is irrelevant.

The information I[X, §; U] in an experiment X when the prior distribution
over Q is &, relative to the uncertainty function U, is defined as

(2.2) 11X, & Ul = U(y) — EIUE(X)) | &,

where the random vector £(X) is defined by (2.1) and the expectation is com-
puted under the marginal distribution of X determined by the prior distribu-
tion £ Thus, I[X, &; U] is the difference between the uncertainty prior to ob-
serving X and the expected uncertainty after having observed X.

It is commonly felt, and often stated, that an experiment can, at worst, con-
tain no information about the problem at hand and that, typically, an experiment
does contain some information. This feeling is expressed in the requirement that,

(2.1)
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under any reasonable definition of an uncertainty function U, the information
I[X, & U] = 0 for all conceivable experiments X and all prior distributions
£EckE.

TaEorREM 2.1. Let U be a given real-valued measurable funciion defined on E.
Then 11X, §; U] = 0 for all experiments X and all € € & if and only of U s concave;
1.e., if and only if

(2.3) U(et + (1 — a)v) = aUE) + (1 — ) U(v)

forall ,veEandall0 < a < 1.
Proor. Suppose that U is concave. Then, by the familiar Jensen’s inequality,
for any experiment X and any &,

(2.4) ElUE(X)) | & = UBEX) | &),

where E[§(X) | £] denotes the vector (E[t(X) |¥, ---, El&(X) | ). (It
should be noted that although Jensen’s inequality is often stated under the
assumption that U is continuous, this assumption is not needed here.) But

Ele(X) |8 = [ &) [Z 5 f,-(x)] au
(2.5) =
=f€‘if¢(x)dn=£-,~, i=1,-,k

Hence, E[((X) | &l = £ and, from (2.4),
(2.6) E[UEX)) |8 = U®.

It follows from (2.2) that I[X, & U] = 0.

Conversely, suppose that I[X, &; U] = 0 for all conceivable experiments X and
all £¢=. Let £ and v be any two distributions in = and let = = af + (1 — a)v,
where 0 < a < 1.

Consider an experiment X in which X can take only the two values 0 and 1.
Let P;(z) denote the conditional probability that X = z given that § = 6;,
forz = 0,1and j = 1,---, k. Suppose that P;(0) = af;/m; and P;(1) =
1 — Pi0) = (1 — vi/m;,j =1, -+, k (If 7; = 0 for some value of j then ,
= p;= 0 and P;(0) can be defined arbitrarily.) If the prior distribution over @
is = then the posterior distribution after observing X is =(0) = & if X = 0,
and it is =(1) = vif X = 1. Also > 5y m;P;(0) = a and D25y mPi(1) =
1 — o. Hence,

(2.7) ElU(=(X)) | =] = «U(®) + (1 — 0)U().

Since, by assumption, I[X, =; U] = 0 it follows from (2.2) that U is concave.

Theorem 2.1 indicates that it might not be unreasonable to restrict one’s
attention in any particular problem to concave uncertainty functions. Examples
of such functions are U(¥) = 1 — max {&, ---, & and the famous Shannon
entropy function
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(2.8) Ui = — J;Ej log &; .

The function (2.8) has been proposed and studied by Lindley, [8], [9] in the
context being discussed here. Lindley restricts his considerations to the un-
certainty function (2.8) because of certain additive properties of the resulting
information function for composite experiments (Theorem 2 of [8]). However,
it is not difficult to verify that these additive properties hold quite generally for
information functions derived from any uncertainty functions.

The following theorem yields further examples of concave uncertainty func-

tions.
TarEOREM 2.2. Let U be a non-negative, concave function on E, and let X be an
experiment. Then the funciion V on & defined by

(2.9) V(®) = ElUE(X)) |&, ek,

18 also a non-negative, concave function.
Proor. Let £ and v be any two distributions in = and let = = o + (1 — a)v,
where 0 < @ < 1. It must be shown that

(2.10) V(z) 2 aV(§) + (1 — )V (v).

Let g(z) = D i &;f(z) and r(z) = D %, v;f;i(z) for all values of . Then for
each z such that neither g(z) = 0 nor r(z) = 0,

w: fi(x) _ et + (1 = a)vi] fi(2)

) = e M@ T 0@
(2.11) B :q(x) -l(-x q((lx)— a)r(x) [&qf(ig)]
+ aQ(x()1+—((11):(z;r(x) I:erz;()x)]
_ agq(z) £(z) + (1 = o)r(z) (2).

~ (@) + (1 — ar() aq@ + A —ar@

Note that the final expression for =;(z) in (2.11) still holds if either ¢(z) = 0
or r(z) = 0 (but not both). The quantities ¢(z) and r(z) vanish simultaneously
only on a null set under the density aq(z) + (1 — a)r(z). Thus, (2.11) says
that for almost all x, the distribution =(z) is a convex combination of &(x)
and v(z). It follows from the concavity of U that for almost all z,

aq(z)
U(=(z)) = TSR (ST U(&(z))

(1 — o)r(2)
T a@ T o e

(2.12)
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Hence,
EU(=(X)) | =] = f U(=(z)) lag(z) + (1 — a)r(z)] du
(2.13)

v

o [ UGE@)a(@) du+ (1 — @) [ U())r(z) du

aE[UE(X)) [ €+ (1 — )E[UW(X)) | v].

From the definition (2.9) it is seen that this is the desired result.

Finally, an important class of concave uncertainty functions can be derived
from standard statistical decision problems. In a statistical decision problem
there is given a decision space A and a loss function L, assumed to be non-nega-
tive and bounded, on @ X A. Let ;

B

k
(2.14) U(E) = infeea ;1 £L(8;, a), e

Thus U(¥) is the risk from the optimal decision. It is known ([5], p. 147) that
U is a continuous, concave function on E. Furthermore, for any experiment X,
E[U(£(X)) | # is the risk resulting from the Bayes decision procedure using the
observation X. Hence, in this context, I[X, & U] is simply the reduction in
risk that can be attained by performing the experiment X.

The class of uncertainty functions of the form (2.14) is quite large. Indeed,
every continuous, concave U can be thought of as being of the form (2.14) for
some appropriately defined A and L. The proof of this is as follows.

Every linear function I(£) = D = a;&; + B, € ¢ E, can be thought of as de-
fining an action a for which the loss function L takes the values L(8;, a) =
aj+ B,5=1,+, k Then I(§) = D 5i.&L(8;, a). Let F be the class of all
linear functions ! such that U(¥) < I(¥) for all £¢ E. It is well-known that
U(§) = inf.r I(¥). The result follows, since to each [ ¢ F there corresponds an
action and a loss vector.

The above discussion indicates that the distinction sometimes made, as in [8],
between decision problems and problems in which the experimenter simply
wants to gain knowledge may not be very sharp.

3. The reduction of uncertainty through sequential sampling. Let X be an
experiment that can be replicated independently indefinitely. In other words,
it is assumed that a random sequential sample of observations X;, Xz, -+-,
each X; having the same distribution as X, can be obtained. (By independent
experiments, X, Xz, - -+, we mean here that the joint conditional distribution
of Xy, Xz, -+, given the true value of 6, is a product distribution. The joint
marginal distribution of X;, X;, - - -, when 6 is considered a random variable
will generally not be a product distribution.)

Consider the sequential sampling rule whereby observations are taken as
long as U(¥(zy, *++, %a)) > ¢ for some ¢ > 0, and sampling stops as soon as
U(¥(z1, -+, 2s)) < efor some value of n. This sampling rule would be of in-
terest, for example, in those situations where the uncertainty function arises, as
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in (2.14), from the loss function of a decision problem. If an experimenter wishes
to control his risk from a wrong decision and is unable to assign an explicit cost
per observation the above rule might be appropriate with a suitably chosen
value of e. Lindley has studied this rule in [8] and [9] for the uncertainty funec-
tion given by (2.8) and we will now give some examples for a variety of un-
certainty functions. These examples will reveal that many of the sampling plans
derived by Lindley using the uncertainty function given by (2.8) can also be
derived from other uncertainty functions. In some of the examples we dispense
with the assumption that the parameter space Q is finite.

ExamrLE 3.1. Suppose that @ contains only two points. In this case, each
£cE can be represented by its first component £ whose domain is the closed unit
interval. Suppose that U is a continuous, concave function of & such that
U(0) = U(l) = 0. Then for any experiment X, sampling as long as
U(t(ay, -+, 2.)) > eisequivalent to sampling aslong asy < &(x1, <+, 2a) < 8
for some ¥ and 6. For any prior probability £ , this in turn, is equivalent to
sampling as long as A < [fol@r) - - -fo(@a) )/ [fi{zs) - - - fi(za)] < B, for some A
and B. Thus, the sampling rule is a Wald sequential probability ratio test.
Lindley [8], derived this result for the special case when U is given by (2.8).

ExaMPLE 3.2. Suppose that Q is the real line and consider the family Z of all
normal distributions over Q. For each £cF, define U(¥) to be the variance of the
distribution . If the conditional distribution of X given 6 is normal with mean
# and known variance; then each observation on X yields a posterior distribution
over Q with a reduced variance independent of the observed value of X. Thus,
for a given prior distribution &, sampling until U(¥(z;, -« -, .)) = €ls equiva-
lent to taking a sample of fixed size. This example can obviously be extended to
include any U that is an increasing function of the variance when applied to
normal distributions. It is interesting to note that Lindley [8] derived the fixed
sample size plan in this context with U given by (2.8).

ExampLe 3.3. Consider a decision problem in which we are interested in
estimating the mean of a binomial distribution with loss equal to squared error.
Thus, the parameter space 2 and the decision space A are both the closed unit
interval and L(8, @) = (¢ — 6)% a € 4, 6 £ Q. The random variable X takes
only the values 0 and 1, and the conditional probability that X = 1 given 6 is 6.
Let = consist of all beta distributions over 2. For each pair of positive constants
(a, B), let £, denote that distribution in F with density function

(3.1) {[T(a + B)/IT(a)TBNE (1 — )%, 0<6=1

As is well-known, if the prior distribution over Q is £, s then the posterior
distribution, after having observed the value z is either. £,415 Or £4p41, 2C-
cording as z = 1 or £ = 0. The optimal estimate of § when the distribution
over @ is £,5 is § = /(e + B) and the resulting Bayes risk is a8/
[(e + B)*(e 4+ B + 1)]. Thus, if the uncertainty function U is defined by the
integral analogue of (2.14), then

(3.2) U(£ap) = aB/l(a + B8)*(a + 8+ 1)], a>0,8>0.
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The sampling rule whereby observations are taken as long as
Ug(@r, +,2a)) > ¢

can be described graphically as follows. Suppose the prior distribution over
Q is £40.6, - Then, in the ap-plane, start at the point (ay, 8y) and after each ob-
servation move either one unit in the positive a direction or one unit in the
positive 8 direction, according as the observation is 1 or 0. Stop sampling as
soon as the curve af = e(a + ﬁ)z(a + B8 + 1) is crossed.

Again, it is very interesting to note that through use of the uncertainty func-
tion (2.8) and some approximations, Lindley [8], [9], also arrived at sampling
regions of this same form.

Further examples of this sampling rule are, of course, easily generated. When
the uncertainty function is derived from a decision problem with a decision
space and loss function appropriate to deciding between two composite hy-
potheses the resulting shape of the sampling region will typically be different
from the regions derived in Examples 3.2 and 3.3. Although it was suggested
above that the sampling rules discussed here might be useful in decision problems
where it is difficult to assign a precise sampling cost, it is also true that these rules
were used by Schwarz [10] in determining the asymptotic shapes of the optimal
sequential sampling regions where the sampling cost is explicitly given.

4. The sequential design of experiments. We now turn our attention to se-
quential experiments such that at each stage of experimentation the experimenter
is free to choose the random variable that he will observe from a given class of
random variables.

Specifically, let @ = {6;, -- -, 6:} be the finite set of all possible values of the
parameter 6, let = be the space of all probability distributions £ over Q, and let
U be a given non-negative uncertainty function defined on =. Let @ be a given
class of experiments X; i.e., each X ¢ @ is a random variable with a known con-
ditional density function f.(x) given 6 = 6;,17 = 1, - - -, k. At each stage of some
overall sequential experiment, the experimenter is free to select any one of the
experiments X ¢ € and observe a value of X. At each stage the selection of the
experiment to be performed can depend on the outcomes of all experiments
that have been performed at earlier stages. All observations are assumed to be
independent in the sense that given the experiment that is to be performed at
some stage, and given the true value of 6, the outcome of the experiment is
independent of all previous observations.

Consider now the following problem. A fixed number, say n, of experiments
are to be performed, and it is desired to select the experiments X,, ---, X,
sequentially so as to minimize E[U(¥(X,, ---, X.)) | £], where £ is the prior
distribution over Q. Bradt and Karlin, [6], have shown how complicated the
optimal sequential design can be, even in problems of quite simple appearance.
However, by the familiar dynamic programming technique of working backward
from the last stage of experimentation (see, e.g., [2] or [5], Chap. 9), an explicit
rule for the construction of the optimal design can be given. In the following
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derivation it is assumed that all minima taken over the class € are actually
attained at some X ¢ @.

Suppose that after having performed the first n — 1 experiments, the posterior
distribution over @ is £*~. Then, clearly, the best choice for the final experiment
X, is an experiment X ¢ @ such that

(4.1) E[UE (X)) | £ = ming.e E[UE (X)) | £*7.

For each £" " ¢ &, (4.1) defines the optimal choice X%(£") for the nth experi-
ment.

For each £ ¢ &, let U,(£*") denote the expression (4.1). Suppose that after
having performed the first  — 2 experiments, the posterior distribution over Q
is £7°. Since £ = £ *(%._.), where z,_; is the outcome of the (n — 1)th ex-
periment, we want to choose X, so as to minimize E[U(¥* *(Xa_1))|E" 2.
Thus the best choice for X,_; is an experiment X% _, ¢ @ such that

(4.2) ElUL(87(X7)) 1€7%] = ming.e E[UL(87(X)) | €77
For each £ ¢ &, (4.2) defines the optimal choice X5_;(£*"%) for the (n — 1)th
experiment.

By continuing in this fashion (denoting the expression (4.2) by U,(§"),
etc.), the optimal sequential design can be obtained. The entire procedure can
be summarized as follows.

Let
(4.3) Us(§) = U(Y), EeE,
and define U;(¥),j = 1, --+ , » — 1; recursively by the relation
(4.4) U;(¥) = ming,e E[U;-1(§(X)) | &, fe B
Let X (%) be defined implicitly by the relation
(4.5) BlU(E(X7)) | & = minx.e BIU(E(X)) | &, Ee 5,

and, in general, let X5_;(§),7 = 0,1, --- , n — 1, be defined implicitly by the
relations

(4.6) E[U;(((X%-;)) | € = minge B[U;(£(X)) | &, ek

If £ is the prior distribution over Q then the optimal choice for the first ex-
periment is X7 (£°). If, after observing X7 (£°), the posterior distribution over
Q is £ then the optimal choice for the second experiment is X3 (£'). In general,
if the posterior distribution after the first j experiments, 7 = 0,1, .-+, n — 1
is &, then the optimal choice for the (5 4+ 1)th experiment is X}y, (¥’). Call
this rule for selecting the experiments B*. We then know

TuroreM 4.1. For any prior distribution, &, the rule R* minimizes
E[U(E(Xy, -+, X)) | €] among the class of all rules for selecting the experiments
Xi, o+, Xn.

The main trouble with the rule R* is that it is often extremely difficult to



412 M. H. DE GROOT

compute for moderate values of n. The simplest form that the sequential design
can take is, of course, when it specifies n replications of a single experiment
in @. The following theorem provides a sufficient condition for this to occur.

TaEOREM 4.2. If there exists an experiment X* ¢ @ such that E[lU(¥(X™) | & <
E[U(((X)) | &) for all X & @ and all £ £ &, then for all values of n and all prior
distributions §, E[lU(¥(Xy, - -+ , Xa)) | §] is minimized by performing n replica-
tions of X *,

Proor. It follows directly from the hypothesis of this theorem and the deriva-
tion of Theorem 4.1 that the nth experiment to be performed should always be
X*. Asin (44), let Uy(¥) = E[U(E(X™)) | &, £ ¢ E. If it can be shown that

(47 E[U(E(X%) | 8 < ElUW(E(X)) |8, E¢ &, Xce,

then it would follow that the (n — 1)th experiment should always be X* and,
by induction, repeated use of X would be optlmal

Let X by any experiment in € other than X™ and define V() by the equatlon
V(¥) = E[U(E(X)) | &, & ¢ E. If we consider an experiment in which first x*
and then X is performed, it follows by computing the posterior distribution
£(X* X) in two stages as ¥(X *J(X) and using the usual properties of condi-
tional expectation that

BUEX* X)) |

E(E[U(E(X*) (X) | 5(X"]| 8

4.8

8 = B{V(¥X™") | g, EcE
Similarly,

49) EIU(&(X, X*)) | & = E{E[UEX)(X") | 4X)]| &

E{U(¢(X)) | 8, el

But £ X, X*) = ¥(X7*, X) since the order in which the observations are taken
is irrelevant to the posterior distribution. Hence, (4.8) and (4.9) are equal for
all £ e &

By hypothes1s Ul(f) V(e,te ~, and therefore Ul(E(X )) £ V(EXY)
for all values of X*, and E[Uy(8X™) |8 £ E[V(&X™)) | £. The desired
result (4.7) follows from this inequality and the equality of (4.8) and (4.9).

Theorem 4.2 leads naturally to a study of the conditions under which, for two
experiments X and Y, E[U(¥(X)) | & = E[U(¥(Y)) | & for all £ ¢ E. Bradt
and Karlin, [6], have derived many interesting results concerning this question
in problems where the parameter 6 can take only two values. The following
Theorem 4.3 deals with the more general situation where Q contains k points.
Tt is a straightforward adaptation of a theorem of Blackwell, [3], [4]. It should be
noted that it is now necessary to assume that U is concave, but that this assump-
tion was not needed earlier in the section.

We first give some notation and a lemma. Let 4 be the set of all vectors
a= (@, ,a) witha; 20,2 =1, -+, k. Forany vectorsac Aandbe 4,
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letab = D> 5, a;b; and define a ® b to be the vector

_ ((1/a-b)(aiby, -+ -, axbr) ifa-b > 0,
(4.10) a®b = {(1, 0, .-+, 0)(say) ifa-b = 0.

Lemma 4.1, Let U be a concave function on E. (E 1s the subset of A containing
all a such that Y 51 a; = 1.) For any fized v ¢ A, define W on A by the exPression

(4.11) W(a) = (v-a)U(Vv® a), acA.

Then W 1s concave on A.

Proor. Consider any a ¢ 4 and b ¢ 4, and any constants « and 8 such that
0 <ea<1,a4 8= 1.It must be shown that W(aa + b) = aW(a) + sW(b).
If v.a > 0 and v-b > 0, then a simple computation yields

W(aa + b) = [a(v-a) + B(v-b)]

a(v-a) ﬁ(Vb)
U[Z(—v_-am (v®a) + *(v-a) ¥ B D) (v® b):l.

Since U is concave, it follows from (4.12) that

W(aa+ gb) 2 a{v-a)U(v® a) + 8(v-b)U( v® b)
= aW(a) + FW(b).

It is easily checked that if v.a = QO or v-b = 0 then W(aa + 8b) = aW(a)
+ BW(b). |

TaroREM 4.3. Let X be an experiment taking values in the set X, on which is
defined the o-field @, and having conditional density function f; given that 6 = 6, ,
i =1, -+, k, with respect to the o-finite measure u on (X, Q). Let Y be another
experiment taking values in the set Y, on which s defined the o-field ®, and having
conditional density function g; given that 6 = 6;,7 = 1, -+, k, with respect to
the o-finite measure v on (Y, ®). Let h be a non-negative measurable (@ X ®)
SJunction on X X Y such that

(4.12)

(4.13)

(i) a:(y) = fm W, ) fi(x) duz)  ae(s),  di=1,--- K
(ii) [y Wz, ) dv(y) = 1, zeS;
(iii) fm Wz, y) du(z) < yey.

Then, for any concave uncertainty function U and any £ ¢ E,

(4.14) EU(E(X)) | & = E[UEY)) | &.
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Proor. Let
f fl@)h(z, y) du(x)
(4.15) ei(y) = = , yey, t=1,---Fk,
[ ) auto)
Ee
and let o(y) = (e1(y), -+, ex(y)). If W is defined as in (4.11), with & playing

the role of v, then it is readily verified that

BUGE) |8 = [ WE) d(y)
(4.16) Y

- [ e [ 16w dn(t)] d(y).

Since W is concave, then for each y ¢ 4,

[ @tz v) du@)\ [ WE@)h(z, p) dula)
@17) Wle(y) = W[ = > X .

[repan | [ ) du
x X
Hence,
BUGE) 182 [ [ WE)Ih(z, y) due) doly)
Y v
(418) = [ 4w o) | wese) e

_ ~/s;c W(f(2)) du(z) = E[U(EX)) | &.

The import of Theorem 4.3 is that if X is sufficient for Y, in the sense that a
random variable with the same distributions as ¥ can be generated from X
and an auxiliary randomization, then the information in X is no smaller than
the informagion in Y relative to any concave uncertainty function.

Together Theorems 4.2 and 4.3 yield

COROLLARY 4.4. If there exists an experiment X* ¢ @ that is sufficient for every
other experiment in C, then for any concave uncertainty function U, any prior
distribution ¥, and any posttive integer n, E[U(¥(X1, -+ , X,)) | & <s minimazed by
performing n replications of X *,

b. Minimizing the expected sample size. Let U bea given uncertainty function
and let ¢ > 0 be fixed. Consider the sampling rule whereby experiments X,
X, ---, chosen from some class € of possible experiments, are performed
sequentially until U(&(X,, ---, X,)) = e For any sequential design S specify-
ing the choice to be made from € at each stage of experimentation, let N(S) a
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random variable, denote the total number of experiments that must be per-
formed. The problem to be considered in this section is that of choosing S so
as to minimize E[N(S) | & for any prior distribution £.

Contrary to the problem considered in the preceding section, in which the
sample size is fixed and the expected terminal uncertainty is to be minimized,
no general rule is known for computing the solution to the problem now being
considered, in which the terminal uncertainty is fixed and the expected sample
size is to be minimized. One example was considered in [6]. In the remainder of
this section we will consider in detail a simple example whose solution illustrates
the peculiarities that can arise.

Suppose that the parameter ¢ can take only two values, 6; and 6, . Then each
feEisof theform & = (& ,&) with 0 = & = 1, & 4 & = 1. Suppose that the
uncertainty function U is given by

(5.1) U(§) = min {& , &}, £e .

(This uncertainty function is appropriate if there are two terminal actions and
errors of each kind are equally costly.) Thus if sampling terminates as soon as
UE(Xy, -+, X)) £ ¢ for some fixed value of ¢, 0 < e < 3, then sampling
terminates as soon as either £(Xy, -+, X») = eor&(Xy, -+, Xa) 2 &
where e = 1 — e ,,

Suppose that the class @ from which a choice must be made at each stage of
experimentation contains only the two experiments X and Y defined as follows.

If 9 = 6,, X is uniformly distributed on the interval [0, 1};if & = 6., X is
uniformly distributed on the interval [I — @, 2 — ], where a is a given constant,
0 < a < 1. Thus, the conditional density functions of X (with respect to
Lebesgue measure) are

fi(z) = 3

0=sz=1,

) = =

0, otherwise;

5.2
(52) l—afz2=22—aq,

1,
fox) = g

0, otherwise.

Y takes only the values 0 and 1, and p.(y), the probability that ¥ = y when
8 = 0:;(y =0,1;7 = 1, 2) is given by

(53) m(0) = ¢ p(l) = & p2(0) = § pa(l) = e

We first investigate the experiment X. It is easy to see that for any prior
probability & and any observed value z of X, the posterior probability &(x) is

1 if0sz<1-—ag
(5.4) f(z) =<& fl—a<z=1,
10 fl<z22-—oa

Let Sy denote the sampling plan whereby the experiment X is replicated re-
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peatedly. It follows from (5.4) that under the plan Sx observations on X are
taken as long as each observation falls in the interval 1 — « £ z =< 1. But
Pr{l —a <X = 1|8 = aforall £¢ E. Let E be the subset of E containing
all £ such that e < & < & Then for any prior distribution £ ¢ = (and these are
the only prior distributions that need be considered since, otherwise, no sampling
is needed), Pr {N(Sz) > k|8 = o, k= 0,1, --- . Hence

(5.5) EN(8x) |8 = 1/(1 — o), Eek.
Furthermore, it follows from (5.1) and (5.4) that
(5.6) EU(EX)) | & = aU(¥) = amin {&, &}, feE

Now let us consider the experiment Y. For any prior probability &, let
£(y) (y = 0, 1) denote the posterior probability after having observed ¥ = y,

andlet £(y1,1v2) = E(y1) (¥2) (31 =0,1;y, = 0,1);i.e., &1(v1 , y2) istheposterior
probability after having observed two values of Y. It is readily computed that

for any £ ¢ Z,
£§(0) = et/ (e + &),

(5.7) |
&(1) = & /(& + €&),

and

£(0,0) = €5/(é + &5,
(5.8) £6(1,1) = &&/(fa + €5),
51(0; 1) = El(l, 0) = §.

Let Sy denote the sampling plan whereby the experiment Y is replicated
repeatedly. Suppose that the prior probability ¢ = 3. Then £(0) = ¢ and
£(1) = & Thus, under the plan Sy sampling always terminates after the first

observation.
Suppose that e < & < 1. The following relations are all easily derived from

(5.7) and (5.8): £1(0) < ¢ e < &(1) <& &(L, 1) = & e < &(L, 0) < 3. To-
gether these relations imply that under the plan Sy, sampling continues as
long as the observations follow the pattern 1, 0,1, 0, 1, 0, - - - and sampling ceases
as soon as the pattern is violated. Hence for ¢ < & < 3,

Pr{N(Sy) > 2k + 1|8 = & 4+ 7%
(eé)k(é‘fl_l_ 652)7 k=0)1) y
Pr{N(Sy) > 2k|& = &¢, k=0,1,---.

It follows from a simple computation that

I

(5.9)

= (14 & + e&)/(1 — ), e< & <73
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Suppose that 3 < £ < & In this case, sampling continues as long as the ob-
servations follow the pattern 0, 1,0, 1, 0, 1, - - - and sampling ceases as soon as
the pattern is violated. A computation similar to the one just given shows that

(5.11) ENS») |8 =0 +esti&)/(1—e), F<u<eé

Equations (5.10) and (5.11), together with the fact that E(N(Sy) | &) =1
when & = 1, completely describe the function E(N(Sy) | £) for all £ ¢ & .

Furthermore, a straightforward computation using (5.1), (5.3), and (5.7)
shows that

jsl ifO<&<e
(5.12) EUKY)) | g = 2 fe<f <g
L fe<tf=<1

Let us now compare the experiments X and Y. It follows from (5.10), (5.11)
and the comment following (5.11), that sups,z, E(N(Sy) | ) = 3/[2(1 — e)].
From (5.5), E(N(Sx) [§) = 1/(1 — «) for all £ ¢ &, and it follows that if
a and e satisfy the inequality

(5.13) 3/2(1 — )] = 1/(1 — a),
then
(5.14) E(N(Sy) | &) < BE(N(Sx) |9, ek

That is, if (5.13) holds, then the sequential plan Sy yields universally (in &)
smaller expected sample size than the plan Sy . In fact, if (5.13) holds then
the plan Sy yields universally smaller expected sample size than any other
sequential plan that specifies the observation of either X or ¥ at each stage of
experimentation. This can be seen as follows. Suppose that for some prior dis-
tribution £ € o , the optimal plan specified the observation of X at some stage.
Then, by (5.4), after having observed X either sampling ceases or else the
posterior distribution is precisely what it was before X was observed. In this
case, the optimal plan must again specify the observation of X. In other words,
if at some stage the optimal plan specifies the observation of X, then from that
stage on the plan must specify repeated observation of X until sampling ceases.
But it follows from (5.14) that, from that stage on, repeated observation on
Y yields a smaller expected sample size. Hence, the optimal sequential plan
never specifies the observation of X; i.e., the optimal plan is Sy .

A comparison of (5.6) and (5.12) shows that if « and e satisfy the inequality

(5.15) a/2 < ¢
then
(5.16) EU(X)) | & = E[UEY)) | &, e E.

It follows from Theorem 4.2 that if (5.15) holds, then for any fixed number »
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of experiments and any prior distribution £ ¢ &, the expected uncertainty after
n experiments is minimized by taking n observations of X.

The intriguing feature of this example is that there are values of « and e
that simultaneously satisfy both (5.13) and (5.15) (e.g., the values o = %,
e = 1). For such values it is true that for any fixed number of experiments the
expected uncertainty is minimized by repeated observation of X, whereas if
sampling is continued until the uncertainty is reduced to e, the expected sample
size is minimized by repeated observation of Y.

The following property of this example is also of interest.

Suppose that only the experiment X is available to the experimenter and he
wishes to take observations on X until the uncertainty is reduced to e or below.
In other words, by (5.1), he wishes to take observations until he arrives at a
posterior distribution £ = (&, &) for which the likelihood ratio £/¢; satisfies
either £&/8 = é/eor &/ < ¢/e. (The sampling plan is a Wald sequential proba-
bility ratio test.)

Suppose that & = % and ¢ = 1. Define the random variable Z in terms of

X as follows:
0 fX =32
1 ifX <3,
It is readily checked that Z has the same conditional distribution, (5.3), as ¥
given each value of the parameter 9. It then follows from the above discussion
that if instead of computing the likelihood ratio at each stage from the observed
values of X, it is computed from ‘the corresponding values of Z and the distri-
butions (5.3), the expected sample size is reduced.

It is somewhat surprising that by means of a transformation of the values of
X, the expected sample size needed to reach the boundaries can be lowered.
There is, however, a satisfactory intuitive explanation. With each observation
on X, the likelihood ratio either jumps outside of the boundaries (to 0 or «)
or else it remains the same as it was before the observation. With each observa-
tion on Z, the likelihood ratio moves by a fixed factor toward one of the bound-
aries. It is plausible that a boundary is reached more quickly through the con-
stant jumps resulting from the Z’s than through the ‘‘all or nothing” jumps
resulting from the X’s.

(5.17) 7 =

REFERENCES

[1] ALBERT, ARTHUR E. (1961). The sequential design of experiments for infinitely many
states of nature. Ann. Math. Statist. 32 774-799.

(2] BeLimaN, Ricaarp (1957). Dynamic Programming. Princeton Univ. Press.

[3] BrackwgLL, Davip (1951). Comparison of experiments, 93-102. Proc. Second Berkeley
Symp. Math. Statist. Prob. Univ. of California Press.

[4] BLackweLL, Davip (1953). Equivalent comparisons of experiments. Ann. Math. Statist.
24 265-272.

[5] BLacEWELL, DavID AND Girsuick, M. A. (1954). Theory of Games and Statistical Deci-
sions. Wiley, New York.



SEQUENTIAL EXPERIMENTS 419

[6] BrapT, RusseLL N. anp KARLIN, SAMUEL (1956). On the design and comparison of
certain dichotomous experiments. Ann. Math. Statist. 27 390-409.

[7] CuerNoFF, HERMAN (1959). Sequential design of experiments. Ann. Math. Statist. 30
755-770.

(8] LinpLEY, D. V. (1956). On a measure of the information provided by an experiment.
Ann. Math. Statist. 27 986-1005.

[9] LinpLey, D. V. (1957). Binomial sampling schemes and the concept of information.
Biometrika. 44 179-186.

[10] Scawarz, GipEON (1960). Asymptotic shapes of optimal sampling regions in sequential

testing. unpubl. memo CU-20-60-Nonr-266(59)MS, Dept. of Math. Statist.,
Columbia University.



