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Abstract. The question of how to derive and present uncertainty information in climate data records (CDRs) has

received sustained attention within the European Space Agency Climate Change Initiative (CCI), a programme

to generate CDRs addressing a range of essential climate variables (ECVs) from satellite data. Here, we re-

view the nature, mathematics, practicalities, and communication of uncertainty information in CDRs from Earth

observations. This review paper argues that CDRs derived from satellite-based Earth observation (EO) should

include rigorous uncertainty information to support the application of the data in contexts such as policy, climate

modelling, and numerical weather prediction reanalysis. Uncertainty, error, and quality are distinct concepts, and

the case is made that CDR products should follow international metrological norms for presenting quantified un-

certainty. As a baseline for good practice, total standard uncertainty should be quantified per datum in a CDR,

meaning that uncertainty estimates should clearly discriminate more and less certain data. In this case, flags for

data quality should not duplicate uncertainty information, but instead describe complementary information (such

as the confidence in the uncertainty estimate provided or indicators of conditions violating the retrieval assump-

tions). The paper discusses the many sources of error in CDRs, noting that different errors may be correlated

across a wide range of timescales and space scales. Error effects that contribute negligibly to the total uncer-

tainty in a single-satellite measurement can be the dominant sources of uncertainty in a CDR on the large space

scales and long timescales that are highly relevant for some climate applications. For this reason, identifying and
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characterizing the relevant sources of uncertainty for CDRs is particularly challenging. The characterization of

uncertainty caused by a given error effect involves assessing the magnitude of the effect, the shape of the error

distribution, and the propagation of the uncertainty to the geophysical variable in the CDR accounting for its

error correlation properties. Uncertainty estimates can and should be validated as part of CDR validation when

possible. These principles are quite general, but the approach to providing uncertainty information appropriate to

different ECVs is varied, as confirmed by a brief review across different ECVs in the CCI. User requirements for

uncertainty information can conflict with each other, and a variety of solutions and compromises are possible.

The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty information to users

is discussed. Our review concludes by providing eight concrete recommendations for good practice in providing

and communicating uncertainty in EO-based climate data records.

1 Introduction

Few scientists would dispute the principle that an esti-

mate of uncertainty should be given with every measured

value. However, meaningful adherence to this simple prin-

ciple can be challenging, and in practice researchers com-

monly encounter datasets for which uncertainty informa-

tion is generic, misleading, or absent. Climate data records

(CDRs) are not immune to this problem, despite the fact

that climatic signals are usually subtle (e.g., Kennedy, 2014;

Mahlstein et al., 2012; Flannaghan et al., 2014; Barnett et al.,

2005), which adds to the importance of rigorous uncertainty

characterization in CDRs (e.g., Immler et al., 2010).

The question of how to derive and present uncertainty in-

formation in CDRs has received sustained attention within

the European Space Agency (ESA) Climate Change Initia-

tive (CCI; Hollman et al., 2013). Like the National Oceanic

and Atmospheric Administration CDR programme (Bates et

al., 2016), the CCI programme generates CDRs addressing a

range of essential climate variables (ECVs; Global Climate

Observing System, 2010; Bojinski et al., 2014). Here, we re-

view the nature, mathematics, practicalities, and communi-

cation of uncertainty information in CDRs from Earth obser-

vations. We highlight some of the challenges that developing

good uncertainty information presents and give examples of

recent progress drawn from the experience of several CCI

projects.

2 The requirement for uncertainty information

The environment and climate of Earth are changing (e.g.,

IPCC, 2013), and these changes reflect both profound hu-

man influences on the Earth system and natural variability.

Scientific progress in understanding contemporary changes

has great importance in constraining future changes that may

have far-reaching consequences for society. For public under-

standing, policy development, and climate assessments, cli-

matic changes and trends in recent decades need to be calcu-

lated. In this context, quantified observational uncertainties

are required that reflect the degree to which the observing

system is stable. The “system” here includes all components

that can affect the values in the CDR, from the platform and

sensor to software parameters and (where relevant) human

judgements. Stability is the time rate at which systematic er-

rors in the CDR may accumulate and needs to be understood

so that artefacts arising from the limitations of observing sys-

tems are not misinterpreted as real changes or trends.

There is major international scientific effort in modelling

the climate and its many component systems, and this is a

major application that requires CDRs with quantified uncer-

tainties. CDRs underpin climate model evaluation and im-

provement by providing references that can be used to iden-

tify model deficiencies. Model–data comparisons require ap-

propriate skepticism about both the model and the data, since

errors in both can be misleading (e.g., Notz, 2015; Mas-

sonnet et al., 2016). Modellers need confidence in discrim-

inating model–data discrepancies that unambiguously indi-

cate model deficiencies from those where observational er-

rors are significant. Feedback gathered by CDR producers

(e.g., Rayner et al., 2015) shows that modellers find it too

time consuming to develop a level of appreciation of obser-

vational datasets that allows them to make confident judge-

ments about such matters. For this reason, CDRs need to in-

clude validated uncertainty information that modellers trust

for contextualizing model–data discrepancies. Until this is

achieved, modellers will continue to rely on heuristics as be-

ing representative of observational uncertainty, a strategy that

may or may not be valid depending on the case in point.

Uncertainty in CDRs also matters for data assimilation.

Reanalysis runs of atmospheric forecasting models (e.g., Dee

et al., 2011; Kobayashi et al., 2015) provide useful, dynam-

ically consistent information about the climate system over

recent decades. The analyses include inferred fields of vari-

ables that are practically unobservable and/or were not his-

torically observed on a global scale. Reanalyses are among

the most widely used datasets in geosciences because of their

information content and spatio-temporal completeness. Re-

analyses are created by data assimilation, which brings ob-

servations and models together by using the observations

to constrain the evolution of the model towards reality. The

combination involves weighting the impact of different ob-

servations together and weighting the influence of observa-
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Figure 1. The benefit of pixel-level uncertainties in assimilating aerosol optical depth (AOD) estimated at 550 nm into the Monitoring

Atmospheric Composition and Climate (MACC) model. Each panel shows a distribution of AOD in the MACC model (in red) matched

to 29 528 AERONET ground-based AOD values (in blue): (left) no data assimilation; (centre) assimilation of MODIS retrievals; (right)

assimilation of AATSR retrievals. The AERONET-measured values have negligible uncertainty compared to satellite data. The MODIS data

were the dark target AOD dataset (collection 5.1), which was operational in MACC using fixed (generic) uncertainty estimates of 0.1 over land

and 0.05 over ocean. These values were chosen after bias correction and thorough testing of alternative uncertainty assumptions (Benedetti

et al., 2008). The AATSR dataset was from Aerosol CCI, and its pixel-level uncertainty estimates were used (with no bias correction). The

improved agreement in aerosol distribution suggests that the use of pixel-level uncertainties is beneficial.

tions relative to the internal evolution of the model. Ideally,

uncertainty estimates should be available for each observa-

tion so that more certain observations have more influence

on the analysis. Densely sampled, numerous data (such as

from satellites) can inappropriately overwhelm other obser-

vations if these data are subject to errors that correlate across

space and time and therefore do not “average out”. Ideally,

spatio-temporal correlation should be understood and repre-

sented in the observational covariance matrices that weight

satellite observations to avoid undue influence on the analy-

sis. The requirement for uncertainty information goes beyond

generic estimates at the dataset level: information is needed

on which data are more or less certain and how their errors

are structured in space and time. Where information provided

in CDRs about observational uncertainties is limited, generic

assumptions are generally made, leading to suboptimal out-

comes; an example is shown in Fig. 1.

3 Terminology: error, uncertainty, and quality

The terms “error” and “uncertainty” are often unhelpfully

conflated. Usage should follow international standards from

metrology (the science of measurement), which bring clarity

to thinking about and communicating uncertainty informa-

tion. Formal definitions are found in the International Vocab-

ulary of Metrology (Joint Committee for Guides in Metrol-

ogy, 2008a). Adopting the “error approach” therein to de-

scribe the process of measurement, we have the following:

– the measurand: a quantity to be measured;

– measurement: the process of experimentally obtaining

one or more measured values that can reasonably be at-

tributed to a quantity;

– the measured value: the result of a measurement ob-

tained to quantify the measurand:

– the error: the measured value minus the true value of

the measurand. In practice the error is unknowable, ex-

cept when the measured value can be compared with a

reference value of negligible uncertainty;

– and the uncertainty: a non-negative parameter charac-

terizing the dispersion (spread) of the quantity values

attributed to a measurand, given the measured value and

an understanding of the measurement.

Thus, a measured value results from the measurement of a

target quantity, called the measurand. It is only an estimate of

the measurand because various effects introduce errors into

the process of measurement. These errors are unknown. Un-

certainty information characterizes the distribution of values

that it is reasonable to attribute to the measurand, given both

the measured value and our characterization of effects caus-

ing error. Error is thus the “wrongness” of the measured value

(and is unknown). Uncertainty describes the “doubt” we have

about the measurand value, given the result of a measurement

and our estimate of the error distribution. A classic question

at a scientific meeting is the following: “What is the error

in your measurement?” This is perhaps asked after a plot has

been presented without “error” bars. The questioner is asking

for information about uncertainty, but the technically correct

answer to this question would be “I don’t know the error, and

if I did, I would correct for it”.

Note that these technical definitions correspond well to

the plain meaning of the words “error” (mistake) and “un-

certainty” (doubt) as used by non-scientists. In addition to

improving communication between scientists, careful usage

will help scientists communicate beyond their community.

It is common for satellite datasets to include quality flags

as a simple means to guide users in the usability and validity

of data. This raises questions about the relationship between

quality and uncertainty.

www.earth-syst-sci-data.net/9/511/2017/ Earth Syst. Sci. Data, 9, 511–527, 2017
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When a quantitative uncertainty estimate is provided for

each pixel or datum, as advocated here, quality and uncer-

tainty can be cleanly decoupled, giving different information

to the user. The quality indicator should indicate whether

both the measured value and its uncertainty estimate have

been obtained under conditions such that they are expected

to be quantitatively valid. With this approach, a highly un-

certain measured value is not of lower quality provided that

the high uncertainty is validly estimated. Data are flagged as

lower quality in circumstances that violate the assumptions

behind the measured value or its uncertainty estimate.

For example, consider a case in which the uncertainty es-

timates are known to be unrealistically small under certain

conditions of illumination by the Sun. There may be contam-

ination in the signal caused by stray radiance, for example,

and no means to quantify the contamination. For these sit-

uations, a quality indicator can be used to indicate that an

assumption or condition underlying the retrieval or the uncer-

tainty estimate provided is not valid, i.e., that stray radiance

may have biased the measured values by a non-negligible

amount not accounted for in the uncertainty estimate.

4 Traceability of uncertainty

In addition to precise language for describing measurement

uncertainty, metrology has developed a rigorous understand-

ing of the issues surrounding measurement uncertainty in the

context of developing and promulgating international mea-

surement standards, particularly the Système International

d’Unités (SI; Bureau International des Poids et Mesures,

2006). A key metrological concept is traceability through the

chain of processes from the primary standard to an end-point

measurement.

More generally, any measurement can be thought of as a

series of transformations from the event observed to some

final value. These include physical processes (such as the

emission of light by a gas), measurement techniques (such as

the observation of light by a detector), classifications (e.g.,

cloudy or clear sky), and mathematical analyses (e.g., in-

version algorithms). Each transformation may be influenced

by multiple effects that accumulate and propagate error. To

develop a full uncertainty budget, every effect that may in-

troduce error at any point in the chain needs to be con-

sidered, quantified (by one of various defined approaches),

documented, and (if not negligible) appropriately propagated

through the remainder of the chain.

Developing a more rigorous metrology of Earth observa-

tion (EO; Mittaz et al., 2017) is particularly important for

CDR generation compared to EO applications in general.

The applications of CDRs involve data analysis on a wide

range of space scales and timescales, from process studies

that are highly resolved in time and space, to decadal- and/or

continental-scale assessments of subtle climate changes. To

provide valid quantitative uncertainty information across this

Figure 2. Contribution to the overall uncertainty from different

error sources for different spatio-temporal scales of analysis of a

climate data record (CDR). Conceptually, this figure is generally

applicable to many climate CDRs. The particular case here is a

sea surface temperature (SST) CDR derived from a series of typ-

ical meteorological sensors. The effects causing errors are charac-

terized by their correlation properties: noise causes random errors

in SST that average out rapidly when analysing change on larger

or longer scales; retrieval errors for SST have a locally systematic

aspect and average out more gradually with scale; systematic er-

rors, particularly in calibration, for a single sensor become more

significant over time as the sensor ages and the calibration tends to

drift; and a long CDR is comprised of data from a series of sensors

which are, inevitably, imperfectly harmonized so that systematic se-

ries effects become important for the longest timescales of analy-

sis. Reproduced with permission from https://doi.org/10.6084/m9.

figshare.1483408, where full details of the scenario underlying the

figure are available.

range of scales, all sources of error need to be assessed,

and uncertainty propagation across scales needs to be rig-

orous. At larger scales of analysis, systematic effects that are

small contributors to uncertainty in individual measured val-

ues may become the dominant sources of uncertainty (see

Fig. 2).

Classic metrological concerns are firstly to assess and

quantify all known sources of error, and secondly to prop-

agate uncertainty rigorously through all steps to the end re-

sult. The analogy between the problems in EO-based clima-

tology and metrology has prompted a developing dialogue

and joint projects between these communities in recent years

(e.g., World Meteorological Organization and Bureau Inter-

nationale de Poids et Mesures, 2010; Woolliams et al., 2016).

5 Origin and characterization of errors

5.1 A sequence of transformations

A datum in a CDR is the end result of a sequence of trans-

formations. Consider a simplified scenario for the transfor-

mations involved in passive remote sensing using an infrared

radiometer to create a multi-mission CDR.

Earth Syst. Sci. Data, 9, 511–527, 2017 www.earth-syst-sci-data.net/9/511/2017/
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1. Infrared radiation emitted from a particular field of

view (originating from the Earth’s surface and the at-

mosphere path above it) is collected by the aperture of

a sensor and filtered during its passage through sensor

optics.

2. The filtered radiance falls on a solid-state detector, caus-

ing a voltage signal.

3. The voltage is amplified electronically.

4. The amplified signal is quantized to “counts” and

recorded.

5. The scene counts are compared with counts obtained

when viewing two reference targets whose tempera-

tures are measured; via this onboard calibration pro-

cess, channel-integrated brightness temperature is deter-

mined using various parameters and assumptions.

6. This brightness temperature is input to processing soft-

ware that retrieves a geophysical variable to generate

a CDR. This sixth step can itself be decomposed into

many transformations and dependencies.

a. Auxiliary information is also accessed by the pro-

cessor, which may include a wide range of informa-

tion. Some information is intrinsic to the observa-

tion and is highly certain (e.g., satellite view zenith

angle, time). External geophysical datasets may be

used, such as numerical weather prediction fields

or surface classification, and these may or may not

be provided with quantified uncertainties. All auxil-

iary information influences the CDR and gives rise

to uncertainty.

b. The processor typically involves a step to deter-

mine that the pixel properties are valid for the in-

tended retrieval (screening cloudy pixels, for exam-

ple). This influences the CDR through the sampling

distribution of the observations.

c. The set of observations is inverted to obtain an es-

timate of a geophysical quantity, such as an ECV.

This inversion may be sensitive to the auxiliary in-

formation and may vary in its complexity and de-

gree of non-linearity.

d. A multi-mission CDR is created from datasets for

several similar sensors by harmonizing discrepan-

cies between sensors (using sensor overlap periods

or other means), which modifies the datum to its

final value.

e. Many ECV estimates may be aggregated to a

coarser space–time grid for the purpose of (for ex-

ample) evaluating the results of a climate model

run.

Every step in the above sequence is a transformation sub-

ject to effects that introduce errors. Characterizing these ef-

fects is the significant core work required to develop good

uncertainty information in a CDR. The errors from each ef-

fect have certain properties which can be estimated to the de-

gree that the effect is understood. There are several aspects to

characterizing the errors from a given effect: the magnitude

of uncertainty at the source, the shape of the error distribu-

tion, how the uncertainty propagates to the resulting data, and

the correlation structure of the error from this source between

observations.

5.2 Magnitude of uncertainty

The magnitude of uncertainty characterizes the dispersion

(width) of the estimated distribution of errors. Standard un-

certainty is the standard deviation of the distribution, al-

though other coverage factors can also be used. The value of

the standard uncertainty can be estimated from basic princi-

ples in some cases. An example is the uncertainty introduced

by quantization of the signal, which in older sensors using

relatively few bits could be a significant source of noise. In

other cases, the uncertainty estimate may rely on empirical

information. For example, the noise from an amplifier circuit

may have been measured during pre-launch testing. Using

pre-launch noise levels in an uncertainty estimate involves

the assumption of stable behaviour of the amplifier during

and after launch; that assumption itself can be tested for con-

sistency with other instrument data or the noisiness apparent

when observing relatively uniform targets.

In generating CDRs, we often have to deal with the multi-

variate case because several channels are combined to esti-

mate a geophysical quantity. Errors in these channels are not

necessarily independent, and in this case the generalization

of the standard uncertainty is the error covariance matrix,

which has as many rows and columns as there are channels

(or other variates). The square root of an element on the di-

agonal of this matrix corresponds to the standard uncertainty

for a particular variate.

With reference to the scenario described in Sect. 5.1, sev-

eral sources of uncertainty can be identified with magnitudes

that must be estimated. For example, at step 4, the combined

effect of solid-state detector noise, amplifier noise, and digi-

tization causes an uncertainty in counts. This uncertainty can

be estimated by considering the dispersion of measured val-

ues when viewing a constant calibration reference. Another

example is the retrieval uncertainty associated with the in-

verse solution that provides the geophysical retrieval from

the satellite radiances (step 6c). Even with perfect data, the

process of retrieval is usually ambiguous (more than one geo-

physical state can be associated with identical radiances).

This component of uncertainty can be quantified by the sim-

ulation of retrieval outcomes compared to the simulation

“truth” if a forward model for the satellite observations is

available.

www.earth-syst-sci-data.net/9/511/2017/ Earth Syst. Sci. Data, 9, 511–527, 2017
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Figure 3. Distributions of single-pixel brightness temperature (BT) errors from a simulation for the detection and calibration system of an

advanced very high resolution radiometer (AVHRR) for channels of different wavelength (columns) and two scene temperatures (upper row

200 K scene, lower row 300 K scene). The unit of frequency of occurrence is per thousand.

5.3 Shape of the error distribution

If the error distribution is zero-mean Gaussian, then the stan-

dard uncertainty fully describes the error distribution aris-

ing from the effect. Not all effects cause Gaussian-distributed

errors. One example is the logarithmic distribution of radar

backscatter errors associated with speckle. Another example

is quantization (step 4 in the scenario in Sect. 5.1), as illus-

trated by Fig. 3, which shows a simulation of the distribu-

tions of brightness temperature for an Advanced Very High

Resolution Radiometer (AVHRR) viewing a pixel with true

scene temperatures of 230 and 300 K. This distribution was

obtained by simulating detector noise, amplifier noise, quan-

tization, and ideal (unbiased) onboard calibration. The sepa-

rated peaks are the effect of the AVHRR 10-bit digitization

of the detector and amplifier noise. Each separated spike has

a nearly Gaussian distribution with a spread that arises from

errors in the calibration process: the calibration applied for a

given observation arises from a finite sample of the calibra-

tion target views (an internal black body and a space view),

which therefore implies some statistical uncertainty. Cases

such as this require a numerical representation of error dis-

tributions and a Monte Carlo simulation for the propagation

of uncertainty (see the next subsection). When quantization

is negligible, which is often the case for contemporary sen-

sors, the Gaussian distribution realistically describes the sig-

nal noise and should be characterized by the standard devi-

ation of the error distribution, which is the standard uncer-

tainty.

5.4 Propagation of uncertainty

Uncertainty from effects associated with a particular trans-

formation ultimately propagate to the contents of the CDR.

Gaussian errors can be propagated through linear and nearly

linear transformations by standard analytic means (Joint

Committee for Guides in Metrology, 2008b). Let Y = f (X)

represent any of the transformations between admitting

Earth-leaving radiance into the aperture of a sensor and writ-

ing a datum in a climate data record. The function f de-

scribes how one or more inputs in vector X give rise to the

output(s) of the transformation in vector Y . The uncertainty

in the output(s) is characterized by an error covariance ma-

trix:

Uy = CyUxCT
y , (1)

where Ux is the error covariance matrix of the inputs, and Cy

is the matrix of sensitivity coefficients, in which
∂fi

∂xj
quanti-

fies the influence that the ith input in X has on the j th output

in Y . If there are several effects indexed by e, then

Ux =

∑

e

Ux,e. (2)

These analytic propagation equations are a first-order ap-

proximation and are strictly valid for Gaussian-distributed er-

rors that are sufficiently small that f is linear over the range

of likely errors.

For non-Gaussian distributions and/or transformations that

are significantly non-linear, Monte Carlo approaches are nec-

essary to propagate uncertainty. A common non-linear trans-

formation in generating some CDRs is threshold-based cate-

gorization of a set of observations, either because the CDR is

Earth Syst. Sci. Data, 9, 511–527, 2017 www.earth-syst-sci-data.net/9/511/2017/
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comprised of a classification (such as land cover) or because

the retrieval of the geophysical variable is valid only for cer-

tain classes (such as cloud-free scenes). When observations

are near a threshold, errors can cause a change in classifica-

tion. Simulating the retrieval process many times can charac-

terize the propagation of uncertainty in observations into the

classification results.

5.5 Correlation structure

It is important to understand the correlation of errors because

failing to account for correlation generally leads to underes-

timation of uncertainty and unfounded confidence in the in-

terpretation of the CDR.

A common example of error correlation arises when a geo-

physical variable is retrieved from satellite imagery (step 6c

in Sect. 5.1). The estimation of geophysical quantities from

radiance measurements is usually an inverse problem in

which there is some ambiguity and dependence on auxiliary

parameters (whether explicit or hidden). Both ambiguity and

parameter dependence tend to cause retrieval errors that are

shared to some degree between nearby image pixels; i.e., the

errors are locally correlated. The correlation length scale for

such retrieval errors depends on the effect.

For example, aerosol optical depth may be estimated

across a particular scene in reflectance imagery assuming

a size distribution and refractive index that systematically

differ from reality; errors are therefore expected to be cor-

related between pixels on the scales of variation in true

aerosol properties. More generally, retrieval errors are corre-

lated on the space scales and timescales of atmospheric vari-

ability whenever retrieval ambiguity is related to atmospheric

conditions (e.g., Merchant and Embury, 2014; Buchwitz et

al., 2013). The errors may be de-correlated between differ-

ent overpasses (because atmospheric conditions change; e.g.,

Reuter et al., 2014) but are strongly related for adjacent pix-

els from a single-orbit overpass. Figure 4 illustrates this for

the case of a sea surface temperature retrieval (SST) with

simulated retrieval errors that are correlated geographically

and de-correlated in time.

Systematic effects cause errors with structure across a

whole dataset, or at least across large space scales and long

timescales within a dataset. The term “systematic error” is

sometimes loosely equated to “bias”, but the concept of a sys-

tematic effect is in truth more subtle, since a systematic effect

can produce zero-mean errors with no bias overall. System-

atic effects can be defined as those that cause errors which

one could in principle correct given the necessary quanti-

tative understanding. For example, a CDR may be derived

from a series of sensors with differing calibrations. Even if

the series is adjusted to compensate for inconsistency be-

tween the calibration of different sensors (step 6d), there is

uncertainty in doing this; errors in the adjustment parame-

ters potentially affect the entire data record from a particular

sensor. These systematic errors may correspond to an over-

Figure 4. Simulation of locally correlated errors in the retrieval of

sea surface temperature (SST) overlaid with surface pressure con-

tours to indicate length scales of atmospheric variability. The sim-

ulated retrieval errors are for a noise-free sensor with a calibration

that is perfectly known. The errors therefore arise solely from intrin-

sic ambiguity in inverting the observed radiances to SST. Note that

there is no simple relationship between the SST errors and the at-

mospheric features associated with synoptic weather systems. The

white areas indicate 100 % cloud cover. Reprinted from Merchant

and Embury (2014) with permission from Elsevier© (2014).

all bias, but more commonly they have some geographical

and/or temporal structure. However, in principle, given more

complete information, corrections for these errors could be

devised.

Local correlations and the correlation of errors from sys-

tematic effects need to be properly accounted for when cre-

ating “level 3” versions of CDRs, i.e., gridded products in-

volving the averaging of full-resolution data. If the correlated

nature of the errors is neglected, the uncertainty estimate for

the gridded data will be poor (usually an underestimate). In

averaging data subject only to independent random errors,

it is well known that the effect of the errors on the average

decreases with the square root of the number of contribut-

ing data, but local correlation decreases the averaging-out of

errors. In the extreme of pixel uncertainty dominated by an

error source that is fully common across a grid cell, there is

no reduction in uncertainty from averaging many pixels. The

impacts of error correlation on the uncertainty of the grid-

cell average can be evaluated using Eq. (1) with the required

off-diagonal terms in Ux . When a grid cell is not completely

sampled by the full-resolution data, there is an additional un-

certainty not quantified by Eq. (1) associated with the unob-

served part of the cell. See Reuter et al. (2010) and Bulgin

et al. (2016a) for examples of parameterization development

for subsampling uncertainty.

6 Which types of uncertainty information are used?

The previous section introduced four considerations that are

useful in thinking about the uncertainty from a given effect:
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the magnitude of uncertainty at the source, the shape of the

error distribution, how the uncertainty propagates to the re-

sulting data, and the correlation structure of the error from

this source between observations. These considerations ap-

ply quite generally. However, the nature of the responses de-

pends on the particularities of the CDR being considered.

There is a range of forms which uncertainty information can

take and a variety of empirical and theoretical methods used

to estimate uncertainty.

Quantitative measures of uncertainty describe the doubt

we have about the measurand, given the measured value, in

numerical terms. Conceptually, the provided numbers quan-

tify the dispersion (i.e., spread) of the estimated error prob-

ability distribution function (PDF). Options for characteriza-

tion are varied, including percentiles, confidence intervals,

maximum range of error, multiples of the standard deviation,

covariance matrices, distribution histograms, and misclassi-

fication rates.

Standard uncertainty is a highly informative measure when

the error distribution is close to Gaussian. For example, in

the case of sea surface temperature (SST), errors are reason-

ably well described by a Gaussian distribution with a stan-

dard deviation that can be modelled by uncertainty propa-

gation (Merchant and Le Borgne, 2004; Embury and Mer-

chant, 2012). Even in this relatively simple case, there are

subtleties. Sea water freezes at around −1.8 ◦C. Even though

the measurement error distribution remains Gaussian when

the retrieved temperature approaches the freezing point, the

distribution of credible SSTs becomes asymmetric given the

additional knowledge that SST below −1.8 ◦C is precluded.

The dispersion of errors is sometimes better described us-

ing fractional uncertainty. This approach is typically more

appropriate for data such as ocean chlorophyll concentra-

tion or atmospheric aerosol optical depth (AOD). In both

these cases there is a strict lower limit to valid data of zero,

and both the measured values and the standard uncertainty

can vary in value over orders of magnitude with larger un-

certainty in absolute terms when the measured values are

large. Quoting a fractional uncertainty is an appropriate ap-

proach and is equivalent to stating a standard uncertainty for

logarithm-transformed data. However, for values near zero,

standard uncertainty may be more representative. For exam-

ple, effects associated with surface brightness introduce an

uncertainty in AOD that is the dominant uncertainty for low-

aerosol scenes. Thus, the Global Climate Observing Sys-

tem (2010) recommends uncertainty modelling using a com-

bination of absolute and fractional uncertainty for CDRs of

aerosol optical depth.

Some CDRs refer to categorical ECVs, such as the sta-

tus of the land cover at a given place, whether the land at

a given location has recently burned, or whether the land is

covered by a glacier. Here an appropriate statement of un-

certainty can be probabilistic: how probable is it that the sta-

tus will be other than indicated? When the classification uses

a Bayesian approach, like the maximum likelihood estima-

tion, the probability to belong to the output class is naturally

available. For non-probabilistic classifiers (“random forest”

for instance), a proxy for class membership probability can

be defined as the number of trees in the ensemble voting for

the final class (Loosvelt et al., 2012). Similarly, the distance

to the optimal separating hyperplane in the feature space can

be used in support vector machine classifications (Giacco et

al., 2010).

Table 1 shows the variety of ECVs and the corresponding

uncertainty information in the CCI programme. The maturity

of the uncertainty information presently provided varies, and

for some cases uncertainty estimation is not yet achieved.

Most projects in the CCI programme adopted standard un-

certainty as the provided uncertainty information (Table 1),

which is a convergence that arose after sustained discussion

across the programme and which is in line with metrological

guidance. Exceptions include ECVs for which the geophys-

ical data are categorical rather than numerical as discussed

above. However, there is a wide range of methods employed

to develop this uncertainty information documented in the

varied contents of the uncertainty characterization reports

prepared for each CDR. (For these reports and other docu-

mentation, refer to http://cci.esa.int.)

7 Validation of uncertainty

Quantified uncertainty information provided in CDRs needs

to be validated, i.e., evaluated by independent means to es-

tablish quantitative realism and the credibility of the un-

certainty estimates. Many validation studies in the literature

consider the validation of measured values, but the validation

of attached uncertainty information is less common. Indeed,

where specific uncertainty estimates are not provided with

measured values, measured-value validation is often seen as

a method for deriving generic uncertainty information (based

on the validation discrepancies).

The primary means of validating uncertainty estimates

is to extend traditional measured-value validation in which

satellite and in situ reference data are compared. Validating

uncertainty information in a CDR is more challenging than

validating a measured value because it requires the quantifi-

cation of three contributions to the observed differences be-

tween the values measured from space and on the ground

(e.g., Wimmer et al., 2012; Dils et al., 2014):

– the uncertainty for each CDR data value (the uncertainty

estimate in the CDR product that is to be validated);

– the uncertainty for each reference measured value being

used as a validation point; and

– the magnitude of real geophysical variability caused by

the different nature of the satellite and validation mea-

surements.

The third contribution can require significant effort. Real

geophysical variability between measurements of nominally
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Table 1. Essential climate variables addressed in the ESA Climate Change Initiative.

Essential cli-

mate variable

Comments on nature

of variable

Product characteristics Uncertainty information

provided

Basis on which uncertainty

is estimated

Aerosol

optical depth

(AOD)

AOD is a continuous, non-

negative, log-normally dis-

tributed

variable

Satellite swath (10×10 km2

super pixels) and gridded

(1◦ grid daily and monthly)

Standard uncertainty given

for each pixel level in swath

product; averaged uncer-

tainty given for each cell in

gridded products

Propagation of sensor noise

through retrieval process;

context-specific (surface,

aerosol type) estimate of

retrieval uncertainty

Cloud proper-

ties

Cloud properties are

composed of several sub-

variables (temperature,

height, fraction) which are

continuous non-negative

variables

Satellite swath (≥ 5 km),

gridded (0.05◦ grid) and

averaged (0.5◦, daily,

monthly) estimates

Standard uncertainty given

at pixel level in gridded

swath product and averaged

for each cell in gridded

products

Propagation of sensor

noise through retrieval pro-

cess; (optimal estimation)

context-specific (surface)

estimate of retrieval un-

certainty; propagation of

uncertainty to grid boxes

accounting for correlation

Glaciers Glacier outlines derived

from optical satellite data

with manual intervention

Outlines are provided in

a vector format, scene by

scene; a geospatial database

addresses 200 000 glaciers

globally

Not regularly determined;

some tests have been pub-

lished

Various methods, including

multiple digitizing by ana-

lysts; appropriate validation

data are generally missing

Greenhouse

gases (XCO2,

XCH4)

XCO2 and XCH4 are de-

fined as atmospheric, dry-

air, column-averaged mole

fractions of CO2 and CH4

One file per day, including

XCO2 and XCH4, plus ad-

ditional information for sur-

face flux inversions; sound-

ings have surface footprints

of ∼ 10 to ∼ 60 km depend-

ing on sensor

Standard uncertainty of

XCO2 and XCH4 (per

sounding) plus averaging

kernels (AK) and a priori

concentration profiles

Propagation of sensor noise

(and a priori uncertainty)

through retrieval process

and error scaling to match

validation statistics

Land cover A categorical variable de-

scribes the terrestrial sur-

face annually in 22 dis-

crete classes (from the UN

Land Cover Classification

System)

Annual land cover maps at

300 m depicting land cover

change from 1992 to 2015

Class uncertainty is avail-

able at the map and class

level; standard uncertainty

of composite surface re-

flectance is provided at

pixel level

Class uncertainty is com-

puted from confusion ma-

trix built on independent

statistical validation pro-

cess

Ocean colour Variables of bio-optical rel-

evance with high dynamic

range (4 decades)

Chlorophyll a concentra-

tion, spectrally resolved in-

herent optical properties,

diffuse attenuation coeffi-

cient at 490 nm, member-

ship of optical classes

Standard uncertainty and

bias estimates for all prod-

ucts except backscattering

coefficient

Uncertainty assignment

based on product compar-

ison with match-up in situ

data for each optical class,

applied per pixel according

to class membership

Ozone Ozone total-column and

vertical profiles

Ozone profiles from limb

sounders with ∼ 3 km verti-

cal and ∼ 300 km horizon-

tal resolution; ozone pro-

files from nadir sounders

with ∼ 4 km vertical resolu-

tion; analysed and gridded

versions of profiles and to-

tal column

Standard uncertainty esti-

mates are given for each

ozone value in each record

Measurement noise propa-

gated through the retrieval

process and to the higher

levels of data products, ran-

domly varying parameter

errors; sampling uncertain-

ties
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Table 1. Continued.

Essential cli-

mate variable

Comments on nature

of variable

Product characteristics Uncertainty information

provided

Basis on which uncertainty

is estimated

Sea ice Sea ice concentration (SIC),

thickness (SIT)

SIC: daily, gridded data at

between ∼ 12 and ∼ 50 km

grid spacing; SIT: presently

Arctic winter only, monthly

100 km gridded freeboard

and thickness

SIC: standard uncer-

tainty estimated from

retrieval and gridding; SIT:

presently no uncertainty

provided

SIC: the retrieval uncer-

tainty is based on statisti-

cal spread of retrieval at tie

points of known SIC; pa-

rameterization for gridding

uncertainty

Sea level Sea level is continuously

variable in space and time;

global variations should be

consistent with the conser-

vation of water mass in the

climate system

Active remote sensing

along ground tracks;

analysed to monthly 0.25◦

grid

Standard uncertainty for

each sea level determina-

tion along ground tracks;

standard uncertainty in

inter-annual global mean

sea level (Ablain et al.,

2015)

Uncertainty is inferred by

generalized least squares,

where the error covariance

matrix is built from altime-

ter correction uncertainties

Sea surface

temperature

(SST)

Temperature is continuously

variable in space and time

with a lower bound at the

freezing temperature of sea

water

Satellite swath (≥ 1 km),

gridded (0.05◦ grid) and

gap-filled (0.05◦, daily)

SST estimates

Standard uncertainty given

at pixel level in swath

product and for each cell

in gridded and gap-filled

products; component un-

certainty contributions also

available

Propagation of sensor noise

through retrieval process;

context-specific estimate of

retrieval uncertainty; sam-

pling uncertainty estimate

in cell means

Soil moisture Microwave retrievals repre-

sent moisture content in a

thin surface layer (1–5 cm);

no data when soil is frozen,

snow-covered, or overlain

by very dense vegetation

Daily (00:00 UTC) gridded

(0.25◦) global data; three

data records: (i) merged ac-

tive, (ii) merged passive,

(iii) merged active passive

microwave data

Standard uncertainty given

for each soil moisture value

in each of the three data

records; additionally, qual-

ity flags are provided

Propagation of sensor noise

through retrieval process,

including context-specific

estimate of retrieval un-

certainty; uncertainties

introduced by sampling not

yet characterized

the same measurand arises for many reasons, depending on

the ECV considered. The spatial location of the measure-

ments can differ (including the tolerance for spatial mis-

match and the effect of point measurement vs. area aver-

age over a satellite pixel). The measurements are likely not

perfectly synchronized, and the geophysical state may have

evolved in the intervening time. Definitional differences are

common between measurands even when nominally equiv-

alent, such as a remotely sensed measurement being sensi-

tive to a weighted average of some vertical profile of a vari-

able, whereas the reference measurement is made at discrete

heights or depths. In some cases, validation must be per-

formed using reference data for a measurand that is closely

related, but not exactly the same (a definitional discrepancy).

In the case of satellite CDR data, xsat, containing stan-

dard uncertainty estimates, usat, the validation of the CDR

uncertainty information can be based on the distribution of

the ratio

xsat − xref
√

u2
sat + u2

ref + u2
mis

, (3)

where xref is the value of the reference (validation) data, uref

is the uncertainty in the reference data, and umis is the geo-

physical variability arising from temporal, spatial, and def-

initional mismatch between the satellite and reference data.

If the uncertainties and variability are correctly quantified,

this ratio will be normally distributed with a standard devi-

ation equal to unity. The better the quality of the reference

data (the smaller uref) and the better the match of satellite

to validation data (the smaller umis), the more sensitive the

validation of usat.

An example validation of uncertainty based on this prin-

ciple is shown in Fig. 5. In this case, the data are cloud-

top height (CTH) from Cloud CCI retrievals driven by an

interpretation of the cloud top temperature in thermal im-

agery and matched to independent CTH measurements made

by CALIPSO using laser ranging. The CALIPSO validation

data have, in this case, negligible uncertainty; mismatch un-

certainty is also neglected. The plots therefore show the his-

togram of discrepancy in CTH between the two observations

divided by the uncertainty estimated in the Cloud CCI re-

trieval process. The Gaussian that best fits the main peak

is also shown with its calculated width. In the case of ice

clouds, the product uncertainty is underestimated by around

10 %. For liquid clouds, the analysis reveals a systematic ef-

fect. For both ice and liquid clouds, there are tails to the
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Figure 5. Example of uncertainty validation using the distribution of differences between matched cloud top heights measured by Cloud CCI

(data) and CALIPSO (CALIPSO values minus those from MODIS AQUA Cloud CCI) for a single day, 20 June 2008 (solid black); (left) for

ice clouds, (right) for liquid clouds. The plots show the histograms of the CTH error (the difference in retrieval compared to validation data

that is assumed to have negligible uncertainty) divided by the stated retrieval uncertainty. For ideal uncertainty estimates the full width at

half maximum (FWHM) of the fitted Gaussian distribution (dashed blue) would be 2.35.

distribution where the magnitude of disagreement exceeds

4 times the estimated uncertainty. This indicates that uncer-

tainty is underestimated for these cases, since such outliers

would be very rare if the estimated uncertainty were appro-

priate.

In addition to the extended validation described above,

triple collocation techniques (McColl et al., 2014) have been

used to assess uncertainty estimates in near-surface wind

speed (Stoffelen, 1998), soil moisture (Gruber et al., 2016),

and other remotely sensed variables. For valid quantitative

estimation or validation of uncertainty, this technique re-

quires three sources of collocatable data with errors that are

independent and random (both between the data sources and

within each data source) and assumes that sampling mis-

matches and differences in the definition of the measurands

between the three types of data are negligible. Other uncer-

tainty validation methods are briefly reviewed in Sofieva et

al. (2014). The uncertainty arising specifically from instru-

ment noise can be validated using an Earth target that is as-

sumed not to vary, e.g., white sands in New Mexico for re-

flectance validation. In this case, validation is not against in-

dependent measurements, but it is performed by using re-

peated observations by the same instrument. Such analy-

ses would be more robust if the geophysical standard could

be traced to a more controlled reference, which would re-

quire more support for repeated accurate measurements of

the Earth target from the ground (Loew et al., 2017). For

categorical ECVs, such as land cover type, a degree of un-

certainty validation can be obtained by verifying that the es-

timated misclassification rates in the product are stable with

respect to reasonable ranges of classification parameters. For

instance, if classification is based on training a classifier us-

ing a dataset split into calibration and validation (“train” and

“test”) subsets, the process can be repeated many times with

a different random division into train and test subsets, which

allows the dispersion in the misclassification rates to be char-

acterized.

8 Presenting uncertainty information in

climate datasets

When determining how uncertainty information is to be in-

cluded in the CDR, various requirements can conflict (Ta-

ble 2). The core conflict is between providing for applica-

tions that require only summary information that discrimi-

nates more and less uncertain data, and providing for appli-

cations that demand detail about uncertainties that is suffi-

cient to calculate uncertainty in the quantities derived from

the CDR (averages in space and time, temporal differences,

integrals, trends, and fluxes). Data producers themselves are

users of their low-level (e.g., full resolution, orbital) products

when they create higher-level products (e.g., gridded datasets

and gap-filled analyses). In order to provide realistic uncer-

tainty information at the higher level, they may require fine-

grained uncertainty information for the low-level CDR, such

as separate quantification of uncertainty at the pixel level

from effects with distinct spatio-temporal correlation prop-

erties. Such detailed information is complex for non-expert

users and is an unnecessary data volume for those with ap-

plications requiring, for example, only the total uncertainty.

The increase in data volume involved in providing uncer-

tainty information is far from a minor consideration. The vol-

ume of data required for a comprehensive description of un-

certainty, including the degree of error correlation, can be

many times the volume of the measured values. For exam-

ple, a full error covariance matrix for N measured values is

N×N . Data volume and processing limits are thus significant

obstacles to comprehensive brute-force calculations of uncer-

tainty. Insight and imagination are required to develop treat-

ments of uncertainty that meet the requirements for rigour

in CDR applications and are computationally tractable. Data

producers can develop different versions of products that are

light and heavy with respect to uncertainty information. Data

delivery systems can be developed that allow users to select

on download consistent uncertainty information to the degree
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Table 2. Generic requirements for uncertainty information in climate data records, illustrating potential contradictions between the require-

ments for different data applications.

Requirement Implications Conflicts & solutions

1. Minimize data volume for users

to download.

Provide only key summary information on un-

certainty, such as the total uncertainty (or the

means to calculate uncertainty) for each mea-

sured value.

Conflicts with need for detailed uncertainty in-

formation for some purposes (cf. 3, 4, and 5).

More complete uncertainty information can be

made available separately to core data products.

2. Data should be easy to read and

understand.

Use standard metrological vocabulary to ex-

press uncertainty. Uncertainty data should be

easy to associate with measured values.

Some established community standards and

conventions include uncertainty vocabulary that

is inconsistent with best practice. Work with

community standards to converge practices.

3. Provide sufficient uncertainty in-

formation to allow correct propa-

gation of uncertainty to spatial and

temporal averages of data.

Uncertainty components from errors with dif-

ferent spatial correlations need to be separately

quantified with correlation information (e.g.,

length scales, covariance matrix).

Increases data volume (cf. 1). Increases com-

plexity of dataset (cf. 2). Could provide two

versions of data, one with summary and the

other with comprehensive uncertainty informa-

tion, with guidance as to which is needed for

different purposes.

4. Provide information about

temporal stability of observations

and/or evolution of trend uncer-

tainty over time (up to decades).

Information is provided on temporal correlation

of errors, particularly arising from long-term

systematic effects.

Full spatio-temporal covariance matrix for CDR

is challenging to calculate or parameterize and

is likely infeasible to distribute. More general

estimates of overall stability can be made. En-

semble approaches have been proposed.

of detail they require. There is likely no single strategy that

is optimal for every ECV.

A user consultation meeting on uncertainty information in

SST CDRs (Rayner et al., 2015) explored these issues with a

range of users, including “power users”, in applications such

as data assimilation for reanalyses and centennial-scale cli-

mate modelling. An interesting conclusion from the work-

shop is that many users are interested in ensemble versions

of EO-based CDRs, despite the multiplied data volume this

implies. The purpose of the ensemble CDR is to represent the

effect of all error sources on all spatio-temporal scales. The

motivation behind the ensemble approach is two-fold (e.g.,

Morice et al., 2012). First, the user does not need to engage

deeply with the origins and correlation structure of errors in

the CDR or their implications for the application, since these

are captured in the differences between ensemble members.

Second, for some applications it is simpler to rerun a process

several times with different ensemble members than to prop-

agate uncertainties through the process, particularly when er-

ror structures exist across a wide range of scales. These mo-

tivations do not apply to every application, and the ensemble

approach is less attractive to users facing constraints on data

volume or processing power. The ensemble approach raises

issues and opportunities for the data provider. Uncertain aux-

iliary parameters for in the processing can be sampled across

their plausible range rather than relying on a single best es-

timate. However, the strategy for creating an ensemble re-

quires careful design, and there are subtleties to be addressed,

such as whether a “best” member is supplied, how large an

ensemble is appropriate, and what the ensemble spread rep-

resents. Within the CCI programme, the ensemble approach

has been adopted only experimentally thus far (e.g., Reuter

et al., 2013).

The producers of CDRs therefore have to reflect on the ex-

pected applications of their data and make a judgement about

the balance to strike between conflicting requirements, such

as ease of use versus the completeness of the uncertainty in-

formation. Nonetheless, the collective experience across the

CCI ECVs represented in Table 1 shows that the provision

of per-datum standard uncertainty has emerged as a rigor-

ous but simple approach adopted for all ECVs (other than

products comprised of classifications). The standard uncer-

tainty provided is generally the total from all sources of error,

although uncertainty components with different error corre-

lation structures are additionally provided in one case. Al-

though not sufficient for every possible application, quantify-

ing the total standard uncertainty per datum in a CDR product

emerges as a baseline standard for future good practice.

9 Good practice for uncertainty quantification

One perspective on what constitutes good practice in uncer-

tainty quantification has been embedded in recently proposed

metrics for CDR maturity. Building on the work of Bates

and Privette (2012) for the NOAA Climate Data Records

Program, Schulz et al. (2015) have proposed a system ma-

turity matrix (SMM) for assessing CDR-generating capac-

ity. The SMM includes criteria for assessing the maturity of

uncertainty characterization, including linkage to standards,
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Table 3. Criteria for scoring the maturity of aspects of a CDR generation system, including criteria for uncertainty characterization, taken

from the system maturity matrix of Schulz et al. (2015).

Climate data record (CDR) maturity evaluation guidelines

Maturity Standards Validation Uncertainty quantification

1 None None None

2 Standard uncertainty nomenclature is

identified or defined

Validation using external reference data

for limited locations and times

Limited information on uncertainty

arising from systematic and random ef-

fects in the measurement

3 Score 2 +; standard uncertainty nomen-

clature is applied

Validation using external reference data

for global and temporal representative

locations and times

Comprehensive information on uncer-

tainty arising from systematic and ran-

dom effects in the measurement

4 Score 3 +; procedures to establish SI

traceability are defined

Score 3 +; (inter)comparison against

corresponding CDRs (other methods or

models)

Score 3 +; quantitative estimates of un-

certainty provided within the product

characterizing more or less uncertain

data points

5 Score 4 +; SI traceability partly estab-

lished

Score 4 +; data provider participated in

one international data assessment

Score 4 +; temporal and spatial error

covariance quantified

6 Score 5 +; SI traceability established Score 4 +; data provider participated

in multiple international data assess-

ments and incorporates feedback into

the product development cycle

Score 5 +; comprehensive validation of

the quantitative uncertainty estimates

and error covariance

degree of validation, the approach to uncertainty quantifica-

tion, and the degree of automation of quality monitoring. The

originators are clear that the purpose of assessing a CDR sys-

tem against the SMM is to identify priorities for investment

in developing a CDR in support of routine climate informa-

tion and assessments. The overall maturity score is not an

indicator of the scientific value of a dataset, which could be

very high for a new variable obtained by a system with low

maturity.

For multiple factors in CDR generation, the SMM maps

the status of a CDR system on a scale from 1 (low maturity)

to 6 (high maturity). The content of the SSM relevant to un-

certainty, validation, and quality is reproduced as Table 3. A

score of 2 on the uncertainty quantification criterion corre-

sponds to the provision of limited information, such as esti-

mates of uncertainty that are generic (i.e., that describe the

typical uncertainty for the dataset as a whole). At the next

maturity score, the provided information is still at the level

of the dataset, but it is comprehensively described and quan-

tified, which suggests that the nature of the effects causing er-

ror is determined. To move to a score of 4, this understanding

is applied to develop uncertainty information in the product

that is specific to each datum and capable of discriminating

between more and less certain data. A score of 5 corresponds

to providing a quantification of the correlation structures in

errors via covariance information or other means. For prac-

tical purposes, since covariance matrices can be large, this

provision is not necessarily required to be within the product

per datum. However, feasible approaches may be found that

satisfy this maturity criterion at a per-datum level, such as

the decomposition of total uncertainty into dominant compo-

nents arising from effects with distinct, quantified correlation

structures (e.g., Bulgin et al., 2016b). The highest maturity

score of 6 is obtained when the estimated uncertainty mag-

nitudes and error correlation structures are thoroughly vali-

dated.

It is not the purpose of this paper to discuss the general

merits of the maturity matrix approach to evaluating CDR

systems. However, it is clear that if CDR producers address

uncertainty using the perspectives in this paper, they will

achieve a high maturity score in this aspect of the SMM.

This paper has demonstrated the complexity of developing

good uncertainty information for climate dataset users. The

aspiration to provide per-datum uncertainty estimates at all

product levels and all product versions at all spatio-temporal

scales is very challenging and not fully achieved. It is clear

that developing and validating uncertainty estimates involves

effort comparable to developing the retrieval itself. There is a

lot of diversity in the nature of CDRs and the errors present in

them. The details for good practice in describing the uncer-

tainty in CDRs vary accordingly. Nonetheless, it is useful to

state some general principles that emerge from the previous

sections.

1. Include quantitative uncertainty information within the

dataset. (Don’t expect users to find uncertainty informa-

tion by reading related papers.)

www.earth-syst-sci-data.net/9/511/2017/ Earth Syst. Sci. Data, 9, 511–527, 2017
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2. Follow metrological practice for quantifying uncer-

tainty. The baseline good practice is to provide the total

standard uncertainty for numerical variables.

3. Uncertainty estimates (or the means to calculate them)

should be provided per datum in CDRs for which un-

certainty varies significantly so that the uncertainty in-

formation discriminates which data are more and less

certain.

4. Assuming per-datum uncertainty information is pro-

vided, avoid redundancy of this information with qual-

ity flags. Do not flag high-uncertainty data as “bad” if

a valid estimate of that high uncertainty is provided;

instead, use quality flags to indicate the level of con-

fidence in the validity of the provided uncertainty and

retrieval assumptions.

5. Define what uncertainty information is given in the

CDR in the product documentation.

6. Describe in the product documentation the main ef-

fects causing errors, how uncertainty varies within the

dataset, how errors may be correlated in time and space,

and under what circumstances estimated uncertainty

may be invalid (and flagged as such).

7. Use validation to evaluate both retrieved quantities and

associated uncertainty estimates.

8. Propagate uncertainty appropriately (accounting for er-

ror correlation) and consistently when creating aggre-

gated products.

10 Data availability

Examples in this paper draw on datasets from the ESA CCI

programme, which are available from http://cci.esa.int.

11 Conclusion

Quantifying and validating uncertainty information is chal-

lenging. The challenge is particularly great when using com-

plex observational systems to meet the data requirements for

climate applications. The form of uncertainty information

may differ according to the nature of the target essential cli-

mate variable. In general, however, the aim is to provide a

justified (validated) quantification of uncertainty that allows

users to know which data are more or less certain within the

product.

There are many sources of error (effects) that influence

the values populating a climate data record. Uncertainty is

not generally provided in fundamental climate data records

(level 1 products) in a form sufficient to support per-datum

propagation to estimate uncertainty in derived climate data

records, so there are constraints on what is practical. The ef-

forts of CDR producers must focus on identifying dominant

sources of error, bearing in mind that effects of a relatively

small magnitude in a single datum may be the dominant ef-

fect on a large space–time scale and therefore may be rele-

vant for climate applications. There is unavoidably a need to

develop a good understanding of many error sources and not

just “instrument noise”. At the same time, one cannot wait

for the perfect uncertainty budget: producers must provide

CDRs using the best available knowledge. When some error

sources are as yet unquantifiable, users benefit from simple,

accessible descriptions of the potential uncertainty not esti-

mated in the product.

The means of quantifying uncertainty vary across ECVs,

depending on factors such as the nature of the geophysical

retrieval (ranging across physics-based inversion methods,

to empirical relationships and manual interpretation) and the

availability of validation data. Uncertainty contributions may

be modelled using a detailed uncertainty budget or estimated

from the spread of outcomes across Monte Carlo simulations.

Again, pragmatism is often required to obtain a timely esti-

mate.

The idea of validation should encompass the validation

of the data and the uncertainty information associated with

data. The validation of uncertainties (and the measured val-

ues themselves) can be limited by the availability of refer-

ence data.

Uncertainty concepts can be confusing, and user needs

vary. CDR producers can help by providing versions of prod-

ucts with “simple” (but inevitably partial and approximate)

uncertainty information. Documentation must make clear

what the provided information is (and is not) telling users.

We have noted that ensemble methods may be able to pro-

vide users with conceptual simplicity and quantitative rigour,

although at the expense of practical issues in terms of data

volume.

The use of well-defined, internationally agreed standards

for naming and calculating uncertainty information in CDRs

is highly desirable wherever possible and will clarify interac-

tion with and feedback from user communities. These stan-

dards come from the field of metrology and cover most situa-

tions encountered in developing CDRs. Engagement between

Earth observers and metrologists is increasing. These interac-

tions will make progress on the aspects of EO that go beyond

the definitions developed for laboratory-based metrology. In

particular, quantifying uncertainty over large scales of space

and time (the low temporal and spatial frequencies in CDRs)

remains a major research challenge and involves an under-

standing of complex error correlation structures (effects that

cause neither independent random nor fixed systematic er-

rors). This area of research cannot be neglected because users

apply climate data to the full range of space–time scales

spanned by Earth observation. Significant progress needs to

be made in order to provide the users of climate data records

with the certainty they need regarding uncertainty.
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