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Uncertainty Modeling and Model Selection
for Geometric Inference
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Abstract—We first investigate the meaning of “statistical methods” for geometric inference based on image feature points.
Tracing back the origin of feature uncertainty to image processing operations, we discuss the implications of asymptotic analysis in
reference to “geometric fitting” and “geometric model selection” and point out that a correspondence exists between the standard
statistical analysis and the geometric inference problem. Then, we derive the “geometric AIC” and the “geometric MDL” as
counterparts of Akaike’s AIC and Rissanen’s MDL. We show by experiments that the two criteria have contrasting characteristics in
detecting degeneracy.

Index Terms—statistical method, feature point extraction, asymptotic evaluation, geometric AIC, geometric MDL.
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1 INTRODUCTION

INFERRING the geometric structure of the scene from
noisy data is one of the central themes of computer vi-

sion. This problem has been generalized in abstract terms
as geometric fitting , for which a general theory of statis-
tical optimization has been developed [10]. In the same
framework, the geometric AIC and the geometric MDL
have been proposed for model selection [11], [13] and ap-
plied to many problems of computer vision [12], [14], [15],
[18], [19], [22], [26], [39].

However, the crucial difference of these criteria from
other similar criteria [34], [35], [37], [38] have been over-
looked, often causing misunderstanding. The difference
stems from the interpretation of “statistical methods”. The
purpose of this paper is twofold:

1. We examine the origin of “uncertainty” in geometric
inference and point out that it has a different meaning
from that in the traditional statistical problems.

2. We derive the geometric AIC and the geometric MDL
in this new light and show by experiments that they
have very different characteristics.

In Sections 2 and 3, we focus on the question of why
we need a statistical method for computer vision, tracing
back the origin of feature uncertainty to image processing
operations. In Section 4, we discuss the implications of
asymptotic analysis in reference to “geometric fitting” and
“geometric model selection” and point out that a corre-
spondence exists between the standard statistical analysis
and geometric inference. In Sections 5∼7, we derive the
“geometric AIC” and the “geometric MDL” as counter-
parts of Akaike’s AIC and Rissanen’s MDL. In Section 8,
we adress related issues. In Section 9, we show by experi-
ments that the two criteria have contrasting characteristics
in detecting degeneracy. Section 10 presents our conclud-
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ing remarks.

2 WHAT IS GEOMETRIC INFERENCE?

2.1 Ensembles for Geometric Inference
The goal of statistical methods is not to study the prop-

erties of observed data themselves but to infer the prop-
erties of the ensemble from which we regard the observed
data as sampled. The ensemble may be a collection of ex-
isting entities (e.g., the entire population), but often it is a
hypothetical set of conceivable possibilities. When a statis-
tical method is employed, the underlying ensemble is often
taken for granted. However, this issue is very crucial for
geometric inference based on feature points.

Suppose, for example, we extract feature points, such as
corners of walls and windows, from an image of a building
and want to test if they are collinear. The reason why we
need a statistical method is that the extracted feature posi-
tions have uncertainty. So, we have to judge the extracted
feature points as collinear if they are sufficiently aligned.
We can also evaluate the degree of uncertainty of the fit-
ted line by propagating the uncertainty of the individual
points. What is the ensemble that underlies this type of
inference?

This question reduces to the question of why the uncer-
tainty of the feature points occurs at all. After all, statisti-
cal methods are not necessary if the data are exact. Using
a statistical method means regarding the current feature
position as sampled from a set of its possible positions.
But, where else could it be if not in the current position?

2.2 Uncertainty of Feature Extraction
Many algorithms have been proposed for extracting fea-

ture points including the Harris operator [8] and SUSAN
[32], and their performance has been extensively compared
[3], [27], [31]. However, if we use, for example, the Har-
ris operator to extract a particular corner of a particular
building image, the output is unique (Fig. 1). No matter
how many times we repeat the extraction, we obtain the
same point because no external disturbances exist and the
internal parameters (e.g., thresholds for judgment) are un-
changed. It follows that the current position is the sole
possibility. How can we find it elsewhere?

If we closely examine the situation, we are compelled to
conclude that other possibilities should exist because the
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Fig. 1. (a) A feature point in an image of a building. (b) Its enlargement
and the uncertainty of the feature location.

extracted position is not necessarily correct. But, if it is
not correct, why didn’t we extract the correct position in
the first place? The answer is: we cannot .

2.3 Image Processing for Computer Vision
The reason why there exist so many feature extraction

algorithms, none of them being definitive, is that they are
aiming at an intrinsically impossible task. If we were to
extract a point around which, say, the intensity varies to
the largest degree in such and such a measure, the algo-
rithm would be unique; variations may exist in intermedi-
ate steps, but the final output should be the same.

However, what we want is not “image properties” but
“3D properties” such as corners of a building, but the way
a 3D property is translated into an image property is in-
trinsically heuristic. As a result, as many algorithms can
exist as the number of heuristics for its 2D interpretation.

If we specify a particular 3D feature to extract, say a cor-
ner of a window, its appearance in the image is not unique.
It is affected by many properties of the scene including the
details of its 3D shape, the viewing orientation, the illumi-
nation condition, and the light reflectance properties of the
material. A slight variation of any of them can result in a
substantial difference in the image.

Theoretically, exact extraction would be possible if all
the properties of the scene were exactly known, but to infer
them from images is the very task of computer vision. It
follows that we must make a guess in the image processing
stage. For the current image, some guesses may be correct,
but others may be wrong. The exact feature position could
be found only by an (nonexisting) “ideal” algorithm that
could guess everything correctly.

This observation allows us to interpret the “possible fea-
ture positions” to be the positions that would be located by
different (nonideal) algorithms based on different guesses.
It follows that the set of hypothetical positions should be
associated with the set of hypothetical algorithms. The
current position is regarded as produced by an algorithm
sampled from it. This explains why one always obtains
the same position no matter how many times one repeats
extraction using that algorithm. To obtain a different po-
sition, one has to sample another algorithm.
Remark 1. We may view the statistical ensemble in the

following way. If we repeat the same experiment, the
result should always be the same. But, if we declare
that the experiment is the “same” if such and such
are the same while other things can vary, those vari-
able conditions define the ensemble. The conventional
view is to regard the experiment as the same if the
3D scene we are viewing is the same while other prop-
erties, such as the lighting condition, can vary. The

resulting image would be different for each (hypothet-
ical) experiment, so one would obtain a different out-
put, using the same image processing algorithm. The
expected spread of the outputs measures the robust-
ness of that algorithm.

In this paper, we view the experiment as the same
if the image is the same. Then, we could obtain dif-
ferent results only by sampling other algorithms. The
expected spread of the outputs measures the uncer-
tainty of feature detection from that image. We take
this view, because we want to analyze the reliability
of geometric inference from a particular image, while
the conventional view is suitable for assessing the ro-
bustness of a particular algorithm.

3 STATISTICAL MODEL OF FEATURE LOCATION

3.1 Covariance Matrix of a Feature Point
The performance of feature point extraction depends on

the image properties around that point. If, for example, we
want to extract a point in a region with an almost homo-
geneous intensity, the resulting position may be ambiguous
whatever algorithm is used. In other words, the positions
that potential algorithms would extract should have a large
spread. If, on the other hand, the intensity greatly varies
around that point, any algorithm could easily locate it ac-
curately, meaning that the positions that the hypothetical
algorithms would extract should have a strong peak. It
follows that we may introduce for each feature point its co-
variance matrix that measures the spread of its potential
positions.

Let V [pα] be the covariance matrix of the αth feature
point pα. The above argument implies that we can estimate
the qualitative characteristics of uncertainty but not its
absolute magnitude. So, we write the covariance matrix
V [pα] in the form

V [pα] = ε2V0[pα], (1)

where ε is an unknown magnitude of uncertainty, which we
call the noise level . The matrix V0[pα], which we call the
(scale) normalized covariance matrix , describes the relative
magnitude and the dependence on orientations.

Remark 2. The decomposition of V [pα] into ε2 and V0[pα]
involves scale ambiguity. In practice, this scale is im-
plicitly determined by the image process operation for
estimating the feature uncertainty applied to all the
feature points in the same manner (see [20] for the de-
tails). The subsequent analysis does not depend on
particular normalizations as long as they are done in
such a way that ε is much smaller than the data them-
selves.

3.2 Covariance Matrix Estimation
If the intensity variations around pα are almost the same

in all directions, we can think of the probability distribu-
tion as isotropic, a typical equiprobability line, known as
the uncertainty ellipses, being a circle (Fig. 1b).

On the other hand, if pα is on an object boundary, distin-
guishing it from nearby points should be difficult whatever
algorithm is used, so its covariance matrix should have an
elongated uncertainty ellipse along that boundary.
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Fig. 2. (a) For the standard statistical analysis, it is desired that the accuracy increases rapidly as the number of experiments n → ∞, because
admissible accuracy can be reached with a smaller number of experiments. (b) For geometric inference, it is desired that the accuracy increases
rapidly as the noise level ε → 0, because larger data uncertainty can be tolerated for admissible accuracy.

However, existing feature extraction algorithms are usu-
ally designed to output those points that have large image
variations around them, so points in a region with an al-
most homogeneous intensity or on object boundaries are
rarely chosen. As a result, the covariance matrix of a fea-
ture point extracted by such an algorithm can be regarded
as nearly isotropic. This has also been confirmed by ex-
periments [20], justifying the use of the identity as the nor-
malized covariance matrix V0[pα].
Remark 3. The intensity variations around different fea-

ture points are usually unrelated, so their uncertainty
can be regarded as statistically independent. How-
ever, if we track feature points over consecutive video
frames, it has been observed that the uncertainty has
strong correlations over the frames [33].

Remark 4. Many interactive applications require humans
to extract feature points by manipulating a mouse.
Extraction by a human is also an “algorithm”, and
it has been shown by experiments that humans are
likely to choose “easy-to-see” points such as isolated
points and intersections, avoiding points in a region
with an almost homogeneous intensity or on object
boundaries [20]. In this sense, the statistical character-
istics of human extraction are very similar to machine
extraction. This is no surprise if we recall that image
processing for computer vision is essentially a heuristic
that simulates human perception. It has also been re-
ported that strong microscopic correlations exist when
humans manually select corresponding feature points
over multiple images [25].

3.3 Image Quality and Uncertainty
In the past, the uncertainty of feature points has often

been identified with “image noise”, giving a misleading im-
pression as if the feature locations were perturbed by ran-
dom intensity fluctuations. Of course, we may obtain bet-
ter results using higher-quality images whatever algorithm
is used. However, the task of computer vision is not to
analyze “image properties” but to study the “3D proper-
ties” of the scene. As long as the image properties and
the 3D properties do not correspond one to one, any image
processing inevitably entails some degree of uncertainty,
however high the image quality may be, and the result
must be interpreted statistically. The underlying ensemble
is the set of hypothetical (inherently imperfect) algorithms
of image processing. Yet, it has been customary to evaluate
the performance of image processing algorithms by adding
independent Gaussian noise to individual pixels.
Remark 5. This also applies to edge detection, whose goal

is to find the boundaries of 3D objects in the scene.

In reality, all existing algorithms seek edges, i.e., lines
and curves across which the intensity changes discon-
tinuously. Yet, this is regarded by many as an objec-
tive image processing task, and the detection perfor-
mance is often evaluated by adding independent Gaus-
sian noise to individual pixels. From the above con-
siderations, we conclude that edge detection is also a
heuristic and hence no definitive algorithm will ever
be found.

4 ASYMPTOTIC ANALYSIS

4.1 What Is Asymptotic Analysis?
As stated earlier, statistical estimation refers to estimat-

ing the properties of an ensemble from a finite number of
samples, assuming some knowledge, or a model , about the
ensemble.

If the uncertainty originates from external conditions, as
in experiments in physics, the estimation accuracy can be
increased by controlling the measurement devices and en-
vironments. For internal uncertainty, on the other hand,
there is no way of increasing the accuracy except by repeat-
ing the experiment and doing statistical inference. How-
ever, repeating experiments usually entails costs, and in
practice the number of experiments is often limited.

Taking account of this, statisticians usually evaluate the
performance of estimation asymptotically , analyzing the
growth in accuracy as the number n of experiments in-
creases. This is justified because a method whose accuracy
increases more rapidly as n → ∞ can reach admissible ac-
curacy with a fewer number of experiments (Fig. 2a).

In contrast, the ensemble for geometric inference is, as
we have seen, the set of potential feature positions that
could be located if other (hypothetical) algorithms were
used. As noted earlier, however, we can choose only one
sample from the ensemble as long as we use a particular
image processing algorithm. In other words, the number
n of experiments is 1. Then, how can we evaluate the
performance of statistical estimation?

Evidently, we want a method whose accuracy is suffi-
ciently high even for large data uncertainty . This implies
that we should analyze the growth in accuracy as the noise
level ε decreases, because a method whose accuracy in-
creases more rapidly as ε → 0 can tolerate larger data un-
certainty for admissible accuracy (Fig. 2b).

4.2 Geometric Fitting
We illustrate our assertion in more specific terms. Let

{pα}, α = 1, ..., N , be the extracted feature points. Sup-
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pose each point should satisfy a parameterized constraint

F (pα, u) = 0 (2)

when no uncertainty exist. In the presence of uncertainty,
(2) may not hold exactly. Our task is to estimate the pa-
rameter u from observed positions {pα} in the presence of
uncertainty.

A typical problem of this form is to fit a line or a curve
to given N points in the image, but this can be straight-
forwardly extended to multiple images. For example, if a
point (xα, yα) in one image corresponds to a point (x′α, y′α)
in another, we can regard them as a single point pα in a
4-dimensional joint space with coordinates (xα, yα, x′α, y′α).
If the camera imaging geometry is modeled as perspective
projection, the constraint (2) corresponds to the epipolar
equation; the parameter u is the fundamental matrix [9].

The problem can be stated in abstract terms as geometric
fitting as follows. We view a feature point in the image
plane or a set of feature points in the joint space as an m-
dimensional vector x; we call it a “datum”. Let {xα}, α
= 1, ..., N , be the observed data. Their true values {x̄α}
are supposed to satisfy r constraint equations

F (k)(x̄α, u) = 0, k = 1, ..., r, (3)

parameterized by a p-dimensional vector u. We call (3)
the (geometric) model . The domain X of the data {xα}
is called the data space; the domain U of the parameter u
is called the parameter space. The number r of the con-
straint equations is called the rank of the constraint. The
r equations F (k)(x,u) = 0, k = 1, ..., r, are assumed to be
mutually independent, defining a manifold S of codimen-
sion r parameterized by u in the data space X . Equation
3 requires that the true values {x̄α} be all in the manifold
S. Our task is to estimate the parameter u from the noisy
data {xα}.

Let
V [xα] = ε2V0[xα] (4)

be the covariance matrix of xα, where ε and V0[xα] are
the noise level and the normalized covariance matrix, re-
spectively. If the distribution of uncertainty is Gaussian,
which we assume hereafter, the probability density of the
data {xα} is given by

P ({Xα}) =
N∏

α=1

e−(Xα−x̄α,V0[xα]−1(Xα−x̄α))/2ε2

√
(2πε2)m|V0[xα]| . (5)

Throughout this paper, we use uppercases for random vari-
ables and lowercases for their instances; | · | denotes the
determinant. The inner product of vectors a and b is de-
noted by (a, b).

Maximum likelihood (ML) estimation is to find the val-
ues of {x̄α} and u that maximize the likelihood , i.e., (5)
into which the data {xα} are substituted, or equivalently
minimize the sum of the squared Mahalanobis distances in
the form

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)) (6)

subject to the constraint (3). The solution is called the
maximum likelihood (ML) estimator . If the uncertainty is

small, which we assume hereafter, the constraint (3) can be
eliminated by introducing Lagrange multipliers and apply-
ing first order approximation. After some manipulations,
we obtain the following form [10]:

J =
N∑

α=1

r∑

k,l=1

W (kl)
α F (k)(xα, u)F (l)(xα,u). (7)

Here, W
(kl)
α is the (kl) element of the inverse of the r × r

matrix whose (kl) element is (∇xF
(k)
α , V0[xα]∇xF

(l)
α ); we

symbolically write

(
W (kl)

α

)
=

(
(∇xF (k)

α , V0[xα]∇xF (l)
α )

)−1

, (8)

where ∇xF (k) is the gradient of the function F (k) with
respect to x. The subscript α means that x = xα is sub-
stituted.

It can be shown [10] that the covariance matrix of the
ML estimator û has the form

V [û] = ε2M(û)−1 + O(ε4), (9)

where

M(u) =
N∑

α=1

r∑

k,l=1

W (kl)
α ∇uF (k)

α ∇uF (l)>
α . (10)

Here, ∇uF (k) is the gradient of the function F (k) with re-
spect to u. The subscript α means that x = xα is substi-
tuted.
Remark 6. The data {xα} may be subject to some con-

straints. For example, each xα may be a unit vec-
tor. The above formulation still holds if the inverse
V0[xα]−1 in (6) is replaced by the (Moore-Penrose)
generalized (or pseudo) inverse V0[xα]− and if the de-
terminant |V0[xα]| is replaced by the product of the
positive eigenvalues of V0[xα] [10].

Similarly, the r constraints in (3) may be redun-
dant, say only r′ (< r) of them are independent. The
above formulation still holds if the inverse in (8) is re-
placed by the generalized inverse of rank r′ with all
but r′ largest eigenvalues replaced by zero [10].

Remark 7. It can be proved that no other estimators
could reduce the covariance matrix further than (9)
except for the higher order term O(ε4) [10]. The ML
estimator is optimal in this sense. Recall that we are
focusing on the asymptotic analysis for ε → 0. Thus,
what we call the “ML estimator” should be understood
to be a first approximation to the true ML estimator
for small ε.

Remark 8. The p-dimensional parameter vector u may
be constrained. For example, it may be a unit vec-
tor. If it has only p′ (< p) degrees of freedom, the
parameter space U is a p′-dimensional manifold in Rp.
In this case, the matrix M(u) in (9) is replaced by
P uM(u)P u, where P u is the projection matrix onto
the tangent space to U at u [10]. The inverse M(û)−1

in (9) is replaced by the generalized inverse M(û)− of
rank p′ [10].
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4.3 Dual Interpretations of Asymptotic Analysis
The above analysis bears a strong resemblance to the

standard statistical estimation problem: After observing n
data x1, x2, ..., xn, we want to estimate the parameter
θ of the probability density P (x|θ), according to which
each datum is assumed to be sampled independently. It
is known that the covariance matrix V [θ̂] of the ML es-
timator θ̂ converges, under a mild condition, to O as the
number n of experiments goes to infinity (consistency) and
that it agrees with the Cramer-Rao lower bound expect
for O(1/n2) (asymptotic efficiency). If follows that 1/

√
n

plays the role of ε for geometric inference.
This correspondence can be interpreted as follows: Since

the underlying ensemble is hypothetical, we can actually
observe only one sample as long as a particular algorithm
is used. Suppose we hypothetically sample n different algo-
rithms to find n different positions. The optimal estimate
of the true position under the Gaussian model is their sam-
ple mean. The covariance matrix of the sample mean is 1/n
times that of the individual samples. Hence, this hypothet-
ical estimation is equivalent to dividing the noise level ε in
(1) by

√
n.

In fact, there were attempts to generate a hypothetical
ensemble of algorithms by randomly varying the internal
parameters (e.g., the thresholds for judgments), not adding
random noise to the image [4], [5]. Then, one can compute
their means and covariance matrix. Such a process as a
whole can be regarded as one operation that effectively
achieves higher accuracy.

Thus, the asymptotic analysis for ε → 0 is equivalent to
the asymptotic analysis for n →∞, where n is the number
of hypothetical observations. As a result, the expression
· · · + O(1/

√
nk) in the standard statistical analysis turns

into · · ·+ O(εk) for geometric inference.

5 GEOMETRIC MODEL SELECTION

Geometric fitting is to estimate the parameter u of a
given model. If we have multiple candidate models

F
(k)
1 (x̄α, u1) = 0, F

(k)
2 (x̄α, u2) = 0, ..., (11)

from which we are to select an appropriate one for the
observed data {xα}, the problem is (geometric) model se-
lection [10].

Suppose, for example, we want to fit a curve to given
points in two dimensions. If they are almost collinear, a
straight line may fit fairly well, but a quadratic curve may
fit better, and a cubic curve even better. Which curve
should we fit?

A naive idea is to compare the residual (sum of squares),
i.e., the minimum value Ĵ of J in (6); we select the one
that has the smallest residual Ĵ . This does not work, how-
ever, because the ML estimator û is so determined as to
minimize the residual Ĵ , and the residual Ĵ can be made
arbitrarily smaller if the model is equipped with more pa-
rameters to adjust. So, the only conclusion would be to fit
a curve of a sufficiently high order passing through all the
points.

This observation leads to the idea of compensating for
the negative bias of the residual caused by substituting
the ML estimator. This is the principle of Akaike’s AIC

(Akaike information criterion) [1], which is derived from
the asymptotic analysis of the Kullback-Leibler distance (or
divergence) as the number n of experiments goes to infinity.

Another well known criterion is Rissanen’s MDL (Min-
imum description length) [28], [29], [30], which measures
the goodness of a model by the minimum information the-
oretic code length of the data and the model. Its form
is evaluated asymptotically as the data length n grows to
infinity.

In the next two sections, we follow the derivation of
Akaike’s AIC and Rissanen’s MDL and examine the asymp-
totic behavior as the noise level ε goes to zero. We will
show that this results in the geometric AIC and the geo-
metric MDL, which were previously obtained by somewhat
an ad hoc manner [10], [22].

6 GEOMETRIC AIC

6.1 Goodness of a Model
Akaike [1] adopted as the measure of the goodness of

the model given by (5) the Kullback-Leibler distance (or
divergence)

D =
∫
· · ·

∫
PT ({Xα}) log

PT ({Xα})
P ({Xα}) dX1 · · · dXN

= E[log PT ({Xα})]− E[log P ({Xα})], (12)

where E[ · ] denotes expectation with respect to the true
(unknown) probability density PT ({Xα}). The assumed
model is regarded as good if D is small.

Substituting (5) and noting that E[log PT ({Xα})] does
not depend on individual models, we regard the model as
good if

−E[log P ({Xα})]

=
1

2ε2
E[

N∑
α=1

(Xα − x̄α, V0[xα]−1(Xα − x̄α))]

+
mN

2
log 2πε2 +

1
2

N∑
α=1

log |V0[xα]| (13)

is small. The last two terms on the right-hand side do
not depend on individual models. So, multiplying the first
term by 2ε2, we seek a model that minimizes the expected
residual

E = E[
N∑

α=1

(Xα − x̄α, V0[xα]−1(Xα − x̄α))]. (14)

6.2 Evaluation of Expectation
The difficulty of using (14) as a model selection crite-

rion is that the expectation E[ · ] must be evaluated using
the true density, which we do not know. Here arises a
sharp distinction between the standard statistical analysis,
in which Akaike was interested, and the geometric inference
problem, in which we are interested, as to how to evaluate
the expectation.

For the standard statistical analysis, we assume that we
could, at least in principle, observe as many data as de-
sired. If we are allowed to sample independent instances
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x1, x2, ..., xn according to a density PT (X), the expecta-
tion E[Y (X)] =

∫
Y (X)PT (X)dX of a statistic Y (X) can

be approximated by the sample mean (1/n)
∑n

i=1 Y (xi),
which converges to the true expectation in the limit n →
∞ (the law of large numbers). Akaike’s AIC is based on
this principle.

In contrast, we can obtain only one instance {xα} of
{Xα} for geometric inference, so we cannot replace expec-
tation by the sample mean. However, we are interested
only in the limit ε → 0. So, the expectation E[Y ({Xα})]
=

∫ · · · ∫ Y ({Xα})PT ({Xα})dX1 · · · dXN can be approx-
imated by Y ({xα}), because as ε → 0 we have PT ({Xα})
→ ∏N

α=1 δ(Xα − x̄α), where δ( · ) denotes the Dirac delta
function. It follows that we can approximate E as follows
(note that 1/N is not necessary):

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)). (15)

6.3 Bias Removal
There is still a difficulty using (15) as a criterion: The

model parameters {x̄α} and u need to be estimated. If we
view (15) as a measure of the goodness of the model, we
should compute their ML estimators {x̂α} and û, minimiz-
ing (15) subject to the constraint (3). Substituting {x̂α}
and û for {x̄α} and u in (15), we obtain the residual (sum
of squares):

Ĵ =
N∑

α=1

(xα − x̂α, V0[xα]−1(xα − x̂α)). (16)

Here, a logical inconsistency arises. Equation 3 defines
not a particular model but a class of models parameterized
by {x̄α} and u. If we choose particular values {x̂α} and û
(i.e., the ML-estimators), we are given a particular model.
According to the logic in Section 6.1, its goodness should
be evaluated by E[

∑N
α=1(Xα − x̂α, V0[xα]−1(Xα − x̂α))].

According to the logic in Section 6.2, the expectation can
be approximated using a typical instance of {Xα}. How-
ever, {x̂α} and û were computed from {xα}, so {xα} can-
not be a typical instance of {Xα}. In fact, Ĵ is generally
smaller than E[

∑N
α=1(Xα− x̂α, V0[xα]−1(Xα− x̂α))], be-

cause {x̂α} and û were so determined as to minimize Ĵ .
This is the difficulty that Akaike encountered in the

derivation of his AIC. His strategy for resolving this can
be translated in our setting as follows.

Ideally, we should approximate the expectation using an
instance {x∗α} of {Xα} generated independently of the cur-
rent data {xα}. In other words, we should evaluate

J∗ =
N∑

α=1

(x∗α − x̂α, V0[xα]−1(x∗α − x̂α)). (17)

Let us call {x∗α} the future data; they are “another” in-
stance of {Xα} that might occur if we did a hypotheti-
cal experiment. In reality, we have the current data {xα}
only1. So, we try to compensate for the bias in the form

Ĵ∗ = Ĵ + bε2. (18)
1If such data {x∗α} actually exist, the test using them is called cross-

validation. We can also generate equivalent data by a computer. Such
a simulations is called bootstrap [6].

Both Ĵ∗ and Ĵ are O(ε2), so b is O(1). Since Ĵ∗ and Ĵ are
random variables, so is b. It can be proved [10], [11] that

E∗[E[b]] = 2(Nd + p) + O(ε2), (19)

where E[ · ] and E∗[ · ] denote expectations for {xα} and
{x∗α}, respectively, and d = m− r is the dimension of the
manifold S defined the constraint F (k)(x, u) = 0, k = 1,
..., r (recall that p is the dimension of the parameter vector
u).

Thus, we obtain an unbiased estimator of Ĵ∗ in the first
order in the form

G-AIC = Ĵ + 2(Nd + p)ε2, (20)

which is the geometric AIC of Kanatani [10], [11], who de-
rived (19) directly. Here, we have given a new justification
by going back to the Kullback-Leibler distance (12).

7 GEOMETRIC MDL

We now turn to Rissanen’s MDL [28], [29] and derive the
geometric MDL by doing asymptotic analysis as the noise
level ε goes to zero.

7.1 MDL Principle
Rissanen’s MDL measures the goodness of the model by

the information theoretic code length. The basic idea is
simple, but the following difficulties must be resolved for
applying it in practice:
• Encoding a problem involving real numbers requires

an infinitely long code length.
• The probability density, from which a minimum length

code can be obtained, involves unknown parameters.
• The exact form of the minimum code length is very

difficult to compute.
Rissanen [28], [29] avoided these difficulties by quantiz-

ing the real numbers in a way that does not depend on
individual models and substituting the ML estimators for
the parameters. They, too, are real numbers, so they are
also quantized. The quantization width is so chosen as to
minimize the total description length (the two-stage encod-
ing). The resulting code length is evaluated asymptotically
as the data length n goes to infinity. This idea is translated
for geometric inference as follows.

If the data {xα} are sampled according to the probability
density (5), they can be encoded, after their domain is
quantized, in a shortest prefix code of length

− log P =
J

2ε2
+

mN

2
log 2πε2 +

1
2

N∑
α=1

log |V0[xα]|, (21)

up to a constant that depends only on the domain and the
width of the quantization. Here, J is the sum of the square
Mahalanobis distances in (6). Using the natural logarithm,
we take log2 e bits as the unit of length.

Note the similarity and contrast to the geometric AIC,
which minimizes the expectation of (21) (see (13)), while
here (21) is directly minimized with a different interpreta-
tion.
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7.2 Two-Stage Encoding
In order to do encoding using (5), we need the true val-

ues {x̄α} and the parameter u. Since they are unknown,
we use their ML estimators that minimize (21) (specifically
J). The last two terms of (21) do not depend on individ-
ual models, so the minimum code length is Ĵ/2ε2 up to
a constant, where Ĵ is the residual in (16). For brevity,
we hereafter call “the code length determined up to a con-
stant that does not depend on individual models” simply
the description length.

Since the ML estimators {x̂α} and û are real numbers,
they also need to be quantized. If we use a larger quantiza-
tion width, their code lengths become shorter, but the de-
scription length Ĵ/2ε2 will increase. So, we take the width
that minimizes the total description length. The starting
point is the fact that (7) can be written as follows [10]:

J = Ĵ +
N∑

α=1

(xα − x̂α, V0[x̂α]−(xα − x̂α))

+(u− û, V0[û]−1(u− û)) + O(ε3). (22)

Here, the superscript − denotes the (Moore-Penrose) gen-
eralized inverse, and V0[x̂α] and V0[ûα] are, respectively,
the a posteriori covariance matrices of the ML estimators
x̂α and û given as follows [10]:

V0[x̂α] = V0[xα]

−
r∑

k,l=1

W (kl)
α (V0[xα]∇xF (k)

α )(V0[xα]∇xF (l)
α )>,

V0[û] =
( N∑

α=1

r∑

k,l=1

W (kl)
α (∇uF (k)

α )(∇uF (l)
α )>

)−1

. (23)

The symbol W
(kl)
α has the same meaning as in (7). It is eas-

ily seen that V0[x̂α]− is a singular matrix of rank d whose
domain is the tangent space to the optimally fitted mani-
fold Ŝ at x̂α.

7.3 Encoding Parameters
In order to quantize û, we introduce appropriate (gen-

erally curvilinear) coordinates (ui), i = 1, ..., p, into the
p-dimensional parameter space U and quantize it into a
grid of width δui. Suppose û is in a (curvilinear) rectangu-
lar region of sides Li. There are

∏p
i=1(Li/δui) grid vertices

inside, so specifying one from these requires the code length

log
p∏

i=1

Li

δui
= log Vu −

p∑

i=1

log δui, (24)

where Vu =
∏p

i=1 Li is the volume of the rectangular region.
We could reduce (24) using a large width δui, but (22) im-
plies that replacing û by the nearest vertex would increase
the description length Ĵ/2ε2 by (δu, V0[û]−1δu)/2ε2 in the
first order in ε, where we define δu = (δui). So, we choose
such δu that minimizes the sum of (δu, V0[û]−1δu)/2ε2

and (24). Differentiating this sum with respect to δui and
letting the result be 0, we obtain

1
ε2

(
V0[û]−1δu

)
i
=

1
δui

, (25)

where ( · )i designates the ith component. If the coordinate
system of U is so taken that V0[û]−1 is diagonalized, (25)
reduces to

δui =
ε√
λi

, (26)

where λi is the ith eigenvalue of V0[û]−1. It follows that
the volume of one grid cell is

vu =
p∏

i=1

δui =
εp

√
|V0[û]−1| . (27)

Hence, the number of cells inside the region Vu is

Nu =
∫

Vu

du

vu
=

1
εp

∫

Vu

√
|V0[û]−1|du. (28)

Specifying one from these requires the code length

log Nu = log
∫

Vu

√
|V0[û]−1|du− p

2
log ε2. (29)

7.4 Encoding True Values
For quantizing the ML-estimators {x̂α}, we need not

quantize the entire m-dimensional data space X , because
they are constrained to be in the optimally fitted d-
dimensional manifold Ŝ (⊂ X ) specified by û, which we
have already encoded. So, we only need to quantize Ŝ. To
this end, we introduce appropriate curvilinear coordinates
in it. Since each x̂α has its own normalized covariance ma-
trix V0[x̂α] (see (23)), we introduce different coordinates
(ξiα), i = 1, ..., d, for each α. Then, they are quantized
into a (curvilinear) grid of width δξiα.

Suppose x̂α is in a (curvilinear) rectangular region of
sides liα. There are

∏d
i=1(liα/δξiα) grid vertices inside, so

specifying one from these requires the code length

log
d∏

i=1

liα
δξiα

= log Vxα −
d∑

i=1

log δξiα, (30)

where Vxα =
∏d

i=1 liα is the volume of the rectangular
region. We could reduce (30) using a large width δξiα,
but replacing x̂α by its nearest vertex would increase the
description length Ĵ/2ε2. Let δx̄α be the m-dimensional
vector that expresses the displacement {δξiα} on Ŝ in the
(original) coordinates of X . Equation 22 implies that the
increase in Ĵ/2ε2 is (δx̄α, V0[x̂α]−δx̄α)/2ε2 in the first or-
der in ε, so we choose such {δξiα} that minimize the sum of
(δx̄α, V0[x̂α]−δx̄α)/2ε2 and (30). Differentiating this sum
with respect to δξiα and letting the result be 0, we obtain

1
ε2

(
V0[x̂α]−δx̄α

)
i
=

1
δξiα

. (31)

Let the coordinates (ξiα) be such that the d basis vectors at
x̂α form an orthonormal system. Also, let the coordinates
of X be such that at x̂α ∈ Ŝ the m basis vectors consist of
the d basis vectors of Ŝ plus m− d additional basis vectors
orthogonal to Ŝ. Then, the first d components of δx̄α co-
incide with {δξiα}, i = 1, ..., d; the remaining components
are 0. If, furthermore, the coordinates (ξiα) are so defined
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that V0[x̂α]− is diagonalized, the solution δξiα of (31) is
given by

δξiα =
ε√
λiα

, (32)

where λ1α, ..., λdα are the d positive eigenvalues of V0[x̂α]−.
It follows that the volume of one grid cell is

vxα =
d∏

i=1

δξiα =
εd

√
|V0[x̂α]−|d

, (33)

where |V0[x̂α]−|d denotes the product of its d positive
eigenvalues. Hence, the number of cells inside the region
Vxα is

Nα =
∫

Vxα

dx

vxα
=

1
εd

∫

Vxα

√
|V0[x̂α]−|d dx. (34)

Specifying one from these requires the code length

log Nα = log
∫

Vxα

√
|V0[x̂α]−|d dx− d

2
log ε2. (35)

7.5 Geometric MDL
From (29) and (35), the total code length for {x̂α} and

û becomes

N∑
α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx + log

∫

Vu

√
|V0[û]−1|du

− Nd + p

2
log ε2 (36)

The accompanying increase in the description length Ĵ/2ε2

is (δx̄α, V0[x̂α]−δx̄α)/2ε2 + (δu, V0[û]−1δu)/2ε2 in the
first order in ε. If we substitute (26) and (32) together
with V0[x̂α]− = diag(1/λ1α, ..., 1/λdα, 0, ..., 0) and V0[û]−1

= diag(1/λ1, ..., 1/λp), this increase is

(δx̄α, V0[x̂α]−δx̄α)
2ε2

+
(δu, V0[û]−1δu)

2ε2
=

Nd + p

2
. (37)

Since (26) and (32) are obtained by omitting terms of o(ε),
the omitted terms in (37) are o(1). It follows that the total
description length is

Ĵ

2ε2
− Nd + p

2
log ε2 +

N∑
α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx

+ log
∫

Vu

√
|V0[û]−1|du +

Nd + p

2
+ o(1). (38)

Multiplying this by 2ε2, which does not affect model selec-
tion, we obtain

Ĵ − (Nd + p)ε2 log ε2 + 2ε2
( N∑

α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx

+ log
∫

Vu

√
|V0[û]−1|du

)
+ (Nd + p)ε2 + o(ε2). (39)

7.6 Scale Choice
In practice, it is difficult to use (39) as a criterion because

of the difficulty in evaluating the third term. If we note that
− log ε2 À 1 as ε → 0, we may omit terms of O(ε2) and
define

G-MDL = Ĵ − (Nd + p)ε2 log ε2. (40)

This is the form suggested by Matsunaga and Kanatani
[22]. However, the problem of scale arises. If we multiply
the unit of length by, say, 10, both ε2 and Ĵ are multiplied
by 1/100. Since N , d, and p are nondimensional constants,
G-MDL should also be multiplied by 1/100. But, log ε2

reduces by log 100, which could affect model selection2. In
(39), in contrast, the influence of scale is canceled between
the second and third terms.

To begin with, the logarithm can be defined only for a
nondimensional quantity, so (40) should have the form

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2

, (41)

where L is a reference length. In theory, it can be deter-
mined from the third term of (39), but its evaluation is
difficult. So, we adopt a practical compromise, choosing
a scale L such that xα/L is O(1). We may interpret this
as introducing a prior distribution in a region of volume
Lm in the data space X . For example, if {xα} are image
coordinate data, we can take L to be the image size. We
call (41) the geometric MDL.
Remark 9. Recall that for asymptotic analysis as ε→ 0, it

is essential to fix the scale of the normalized covariance
matrix V0[xα] in (4) in such a way that the noise level ε
is much smaller than the data themselves (Remark 2).
So, we have− log(ε/L)2 À 1. If we use a different scale
L′ = γL, we have − log(ε/L′)2 = − log(ε/L)2 + log γ2

≈ − log(ε/L)2 as long as the scale is of the same order
of magnitude. It has been confirmed that the scale
choice does not practically affect model selection in
most applications. Nonetheless, the introduction of
the scale is a heuristic compromise, and more studies
about this will be necessary.

8 SOME ISSUES OF THE GEOMETRIC AIC/MDL

8.1 Dual Interpretations of Model Selection
We have observed in Section 4.3 that the standard sta-

tistical analysis and the geometric inference problem have
a duality in the sense that 1/

√
n for the former plays the

role of ε for geometric inference. The same holds for model
selection, too. Akaike’s AIC is

AIC = −2 log
n∏

i=1

P (xi|θ̂) + 2k, (42)

where x1, x2, ..., xn are n samples from the density P (x|θ)
parameterized by a k-dimensional vector θ, and θ̂ is its ML
estimator.

For the geometric fitting problem, on the other hand,
the unknowns are the p parameters of the constraint plus
the N true positions specified by the d coordinates of the

2The preference is unchanged if the candidate models have the same
d and p, but we usually compare models of different d and p.
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d-dimensional manifold S. If (20) is divided by ε2, we have
Ĵ/ε2 +2(Nd+p), which is (−2 times the logarithmic likeli-
hood)+2(the number of unknowns), the same form as (42).
The same holds for (41), which corresponds to Rissanen’s
MDL (see (43) and (44) to be explained below) if ε is re-
placed by 1/

√
n.

This correspondence can be understood if we recall our
observation that the limit ε → 0 is mathematically equiva-
lent to sampling a large number n of potential algorithms
(Section 4.3).

8.2 Priors for the Geometric MDL
For the geometric MDL, one can notice that the coding

scheme described in Section 7 cannot apply if the manifold
S has a complicated shape. In fact, our derivation went as
if the manifold S were flat and compact. This is justified
only when the data {xi} and the parameter u are found in
fairly small regions.

Take (39) for example. The regions Vxi and Vu must be
compact for the integrations to exist. If the data space X
and the parameter space U are unbounded, we must specify
in them finite regions in which the true values are likely
to exist. This is nothing but the Bayesian standpoint that
requires prior distributions for parameters to be estimated.

After all, reducing model selection to code length re-
quires the Bayesian standpoint, because if the parameters
can be anywhere in unbounded regions, it is impossible to
obtain a finite length code unless some information about
their likely locations is given. The expedient for deriving
(41) is in a sense reducing the Bayesian prior to a single
scale L.

This type of implicit reduction is also present in Rissa-
nen’s MDL, for which the data length n is the asymptotic
variable. Originally, Rissanen presented his MDL in the
following form [28]:

MDL = − log
n∏

i=1

P (xi|θ̂) +
k

2
log n. (43)

As in the case of Akaike’s AIC, x1, x2, ..., xn are n samples
from the density P (x|θ) parameterized by a k-dimensional
vector θ, and θ̂ is its ML estimator.

This form evoked the problem of the “unit”. If we regard
a pair of data as one datum, viewing (x1,x2), (x3,x4),
... as samples from P (x,y|θ) = P (x|θ)P (y|θ), the data
length is halved, though the problem is the same. Later,
Rissanen presented the following form [30]:

MDL = − log
n∏

i=1

P (xi|θ̂) +
k

2
log

n

2π
+ log

∫

Vθ

√
|I(θ)|dθ.

(44)
Here, I(θ) is the Fisher information of P (x|θ). In this
form, the unit change is canceled by the corresponding
change in the Fisher information. However, the problem
of integration arises if the domain Vθ is unbounded, so an
appropriate prior is necessary.

Thus, Rissanen’s MDL and the geometric MDL share the
same properties whether we focus on the limit n → ∞ or
the limit ε → 0, confirming our previous observation about
the dual interpretation.

8.3 Noise-Level Estimation
In order to use the geometric AIC or the geometric MDL,

we need to know the noise level ε. If not known, it must
be estimated. Here arises a sharp contrast between the
standard statistical analysis and our geometric inference.

For the standard statistical analysis, the noise magnitude
is a model parameter , because “noise” is defined to be the
random effects that cannot be accounted for by the assumed
model . Hence, the noise magnitude should be estimated, if
not known, according to the assumed model . For geometric
inference, on the other hand, the noise level ε is a constant
that reflects the uncertainty of feature detection. So, it
should be estimated independently of individual models.

If we know the true model, it can be estimated from the
residual Ĵ using the knowledge that Ĵ/ε2 is subject to a
χ2 distribution with rN − p degrees of freedom in the first
order [10]. Specifically, we obtain an unbiased estimator of
ε2 in the form

ε̂2 =
Ĵ

rN − p
. (45)

The validity of this formula has been confirmed by many
simulations.

One may wonder if model selection is necessary at all
when the true model is known. In practice, however, a
typical situation where model selection is called for is de-
generacy detection. In 3D analysis from images, for exam-
ple, the constraint (3) corresponds to our knowledge about
the scene such as rigidity of motion. However, the compu-
tation fails if degeneracy occurs (e.g., the motion is zero).
Even if exact degeneracy does not occur, the computation
may become numerically unstable in near degeneracy con-
ditions. In such a case, the computation can be stabilized
by switching to a model that describes the degeneracy [18],
[19], [22], [26], [39].

Degeneracy means addition of new constraints, such as
some quantity being zero. It follows that the manifold S
degenerates into a submanifold S ′ of it. Since the general
model still holds irrespective of the degeneracy, i.e. S ′ ⊂
S, we can estimate the noise level ε from the residual Ĵ of
the general model S, which we know is true, using (45).

Remark 10. (45) can be intuitively understood as fol-
lows. Recall that Ĵ is the sum of the square distances
from {xα} to the manifold Ŝ defined by the constraint
F (k)(x,u) = 0, k = 1, ..., r. Since Ŝ has codimension r
(the dimension of the orthogonal directions to it), the
residual Ĵ should have expectation rNε2. However, Ŝ
is fitted by adjusting its p-dimensional parameter u,
so the expectation of Ĵ reduces to (rN − p)ε2.

Note that we need more than bp/rc data for this
estimation. For example, if we know that the true
model is a planar surface, we need to observe more
than three points for degeneracy detection.

Remark 11. It may appear that the residual Ĵ of the gen-
eral model cannot be stably computed in the presence
of degeneracy. However, what is unstable is model
specification, not the residual. For example, if we fit
a planar surface to almost collinear points in 3D, it is
difficult to specify the fitted plane stably; the solution
is very susceptible to noise. Yet, the residual is stably
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Fig. 3. Fitting a line, a circle, and an ellipse.

computed, since unique specification of the fit is dif-
ficult because all the candidates have almost the same
residual .

Note that the noise-level estimation from the gen-
eral model S by (45) is still valid even if degeneracy
occurs, because degeneracy means shrinkage of the
model manifold S ′ within S, which does not affect the
data deviations in the “orthogonal” directions (in the
Mahalanobis sense) to S that account for the residual
Ĵ .

9 DENERACY DETECTION EXPERIMENTS

We now illustrate the different characteristics of the geo-
metric AIC and the geometric MDL for degeneracy detec-
tion.

9.1 Detection of Circles and Lines
Consider an ellipse that is tangent to the x-axis at the

origin O with the minor radius 50 in the y direction and
eccentricity 1/β. On it, we take eleven points with equally
spaced x coordinates. Adding Gaussian noise of mean 0
and variance ε2 to the x and y coordinates of each point
independently, we fit an ellipse, a circle, and a line in a
statistically optimal manner3 [16], [17]. Fig. 3 shows one
instance for β = 2.5 and ε = 0.1. Note that a line and a
circle are degeneracies of an ellipse.

Lines, circles, and ellipses define 1-dimensional (geomet-
ric) models with 2, 3, and 5 degrees of freedom, respec-
tively. Their geometric AIC and the geometric MDL for N
points are

G-AICl = Ĵl + 2(N + 2)ε2,

G-AICc = Ĵc + 2(N + 3)ε2,

G-AICe = Ĵe + 2(N + 5)ε2,

G-MDLl = Ĵl − (N + 2)ε2 log
( ε

L

)2

,

G-MDLc = Ĵc − (N + 3)ε2 log
( ε

L

)2

,

G-MDLe = Ĵe − (N + 5)ε2 log
( ε

L

)2

, (46)

where the subscripts l, c, and e refer to lines, circles, and
ellipses, respectively. For each β, we compute the geometric
AIC and the geometric MDL of the fitted line, circle, and
ellipse and choose the one that has the smallest value. We
used the reference length L = 1.

Fig. 4a shows the percentage of choosing a line for ε =
0.01 after 1000 independent trials for each β. If there were

3We used by a technique called renormalization [10].

no noise, it should be 0% for β 6= 0 and 100% for β = 0. In
the presence of noise, the geometric AIC produces a sharp
peak, indicating a high capability of distinguishing a line
from an ellipse. However, it judges a line to be an ellipse
with some probability. The geometric MDL judges a line
to be a line almost 100%, but it judges an ellipse to be a
line over a wide range of β.

In Fig. 4a, we used the true value of ε2. If it is unknown,
it can be estimated from the residual of the general ellipse
model by (45). Fig. 4b shows the result using its estimate.
Although the sharpness is somewhat lost, similar perfor-
mance characteristics are observed.

Fig. 5 shows the percentage of choosing a circle for ε =
0.01. If there were no noise, it should be 0% for β 6= 1
and 100% for β = 1. In the presence of noise, as we see, it
is difficult to distinguish a circular arc from an elliptic arc
for β < 1. Yet, the geometric AIC can detect a circle very
sharply, although it judges a circle to be an ellipse with
some probability. In contrast, the geometric MDL almost
always judges an ellipse to be a circle for β < 1.1.

9.2 Detection of Space Lines

Consider a rectangular region [0, 10]× [−1, 1] on the xy
plane in the xyz space. We randomly take eleven points
in it and magnify the region A times in the y direction.
Adding Gaussian noise of mean 0 and variance ε2 to the
x, y, and z coordinates of each point independently, we fit
a space line and a plane in a statistically optimal manner
(Fig. 6a). The rectangular region degenerates into a line
segment as A → 0.

A space line is a 1-dimensional model with four degrees
of freedom; a plane is a 2-dimensional model with three
degrees of freedom. Their geometric AIC and geometric
MDL are

G-AICl = Ĵl + 2(N + 4)ε2,

G-AICp = Ĵp + 2(2N + 3)ε2,

G-MDLl = Ĵl − (N + 4)ε2 log
( ε

L

)2

,

G-MDLp = Ĵp − (2N + 3)ε2 log
( ε

L

)2

, (47)

where the subscripts l and p refer to lines and planes, re-
spectively. For each A, we compare the geometric AIC and
the geometric MDL of the fitted line and plane and choose
the one that has the smaller value. We used the reference
length L = 1.

Fig. 6b shows the percentage of choosing a line for ε
= 0.01 after 1000 independent trials for each A. If there
were no noise, it should be 0% for A 6= 0 and 100% for
A = 0. In the presence of noise, the geometric AIC has a
high capability of distinguishing a line from a plane, but
it judges a line to be a plane with some probability. In
contrast, the geometric MDL judges a line to be a line
almost 100%, but it judges a plane to be a line over a wide
range of A.

In Fig. 6b, we used the true value of ε2. Fig. 6c shows
the corresponding result using its estimate obtained from
the general plane model by (45). We observe somewhat
degraded but similar performance characteristics.
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9.3 Observations

We have observed that the geometric AIC has a higher
capability for detecting degeneracy than the geometric
MDL, but the general model is chosen with some prob-
ability when the true model is degenerate. In contrast, the
percentage for the geometric MDL to detect degeneracy
when the true model is really degenerate approaches 100%
as the noise decreases. This is exactly the dual statement
to the well known fact, called the consistency of the MDL,
that the percentage for Rissanen’s MDL to identify the true
model converges to 100% in the limit of an infinite num-
ber of observations. Rissanen’s MDL is regarded by many
as superior to Akaike’s AIC because the latter lacks this
property.

At the cost of this consistency, however, the geomet-
ric MDL regards a wide range of nondegenerate mod-
els as degenerate. This is no surprise, since the penalty

−(Nd + p)ε2 log(ε/L)2 for the geometric MDL in (41) is
heavier than the penalty 2(Nd + p)ε2 for the geometric
AIC in (20). As a result, the geometric AIC is more faith-
ful to the data than the geometric MDL, which is more
likely to choose a degenerate model. This contrast has also
been observed in many applications [15], [22].
Remark 12. Despite the fundamental difference of geo-

metric model selection from the standard (stochastic)
model selection, many attempts have been made in the
past to apply Akaike’s AIC and their variants to com-
puter vision problems based on the asymptotic anal-
ysis of n → ∞, where the interpretation of n is dif-
ferent from problem to problem [34], [35], [36], [37],
[38]. Rissanen’s MDL is also used in computer vision
applications. Its use may be justified if the problem
has the standard form of linear/nonlinear regression
[2], [23]. Often, however, the solution having a shorter
description length was chosen with a rather arbitrary
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definition of the complexity [7], [21], [24].
Remark 13. One may wonder why we are forced to choose

one from the two asymptotic analyses, n → ∞ or ε →
0. Why don’t we use the general form of the AIC or
the MDL rather than worrying about their asymptotic
expressions? The answer is that we cannot .

The starting principle of the AIC is the Kullback-
Leibler distance of the assumed probability distribu-
tion from the true distribution (Section 6.1). We can-
not compute it exactly, because we do not know the
true distribution. So, Akaike approximated it, invok-
ing the law of large numbers and the central limit the-
orem, thereby estimating the true distribution from a
large number of observations, while the geometric AIC
is obtained by assuming that the noise is very small,
thereby identifying the data as their true values to a
first approximation (Section 6.2).
Similarly, the exactly shortest code length is difficult
to compute if real numbers are involved, so Rissanen
approximated it by omitting higher order terms in the
data length n. The geometric MDL is obtained by
omitting higher order terms in the noise level ε (Sec-
tion 7).
Thus, analysis of asymptotic expressions in one form
or another is inevitable if the principle of the AIC or
the MDL is to be applied in practice.

Remark 14. Note that one cannot say one model selection
criteria is superior to another, because each is based
on its own logic. Also, if we want to compare the per-
formance of two criteria in practice, we must formulate
them in such a way that they conform to a common as-
sumption. In this sense, one cannot compare Akaike’s
AIC with the geometric AIC or Rissanen’s MDL with
the geometric MDL, because the underlying asymp-
totic limits are different. Similarly, if we want to com-
pare the geometric AIC or the geometric MDL with
other existing criteria, e.g., Schwarz’ BIC, derived in
the asymptotic limit n →∞, they must be formulated
in the asymptotic limit ε → 0.
Note also that one cannot prove that a particular cri-
terion works at all. In fact, although Akaike’s AIC and
Rissanen’s MDL are based on rigorous mathematics,
there is no guarantee that they work well in practice.
The mathematical rigor is in their reduction from their
starting principles (the Kullback-Leibler distance and
the minimum description length principle), which are
beyond proof. What one can tell is which criterion is
more suitable for a particular application when used
in a particular manner. The geometric AIC and the
geometric MDL have shown to be effective in many
computer vision applications [12], [14], [15], [18], [19],
[22], [26], [39], but other criteria may be better in other
applications.

10 CONCLUSIONS

We have investigated the meaning of “statistical meth-
ods” for geometric inference based on image feature points.
Tracing back the origin of feature uncertainty to image pro-
cessing operations, we discussed the implications of asymp-
totic analysis in reference to “geometric fitting” and “geo-
metric model selection”. Then, we derived the “geometric
AIC” and the “geometric MDL” in this new light. We

showed by experiments that the two criteria have contrast-
ing characteristics for degeneracy detection.

The main emphasis of this paper is on the correspon-
dence between the asymptotic analysis for ε → 0 for geo-
metric inference and the asymptotic analysis for n → ∞
for the standard statistical analysis, based on our interpre-
tation of the uncertainty of feature detection.

However, there are many issues yet to be resolved, in
particular the choice of the scale length L for the geometric
MDL and the effect of using the estimate ε̂ given by (45)
for its true value ε. The results in this paper are only a first
attempt, and further analysis is expected in the future.
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