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Uncertainty modelling and structured 
singular-value computation applied to an 
electromechanical system 
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Indexing term: Compact disc recording, Electromechanmd positioning system, Uncertainty modelling, Parametric uncertainty, Robustness analysis 

Abstract: The investigation of closed-loop 
systems subject to model perturbations is an 
important issue to assure stability robustness of a 
control design. A large variety of model pertur- 
bations can be described by norm-bounded uncer- 
tainty models. A general approach for modelling 
structured complex and real-valued parametric 
perturbations is presented. The resulting robust- 
ness analysis problem is solved nonconservatively 
using real and complex-structured singular-value 
calculations. The uncertainty modelling and 
robustness analysis are shown for a high-accuracy 
5D electromechanical positioning device to be 
used in optical (Compact Disc) recording. 

1 Introduction 

To ensure that a model-based control system design will 
work well with the actual system it is necessary to 
analyse the closed-loop robustness properties for model 
perturbations, such as unmodelled parasitic dynamics, 
linearisation errors and parametric uncertainties. In past 
years, much research effort has been spent to solve the 
multivariable robustness analysis problem. An important 
development is based on the description of model uncer- 
tainties as transfer functions which are norm-bounded 
but otherwise unknown, and using singular values as 
indicators [l]. Owing to the use of norms the singular- 
value analysis method is appropriate for all situations 
with little knowledge about the perturbations. Its major 
disadvantage is its conservatism, as indicated by Doyle 
and others [2] in the sense that the uncertainty model set 
is much larger than necessary and does not account for 
structure of perturbations. For that reasons, Doyle [3] 
introduced the structured singular-value analysis. Recent- 
ly, Fan and others [4, 51 have given an extension to 
include real-valued uncertainties. 

This paper presents a general procedure to model 
norm-bounded perturbations and some computational 
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aspects of real and complex-structured singular-value 
analysis. 

A general concept which is very useful for norm- 
bounded uncertainty modelling, and especially for 
robustness analysis with the structured singular value, is 
the linear fractional transformation (LFT). As an 
example, consider a system with uncertainty, Fig. 1. The 

transfer function M ( s )  represents the transfer function 
from the exogenous signals U (references, disturbances, 
control inputs, etc.) and the uncertainty outputs uA,  to 
the controlled variables y (tracking error, measured 
signals, etc.) and the uncertainty inputs y,. The uncer- 
tainty is denoted in Fig. 1 as the transfer function A(s). 
The system M(s)  is partitioned according to the dimen- 
sions of the signal sets involved: 

The upper linear fractional transformation on M and A 
is denoted as F,(M, A) and is defined to be equal to 
the transfer function from U to y: F,(M, A) = M , ,  
+ M z I ( 1  - AM11)-' AMI,. 

2 Complex norm-bounded uncertainty modelling 

Complex-valued model uncertainties are often used to 
describe unmodelled dynamics, for instance actuator and 
sensor dynamics or parasitic system dynamics. Such 
uncertainties can be described as input/output transfer 
functions. Well known complex uncertainty descriptions 
are the multiplicative input and output uncertainty and 
the additive structure, Fig. 2. 

Definition 2.1: A p x p complex-valued norm-bounded 
unstructured perturbation A< is the set of p x p transfer 
functions A(s): C + C p x p  which are analytic in the closed 
right half-plane and have a norm-bound less than or 
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equal to some given positive function d,(w) E W+ : 
Ac = {A(s) stable la(A(jo)), < b,(o) o E ( -  CO, CO)} (2) 

with 5 denoting the maximum singular value. The nor- 
malised uncertainty set is given by BAc = {A(s) E 
Ac I 5(A(jo)) < 1, o E ( -  CO, CO)}. 

U 

Fig. 2 System with complex uncertainties 

Notice that this definition is restricted to square uncer- 
tainty matrices. Any nonsquare uncertainty can be made 
square by adding zero rows or columns. 

If the uncertainty modelling results in structural zeros 
in entries of Ac , the uncertainty is called 'structured'. A 
well-known structure is the (block-)diagonal one. For 
such cases the uncertainty set can be described with its 
structure information and with the block-diagonal entries 
given as elements of Ac or BAc, see the following section. 

To write the uncertainties in a unique format, these 
types of model perturbations are expressed in the linear 
fractional form. This can be done systematically by 
writing down the transfer function of the system con- 
nected to the uncertainties. Consider Fig. 2, for example. 
Label the inputs of each uncertainty (e.g. y,, y, , y 3 )  and 
also their outputs (U,, u z ,  u3). Then write down the trans- 
fer function matrix M ( s )  between (U:, u z ,  u 3 ,  U) and (y:, 
y,, y,, y). The upper linear fractional form of Fig. 1 
results as the interconnection structure in which the 
uncertainty matrix A equals diag (A,, A z ,  A3). In the 
sequel we call such an LFT a p-interconnection structure. 
For the example, it can be easily verified that the matrix 
M(s)  of Fig. 1 is related to G(s) of Fig. 2 as follows: 

r o  o o I I I  
I O 0  I 

M = I G  I O I G I  (3) 

To further generalise the procedure, the (block-diagonal) 
elements of A(s) should be normalised. This can be done 
using scaling-per-frequency or by weighting functions 
that are rational transfer functions [SI. In both cases the 
scaling can be absorbed in the interconnection matrix M .  

In summary, the procedure to model perturbations 
using complex-valued uncertainties is to (i) describe the 
perturbations using norm-bounded input/output models 
at the locations which arise from the physical model, (ii) 
label the inputs and outputs of these uncertainties, (iii) 
write down the transfer functions between all inputs and 
outputs, and (iv) collect these transfer functions into an 
LFT of the form of Fig. 1, with the A-feedback loop 
block-diagonally structured. A last step is to scale all As 
and to absorb the scaling factors into the interconnection 
matrix M .  

3 Parametric uncertainty modelling 

3.1 Definitions and introduction 
Real-valued norm-bounded perturbations can be used to 
describe a large class of uncertainties in control systems. 
For example, variation of physical system parameters is 
typically real-valued. 
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Definition 3.1 : A scalar real-valued norm-bounded per- 
turbation A, is the set of real numbers A which are 
bounded in magnitude to some real number 6 E 9': 

(4) 

The normalised version of A, is BA, = {A 1 A E [ - 1, 

The sets A, and Ac share the property of being 
bounded in maximum singular value. However, there are 
three important differences. First, the elements of A, are 
scalars, while Ac may have matrices as its (block) ele- 
ments. Secondly, the set A, contains only real numbers. 
Thirdly, the maximum singular value of the elements in 
A< can vary with frequency while the maximum singular 
value of a real perturbation, which is equal to the 
maximum absolute value, is fixed. 

One special structure, which is important in the appli- 
cation in Section 5 ,  is the real repeated uncertainty for 
one parameter. 

Definition 3.2: A p x p real-valued repeated perturbation 
A,, is defined as 

A, = ( A l e  E [-8, +8]} 

+ 111. 

Ap, = {AIA = 61, 6 E [-8, +8]} (5) 
with 8 E B' some real number. The normalised version 
is BA,, = {A I A = 6Z,6 E [ - 1, + l]}. In both equations I 
is the p x p identity matrix. 

The starting point for parametric uncertainty model- 
ling is a state-space description of an uncertain system. A 
procedure is described which can be used to derive an 
LFT form of a model with parametric uncertainties in the 
entries of its state-space matrices. This procedure 
involves three steps: (i) scaling the parameter variations 
such that they belong to BA, (or BA,,), (ii) uncertainty 
extraction resulting in a separation between the nominal 
(constant) part of a system and a varying (uncertain) part 
and (iii) obtaining an LFT description. 

3.2 General case 
Consider a vector p = ( p , ,  , . . , p,)  E Bt containing t scalar 
parameters, for example spring stiffness, resistance etc. 
Let the model of the perturbed system be given as a 
state-space realisation in which the entries of the matrices 
depend on the parameter vector p :  

P = A(p)x  + B(p)u x E W", U E 9"' 

y = C(p)x + D(p)u y E &?I (6)  
Restrict attention to the case of 'smooth' perturbations in 
the form of parametric uncertainties. More specifically, 
assume that each entry of the matrices in eqn. 6 is 
described as a rational multidimensional (ND) poly- 
nomial function of the parameters p .  For example, the (i, 
j)th entry of the A-matrix can have the form A&) = {pl 
+ p z  a0 + P :  p 3 } / { p : p 3  + alp,} in which a, and a, are 

constants. 
For this general class of systems the following pro- 

cedure provides a way to derive an LFT uncertainty 
description. 

Step I :  Scaling: Let the parameter vector p be given with 
lower and upper bound vectors p,," and p,, respec- 
tively: p,,,,", < pi < pmaX, for i = 1 ,  . . . . , t. Define pnOm = 

[ - 1, + 13 then pi = pnon, + si 6,.  In this way the varying 
parameter vector p is decomposed into a nominal part 
pnom, the constant scaling factors si and the normalised 
real-valued perturbations 6 ,  collected in the vector 6. 

@,in + Pmax) /2 ,  s = @,,, - Pm,,)/2, 6 = (d1. . . . , 41, 4 E 
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Step 2: Uncertainty extraction: Let the state-space model 
eqn. 6 be given and assume the parameter vector p has 
been scaled. Define the (n + I )  x ( n  + m) matrix 

(7) 

The nominal part of the state-space model is given by 
S@,,,). The uncertain part of the state-space model is 
defined as an (n + r) x (n + m) matrix S,(6) with entries 

Hence, [SAli,{S) = 0 if no uncertain parameter enters the 
(i,j)thentryof &for i = 1, ..., n + l a n d j  = 1, ..., n + m. 

Using this definition the perturbed state-space model 
eqn. 6 can be written as 

(9) 

from which it is clear that the uncertain part is now 
separated from the nominal part. 

Step  3. Obtaining a linear fractional transformation: The 
third step is to rewrite eqn. 9 into a linear fractional 
form. We construct this by defining a new input vector U, 
and a new output vector yd.  The output y ,  is fed back to 
the input U, through a diagonal perturbation A(6) = 
diag . . . , 6, I t ) .  Furthermore, constant matrices BA, 
CA and D ,  are defined which contain information on how 
the uncertainties affect the nominal model: 

= A(6)YA 

where A(6) = diag (hlI1,  . . . , 6, I , ) ,  in which I t  denotes an 
identity matrix with dimensions related to the repeated- 
ness of perturbation hi (see also Definition 3.2). 

Rewriting eqn. 9 as an LFT involves finding the con- 
stant matrices BA, CA and D, such that eqn. 9 is equiva- 
lent to eqn. 10. Eliminating U, and y, in eqn. 10 yields 

which must be equivalent to eqn. 9. This implies that the 
following realisation problem has to be solved. 

General problem de$nition: Find constant matrices E , ,  
CA and D ,  and A(6) = diag (dlI1,  . . . , 6, I , )  with dimen- 
sions as small as possible such that 

B A ( /  - A(6)DJ1A(6)CA = SA(6) (12) 
where S,(6) is the matrix from eqn. 8. 

Eqn. 12  can he interpreted as follows. Consider only 
the nontrivial case that # 0, i = 1, _.., t. In that case, 
A(6) = diag (J lI1 ,  ..., 6 , I J  is invertible and eqn. 12 can 
be rewritten as BA(A-'(6) - D,)-'CA = SA(@ Defining 
pi = l/di yields 

which can be considered as a multidimensional (minimal) 
realisation problem. Note that in general there may be 
freedom in choosing ( D , ,  CA, BA) as a minimal realis- 
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ation. This means that an LFT for a given analysis 
problem need not be unique. 

General problem solution: Eqn. 12 is solvable for the 
general case. In this paper we will make this statement 
tractable, without giving a rigorous proof. 

Recall that the uncertain model has rational ND poly- 
nomial parameter-dependent entries of the state-space 
matrices. Hence, every entry in S,(6) can be written as a 
scalar function of the parameter vector 6 :  [SJi,(6) = 
k(6)/(1 + l(6)), with k(0) = 0 and l(0) = 0 and with the spe- 
cific structure of the denominator because S,(O) = 0. The 
denominator can be represented as an LFT being a nega- 
tive feedback 1(6) over a gain 1. The numerator k(6) and 
the function l(6) consist both of several terms with pro- 
ducts and powers of the parameters S i .  Each of these 
terms can be represented by an LFT and hence also the 
sum of them, This gives an LFT for k(6) and one for l /  
(1 + l(6)). The product of two LFTs is another LFT, so 
that we have found an LFT for [S,Iij6). After the com- 
bination of all entries of S,(6) into one large LFT struc- 
ture, a minimal realisation step is necessary for each 
individual element of 6. For more details see Reference 7. 

3.3 Special cases 

3.3.7 One varying parameter: Important examples of 
uncertainty models for the one parameter case are those 
where entries of the model depend as rational functions 
on one varying parameter, for instance the operating 
condition for linearised systems. Consider the system of 
eqn. 9 with 6 a scalar (i.e. t = 1). 

Lemma 3.3: Define p = 1/6. Then S,(p- ' )  is strictly 
proper in p. 

Proof: According to eqn. 8, for 6 = 0, [S,lijO) = 0 if no 
uncertain parameter enters entry (i. j) in eqn. 6 and 

CSAlij6) = Si ,h ,m)  - Sijpno,,,) = 0 otherwise, 
implying that lima-o SA(6) = limo+mSA(p-l) = 0. 

Theorem 3.4: Assuming that S , ( p - ' )  is rational and 
strictly proper, the uncertainty modelling problem is to 
find constant matrices E , ,  CA and D, and A(6) = 61, 6 
scalar, with dimensions as small as possible such that 
eqn. 12 holds for 6 being scalar. This is equivalent to the 
realisation problem: B,(pI - DJ'CA = SA(p-'). 

Proof: Follows immediately from eqns. 12 and 13 for 
t =  1 .  

Lemma 3.3 shows that the uncertainty modelling for the 
one parameter case can always be carried out such that 
S,(p- ' )  is strictly proper. Therefore a solution always 
exists, since the problem is equivalent to a standard state- 
space realisation problem [SI. 

Corollary 3.5: If@,, CA, BA) is a minimal realisation, the 
solution to Theorem 3.4 yield A(6) = 61 with the smallest 
possible dimensions for which an LFT can be found. 

Remark 3.6: The connection between state-space realis- 
ation and parametric uncertainty modelling can also be 
reversed: a state-space model as an uncertainty. In Refer- 
ence 9 this has been worked out by defining in discrete 
time the z-variable as a repeated block perturbation 
('state-space p'). 

303 



Example 3.7: Suppose a first-order system has a state- 
space A-matrix which can be written as A = A,,, + 62, 
then 

P = A,,, x + 6'x (14) 
and constructing an LFT is fairly simple in this case: 

P = A,,, x + BA uA 

y A  = C A x  + DAuA 

'A = '(')YA 

This set equals eqn. 14 if 

and 

BA = [O 11 
Owing to the structure of D ,  a polynomial in S is created. 

In this example 4 = S2 could have been modelled and C#J 

treated as a simple linear perturbation. However, when 
this concept is applied more generally for example if 6 
appears somewhere else in the state equation as another 
polynomial, a procedure as in the example is necessary. 

3.3.2 Linear parametric uncertainties: If the parameters 
6 = (a,, . . . , 6,) enter the state-space matrices in a linear 
way [IO, 111, D, can be taken as identically zero, as is 
clear from eqn. 12. For this case it is obvious that SA(6) = c:=l h i S A , .  

Theorem 3.8: Let SA(6) = c:= , d i  SA,. The problem to 
find constant matrices BA, CA and A(6) = diag (6,1,, . . . , 
&I,) with dimensions as small as possible such that eqn. 
12 holds with D, = 0, is always solvable. The solution is 
given by the solution to 

BA A(6)CA = 2 ai SA, (1 5 )  
, = I  

with A(6) = diag (6,, I,, . . ., &It). 

Proof: From the general problem definition (eqn. 12) eqn. 
15 results for the linear parameter case. That a solution 
to this problem always exists can be seen as follows. 
Suppose that SA; has rank r i ,  then there exist matrices P i  
and Qi where P i  is (n + I )  x ( T i )  and Qi is (ri)  x (n + m) 
such that 6, SA, = 6, Pi Qi = P i [ 6 ,  [,,IQi. Choosing A = 
diag (6,1,,, . . ., 6,1,,), BA = (PI, . . ., P,), and C A  = (Qr, . . ., 
Qf)' yields eqn. 15. 

From Theorem 3.8 it follows that generically the uncer- 
tainty A(6) = diag (6,1,,, . . . , 6 , I J  for which a solution 
exists has at least dimension Er=, ri where ri is the rank 
of SA$.  However, in some cases perturbations can be 
taken together which is formulated in the following 
result. 

Corollary 3.9: The dimension of an uncertainty A(S) = 
diag (6,1,,, . . . , 6,l,J can be made smaller than 1;- ri if 
rank If=, a i sA ,  < xi=, r i ,  with ai any nonzero real 
number. In such a case, some ai are perturbing the system 
in a similar way and can be taken together. This is called 
a reducible uncertainty model. An example has been 
worked out in Reference 6; see also Reference 7. 
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3.3.3 Other special problems: The two special cases 
described previously are formalised with Theorem 3.4 
and Theorem 3.8. Two examples are presented to show 
solutions for the case where products and quotients of 
parameters appear. In both, the following relations for 
the varying parameters are assumed a = anom + s, 6,, 
b = b,,, + Sb 8,. 

Example 3.10: Consider the state equation 

P = abx = anom b,,, X + (Y16. + Y 2  6 , 6 b  -k Y 3  6 b ) x  

= A n o m  x + SA(&, > 6b)x  

where y ,  = s, b,,, , y 2  = s, sb , y 3  = sb anon (uncertainty 
extraction). The problem is to find matrices (BA, C A ,  DA) 

such that 1 = Anomx + SA(6,, 6,)x is equivalent to the 
linear fractional form: 

1 = Anomx + BAuA 

y A =  CAX + D A u A  (16) 

The equivalence is satisfied for 

Example 3.1 1 : Consider 

= A,,, X +  SA(^, , 61,b 
where y1 = s, b,,, , y 2  = - anom S b l b h , ,  , Y 3 = S b I b n o n .  
Again we are looking for matrices (BA, CA,  DA) such that 
P = Anomx + SA(6,, 6,)x is equivalent to eqn. 16. This is 
satisfied for 

3.4 General p-interconnection structure 
For practical problems in general both complex and 
parametric uncertainties have to be taken into account. 
This can be done by deriving LFTs for each of the per- 
turbations, and collecting these models into one p- 
interconnection structure. The uncertainty matrix A then 
consists of complex and real-valued entries, as defined in 
the following general block structure. 

Given two non-negative integers m, and m, define a 
vector K with length m, + m, and with positive integer 
entries: 

~ = ( k i  , . . . , k m , , k m , + i , . . . , k ~ , + ~ ~ )  (17) 

Definition 3.12: Given the vector K (eqn. 17), the associ- 
ated block-diagonal perturbation Ab is defined by the set 

where A! E A, (Definition 3.l), i = I, .. ., m,, 4 E Ac 
(Definition 2.1) but with the additional constraint that At 
is a scalar if ki > 1, i = m, + 1, . . ., m, + m, and where I k  
is a k x k identity matrix. The normalised block-diagonal 
perturbation set is denoted as BAb with A; E BA,, A: E 
BAc. 
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Notice that AI lk, is a real repeated block and A: Ikn,+, 
is a complex repeated block. If ki = 1 the uncertainty is 
nonrepeated and the complex uncertainties are allowed 
to be matrices in that case. The vector K thus comprises 
the structure information (real/complex, repeatedness). 
The following section shows how robustness analysis can 
be done for general block-structures given by Definition 
3.12, 

4 Structured singular value analysis 

This section briefly describes the structured singular 
value analysis for both the complex and the real case; for 
more details see References 3, 4, 12. In the sequel, we 
assume that A(s) as well as the nominal system M(s)  are 
stable. First, well-known results for the unstructured 
complex (normalised) case are reviewed. 

Consider the system of Fig. 1 in which the uncertainty 
feedback A is assumed to be a full complex uncertainty 
(A E BAc, Definition 2.1). Denote the partition of M(s)  
which is coupled to A by M,,(s). For this unstructured 
case the well known small-gain theorem provides neces- 
sary and sufficient conditions for internal stability of the 
perturbed system F,(M, A): the system in Fig. 1 is in- 
ternally stable if and only if sup,{C(M,,(jo))} < 1, 
w E ( - C O ,  a) [13]. Now consider the case that BA< IS 
replaced by BA, with BA, some block-diagonal structure. 
Then the small gain theorem does not necessarily hold. 
For that reason Doyle [3] introduced the structured sin- 
gular value p, 

Theorem 4.1: Let M(s)  be stable and let A E BA,, then 
the system F,(M, A) in Fig. 1 is internally stable if and 
only if 

det ( I  - A ( j 4 M l l ( j m ) )  # 0 

VA E BA, o E (-to, to) (19) 
which holds if and only if 

SUP {p(Mll(j4)1 < 1 E (-to, .c) (20) 
0 

Proof: see Reference 3. 
The difference between the structured singular-value 
theorem (Theorem 4.1) and the small-gain theorem is that 
the maximum singular value of a matrix can be com- 
puted easily and exactly, which is not the case for the 
structured singular value. Computing p requires the 
optimisation of an expression in several independent 
variables. It is known that this optimisation problem 
leads to an upper or lower bound for p and that the exact 
value can only be determined in special cases [3, 123. 

Define a block-diagonal set of invertible matrices D, 
with a structure related to the set A, : 

(21) 
where for all i = 1, . . . , m, + m, for which ki > 1 : Di = 
Dr  > 0, Di E CkLXkL,  and for all i = 1, ..., m, + m, for 
which ki = 1:  D, = diZp, di E a+, p = dim (Ai), and with 
( .  )H the complex conjugate transpose. Notice that for all 
real uncertainties (i = 1, . ._, m,) p = 1. Then D-'AD = A 
for D E D,, A E A,.  For such matrices D it can be proven 
that p(Mll) = p(DM,,D-') and because p ( M , , )  < 
C ( M , , )  we construct an upper bound [3]: 

Db = {D ID = diag . . . , Dm,+,,,J 

p ( M , , )  i inf c(DM,,D-') (22) 
D E D ~  

This property can be used to compute an upper bound 
for p, by optimisation of the entries of D. A lower bound 
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can also be constructed, see References 3, 12. For the 
purely complex case (m, = 0) this minimisation problem 
is convex [14] which implies that every local minimum of 
the & expression is global. Unfortunately, when there are 
real-valued uncertainties the bound may be arbitrary far 
off and as such the minimisation of eqn. 22 may yield 
conservative results. A solution to this problem has been 
proposed by Fan and others [4, 51 in the form of a new 
upper bound for p : 

(23) 
with M D  = DM,,D-', D E D,, and with G E Gb defined 
as 

G.5 = { G I G  = diag (G,, ..., Gm,, om,+,, ..., Om,+,J1 

(24) 
where Gi = G r  E C k t X k r ,  i = 1, ..., m,, and with Oi the 
null-matrix with dimension k i  x k i  if ki > 1 and p x p ,  
p = dim (Ai) if ki = 1. Notice that Gi = g i  E W if ki = 1. 

If there are no real blocks (m, = 0), then G = 0 and 
eqn. 23 simplifies to 22. This shows that eqn. 23 is based 
on the same principle as the earlier upper bound for 
purely complex structures, namely the minimisation of a 
maximum singular value. Note also that the inequality in 
eqn. 23 still holds if G = 0 is chosen. Hence, the complex 
structured singular value bound (eqn. 22) is a sufficient 
condition (an upper bound) for the real case. However, 
less conservative results (a smaller upper bound for p)  
may be obtained for G # 0. The computation involves a 
minimisation over the free parameters in D and G. From 
the definitions of D, and G, it follows that the number of 
parameters involved is given by 

i = l  

m, 

i = l  
G scaling: ki + 2(ki - 1)' 

with k ,  the entries of K. For example, a complex non- 
repeated problem with three uncertainties, m, = 0, m, = 
3, K = ( k , ,  k , ,  k , )  = (1, 1, I), has only two parameters for 
D-scaling and none for G-scaling. For a 3 x 3 real- 
repeated one parameter problem, m, + m, = m, = 1, K = 
k ,  = 3, has 17 parameters for D-scaling and 18 for G- 
s c a I i n g . 

An algorithm has been written to compute the upper 
bound (eqn. 23). In fact, all possible combinations of real, 
real repeated, complex and (scalar) complex repeated can 
be handled with it. The algorithm is used in the following 
section. 

To give some insight into the effect of the G-scaling on 
the value of the upper bound, this section concludes with 
a simple example. 

Example 4.2: Suppose we have one real scalar uncer- 
tainty A = 6 E [ -1.  11. Denote the related p- 
interconnection structure MI l(s) as m(s). Let m(s) be 
evaluated at some frequency w,, : m(jwo) = r + qj where 
r, q E W. In this case, the upper bound (eqn. 23) can be 
written as (D = 1) 
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with G = g. First suppose that q # 0, then for any given 
(r.  q) a g can be found such that (r2 + q2 - 2qg) < 0 and 
hence p(m( jo , ) )  = 0. Now assume that q = 0, i.e. m(jw,) 
crosses the real axis, then eqn. 27 gives p(m(jw,)) < I r I 
for any choice of g. This is equivalent to the well known 
amplitude margin of a scalar system. 

The example shows that the G-scaling in fact pushes the 
upper bound down in those cases where the intercon- 
nection matrix has only complex values, if calculated for 
a real uncertainty. This result can be generalised for 
multivariable systems, using the eigenvalues of 
D M , , D - ' ,  see Reference 15. It also shows that the 
optimisation problem is not continuous on G, see also 
Reference 16. Generically, complex perturbations always 
prevent this situation. 

0 0 0 0 1 0  
0 0 0 0 0 0  

0 0 0 0 0 0  
0 0 0 

5 

In optical recording (Compact Disc), a very high infor- 
mation density is applied. To detect this information, 
high precision mechanisms are needed to position the 
laser spot on the disc with an accuracy GO.1 pm. Using 
servoactuators with a high bandwidth (500-1000 Hz) it is 
possible to keep on the track despite disturbances from 
outside the mechanism such as mechanical shocks and 
disc eccentricity. An actuator which makes it possible to 
achieve a very high bandwidth is the 5D-actuator [17]. 
This consists of a magnetic ring with a lens in it, which is 
magnetically positioned by an active system of nine coils, 
Fig. 3. Using a mirror underneath the magnetic ring, the 

Robustness analysis of a 5D actuator 

0 l) Fig. 3 Schematic view ofthe 5D-actuoror 

positions (z, a, p) can be detected, while the x (tracking) 
and z (focusing) positions are measured relative to the 
disc above. The position of the lens is controllable in 5 
degrees of freedom by means of the electromagnetic 
forces. 

A major problem with this system is that it has severe 
couplings between the magnetic forces as a function of 
position z. This gives interaction problems between the 
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degrees of freedom to be controlled. From a nonlinear 
model it follows that with the aid of a decoupling matrix 
the (x, p) and ( y ,  a) degrees of freedom can be decoupled 
from one another. We restrict attention to the 2D 
problem in the ( y ,  a)-direction only. A state-space model 
has been derived, linearised with respect to vertical posi- 
tion z 

l o  o \  
+ [ 1.77 -00.24z* 0 I(::) (28) 

\ 5.342 1.97 - 1.77221 

and with the outputs y and a. The z-dependency of the 
model appears nonlinearly in the input matrix B and is 
caused by a nonlinear distribution of the magnetic field 
lines as a function of z. The entries of B are polynomial 
fits on data obtained from a finite element calculation of 
the magnetic field distribution. The interaction terms are 
for z z 0 of opposite sign compared to those for z < 0. 
Using a multimodel design method [18] a diagonal con- 
troller has been designed for three operating points: 
z = - 1,0 and + 1 mm, resulting in a compensator for y :  
0.51 * IO' (8.23 * 10-4s + 1)/(3.26 * 10-5s + 1) and for 
a :  0.30 * lO'(9.54 * 10-4s + 1)/(2.85 * 10-5s + 1). We 
are interested if this system is stable in all operating 
points. To be more precise, whether it is stable for every 
position z ,  where z can vary between -1.8mm and 
+ 1.8 mm. We restrict attention to the variations in z 
only, hence we have a one-parameter problem. Using the 
uncertainty modelling procedure described, a p- 
interconnection structure can be derived with a real 
repeated uncertainty A = z l  (scaled to - 1, . . . , + 1, and 
with I the 4 x 4 identity matrix), with the matrices in 
eqn. 6 model as follows: 

l o  o \  
1.77 0 

B",, = (  1 
\ 0 1.97/ 

0 ( 8 0.24 -1027 8 \ 
0 -1.77 

0 0  
5.34 0 

1 0 0 0  
D A = l o  0 0 0 )  

\o 0 1 o/ 
For this case, the following calculations have been done: 
(i) small-gain theorem, (ii) structured singular-value com- 
putation (eqn. 22) assuming that A is a 4 x 4 diagonal 
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complex uncertainty: K = (1, 1, 1, I), m, = 0, m, = 4, 
p = 1 (four times), i.e. three D-scalings, (iii) A assumed to 
be complex repeated (eqn. 22), K = 4, m, = 0, m, = 1, i.e. 
21 D - d i n g s .  and (iv) real-repeated (eqn. 23): v = 4, 
m, = 1, m, = 0, i.e. 21 D-scalings and 22 G-scalings. 
Results of the computations are given in Fig. 4. 

lo'[ 

10-2 ' E ' ' ' ' '  """" U"'', ~ ~ " ' ~ ' '  ' " ' , , " '  ' ' 
io0 io1 102 103 104 105 106 

angular velocity, radls 

Fig. 4 
(1) 0 

(ii) p complex 
(iii) p complex repeated 
(IV) p real repeated 

Real and complex structured singular value for 5 0  actuator 

The singular-value test holds for unstructured complex 
uncertainties and since the perturbations in this problem 
are structured, repeated and real the test is expected to be 
very conservative. This can be seen in Fig. 4 where 
%(M,,( jw))  has a peak value of two, implying that only 
an uncertainty two times smaller (i.e. I z I < 0.9 mm) then 
the actual uncertainty would satisfy the test. The test for 
case (ii) takes the structure of the perturbations into 
account (but nonrepeated: D is diagonal), and therefore is 
less conservative. The third line is again the complex 
structured singular value but now for repeated uncer- 
tainties, case (iii), which shows to be less conservative. 
Finally, the real structured singular value test (iv) com- 
putes an upper bound for structured and real (repeated) 
perturbations. Fig. 4 shows that for this case the com- 
puted upper bound equals 1 and hence is on the edge of 
stability. The results are not smooth because of the 
nonzero stopping criterion of the algorithm. 

In this case, it is possible to calculate stability for all 
operating conditions in another way. The stability cri- 
terion is det (I - zM,,) # 0 for all real-valued z (scaled 
to - 1, . . . , + 1). This is the same as evaluating the char- 
acteristic values A(Mti(jw)) along the real axis, Fig. 5. 

1 %  

-1 5 i  
-15 -1 -05 0 0 5  1 1 5  

real 

Fig. 5 Characteristic loci for S D  actuator 
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From the figure it follows that the system is indeed on 
the edge of stability for these operating points. 

6 Conclusions 

Robustness analysis for systems with complex and real- 
valued uncertainties consists of uncertainty modelling 
and computing stability bounds. A procedure has been 
described to model complex and real perturbations, com- 
prising scaling of the individual perturbations, extracting 
the varying part from the constant part of a system and 
creating a linear fractional form. For those types of 
models, recent developments of structured singular value 
computation for complex and real, possibly repeated, 
uncertainties are applicable. An electromechanical posi- 
tioning device, to be used in optical recording, has been 
analysed for stability over a range of operating condi- 
tions. 
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