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This paper discusses how uncertainty models of vision-based positioning sensors can be used to support the planning and

optimization of positioning actions for mobile robots. Two sensor types are considered: a global vision with overhead

cameras, and an on-board camera observing artificial landmarks. The developed sensor models are applied to optimize

robot positioning actions in a distributed system of mobile robots and monitoring sensors, and to plan the sequence of

actions for a robot cooperating with the external infrastructure supporting its navigation.
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1. Introduction

Reliable localization is a fundamental problem for mobile

robots. Wheeled mobile robots use odometry, which is

able to provide the robot with an estimate of its pose (posi-

tion and orientation XR = [xr yr θr]
T ) at any time. This

method alone is insufficient, and the pose has to be cor-

rected by using measurements from exteroceptive sensors.

There are numerous approaches to sensor-based localiza-

tion known from the literature (Feng et al., 1996). Unfor-

tunately, self-localization methods require expensive on-

board sensors (Castellanos and Tardòs, 1999). Currently,

CCD cameras are the most compact and low cost sensors

for mobile robots (DeSouza and Kak, 2002). However,

most vision-based localization methods fail under com-

mon environmental conditions, due to occlusions, shad-

ows, etc.

A solution for limited environments such as ware-

houses or factories is to develop an external infrastruc-

ture, which provides pose estimates to robots. Such an

infrastructure was proposed by (Ishiguro, 1997) as a dis-

tributed vision system consisting of multiple cameras em-

bedded in an environment. Stationary external cameras

have also been successfully used to navigate experimental

AGVs (Kruse et al., 1998).

The modification of the environment is an obvious

disadvantage. However, when a group of mobile robots

shares a limited number of cameras mounted in carefully

chosen locations (e.g., at corridor junctions, docking sta-

tions), the use of the external sensors is justified. Also

artificial landmarks, which improve operational character-

istics of on-board vision sensors, become more acceptable

when a minimal number of cheap and unobtrusive visual

cues is used (Bączyk et al., 2003).

Localization based on the external infrastructure pro-

posed here uses both fixed and on-board cameras, and ex-

ploits artificial visual cues in the form of passive, printed

landmarks and active LED markers on robots. Due to

these visual cues, simple and fast image processing meth-

ods could be employed, resulting in reliable and accurate

positioning of mobile robots with respect to the global ref-

erence frame.

In a system with many robots performing their indi-

vidual tasks, possibly along many very different routes,

an optimal placement of stationary cameras and artificial

landmarks, ensuring a complete coverage of the environ-

ment within the given uncertainty bounds, becomes in-

feasible. When artificial navigation aids are sparsely dis-

tributed in the environment and shared by several robots,

an important issue is to ensure an appropriate strategy of

positioning for particular robots.

This paper discusses methods used to ensure a re-

liable estimation of the mobile robot pose from artifi-

cial navigation aids sparsely distributed in the workspace,

and shared by several robots working in a distributed sys-

tem. The workspace is a closed environment and its gen-

eral layout is known to the robots, so there is no need

for exploration. Unexpected or moving obstacles (other

robots) are handled by reactive navigation procedures. It

is assumed that wheeled robots move in 2D on a flat

floor. This work builds upon the author’s previous re-

sults in distributed sensing (Kasiński and Skrzypczyński,
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Fig. 1. Overhead camera system geometry.

1998; 2001) and sensor uncertainty modelling (Bączyk

and Skrzypczyński, 2003; Skrzypczyński, 2004b). The

main contributions of this paper are two methods aimed

at minimizing the whole cost of positioning actions un-

dertaken by robots, while ensuring the best available posi-

tioning quality (lowest uncertainty), or keeping the uncer-

tainty bounded to the required value.

2. Vision-Based Sensors for Positioning

2.1. Distributed Overhead Cameras

The global vision system uses CCD cameras mounted to

the ceiling. The cameras are equipped with wide an-

gle (fish-eye) lenses, and their optical axes are orthogo-

nal to the ground plane (Fig. 1). Low-cost AverMedia

BT848 frame grabbers are used to digitize frames from

standard B/W industrial cameras connected to PC com-

puters being nodes of a LAN in the laboratory (Bączyk

and Skrzypczyński, 2001). The entire image processing

A B C

D E F

Fig. 2. Main stages of overhead camera images processing.

is performed in software on PCs. The extraction of robot

characteristic points from grey-level images is hard and

unreliable due to the complex shapes of the robots and

the varying illumination conditions (Kasiński and Hamdy,

2003). Because of that, the Labmate robots have been

equipped with active LED markers attached symmetri-

cally to the corners. The detection of a robot is performed

on the difference image, which is computed from a pair of

images taken when the robot LEDs are on, and then off.

The procedure for the computation of the position

and orientation of a mobile robot from overhead camera

images consists of the following steps:

• Acquisition of two images, with the diodes on

(Fig. 2A) and off, respectively.

• Elimination of the uneven natural lighting.

• Computation of the difference image and tresholding

of this image (Fig. 2B).

• Cluster labelling and pruning of too small and too

large clusters (Fig. 2C).

• Computation of the centres of the remaining clusters

(Fig. 2D).

• Correction of the fish-eye distortions for the found

points (Fig. 2E).

• Search for the pattern of points in the image, which

matches the layout of the diodes on the robot

(Fig. 2F).

• Computation of the position and orientation of the

robot in the camera coordinates.

• Conversion of the found robot pose to the global co-

ordinates.
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All operations in the robot recognition procedure are ap-

plied to the part of the whole image which is defined by

the region of interest (ROI) (Bączyk and Skrzypczyński,

2001). The position of this ROI is computed from the pre-

vious estimate of the robot pose.

To eliminate the uneven scene illumination, a ho-

momorphic filter was used (Kasiński and Hamdy, 2003).

Thanks to this filter the illumination component of the im-

ages was suppressed. In many realistic situations the illu-

mination component varies slowly, while the reflectance

component changes rapidly. Using a high-pass filter, one

can eliminate the illumination component, and obtain an

image with an emphasized reflectance component. The

separation of the components is not perfect since the

reflectance component contains low-frequency residuals

from the illumination component, but the difference im-

age computed from two frames treated with the filter has

much less noise than without the homomorphic filtration.

The computation of the binary image IB(u, v) from a pair

of frames I1(u, v) and I2(u, v) is described by

IB(u, v) =

{
1 for |I1(u, v) − I2(u, v)| ≥ IT ,

0 for |I1(u, v) − I2(u, v)| < IT ,
(1)

where u and v are the image coordinates of the pixel,

and IT is a given threshold of the pixel value. A group

of connected pixels (cluster) in the image is potentially a

representation of the sought object (a LED in this case).

The labelling algorithm finds all connected pixels of an

object, and assigns to them a unique value, called the label

(Jain et al., 1995). The groups of pixels which are too

small or too large to represent a LED are deleted. The

centres of the found clusters are established by computing

the centre of mass:

ũ =

n∑
i=1

m∑
j=1

iIB(i, j)

n∑
i=1

m∑
j=1

IB(i, j)
, ṽ =

n∑
i=1

m∑
j=1

jIB(i, j)

n∑
i=1

m∑
j=1

IB(i, j)
, (2)

where ũ and ṽ are first-order moments, which define the

centre of a cluster in the n×m pixel image. In the above

computations only the pixels which belong to a given clus-

ter are taken into account.

To use a distorted image from the fish-eye camera

for robot pose computation, this image has to be corrected

by using a geometry transformation. The camera has to

be internally calibrated (to exactly know its focal length

(Heikkilä, 2000)), and calibrated with respect to the global

coordinate system. The geometry correction procedure

transforms image coordinates of the pixels to the positions

these pixels would have if the picture was taken from a

much greater distance, but by using idealized lenses (of a

very long focal length), which do not introduce any ge-

ometric distortions (Fig. 3). There exist methods for the

B

A

Fig. 3. Image geometry for a normal (A) and a fish-eye (B) lens.

fish-eye effect correction (Shah and Aggarwal, 1994), but

here an original approach proposed by (Bączyk, 2001),

called the spherical transformation, was used. In this sim-

ple method the image coordinates are expressed in the po-

lar coordinate system, and only the distance of the given

pixel from the centre of the image (the optical axis of the

camera) is corrected.

In spite of its simplicity, the fish-eye correction of

a full-frame image is quite time consuming. However,

when the camera is used to detect positions of few clus-

ters, which represent the robot LEDs, the correction can

be applied after the initial stages of image processing, only

to the remaining points being potentially the centres of

the LEDs. Performing the correction only on few points

makes the whole processing much faster.

When the corrected coordinates of the points being

the centres of the found clusters are known, the set of four

points, which is a representation of the robot diodes, is

sought. To find the LED pattern, it is checked which of

the corrected points fulfil the geometric constraints of the

known dimensions of the LED pattern. Three LEDs must

be visible to form a minimal detectable pattern (triangle).

The distances between the found points are checked, as

well as the angles between the line segments defined by

the points. If the distance and angle conditions are ful-

filled, the three found points form a right-angled trian-

gle. All the found triangles are then checked whether or

not they belong to the same rectangle defined by the four

diodes on the robot. Depending on the number of the vis-

ible diodes (one of them can be occluded by the robot

itself), the number of triangles is either 1 (three LEDs

found) or 4 (all diodes visible).

The vector of the position and orientation of the robot

in the image coordinates UR = [ur vr ϑr]
T is computed

from the known positions of the LEDs. The centre of the

LED pattern is computed for each found right-angled tri-

angle:

ur =
1

2
(uA + uB), vr =

1

2
(vA + vB), (3)
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where UA = [uA vA]T and UB = [uB vB ]T are the

image coordinates of the end points of the triangle’s hy-

potenuse. The image coordinates of the centre can be av-

eraged over all found triangles.

To compute the orientation of the rectangle consti-

tuted by LEDs, the coordinates of only two points are nec-

essary:

ϑr = arctan

(
vB − vA

uB − uA

)
. (4)

When uA = uB , the robot orientation is 90o. If all four

diodes are visible, the orientation can be computed also

with respect to the remaining two points, and the results

can be averaged. The transformations (3) and (4) can be

written in a compact vector form:

UR = fuv(UA,UB). (5)

Once the position and orientation in image coordi-

nates are known, the robot pose in the camera coordinates

X
′

R = [x
′

k y
′

k θ
′

k]T can be computed by using the known

dependence between the dimensions in the image and in

the reality:

x
′

r =

(
ur −

w
′

2

)
w

w′
, y

′

r =

(
vr −

h
′

2

)
h

h′
, (6)

θ
′

r = ϑr,

where w
′

and h
′

are the dimensions of the CCD matrix,

w and h are the dimensions of the field of view. The

robot orientation remains unchanged. Then the robot pose

XR in global coordinates is computed by using the fol-

lowing equations:

xr = xk + x
′

r cos θk − y
′

r sin θk,

yr = yk + x
′

r sin θk + y
′

r cos θk, (7)

θr = θk + θ
′

r,

where XK = [xk yk θk]T is the vector of the camera

position and orientation in the global frame. The above

relationship can be written in the following general form:

XR = fkx(XK ,X
′

R). (8)

2.2. On-Board Vision with Artificial Landmarks

The on-board vision system of the robot works on colour

images. The artificial landmarks are made of A4 paper

sheets. They have black orthogonal frame and bright

green filling (Kasiński and Bączyk, 2001). There is

a chessboard-like pattern placed inside. The particular

fields of the chessboard are black or green according to

the unique code of the given landmark. Up to 256 unique

landmarks may co-exist in the environment.

X

Y

j1

X

j2

l

Y

mobile robot

with camera

uncertain
distance

landmark

uncertain
angle

uncertain
angle

Fig. 4. Positioning with the landmark.

The landmark recognition process consists of three

steps: the detection of ROIs in the image, the recognition

of landmarks in particular ROIs, and the determination of

image-coordinates of their reference points. ROIs, hav-

ing the forms of rectangular windows, are determined by

using colour segmentation methods (see (Bączyk et al.,

2003) for details). Further processing is restricted only

to ROIs and based on the grey-scale image. The internal

edges of the landmark frame are searched by computing

gradient maxima. Straight lines are fitted to those max-

ima. Their crossections determine the picture-location of

potential frame-corners with subpixel accuracy. Having

determined the image coordinates of the landmark frame

corners, one can establish the centres of chessboard fields,

and read the landmark code.

During the robot pose computation, a pin-hole cam-

era model is used. The camera is internally calibrated

(Heikkilä, 2000). The image coordinates are expressed in

[mm] by taking into account the physical dimensions and

vertical/horizontal resolution of the CCD-matrix of the

camera. The elements of the vector P = [x1 y1 x2 y2]
T

containing the x-coordinates (x1 and x2) of the centres

of the left and right frame edge, and the half-lengths (y1

and y2) of the vertical left and right landmark frame edge

are calculated. These data, obtained from the image, are

used to calculate the vector L = [l ϕ1 ϕ2]
T (Fig. 4) de-

termining the robot pose with respect to the landmark:

l = vl

√
λ2 +

(
x1y2+x2y1

y1+y2

)2

2y1y2

y1+y2

, (9)

ϕ1 = − arctan

(
x1y2+x2y1

y1+y2

λ

)
,
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where λ is the focal length, and vl is the half-width of

the landmark frame,

ϕ2 = arctan

(
λ

y1 − y2

−x1y2 + x2y1

)
. (10)

The above transformations can be expressed in a vector

form as

L = fpl(P, λ, vl). (11)

As the locations of the landmarks in the global frame are

known a priori, the computation of the robot pose in the

global coordinates

XR = flx(XLi
,L), (12)

where XLi
= [xli yli θli ]

T are the coordinates of the i-th
landmark in the global frame, is straightforward:

xr = xli + l cos(θli + ϕ2 − ϕ1),

yr = yli + l sin(θli + ϕ1 − ϕ2), (13)

θr = θli − ϕ2.

3. Uncertainty of Vision-Based Positioning

3.1. Spatial Uncertainty Model

The robot pose uncertainty is described by a covariance

matrix:

CR =




σ2
x σyx σθx

σxy σ2
y σθy

σxθ σyθ σ2
θ


 . (14)

The uncertainty analysis uses a first-order covariance

propagation (Haralick, 1996), and is focused on the in-

fluence of the relative position and orientation between

the robot and the elements of the external infrastructure

on the uncertainty of the pose estimate. The uncertainty

caused by the quantization error is considered. Errors due

to electronic noise in the image are not taken into account,

because they do not depend on the spatial configuration

of the robot with respect to the landmark or camera. The

covariance propagation is based upon the linearization of

non-linear equations describing dependencies between the

variables in the measurement process by Taylor series ex-

pansions, and the computation of the proper Jacobians.

This is a standard approach in robotics (Smith and Cheese-

man, 1987), used also in computer vision (see (Miura and

Shirai, 1993), for instance).

The analysis enables us to predict pose uncertainty

before any sensing action (i.e., before taking and pro-

cessing an image), and to decide which overhead camera

should provide the pose estimate, and/or which landmark

should be used. Moreover, by evaluating the predicted

uncertainty over a given area, it is possible to construct a

kind of uncertainty map for the given external sensor or

landmark. To construct a 2D grid map, uncertainty must

be expressed as a scalar value describing how “good” a

particular cell in the map is. To this end, the equiprobabil-

ity ellipsoid computed from the CR matrix was adopted.

The ellipse obtained by projecting this ellipsoid on the

floor plane shows the area which contains the robot po-

sition XRxy
= [xr yr]

T with the given level of proba-

bility (Smith and Cheeseman, 1987). The whole 3 × 3

CR covariance matrix defines an ellipsoid, while the el-

lipse is defined by the 2 × 2 sub-matrix which describes

the uncertainty of the robot position XRxy
. The ellipse

is centred on the nominal [xr yr]
T values of the position

vector. If the covariances are non-zero, the angle between

the major axis of the ellipse and the x axis of the coordi-

nate system is computed from

ϕ =
1

2
arctan

2σxy

σ2
x − σ2

y

. (15)

Introducing τ =
√

(σ2
x)2 + (σ2

y)2 − 2σ2
xσ2

y + 4σ2
xy , one

can write the lengths of the major and minor axes of the

ellipse as

amaj =

√
k

2
(σ2

x + σ2
y + τ),

amin =

√
k

2
(σ2

x + σ2
y − τ), (16)

where k is a constant corresponding to the requested

probability level

k = −2 ln (1 − P (x, y)) . (17)

For the probability of 95%, we have k = 5.99.

The above positional uncertainty ellipse does not di-

rectly capture the uncertainty of the robot orientation θr,

but an improvement in the orientation estimate (e.g., due

to a positioning action) influences indirectly the posi-

tional uncertainty in the subsequent path points, because

elements of the robot state vector XR = [xr yr θr]
T

are coupled through vehicle kinematics (Crowley, 1996).

Having the positional uncertainty ellipse, one can deduce

how pose uncertainty influences the clearance between the

robot body and the surrounding obstacles, as was shown

by (Moon et al., 1999). However, in the uncertainty maps

presented here the area (measured in [cm2]) of the pre-

dicted ellipse for the 95% probability is employed as the

positioning goodness value. Unlike the uncertainty in the

distance computed along a given direction (e.g., the x or

the y axis of the global coordinate system, which could

be irrelevant to the current configuration of the obstacles),

this area is a convenient overall scalar measure of po-

sitional uncertainty, which can be computed in advance
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Fig. 5. Distribution of errors in u (a) and v (b) of a corrected fish-eye image.

without full knowledge about the geometry of the envi-

ronment, and can be used later to decide where position-

ing actions should be undertaken to obtain the best results.

Uncertainty maps are similar in concept to the sen-

sory uncertainty field (SUF) proposed by (Takeda et al.,

1994), and then used by others, also for vision sensors

(Adam et al., 2001). However, the SUF is obtained by

simulating the sensing many times. The uncertainty anal-

ysis presented below enables us to obtain a closed-form

formula expressing the covariance matrix as a function of

the robot configuration [xr yr θr]
T with respect to a given

external navigation aid. Therefore, it is possible to pre-

dict uncertainty at run time or while planning using these

equations. Such an approach is more flexible than the

use of a pre-computed uncertainty field. Particularly, it is

not necessary to define a constant grid resolution for un-

certainty maps and, instead, the uncertainty measure can

be computed for any instantaneous robot configuration.

3.2. Overhead Cameras

The spatial uncertainty of a robot localized by the over-

head camera depends mainly on the uncertainty of the

location of the points of the LED-pattern in the camera

image. The correction of the fish-eye distortion results
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Fig. 6. Distribution of errors due to the 1o non-vertical camera mounting, in u (a) and in v (b).

in shifting pixels from their original positions (Bączyk,

2001). Errors arise also because the assumption about the

orthogonality of the optical axis to the floor plane is not

perfectly satisfied. The spatial distribution of the errors in

the pixel location (after correction) was evaluated by com-

paring the image of a calibration pattern with the ground

truth. This experimental assessment of errors in the over-

head camera images provides the primary uncertainty for

the calculation of the estimated spatial uncertainty of the

robot.

The input to the uncertainty computation procedure

are the positions of the found diodes in the CCD matrix of

the overhead camera UD = [ud vd ]T , and their covari-

ance matrices:

CD =

[
σ2

u 0

0 σ2
v

]
. (18)

Because the centre of the robot is computed from (3),

the coordinates of two diodes UDA
and UDB

are taken

into account. The covariance matrices CDA
and CDB

are computed on the basis of the known errors of a single

pixel location, which depend on the position of the given

pixel in the CCD matrix:

CD(u, v) = Cmount(u, v) + Cfish_eye(u, v), (19)
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where the matrix Cfish_eye represents the errors due to

the fish-eye geometric transform, and Cmount represents

the errors resulting from an imperfect vertical mounting

of the camera to the ceiling. The elements of these matri-

ces are evaluated upon primary uncertainty maps, which

contain standard deviations σu and σv (in pixels) for all

pixels of the CCD matrix, obtained experimentally. The

experimental procedure was reported in detail in (Bączyk,

2001). The resulting primary uncertainty maps are de-

picted in Figs. 5 and 6 as 3D plots of the standard devia-

tion values taken from the worst-case experimental results

(Bączyk and Skrzypczyński, 2001).

To compute the covariance matrix CUR
of the robot

position and orientation in the image coordinates UR, the

following expression is used:

CUR
= JUA

CDA
J

T
UA

+ JUB
CDB

J
T
UB

, (20)

where JU = ∂fuv/∂UR is the Jacobian of the transfor-

mation (5) with respect to UR. The robot position and

orientation are computed from the positions of two LEDs,

by using three equations. Therefore, the Jacobian is a 3

× 2 matrix.

The above computations describe the uncertainty of

the robot pose in image coordinates. Then the resulting

covariance matrix CUR
has to be converted to a matrix

describing uncertainty in terms of the camera coordinate

system. Because the transformation (7) is linear, there is

no need for an approximation:

C
′

R =




σ2

x
′ σy

′
x
′ σθ

′
x
′

σx
′
y
′ σ2

y
′ σθ

′
y
′

σx
′
θ
′ σy

′
θ
′ σ2

θ
′


 (21)

=




w

w
′ 0 0

0 h

h
′ 0

0 0 1


 ·




σ2
u σvu σθu

σuv σ2
v σθv

σuϑ σvϑ σ2
ϑ


 .

The uncertainty of the pose CR in the global coor-

dinates is computed from

CR = JKC
′

RJ
T
K , (22)

where JK = ∂fkx/∂X
′

R is a 3 × 3 Jacobian matrix

of the transformation (8) with respect to the vector X
′

R.

It is assumed that the camera position and orientation in

the global frame are exactly known. Therefore, the un-

certainty due to the pose vector XK is not taken into ac-

count.

The use of several independent pose measurements

(when all LEDs are visible) may lead to an improved pose

estimate, which has smaller uncertainty when compared

with that obtained from uncertain positions of only two

diodes (according to (3)). If four diodes have been ob-

served, and two different right-angled triangles have been

built, then also two independent pose vectors and two co-

variance matrices can be computed. Using a simple static

Kalman filter, one can fuse the pose estimates XR1
and

XR2
, taking into account their uncertainties CR1

and

CR2
:

K = CR1
(CR1

+ CR2
)−1,

XR = XR1
− K(XR1

− XR2
), (23)

CR = (I − K)CR1
,

where XR is the fused pose, CR is its covariance matrix,

and K is the filter gain.

The resulting pose uncertainty in the global frame

can be evaluated over the field of view of the overhead

camera to build an uncertainty map. Figure 7 shows the

positional uncertainty map computed in this way.

positional uncertainty
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Fig. 7. Positional uncertainty as a function of robot location

with respect to the overhead camera optical axis.

3.3. On-Board Cameras

The distances and angles between the camera and the

landmark are computed from the relations between the

known dimensions of the landmark pattern, and the di-

mensions of the image of this pattern appearing in the

CCD matrix. The camera is a tool for measuring image

dimensions. Measurement resolution is bounded by the

CCD matrix pixel size. Although the positions of land-

mark reference points are computed with sub-pixel reso-

lution, the standard deviation of this measurement equals

the size of a pixel. This is the primary uncertainty, intro-

duced by the limited resolution of the camera, and it is

then propagated to the uncertainty of the vector L param-

eters, and then to the uncertainty of the robot pose XR. It

is assumed that primary uncertainty depends on the errors

in the computation of the coordinates P = [x1 y1 x2 y2]
T

in the image, and is expressed by the standard deviations
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Fig. 8. Positional and angular uncertainty as a function of robot location with respect to the landmark.

[σx1 σy1 σx2 σy2]
T . Thus, primary uncertainty is repre-

sented by the 4 × 4 matrix

CP =




σ2
x1 0 0 0

0 σ2
y1 0 0

0 0 σ2
x2 0

0 0 0 σ2
y2


 . (24)

The standard deviation σy in the y coordinate is defined

as the vertical discretization error

σy =
h

′

Rh

, (25)

where Rh is the vertical resolution of the CCD matrix,

and h
′

is its height (here Rh=480, h
′

=3.6 mm). Sim-

ilarly, the standard deviation σx in the x coordinate is

defined as

σx =
w

′

Rw

, (26)

where Rw is the horizontal resolution of the CCD matrix,

and w
′

is its width (here Rw=640, w
′

=4.8 mm). For the

case under study, σx=σy , and thus all primary uncertain-

ties are equivalent.

The uncertainty of L is described by the covariance

matrix

CL =




σ2
l σϕ1l σϕ2l

σlϕ1
σ2

ϕ1
σϕ2ϕ1

σlϕ2
σϕ1ϕ2

σ2
ϕ2


 . (27)

This matrix is computed from the primary uncertainty ma-

trix CP of the vector P. The parameters of this vec-

tor constitute input data for the procedures calculating L.

The transformation (11) between P and L contains only

the parameters of P and constants being the parameters

of the landmark and the camera. Because this transforma-

tion is nonlinear, the covariance matrix CL is computed

as a first order approximation:

CL = JP CP J
T
P , (28)

where JP = ∂fpl/∂P is the 3 × 4 Jacobian matrix of

the transformation (11) with respect to P.

The last stage of uncertainty propagation shows how

the uncertain distance and angles to the landmark influ-

ence the position and orientation of the robot in the global

frame. The uncertainty in XR is described by the covari-

ance matrix CR (14), which is a result of the uncertainty

propagation from the vector L described by CL. Be-

cause the relation (12) between L and XR is nonlinear,

the matrix CR is computed from the following approxi-

mation:

CR = JLCLJ
T
L, (29)

where JL = ∂flx/∂L is the 3 × 3 Jacobian matrix of

(12) with respect to L.

Figure 8A shows the positional uncertainty map for

the artificial landmark, while Fig. 8B represents the stan-

dard deviation σθ, being the uncertainty in the robot head-

ing.

4. Negotiation Framework

for the Distributed System

4.1. Distributed System Structure

The vision-based positioning methods described in Sec-

tions 2.1 and 2.2 have been implemented in a dis-

tributed system of mobile robots and monitoring sensors
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(Skrzypczyński, 2004a) to complete pose tracking meth-

ods relying on range sensing. The mobile robots and sta-

tionary cameras in this system are treated as independent,

autonomous agents (Müller, 1996). The concept of agents

is used to model mobile robots, overhead cameras, and the

human operator interface.

The perception agent (PA) is conceptually similar to

the Vision Agent proposed by (Ishiguro, 1997), which

monitors the environment and provides various informa-

tion to the robot agents (RA). Overhead cameras are the

hardware part of perception agents, which localize robots

with respect to the global reference frame. Perception

agents compete for serving positioning data to robots. A

specific agent in the system is the operator agent (OA),

which initializes, configures and monitors robots and PAs.

Each robot uses its on-board range sensors to keep

track of its own position and orientation. When the spa-

tial uncertainty exceeds the acceptable value, or the robot

fails to update its pose from the range sensing, it either

uses its on-board vision to localize artificial landmarks or

asks for the localization service from external agents. The

on-board sensors are used also for local, reactive naviga-

tion (obstacle avoidance, etc.), which is implemented on

mobile robots in a manner transparent to the positioning

task considered here (Brzykcy et al., 2001).

Each PA knows how positioning uncertainty depends

on position of the robot with respect to the overhead cam-

era of this agent. This type of knowledge is used in the

negotiation mechanism based on the Contract Net Pro-

tocol (CNP) (Smith, 1980). Robot agents use this pro-

tocol to choose the best positioning data from the avail-

able sources. A dedicated, message-passing commu-

nication layer is used to support the information inter-

change between the agents (Kasiński and Skrzypczyński,

2002). The negotiation framework enables the robots to

address the proper camera agent even if the robot does not

know where the external cameras are placed (Bączyk and

Skrzypczyński, 2003). This helps to make the distributed

system open to modifications and robust to failures of par-

ticular external sensors.

4.2. Negotiation Protocol

For the positioning task, the message exchange is initi-

ated by the robot which needs to know its position (man-

ager). It sends to all Perception Agents (bidders) a request

message. Whenever a PA is able to satisfy the request,

it sends a bid message with the parameters informing the

robot about the estimated localization uncertainty repre-

sented by the covariance matrix CRA(PA) computed

from the overhead camera uncertainty model presented in

Section 3. It also signals how long it takes to complete the

localization task, as the time Tloc depends on the num-

ber of localization requests already awaiting in the queue.

An agent which is a manager in negotiations on the par-

ticular topic listens for bids, but does not accept requests

with the same topic (i.e., requests for the same type of in-

formation/action), which prevents the protocol from loop-

ing. The manager waits for a prescribed time (depend-

ing on the number of PAs currently active in the system),

to complete bids from all agents interested in pursuing

the localization task (Kasiński and Skrzypczyński, 2002).

The robot looks at the Tloc value, and excludes the bids

from those PAs which are too busy. Then, the robot eval-

uates the uncertainty CRA(PA) in the remaining bids to

find the perception agent, which can localize it within the

smallest positional uncertainty ellipse, assuming the 95%

probability level. The robot compares proposals from par-

ticular PAs and awards the contract to the one which offers

the best pose estimate, by sending an acknowledgement

message. Next, the RA and the PA communicate in the

peer-to-peer mode to transfer the localization data.

There are some tasks which cannot be executed by

a single agent, because information from several agents

is needed to complete the task. In such cases, the con-

tractor may split up the task and award contracts to some

other agents (such as an overhead camera-based percep-

tion agent). The agents operating in the presented system

are not a priori designated as managers or bidders. Some

of them can take both roles, depending on the current task

context. Agents which cannot process data to yield re-

sults in the requested time (e.g., due to a sensor failure)

are not considered as potential contractors by an agent

that issued that particular task. For example, a robot-

agent which wants localization data from camera-based

perception agents can award the contract to another robot

equipped with the on-board camera, whenever in the par-

ticular situation reliable pose estimate cannot be provided

by the overhead cameras.

The communication mechanism is based on the User

Datagram Protocol (Kasiński and Skrzypczyński, 2002).

At the start of the system, the address of the operator agent

is known to all agents. An agent entering the system con-

tacts the OA, sending its symbolic name, type (RA or PA),

IP address, and port number. This message also includes a

list of specific tasks the agent can perform. The following

positioning task types have been specified:

• ovr_loc_active – a perception agent can local-

ize robots,

• ovr_loc_passive – a robot with LED markers

can be positioned by a PA,

• cam_loc_active – a robot with a camera can lo-

calize landmarks,

• cam_loc_passive – a robot with a landmark can

be positioned by another RA.
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Fig. 9. Comparison of localization results, with and without negotiations.

The OA sends this information to all agents in the system.

Because the agents know the specification of the tasks

which other agents in the system can perform, it is possi-

ble to use point-to-point messages addressed to a subset of

agents instead of broadcasting. Such an approach reduces

the network traffic (Coulouris et al., 1996) and allows us

to skip the eligibility specification (Smith, 1980) in CNP

announcement messages.

4.3. Results of Positioning with Negotiations

To show the advantages of negotiations between the robot

agents and the overhead camera-based PAs, the results of

two localization experiments are compared. The robot

followed a predefined path (Fig. 9A), at an average speed

of about 0.6 m/s, relying for localization only on its

odometry and on the external camera agents. Figure 9C

compares localization results as a function of the travelled

distance for the case when the negotiation procedure is

used (solid line), and the case when a simple choice of the

“first available” PA is made (dashed line). The positional

uncertainty ellipse area is used as the performance mea-

sure. When the robot did not use negotiation, but simply

asked the first available camera-based agent to localize it,

the number of localization requests was much bigger, and

many of them were unsuccessful. Positional uncertainty

exceeded at some points 700 cm2 when the robot made

several unsuccessful requests to the same agent. In

many cases the robot requested the localization service

being almost at the border of the field of view of the

contacted PA (Fig. 9B), where positioning uncertainty is

C DBA
A

B

Fig. 10. Uncertainty in vision-based co-operative positioning.

considerably higher (cf. Fig. 7), and occlusions of LED

markers are more possible. The bid evaluation ensures

that the robot uses the best offered localization service,

and initializes localization when its position with respect

to the field of view of the co-operating camera-based agent

is acceptable. However, it should be noted that at some

points of the path in Fig. 9C the uncertainty resulting from

negotiations is higher than the one obtained with the naive

strategy. This is caused by the local nature of optimization

provided by the negotiations. The robot always uses the

best positioning data available at a given point of the path,

but the choice of the point itself is somewhat random – it

depends on the current positional uncertainty, and hence

on the whole sequence of the previous positioning actions.

A robot which obtained a “better” position estimate at a

given point can go for a longer distance without external

positioning, and it could happen that it issues the next po-

sitioning request at a point which is very inconvenient to

all PAs – negotiations do not help much in such a case.

The observation of this problem gave rise to the global

planning of the positioning actions sequence presented in

the next section.

The next experiment demonstrates the ability of the

distributed system to recover from sensing failures. Figure

10A shows a situation in which the robot A is located in a

corner of the field of view of perception agents, while the

robot B is near the centre of this field.

When the robot A needs to know exactly its

pose, it sends a positioning request to the agents

which are able to perform the loc_active tasks.
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The request contains the parameters [x0 y0 θ0]
T of the

current pose. One of the overhead-camera perception

agents answers with a bid, but the predicted localiza-

tion quality is low because of the location of the robot

(Fig. 10B).

Another potential contractor is the robot B, equipped

with an on-board camera. It predicts the relative pose

uncertainty according to the model presented in Section

3.3, and estimates the time needed to find and localize the

landmark attached to the robot A. However, to compute

the pose of the robot with a landmark in the global frame,

the robot with the camera needs to know its own pose. Al-

though the robot B can use the artificial landmark attached

to the wall to compute this pose, the predicted positional

uncertainty is quite high, and the robot B sends a position-

ing request to the perception agents. The robot B receives

a bid from the perception agent containing the predicted

positional uncertainty, and accepts it because this uncer-

tainty is small due to the robot position under the over-

head camera. The robot with the camera computes the fi-

nal predicted estimate of the robot A pose, and then sends

the bid. The robot with the landmark evaluates the re-

ceived bids and accepts the one from the robot B by send-

ing an acknowledgement message. The contractor final-

izes the contract with the perception agent receiving the

current pose estimate with uncertainty information. Then

it performs the actual positioning procedure by taking the

image, recognizing the landmark attached to the robot A

(Fig. 10C), and estimating the pose of this robot with re-

spect to its local frame. At the final step, the robot B com-

putes a new pose estimate [xn yn θn]T of the robot A in

the global frame (Fig. 10D).

5. Planning Positioning Actions

5.1. Motivation for Global Action Planning

If a mobile robot has a complete knowledge about the ex-

ternal cameras available in the system, and it also knows

where the artificial landmarks are placed in the environ-

ment, it can compute in advance the optimal positioning

strategy for the given path, which it has to follow. The aim

of optimization is to minimize the time spent by the robot

on communication and sensing actions (requests to Per-

ception Agents and observations of artificial landmarks),

which are necessary to keep pose uncertainty within some

bounds.

In the literature, there are well-known path planning

methods which take into account localization uncertainty

(Latombe, 1991). However, most of these works assume

continuous sensing of the environment (usually by some

range sensors (Takeda et al., 1994) and a complete, static

environment model available to the robot. In most cases

further simplifications are made, such as perfect sensors
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or landmarks providing constant pose uncertainty within

a given region (Lazanas and Latombe, 1995). Few au-

thors consider a probabilistic representation of uncertainty

in planning (Lambert and Fraichard, 2000; Moon et al.,

1999).

Here a different approach is adopted, in which the

sensing is opportunistic (i.e., the robot updates its pose

only when it sees some landmarks or it is seen by an ex-

ternal camera), and the robot knows only the locations

of the elements of the external navigation infrastructure:

cameras and landmarks. Because the path is known in

advance, the planning method yields only the positioning

strategy, i.e., the sequence of positioning actions under-

taken by the robot in order to travel to the goal, keep-

ing pose uncertainty within bounds. The nominal path is

computed in advance by a separate “geometric” planner

taking into account the start point, the goal point, known

obstacles and geometric limitations imposed by vehicle

kinematics. The action sequence planning method relies

on this geometric path planner for providing a feasible,

collision-free route from the start to the goal. In the imple-

mentation an approach based on the generalized Voronoi

diagram has been used (Takahashi and Schilling, 1989).

This method yields reasonably short paths that give the

robot maximal clearance around the obstacles. The geo-

metric planning is performed for a disc-like shaped robot

being able to turn on the spot, to reflects the basic features

of the Labmate platform used in the experimental part of

the research.

The planned sequence does not minimize the pose

uncertainty over the whole path, but minimizes the overall

cost of the positioning actions, ensuring that the positional

uncertainty at any point of the path is lower than a given

threshold. Such an approach is justified from a practical

point of view: usually the robot needs only to be posi-

tioned with a given accuracy to perform its task (e.g., to

pass a door), while optimal usage of the external naviga-

tion aids, deployed sparsely and shared with other robots,

is of high importance. The optimization of the actions also

enables the robot to achieve its goal position in a shorter

time, because undertaking a positioning action requires to

stop the vehicle – data cannot be gained while the robot is

in motion. For overhead cameras this is caused mostly by

the time needed for the acquisition of images (about 2[s]),
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while for landmark recognition the image processing time

dominates.

5.2. Construction of the Action Space

The proposed action planning framework is based on a

classic approach to the search of a shortest path in a graph.

The first step is to generate a discrete action space. The

concept of this space is shown in Fig. 11A. At first, the

nominal path of the robot is uniformly sampled, and the

possible positioning actions which can be undertaken by

the robot along this path are generated. An action at the

i-th path point is described by the pose of the robot XRi
,

the action type, the covariance matrix CSi
describing the

pose uncertainty resulting from a given type of positioning

action performed in this particular configuration, and the

cost of positioning Ti.

The covariance matrix is predicted according to the

method described in Section 3, using closed-form formu-

lae. The cost is an integer value generated upon a simple

look-up table holding the experimentally determined time

(in seconds) the robot spends at positioning depending on

the type of sensing and/or communication action and the

position with respect to the external navigation aid. Ac-

tions are nodes of the graph G(V,E), V =
⋃n

i=1
vi

(Fig. 11B).

The node vi is connected to the node vj by an edge

ei,j if it is possible for the robot to move from vi to vj ,

keeping pose uncertainty below a given threshold defined

by the uncertainty ellipse area Cmax (scalar value). As

it is assumed that the robot may update its pose only at

action nodes, the odometry model of a differential drive

robot (Crowley, 1996) is used to compute the maximum

admissible distance between two connected nodes. This

model reflects the kinematics of the Labmate robot used in

the experiments. If a different kind of robot platform (e.g.,

a synchro-drive) is being used, the odometry model should

be changed to an appropriate one. Because the on-board

camera is fixed to the robot body, several orientations at

each point from which a landmark can be observed must

be considered when the robot is turning (it turns on the

spot). It is also possible that more than one positioning ac-

tion are available at a given (x, y) point, e.g., the robot is

under a ceiling-mounted camera, and it sees a landmark,

or two landmarks are in the field of view of the camera.

As a result, several nodes having the same XR but dif-

ferent CS and T can be generated. The edges of the

graph are labelled with the costs of positioning actions.

The edge ei,j has the cost Tj , according to the assump-

tion that moving to a particular node implies the execution

of the positioning action associated with this node. There

is also a covariance matrix Ci,j associated with this edge,

which reflects the growth of pose uncertainty while mov-

ing between the two nodes, due to odometry errors.

The sources of the uncertainty of the particular po-

sitioning actions are shown in Fig. 12, where the cap-

ital letters A,. . . ,D denote poses of external infrastruc-

ture elements with respect to the global coordinate sys-

tem, and E,. . . ,H denote the particular poses of the robot

with respect to overhead cameras and landmarks, while

O1,O2,O3 mean robot movements under the odometric

control. The uncertainty evaluation along the robot path

is achieved by compounding (denoted by ⊕) the serially

linked uncertainties on the path, and by iterative merg-

ing (denoted by ⊗) of the obtained results with the un-

certainties of the positioning actions. The compounding

and merging operations are defined according to the pro-

posals in (Smith and Cheeseman, 1987). For example, for

the j-th action from Fig. 12 robot pose uncertainty before

undertaking this action (i.e., before positioning by the ob-

servation of the landmark B ) can be in this convention

symbolically denoted by (O1 ⊗ (A ⊕ E)) ⊕ O2.

The resulting action space is a directed graph

G(V,E). Because a positioning action can be performed

only once by the robot travelling along a given path, the

graph is acyclic.

5.3. Outline of the Planning Algorithm

Although a simple search in the action space will return

the shortest path in the sense of a minimal action cost

(minimal time), it cannot guarantee that positional uncer-

tainty will be kept all the time below a given threshold.

Some works on planning with uncertainty circumvent the

problem by defining a graph whose edges have a modi-

fied cost being a combination of the actual cost (distance,

time, etc.) and the uncertainty measure, with some scal-

ing factors added (Lambert and Fraichard, 2000). With

such an implicit trade-off (the values have different phys-

ical meanings), uncertainty becomes difficult to control.
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The positioning action planning is treated as a con-

strained discrete optimization problem. An obvious solu-

tion is to construct the action space in such a way so that

any path in the graph guarantees the required positioning

precision from the start node vs to the goal vg . The posi-

tional uncertainty at the node vk of a particular edge ek,l

depends on the previous positioning actions undertaken

along the path from vs to vk. However, assuming conser-

vative initial uncertainty of an edge, which is yielded by

the positioning action at vk (known in advance), permits

us to build a “conservative” graph GC(V,EC). Two given

nodes in this graph are connected by an edge ek,l ∈ EC

only if the merged uncertainty of the edge traversal (from

odometry), and the positioning action undertaken at vk is

below Cmax. The Kalman filter used to merge the pose

estimates (Smith and Cheeseman, 1987) guarantees that

the result is not worse than the best estimate taken as an

input, while it is known that one of the input estimates at

vk has the uncertainty of CSk
. A search by means of the

Dijkstra algorithm (Sysło et al., 1983) with respect to the

positioning cost T yields an optimal sequence of actions

and guarantees pose uncertainty within the given bounds.

However, a robot can traverse between two action

nodes keeping the uncertainty under Cmax even if these

nodes are not connected by an edge according to the

above-mentioned conservative approach. The robot can

achieve this by acquiring pose information in other nodes

on its path, thus having the pose estimate at vk (after

merging) better than CSk
. As a result, the search in the

conservative graph may result in a failure (no safe strat-

egy found), even if a sequence of actions keeping the un-

certainty below the given threshold does exist. An ac-

tion space which permits a search taking into account the

actual accumulated uncertainty can be constructed by us-

ing at the initial node vk of a given edge the uncertainty

value smaller than CSk
. The smallest pose uncertainty the

robot can ever achieve is the uncertainty of the best (most

precise) positioning action known to the system, i.e., the

smallest CSi
in the whole action space. When this un-

certainty is used, the resulting graph GD(V,ED) has the

same set of nodes V , but more edges ED, because start-

ing with smaller CS permits the odometry to take the

robot further without violating the Cmax constraint.

An initial approach to searching in the new action

space was to modify the classical Dijkstra algorithm by

adding a constraint satisfaction function, which checks

whenever the move from the current node to the next

node chosen by the search algorithm violates Cmax

(Skrzypczyński, 2004b). However, it turned out soon

that such a method yields paths arbitrary suboptimal with

respect to the cost. From a theoretical point of view,

an effective search in GD(V,ED) is equivalent to the

restricted shortest path problem (RSP). This problem is

known to be NP-complete (Ahuja et al., 1993) but, re-

cently, effective approximate algorithms have been devel-

oped to solve it, due to the importance of this problem

for network routing with the Quality of Services (QoS)

(Kuipers et al., 2002).

Below, a pseudo polynomial dynamic programming

solution to the action planning problem treated as an RSP

is provided, which can be turned into an FPAS (fully poly-

nomial approximation scheme) by using the approxima-

tion from (Lorenz and Raz, 2001). In the following algo-

rithm, C[v, t] denotes a vector associated with each node

v, which stores the minimum uncertainty on any path from

vs to v that has a total cost of t. Tmax is the maxi-

mum cost of a path from vs to vg in the graph, obtained

by a search with respect to the cost information only. It

is a stop condition for the dynamic program. When the

FPAS is used, Tmax makes sure that the scaling error is

not too large. Cu,v represents the uncertainty evolved by

odometry while traversing the edge eu,v , Cu is the un-

certainty of the positioning action at node u. The notation

|C| means the computation of a scalar value (ellipse area)

from a given covariance matrix.

procedure

ACTIONPLANNINGASRSP(G(V, E), vs, vg, Cmax, Tmax)

1 for each v ∈ V − {vs} C[v, 0]:=∞

2 C[vs, 0]:=0

3 for t := 1 to Tmax do

4 for each v ∈ V do

5 C[v, t]:=C[v, t − 1]

6 P [v, t]:=nil

7 for each eu,v ∈ E do

8 Ctemp:=C[u, t − Tu,v] ⊗ Cu ⊕ Cu,v

9 if |Ctemp| < |C[v, t]| and |Ctemp| ≤ Cmax then

10 C[v, t]:=Ctemp

11 P [v, t]:=u {update sequence}

12 if C[vg, t] ≤ Cmax then RETURNSEQUENCE(P [vg, t])

13 RETURNFAILURE {Tmax has been exceeded}
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Fig. 14. Experimental results – the planned sequence of actions.

5.4. Action Planning Results

To validate the approach, experiments with the Labmate

robot have been performed. The robot followed a pre-

planned path undertaking positioning actions according

to the optimal strategy obtained from the above method.

The experimental environment with two overhead cam-

eras and three artificial landmarks is outlined in Fig. 14.

Figures 14A–D show the simulated robot following the

optimal sequence of positioning actions. For Figs. 14C

and D the corresponding positioning actions of the real

robot are shown in Figs. 14G and H. Figure 14E shows

the predicted positional uncertainty ellipses for the gen-

erated positioning actions, in Fig. 14F the found optimal

sequence of nodes (black dots) is shown – the circles in

this figure have the diameter proportional to the position-

ing action cost, and the shade of grey means the type of

the external localization aid used at this node (landmark,

overhead camera, or both).

The results of the experiment are summarized

in Fig. 15. From this figure it can be observed that

the optimal sequence of positioning actions outperforms
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Fig. 15. Comparison of the results of using the planned actions and a simple positioning strategy.

the simple strategy of using external localization aids. Us-

ing the simple strategy the robot observes its positional

uncertainty. When the uncertainty exceeds the threshold

value, the robot uses the on-board camera to measure the

distance and angle to an artificial landmark or, if there is

no landmark in the field of view, it asks for the positioning

service from the external cameras. In the experiment, the

threshold has been defined as the area of the positional un-

certainty ellipse below 500 cm2, for both strategies. From

Figs. 15A and B it can be seen that the simple strategy

does not guarantee the requested localization quality. In

some areas the robot cannot perform a successful posi-

tioning action. If it enters such an area already with quite

large uncertainty, the constraint is violated. The optimized

strategy protects the robot from such failures by choos-

ing good positioning actions before entering an area with

lesser external aids. From Fig. 15C it is clear that the po-

sitioning cost (in this case it is simply the time) of the

non-optimal strategy is higher, because the robot under-

takes many unsuccessful actions, especially with respect

to the external cameras. In such a case, the positioning

cost grows, while the robot is still at the same point on the

path.
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6. Final Remarks

In this paper, methods of planning and optimizing the

positioning actions of a mobile robot cooperating with

an external navigation infrastructure have been presented.

The infrastructure contains distributed overhead cameras

and artificial landmarks enhancing the capabilities of

on-board vision-based positioning sensors. Other types

of stationary sensors (e.g., wall-mounted cameras) can

be incorporated into this infrastructure if their uncertainty

models are available.

The proposed negotiation protocol addresses the is-

sues of extendability and fault tolerance in distributed sys-

tems, while trying to provide the best available positioning

data to the robots. The global planning procedure sacri-

fices a part of this flexibility (the actual system configura-

tion must be known in advance), but provides a mathemat-

ically solid method for obtaining an optimal sequence of

positioning actions along a given path. This method takes

into account in an exact way both the action cost and the

positioning uncertainty. The action planning algorithm

can be easily generalized to any other type of stationary

sensor if the uncertainty related to positioning with respect

to this sensor is described by closed-form formulae. A

generalization to other types of robot vehicles is also pos-

sible, provided that the same geometric path planner can

be used. The robot kinematics and sensing capabilities in-

fluence the construction of the action space (Section 5.2),

which requires the usage of a proper odometry model, and

an adequate definition of action costs. For example, if a

robot is equipped with a pan/tilt camera, looking around

for artificial landmarks no longer yields additional pose

uncertainty. Because of this, unlike in the case of a fixed-

camera robot considered in this paper, all possible posi-

tioning actions generated by changing the orientation of

the camera will have the same pose uncertainty from the

odometry. However, the costs of these actions can be dif-

ferent, because moving the camera to an angle more dis-

tant from the neutral position usually requires more time.

A more problematic issue is extending the action

planning to a robot with severe kinematic limitations to

maneuverability (e.g., to a car-like robot). The path plan-

ner for such a robot takes into account these limitations

(see, e.g., Lambert and Fraichard, 2000), and produces a

much more complicated geometric path which can contain

also backward motions. Such a path cannot be handled

by the current version of the positioning action planning

method.

A subject of further research is also to extend the ac-

tion planning procedure to a unified positioning action and

a shortest/fastest path planning framework for robots co-

operating with external sensors. This is possible when a

network of collision-free routes is used to build the action

space instead of a single path.
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