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Abstract

Geometric reconstruction problems in computer vision
can be solved by minimizing the maximum of reprojection
errors, i.e., the L∞-norm. Unlike L2-norm (sum of squared
reprojection errors), the global minimum of L∞-norm can
be efficiently achieved by quasiconvex optimization. How-
ever, the maximum of reprojection errors is the meaningful
measure to minimize only when the measurement noises are
independent and identically distributed at every 2D feature
point and in both directions in the image. This is rarely
the case in real data, where the positional noise not only
varies at different features, but also has strong direction-
ality. In this paper, we incorporate the directional uncer-
tainty model into a quasiconvex optimization framework,
in which global minimum of meaningful errors can be ef-
ficiently achieved, and accurate geometric reconstructions
can be obtained from feature points that contain high direc-
tional uncertainty.

1. Introduction

Given 2D image measurements, the goal of geometric re-
construction in computer vision is to estimate the 3D scene
structure and/or the camera motion. Classical examples in-
clude triangulation [13], camera resectioning [3, 12], and
structure from motion (cf. [6]).

When measurement noises follow independent and iden-
tical Gaussian distribution, maximum likelihood estimation
can be achieved by minimizing Fs, the sum of squared re-
projection errors. Minimizing Fs, however, is in general
a hard non-convex problem due to the perspective effect
in pin-hole camera model. An alternative is to minimize
F∞, the maximum reprojection error [5]. In contrast to
Fs, the global minimum of F∞ can be achieved by qua-
siconvex optimization in an efficient way by Second Or-
der Cone Programming [8, 9], or more efficiently by Linear
Programming [9]. Previously, global optimal estimates can
be achieved only in rare instances, such as two-view trian-
gulation using L2-norm [13] or L∞-norm [11], three-view

triangulation by solving six-degree polynomial equation set,
and affine reconstruction using matrix factorization [17].
Minimizing F∞ by quasiconvex optimization provides a
framework to achieve global optimal estimation in many
multi-view geometric reconstruction problems, without the
limitation on the number of views and/or the use of affine
camera model. While F∞ is sensitive to outliers, a robust
extension of quasiconvex minimization was presented in [9]
to deal with outliers.

However, F∞ is a meaningful objective to minimize only
when the measurement noises are isotropic and i.i.d. (inde-
pendent and identically distributed) at every 2D feature. In
real data, this is rarely the case since the quality of feature
matching depends on the image intensity pattern around the
feature, which often varies at different feature points and
has strong directionality to it. As a result, the uncertainty at
each feature often has strong directionality, and is feature-
dependent.

To account for the directional uncertainty, we mini-
mize the covariance-weighted reprojection error (the Ma-
halanobis distance), instead of the Euclidean distance that
has been used in [5, 8, 9]. In this paper, we incorporate
the directional uncertainty model into the quasiconvex op-
timization framework. The directional uncertainty can be
characterized by the covariance matrix at each 2D feature,
as has been used in matrix factorization for affine recon-
struction [10, 7]. We show that the point-wise maximum
of covariance-weighted reprojection errors is a quasiconvex
function, and therefore its global minimum can be obtained
by a simple and efficient quasiconvex minimization algo-
rithm that consists of a small number of convex programs
(linear programs or second order cone programs).

In each convex program, each feature contributes a con-
vex cone constraint on the unknowns. In our formulation,
the shape and size of such convex cone adapts to the direc-
tional uncertainty of its underlying feature. A feature with
smaller uncertainty in one or two directions will result in a
cone with smaller size in corresponding direction(s), thus
a stringer constraint on the unknowns. This is in contrast
to [5, 8, 9] where all convex cones have common shape/size
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and constrain equally on the unknowns. The directional un-
certainty also allows us to model line features. As a result,
point and line features can be used simultaneously for geo-
metric reconstruction in a common quasiconvex optimiza-
tion framework.

1.1. Geometric reconstruction

Let Pi, i = 1, ...,m, denote a set of 3× 4 camera projec-
tion matrices, and Zj , j = 1, ..., n, a set of 3D points. Given
xij , the images of 3D points Zj at cameras Pi, the goal of
geometric reconstruction is to recover Pi and/or Zj . Here
coordinates are in homogeneous format. In the following
we briefly introduce some classical geometric reconstruc-
tion problems (see [6] for more details) that can be solved
by quasiconvex optimization [8, 9]:

• Planar homography estimation. When the 3D points
{Zj} are on a plane, they can be represented by ho-
mogeneous plane coordinates. {Zj} and their image
features {xj} are related by xj = HZj , where H is the
planar homography represented by a 3×3 matrix. The
task here is to estimate H from {xj} and {Zj}. The
same problem appears when we are given two images
of 3D co-planar points, where the homography relates
the points in one image to the points in the other image.

• Camera resectioning. We are given 3D points {Zj}
and their images {xj} in one camera P. The task is to
estimate the camera matrix P.

• Multi-view triangulation. We are given the images
{xij} of 3D points {Zj} at multiple cameras {Pi}.
The task is to estimate {Zj} from {xij} and {Pi}.

• Cameras with known rotations. This case is similar
to multi-view triangulation, except that the location of
each camera is unknown and needs to be estimated in
addition to {Zj}. This is an interesting problem as
modern inertial sensors can provide accurate camera
poses but noisy camera positions. There also exists
reconstruction methods where the camera rotations are
estimated in a first step [18].

• Using a reference plane. When a reference plane is
visible in all images, the inter-image planar homog-
raphy from the given reference plane can be used to
compensate the relative camera rotations. Then the
problem essentially reduces to the above case of re-
construction with known rotations.

Under pin-hole camera model, the reprojection of xij is

kijx̂ij = PiZj (1)

For the above problems, Eq. (1) is linear in kij and the un-
known parameters. Linear least squares technique can then

(b) (c)(a)
Figure 1. Uncertainty in feature point locations. (a): Scalar
uncertainty with covariance matrix Q = diag(σ, σ); (b): Di-
rectional but uncorrelated noises, with covariance matrix Q =
diag(σ1, σ2); (c): Directional and correlated noises, with covari-
ance matrix Q a full 2 × 2 matrix.

be applied to solve for the unknowns. Coordinate normal-
ization technique may be used to improve the linear esti-
mation. However, the linear algorithm minimizes the alge-
braic distance ‖kijx̂ij − PiZj‖, which is not geometrically
or statistically meaningful. As a result, its performance is
not reliable.

2. Quasiconvex optimization with uncertainty

There are three major components in geometric recon-
struction: 1) a measure of model fitting error at each 2D
feature; 2) a total error that combines the model fitting er-
rors of all features; and 3) an optimization algorithm that
minimizes the total error w.r.t. the unknown parameters.

In this section, we show that directional uncertainty of
2D features can be incorporated into the above three com-
ponents.

2.1. Uncertainty of feature position

The accuracy of feature matching depends on the inten-
sity pattern around each feature, which often has strong di-
rectionality and is location-dependent. Such directional un-
certainty can be characterized by the following inverse co-
variance matrix (cf. [14, 15]:

Q−1 =
1
s

∑
(u,v)∈w

(
IuIu, IuIv

IuIv, IvIv

)
, (2)

where w is a small window centered around the feature
point in the image I of the i-th camera, s is determined by
the intensity pattern inside w, and Iu and Iv are image gra-
dients along u and v direction, respectively. A more accu-
rate method to estimate feature position uncertainty is pre-
sented in [15], which takes into account not only the image
pattern but also the image pixel noises.

Figure 1 shows the three different types feature uncer-
tainty:

• Q = diag(σ, σ): scalar uncertainty that is feature-
dependent, but is isotropic and therefore uncorrelated
in u and v direction;
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• Q = diag(σ1, σ2): directional (σ1 �= σ2) but uncorre-
lated in u and v direction;

• Q = full 2 × 2 matrix: directional and correlated in
u and v direction.

2.2. Covariance-weighted reprojection error

For the geometric reconstruction problems listed in Sec-
tion 1.1, the reprojection of x = (u, v)� in the image (in
Euclidean coordinates), under pin-hole camera model, can
be written as:

x̂ =
(

a�X
c�X

,
b�X
c�X

)�
(3)

Here X is the vector to be estimated. a,b, and c are known
vectors. For example, in the triangulation problem, X =
(X,Y, Z, 1) is the 3D point to be estimated, and a,b, and c
are the three rows of the camera matrix P, respectively.

The uncertainty in the location of each 2D feature point x
can be taken into account by weighting the reprojection er-
ror appropriately. The covariance matrix Q for the 2D point
x is a symmetric positive semi-definite matrix, and can be
decomposed into the following form by the Singular Value
Decomposition: Q = UΣU�, where Σ = diag(σ1, σ2), and
U is a 2 × 2 orthonormal matrix. The inverse covariance
matrix takes the form of

Q−1 = UΣ−1U� (4)

Denote B = Σ−1/2U�, which is an affine transformation
that transforms the input data into covariance-weighted data
space where the noises at each feature become isotropic and
i.i.d.. The transformed coordinates (in Euclidean) of x and
x̂ in the image plane are :

x′ = (u′, v′)� = B(u, v)� (5)

x̂′ = Bx̂ =
1

c�X
B

(
a�

b�

)
X (6)

where a� and b� follow the notation in Eq. (3). The
covariance matrix of the noise in the covariance-weighted
data space now becomes isotropic and takes the form of
diag(1, 1). Denote

A =
[
B

(
u
v

)
c� − B

(
a�

b�

)]
. (7)

The covariance-weighted reprojection error function is:

fw(X) = ‖x′ − x̂′‖ =
∥∥∥∥ AX
c�X

∥∥∥∥ (8)

In this paper, we consider affine or Euclidean reconstruc-
tion 1. The cheirality constraint [4], which states that the 3D

1But using a way similar to the method briefed in [5], our algorithm in
this paper can be extended to projective reconstruction.

A

B

x

f(x)

α

Sα

Figure 2. A quasiconvex function on R, as all of its α-sublevel
sets Sα are convex (intervals). This function is constructed as the
point-wise maximum of three other functions. This quasiconvex
is non-convex, as can be seen from the line segment AB that lies
below the function. In a convex function, any line segment that
connects two points on the function should lie above the function.
Also note that this function is non-differentiable.

points visible in the image must be in front of the camera,
can then be expressed as c�X > 0. Therefore, Eq. (8) can
then be written as:

fw(X) =
1

c�X
‖AX‖ (9)

When ‖·‖ in Eq. (9) is L2-norm, fw(X) is the Mahalanobis
distance between x and x̂.

2.3. Covariance-weighted total error function

The total error function in the covariance-weighted data
space can now be defined using L∞-norm:

Fw
∞(X) = max

i
fw

i (X) (10)

2.4. Quasiconvex minimization with uncertainty

In this subsection, we show that the covariance-weighted
total error function is a quasiconvex function, as a result its
global minimum can be obtained efficiently using quasicon-
vex minimization.

2.4.1 Quasiconvexity under uncertainty model

A function with convex sublevel sets is called quasiconvex.

Definition 1. (see [2]) A function f : R
n → R is called

quasiconvex if its domain dom(f) and all its sublevel sets

Sα = {x ∈ dom(f) |f(x) ≤ α}, (11)

for all α ∈ R, are convex.

A convex function has convex sublevel sets, and is there-
fore quasiconvex. But the reverse is not necessarily true, as
can be seen from Fig. 2, where the dash-line AB below the
function curve indicates its non-convexity.

In the following we show that both the covariance-
weighted reprojection error function fw(X) and the total
error function Fw

∞(X) are quasiconvex.
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Algorithm: minX Fw
∞(X).

1: Given F ∗ ∈ [l, h], and the tolerance ε > 0.
2: while (h − l) > ε do
3: α := (h + l)/2.
4: Construct covariance-weighted convex cones

Sw
i = {X | ‖AiX‖ ≤ αc�i X}.

5: Solve convex feasibility problem (15).
6: if (15) is feasible, then h := α;
7: else l := α.
8: end while

Figure 3. Bisection algorithm to pin down the optimal value by
searching in the one-dimensional range domain of F w

∞(X).

Result 1. fw(X), the convariance-weighted reprojection
error function defined in Eq. (9), is a quasiconvex function.

Proof. The α-sublevel set of fw(X) is:

Sw = {X | fw(X) ≤ α}
= {X | ‖AX‖ ≤ αc�X} (12)

where matrix A is defined in Eq. (7).
The inequality ‖AX‖ ≤ αc�X defines a convex

cone [2]. As a result, Sw is a convex set.

Result 2. Fw
∞(X), the point-wise maximum of covariance-

weighted reprojection error fw
i (X), is a quasiconvex func-

tion.

Proof. The α-sublevel set of Fw
∞(X) = maxi fw

i (X) is:

S∞
α = {X | max

i
fw

i (X) ≤ α}
= {X | fw

i (X) ≤ α}

=
m⋂

i=1

Sw
i (13)

Here Sw
i = {X | ‖AiX‖ ≤ αc�i X} is the α-sublevel set of

the covariance-weighted reprojection error function fw
i (X).

From Result 1, we know that {Sw
i } are all convex sets. As a

result, their intersection Sα is also a convex set. Therefore,
Fw
∞(X) is a quasiconvex function.

2.4.2 Minimization algorithm

A quasiconvex function may be non-differentiable, and
gradient-decent-like approaches are not applicable for its
minimization. See Fig. 2 again for an example. However,
the fact that its sublevel sets are convex makes it possible to
obtain its global minimum using convex programming.

Denote F ∗ the global minimum of Fw
∞(X). For a given

value α, if the sublevel set S∞
α = {X|Fw

∞(X) ≤ α} is
non-empty, then we must have F ∗ ≤ FW

∞ (X) ≤ α. On

eu

ev

c

xi

eu

ev

α

covariance weighted

C1

C2

Cm

…

(a) (b)
Figure 4. Geometric illustration of 3D reconstruction using qua-
siconvex optimization. (a): The shape and size of each cone are
determined by α and covariance matrix Qi; (b): The algorithm
seeks minimum α such that the cones have non-empty common
intersection S∞

α . Note that cones have different shapes and sizes.
The last cone Cm has large directional uncertainty and has lit-
tle constraint on determining S∞

α in the direction that has large
uncertainty.

the other hand, if S∞
α is empty, then we can conclude that

F ∗ > α. Such simple relationship between the global min-
imum F ∗ and the α-sublevel set S∞

α enables us to apply
the bisection algorithm, as shown in Fig. 3, to pin down the
global minimum of Fw

∞(X). Each step of the bisection al-
gorithm checks whether S∞

α is empty or not by solving the
following feasibility problem:

find X (14)

s.t. X ∈ S∞
α

Given that S∞
α is a convex set as a result of the quasiconvex-

ity of Fw
∞(X), problem (14) is a convex feasibility problem:

find X (15)

s.t. ‖AiX‖ ≤ αc�i X,

c�i X > 0 i = 1, ...,m

Specifically, (15) is a Linear Program (LP) when ‖ · ‖ is a
L1 norm, and a Second Order Cone Program (SOCP) when
‖ · ‖ is L2 norm. Both LP and SOCP are well studied and
existing efficient algorithms and implementations are ready
to use (e.g., the Matlab built-in function linprog, or Se-
DuMi [16]).

The bisection algorithm converges quickly in �log2((h−
l)/ε)� iterations, and obtains the global minimum within
the predefined accuracy of ε.

2.4.3 Geometric interpretation

The covariance-weighted quasiconvex minimization algo-
rithm has an intuitive geometric interpretation. We use tri-
angulation as an example to illustrate.
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For a feature point xi, the α-sublevel set Sw
i of the

covariance-weighted reprojection error function fw
i (X) is

a second order convex cone in the 3D space in front of
the camera. The shape and size of such convex cone
are determined by α and the covariance matrix Qi =
U diag(σ1, σ2)U�, as shown in Fig. 4(a). The construction
of convex cone Sw

i is the following. First a circle in the im-
age plane with radius α is scaled by

√
σ1 and

√
σ2 in u and

v direction, respectively. This results in an ellipse with axes
of α

√
σ1 and α

√
σ2 respectively. The ellipse is then rotated

by the rotation matrix U. The final convex cone, dubbed as
elliptical cone, is formed by connecting the camera optical
center and the rotated ellipse.

The α-sublevel set S∞
α of the cost function Fw

∞(X) is
the intersection of all α-sublevel sets {Sw

i }. The feasibility
problem (15) is therefore equivalent to determining if there
exists common intersection of the convex elliptical cones
{Sw

i }, as shown in Fig. 4(b). The bisection algorithm then
seeks a minimum value α such that the common intersec-
tion of the convex elliptical cones {Sw

i } is non-empty.
Since α is common for all convex cones, the relative

shape and size of each individual cone is actually deter-
mined by its associated covariance matrix. Therefore the
effect of each convex cone constraint on the final estimation
X is weighted by the inverse covariance matrix. Consider
an extreme case when uncertainty goes to infinity. In such
case, the corresponding convex cone is scaled to infinite size
and does not have any constraint on the estimate of X. On
the other hand, if the uncertainty is zero, the convex cone
becomes a ray, and we must constraint X on the ray, which
is a strong constraint. When directional uncertainty is pre-
sented, the effect of constraints from different directions are
determined by σ1 and σ2, respectively.

3. Experiments

We use planar homography estimation and multi-view
triangulation as two applications of our algorithm, and use
synthetic and real data to evaluate its performance. We com-
pare the performances of three algorithms: the quasicon-
vex minimization of Fw

∞ with uncertainty model, the quasi-
convex minimization of F∞ without utilizing feature uncer-
tainty, and the normalized linear algorithm.

3.1. Synthetic data

3.1.1 Planar homography estimation

Fig. 5(a) shows the setup to generate the synthetic data
for homography estimation, where the camera images the
points on the ”ground plane”. This simulates the case where
a camera mounted on a vehicle is looking at the ground
plane at some angle. Note that in this case h33 in homogra-
phy HT may become very small. In all the algorithms being
compared, we do not assume h33 = 1.

X

x

(a) (b)
Figure 5. The set up for synthetic data generation. In both cases,
the image coordinates are normalized such that the camera focal
length f = 1. (a): Camera looking at points on the ground plane;
(b): Camera rotating and translating, and looking at 3D points
within a depth range.
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Figure 6. Results from planar homography estimation. (a): RMS
error; (b): Maximum of reprojection error; (c): Maximum of
covariance-weighted reprojection error; (d): Error in H.

We randomly generate twenty 3D points Xi on the
ground plane, and compute the 2D images xi of these 3D
points. We then add elliptical Gaussian noise to xi. The
noise perturbed points are denoted by x̃i. The ellipticity of
the noise is measured by r =

√
σmax/σmin, where σmax

and σmin are the major and minor axes of the uncertainty
ellipse, respectively. The orientation of the ellipse is ran-
domly selected for each point.

We compare the performances using four criteria:

• Maximum reprojection error

F∞(X) = max
i

d(x̃i, HXi) (16)

where d(·, ·) denotes the Euclidean distance;

• Root of Mean Squares (RMS) of reprojection errors;
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• Maximum covariance-weighted reprojection error
Fw
∞(X) as defined in Eq. (10);

• Error in H defined as:

eH =

√√√√ 1
N

N∑
i=1

d2(xi, HXi) (17)

where d(xi, HXi) is the Euclidean distance between
the ground truth 2D point xi and the reprojection point
HXi. This error metric compares the estimated H to the
ground truth HT using ground truth points. If there is
not error in the estimated H, then eH = 0.

We apply our algorithm to estimate H from this syn-
thetic data. We repeat the experiments for 20 times, and re-
port the above error measures using mean of these 20 runs.
Fig. 6 shows the results, where

√
σmin = 0.01 and

√
σmax

varies from 0.01 to 0.2, i.e., the ellipticity r varies from 1
(isotropic) to 20.

As we can see from (a), both F∞ and Fw
∞ have similar

RMS error. Normalized linear algorithm has similar RMS
error when r is small, but becomes unreliable when r ≥ 10.

Fig. 6(b) shows that minimizing F∞ gives lowest max-
imum reprojection error, while Fig. 6(c) shows that mini-
mizing Fw

∞ gives lowest maximum covariance-weighted re-
projection error. This indicates that quasiconvex minimiza-
tion indeed achieves the global minimum of F∞ and Fw

∞,
respectively.

From Fig. 6(d), which compares the estimated H against
ground truth HT using the metric eH , we can see that Fw

∞
performs the best, and its performance does not degrade at
all with the increase of r. This indicates that Fw

∞ is the
proper metric to minimize. We also find that normalized
linear algorithm performs better than F∞ when r is small,
but when r is large, its performance becomes unreliable.

3.2. Mulit-view triangulation

Fig. 5(b) shows the set up to generate the synthetic data
for multi-view triangulation. The camera is rotating and
translating, and takes ten consecutive views of twenty 3D
points located at different depth.

Fig. 7 shows the average results of 20 runs. Again it
shows that the covariance-weighted reprojection error is the
right metric to use, as can be seen by the fact that Fw

∞ gives
the best 3D estimation Z when compared to the ground truth
ZT using the following metric:

e3D =
‖Z − ZT ‖2

‖ZT ‖2
(18)
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Figure 7. Results from multi-view triangulation. (a): RMS error;
(b): Maximum of reprojection error; (c): Maximum of covariance-
weighted reprojection error; (d): Reconstruction error compared
against ground truth 3D.

3.3. Infinite elliptical uncertainty

The performance of Fw
∞ does not degrade even when the

ellipticity of noises r goes to essentially infinity, as can be
seen from Table 1. This fact indicates that the normal op-
tical flow can be modelled by directional (infinity) uncer-
tainty. As a result, the point feature and line feature can
be simultaneously used in the quasiconvex optimization for
many geometric reconstruction problems.

Homography Triangulation
Algebraic 833.8092 1.4380

F∞ 710.3891 3.1084
F w
∞ 0.0093 0.0146

Table 1. Results under infinite elliptical uncertainty r = 105. The
table shows eH for homography estimation and e3D for triangu-
lation.

3.4. Real data

We apply our algorithm to estimate the inter-image ho-
mography using real image data. Fig. 8(a) and (b) shows
two input images. Here (a) is the first image. The other
images are obtained by applying a known and gradually-
changed planar homography to the first image. This way we
have the ground truth of the planar homography for evalua-
tion purpose.

The features in the first image are tracked through the
sequence, and the inverse covariance matrix for each feature
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(a) (b) (c) (d) (e)
Figure 8. Planar homography estimation. (a) is the first image, where elliptical uncertainties for some feature points are shown. (b) is the
last image. (c)–(d) are the residual images by applying the estimated homographies estimated by different methods (note that residuals are
scaled up for visibility): (c): Normalized linear algorithm, average pixel residual e = 15.0798; (d): Minimizing F∞, e = 28.2082; (e):
Minimizing F w

∞, e = 5.8896.

is computed by the Hessian matrix (Eq. (2)). The elliptical
uncertainties for some feature points are shown in Fig. 8(a).

Fig. 8(c) to (e) show the image residual by applying the
inverse-warping using the estimated homographies. As we
can see, minimizing Fw

∞ gives the homography that has the
lowest intensity residual. It correctly down weight the fea-
tures with large directional uncertainty on the top of the
box to produce a correct estimate of H. On the other hand,
both normalized linear algorithm and the minimization of
F∞ give worse results, as can be seen by the large resid-
uals on the top of the box, where there exist features with
large directional uncertainty. Normalized linear algorithm
performs better than minimizing F∞ in this case.

4. Conclusion

In this paper we incorporate the directional uncertainty
in 2D feature into the quasiconvex optimization framework.
We show that the global minimum of Fw

∞, the maximum of
covariance-weighted reprojection errors, is a quasiconvex
function and can be globally minimized. We have shown
good performance of our algorithm using both synthetic and
real data.

The directional uncertainty can be used to model line
feature. Point and line features can therefore be unified in
the quasiconvex optimization framework that can be applied
to many geometric reconstruction problems.

The uncertainty model also allows us to extend our work
to deal with outliers, by adding a scalar weight w to the
reprojection error at each iteration step, where w is deter-
mined by the reprojection error using some robust func-
tion [1].
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