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Precipitation is the core data input to hydrological forecasting. �e uncertainty in precipitation forecast data can lead to poor
performance of predictive hydrological models. Radar-based precipitation measurement o�ers advantages over ground-based
measurement in the quantitative estimation of temporal and spatial aspects of precipitation, but errors inherent in this method
will still act to reduce the performance. Using data from White Lotus River of Hubei Province, China, 	ve methods were used to
assimilate radar rainfall data transformed from the classi	ed �-� relationship, and the postassimilation data were compared with
precipitation measured by rain gauges. �e 	ve sets of assimilated rainfall data were then used as input to the Xinanjiang model.
�e e�ect of precipitation data input error on runo� simulation was analyzed quantitatively by disturbing the input data using
the Breeding of Growing Modes method. �e results of practical application demonstrated that the statistical weight integration
and variational assimilationmethodswere superior.�e corresponding performance in 
ood hydrograph predictionwas also better
using the statistical weight integration and variational methods compared to the others. It was found that the errors of radar rainfall
data disturbed by the Breeding of Growing Modes had a tendency to accumulate through the hydrological model.

1. Introduction

Flooding is a hazard with potentially serious consequences
of loss of life, displacement of communities, and economic
costs. �e risks can be reduced by issuing warnings and
implementing planned responses to avoid the threat. �is
relies on access to accurate real-time forecasts of 
ood peak
magnitude and timing and duration at the time-scales of
nowcasting (∼2 hours) and short-range forecasting (∼1-2
days). �e time required for rainfall to be converted into
runo� and be conveyed downstream through channels is
su�cient that forecasting of 
ash 
oods can use recently
observed rainfall data rather than less accurate forecast
rainfall. �us, accurate rainfall data is the key input to 
ood
forecasting [1]. Such data is usually obtained from an auto-
matic network of rain gauges, set up according to established
standards to continuously measure rainfall volume at short

intervals with an acceptable accuracy. For practical reasons,
the density of gauges in the network will o�en be too low to
properly characterize the spatial and temporal distribution
of rainfall throughout a catchment. Failure to capture data
concerning the intensity of the main storm cell can lead
to underestimation of 
ood peak magnitude and timing.
Weather radar o�ers an alternative method of capturing
rainfall data that has the potential to overcome this limitation
of a rain gauge network or to enhance the information
from the network. Radar echoes provide real-time, high
spatial resolution information on cloud extent and thick-
ness, evolution and direction of travel of storm cells, and
precipitation distribution, but with a degree of uncertainty
that could be considered less than desirable for reliable 
ood
forecasting. �e accuracy of radar-derived rainfall data can
be improved by calibration with observed data using data
assimilation techniques [2–4]. Data assimilation refers to
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the process of incorporating observed data into the model
state of a numerical model of a system and is employed in
situations when the number of available observations of the
system is much smaller than the number required to specify
the model state. Postassimilation rainfall data can be input
to distributed hydrological models tomore accurately predict

ood hydrograph characteristics [5–9].

�ere has been considerable progress in practical appli-
cation of weather radar for estimation of surface rainfall. For
example, the UK Met O�ce uses a network of 13 weather
radars that provides 2 km × 2 km gridded radar echo data at
5-minute intervals, as well as an extrapolation based on radar
data every 30 minutes, produced and accumulated in real
time. Precipitation forecasts are provided every 6 hours [10].
�e US Weather Bureau has operated a national river fore-
casting system since the early 1990s that combines weather
forecasts with 
ood prediction models to disseminate 
ood
warnings [11]. �e precipitation input data are derived
from satellite, ground radar, and rainfall gauges. China
has established a network of 172 new generation Doppler
weather radars, achieved a real-time data transmission every
6 minutes and provides composite weather radar data. �is
has helped to enhance the monitoring of sudden, potentially
calamitous weather and improved the warning services for
rainstorm disasters [12].

�e performance of conceptual hydrological models
depends to a large extent on the quality of the rainfall data
but also on the selection of parameter values and model
structure. Ideally, parameters are optimized using historical

ood events, but model performance also relies to some
extent on expert judgment and could be limited by the
structure of the model, which is a simpli	cation of a complex
hydrological process [13–15]. Uncertainty associated with
model structure and parameters has received attention [16–
20], as has uncertainty associated with the quality of the
rainfall data input [21, 22]. Error in remotely sensed precipita-
tion data will be transmitted, and possibly ampli	ed, through
the hydrological simulation process.�is paper examines the
nature of uncertainty in 
ood forecasting due to transmission
of errors associated with assimilated radar-based rainfall
data.

In this paper the data assimilation methods of average
calibration (AVG), optimum interpolation (OPT), Kalman
	lter (KLM), statistical weight integration (SWI), and vari-
ational calibration (VAR) were applied to radar rainfall
data transformed from the classi	ed �-� (radar re
ectivity-
rainfall rates) relationship, and then the result was com-
pared with precipitation data observed from a rain gauge
network. �e rainfall data were then used as input to the
Xinanjiang hydrological model to predict 
ood hydrographs
using the 	ve sets of assimilated radar-based rainfall data
and uncalibrated (UC) classi	ed �-� relationship rainfall
data. �is paper provides critical descriptive analysis of the
main assimilation methods and the e�ect of the errors on
uncertainty of 
ood forecasting using new data sets from the
White Lotus River catchment, China. A novel aspect of this
paper is quanti	cation of the in
uence of the propagation
of rainfall input error on simulated 
ood event peak 
ow
magnitude, 
ood event volume, and 
ood peak timing. �is

Table 1: Timing of the eight rainstorms chosen for the study.

Event Starting time Ending time
Duration
(hours)

050408 2005-04-08, 22:00 2005-04-09, 14:00 16

050429 2005-04-29, 07:00 2005-05-01, 21:00 62

050609 2005-06-09, 22:00 2005-06-10, 14:00 16

060411 2006-04-11, 20:00 2006-04-13, 00:00 28

060508 2006-05-08, 08:00 2006-05-09, 23:00 39

060627 2006-06-27, 02:00 2006-06-27, 19:00 17

060705 2006-07-05, 10:00 2006-07-06, 08:00 22

060726 2006-07-26, 15:00 2006-07-27, 13:00 22

was done by perturbing radar rainfall data using the Breeding
of Growing Modes (BGM) method.

2. Study Area

�e White Lotus River, located in Hubei Province, China,
has a catchment area of 1797 km2. Its headwaters are in the
Dabie Mountains and it forms a midcatchment tributary of
the Xishui River, which 
ows into the lower Yangtze River
(Figure 1). �e catchment lies within the subtropical mon-
soon climate zone, with cold dry winters, hot wet summers,
and distinct climatic seasonality. Mean annual temperature
is 16.7∘C, and annual average precipitation is 1366mm, with
the majority falling from June to August. In the wet season,
rainstorms occur with a high frequency and intensity, and the
short convergence time typically results in 
ood hydrographs
with rapid rates of rise and fall.

3. Data and Method

3.1. Data Sets. �eWhite Lotus catchment has 19 rain gauges
and one river hydrological station at the outlet (Figure 1).
�is study used hourly recorded rainfall data from the years
2005 and 2006. �e radar data were sourced from the
CINRAD/SA Doppler weather radar located in Wuhan for
the 
ood seasons of 2005 and 2006. �e study area is located
within the radar radius of 150 to 250 km. Generally, the 0.5∘

elevation [23] re
ectivity factor plan position indicator (PPI)
was used to develop the transformation of �-� relationship.
Radar estimated rainfall was quanti	ed on a 1 km × 1 km
grid at a 1-hour time step. Eight rainstorms were chosen for
analysis (Table 1). �e total sampled period for these events
was 222 hours.

3.2. Radar-Based Rainfall Data Assimilation

3.2.1. Average Calibration (AVG). AVG is a simple and pre-
cise method for calculating regional rainfall volume [24,
25] whereby� rain gauges are used to calculate themean cal-
ibration factor:

� = 1�
�∑
�=1

��	� , (1)

where �� is the observed rainfall of station 
 and 	� is
the radar re
ection rate of the station. AVG is applied by
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Figure 1: Location of White Lotus River catchment and the meteorological and river gauging stations within the catchment.

multiplying 	 by � to give regional rainfall distribution. In
the situation of an inconsistent spatial pattern of rainfall over
an area of interest, a number of regional AVG factors could
be calculated.

3.2.2. Kalman Filter (KLM). In radar-based precipitation
measurement, there exists not only system errors produced
by unstable radar capability but also the random errors due
to the unstable relation between� and � and the in
uence of
wind 	eld. �ese random errors are called noise. KLM aims
to 	nd the optimum estimation of calibration factor � from
noisy data.

�e basic theory of KLM [26, 27] is that if �1 and �2, two
independent estimations of the variable�, can be obtained by
di�erent equations, the relation between �, �1, and �2 is

� = (1 − �) �1 + ��2, (2)

where � is a weighting factor. �e criterion for determining� is minimizing the variance of the calibrated �. KLM is
used to determine the weight, with the input being observed
data and the output being the optimum estimation of �. �e
KLM algorithm is a real-time recursive 	lter, using present
input data and the previously calculated state. It is a real-time
recursive 	lter, with the accuracy of estimation improving
continuously as the number of observations increases.

3.2.3. Optimum Interpolation (OPT). �e OPT method uses
radar rainfall data derived from echoes as the 	rst-guess

background meteorological 	eld and then corrects this using
a linear combination of the di�erences between this 	rst
guess and observed data from the rain gauges. �e weighting
function is determined by minimizing the expected square
error of the data [28, 29]. An OPT is generally expressed as
follows:

� = �� + �∑
�=1

(�� − ��) ��, (3)

where � (��) is an analysis (	rst guess) value at a grid cell� to be interpolated,�� (��) is an observed (	rst guess) value
given at observation point 
, and �� denotes a weight function
at observation point 
. �e optimum weight is computed by
supposing that the errors are unbiased and uncorrelated and
can be expressed as

�∑
�=1

����� = ��� (
 = 1, 2, . . . , �) , (4)

where � represents the 	rst-guess error correlation coe�cient
between two arbitrary grid points.

3.2.4. Variational Calibration (VAR). �e VAR method [30,
31] uses radar-based and gauge-measured precipitation for

each observation point to achieve a calibration factor ��̃(�)
(� = 1, 2, . . . , �) and then obtain ��̃(
, �) in every grid cell(
, �) by interpolation. Next, an optimum calibration factor
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	eld ��(
, �) which minimizes the sum of squared errors

between ��(
, �) and ��̃(
, �) is sought. Finally, the analyzed
precipitation in the grid (
, �) is

� (
, �) = �� (
, �) + �� (
, �) , (5)

where � (��) is analysis (radar-based) value at grid (
, �).
3.2.5. Statistical Weight Integration (SWI). �e SWI method
averages � results of precipitation intensity distribution,
derived by � methods according to weighting that depends
on the reciprocal of error statistics.

Error ��� = ��� − ��, where ��� is the output value of 
th
method in grid � and �� is the measured value of automatic

rain gauge in the same grid. Error variance �2� = (1/�)∑��=1 (��� − ��)2, where �� is themean error of eachmethod.
�e reciprocal of the error variance of various methods is
usually used as the weight of the integration analysis. �e
result a�er integrating is

�̂� = ∑	�=1 ���/�2�∑	�=1 1/�2� , (6)

where �̂� is estimated results of the �th grid a�er integration.
3.2.6. Evaluation Criteria. �e absolute error (AE) and rel-
ative error (RE) were used as criteria to evaluate the 	ve
assimilation methods. �e Nash-Sutcli�e (NS), peak relative
error (PRE), and peak time di�erence (PTD) were used to
evaluate the results of hydrological modelling.

NS = 1 − ∑��=1 (#̂� − #�)2
∑��=1 (#� − #)2 ,

PRE = (∑��=1 &̂� − ∑��=1 &�∑��=1 &� ) × 100%,

PTD = ∑ (****-
 − -�**** ≤ 3)
� ,

(7)

where #̂� is the predicted stream
ow at time step 
, #� is the
observation at time step 
, while # is the mean of observa-
tions,� represents the total number of observations, &̂� is the
predicted peak 
ow at time step 
, &� is themeasured peak 
ow
at the same time, -
 is the predicted peak time, and -� is the
observed peak time.

3.3. Precipitation-Runo� Model. �e Xinanjiang model de-
veloped by Zhao [32] has been applied extensively and
successfully to predict runo� from precipitation in humid
and semihumid regions [33]. �is model conceptualizes that
runo� is not produced until the soil moisture content of the
aeration zone reaches 	eld capacity, and therea�er runo�
equals the rainfall excess without further loss. It consists
of three submodels, a three-layer evapotranspiration sub-
model, a runo� generation submodel, and a runo� routing
submodel. Many studies have described the structure of the

model in detail [32–35]. �e inputs to the model are daily
areal precipitation and pan evaporation, with observed daily
discharge used for calibration. �e outputs are the modelled
daily discharge at the catchment outlet and the estimated
actual evapotranspiration of the catchment [36]. �e water
balance equation of the model can be expressed as follows:

If �� +  < 5
mm

� = �� +5 −5	 +5	 (1 − �� + 5
mm

)1+� . (8)

If �� +  ≥ 5
mm

� = �� +5 −5	, (9)

where � is the runo�, �� is the e�ective precipitation
which equals the precipitation minus evaporation,5
is the initial water storage within the catchment and is the ordinate value corresponding to 5, 5

mm

is the maximum storage capacity of the catchment,5	 is the areal mean tension water capacity, which
is composed of the capacity of each soil layer and
represents drought conditions, and � is a parameter
that represents the heterogeneity of the water storage
capacity of the catchment.

To reasonably describe the evapotranspiration process,
the soil pro	le is divided into three layers: the upper soil
layer, the lower soil layer, and the deepest layer. If the water
content in the upper layer is su�cient, evaporation equals
the evaporation capacity of the upper layer. If not, all upper
water is evaporated and the residual evaporation is sourced
from the lower layer. If the water content in the lower layer
is insu�cient to meet the residual evaporation capacity, the
water in the deepest layer will be evaporated.

�e generated runo� is divided into the surface 
ow,
inter
ow, and groundwater using steady in	ltration. �e
total runo� can be routed by a linear system before arriving
at the outlet of the catchment [37]. Flow routing uses the
Muskingum or piecewise continuous algorithm. Taking into
consideration the uneven distribution of rainfall and the
nature of the underlying surface, the catchment is divided
into a set of subcatchments using an appropriate method,
such as�iessen polygons. Finally, the total catchment runo�
is obtained a�er the hydrographs at the outlets of each
subcatchment are simulated and 
ood routing is applied [35].

3.4. Uncertainty Methods. Most research into uncertainty of
hydrograph forecasting has focused onmodel parameters and
structure rather than quality of input data. Toth and Kalnay
[38] recommended perturbation of the initial condition with
perturbation 	elds that are representative of errors present in
the analysis and then using these perturbations as the input
to the model in the analysis of input uncertainty. �e main
methods used to generate perturbations that re
ect the initial
uncertainty are Monte Carlo, Singular Vector, and Breeding
of Growing Modes (BGM). Monte Carlo is a statistical
method, whereby the smaller the sample number the less
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Table 2: Comparison of calibration results among di�erent methods. UC is uncalibrated, KLM is Kalman 	lter, AVG is average calibration,
OPT is optimum interpolation, VAR is variational calibration, and SWI is statistical weight integration.

Method Statistic
Storm event start date (yymmdd)

Average
050408 050429 050609 060411 060508 060627 060705 060726

UC

AE (mm) 27.35 21.38 5.79 3.97 5.73 7.52 3.58 6.72 10.26

RE (%) 70.02 44.89 23.06 13.49 14.13 26.93 11.78 37.02 30.17

Results (mm) 11.71 26.25 19.32 33.39 34.8 20.42 26.79 24.88 24.70

KLM

AE (mm) 4.81 4.61 1.45 1.38 1.58 1.9 1.29 1.06 2.26

RE (%) 12.32 9.68 5.76 4.69 3.89 6.79 4.26 5.84 6.65

Results (mm) 34.25 52.24 23.67 28.04 38.95 26.05 29.08 17.1 31.17

AVG

AE (mm) 4.22 5.22 1.2 2 3.14 5.2 1.17 2.03 3.02

RE (%) 10.81 10.96 4.8 6.8 7.75 18.59 3.86 11.17 9.34

Results (mm) 34.83 52.85 23.91 31.42 37.38 22.75 29.2 16.13 31.06

OPT

AE (mm) 4.11 4.27 1.32 0.36 0.79 1.47 1.16 0.1 1.70

RE (%) 10.52 8.96 5.25 1.24 1.94 5.27 3.81 0.57 4.70

Results (mm) 34.95 51.9 23.79 29.06 39.74 26.47 29.21 18.05 31.65

VAR

AE (mm) 4.11 4.26 1.32 0.05 0.32 1.47 1.05 0.16 1.59

RE (%) 10.53 8.94 5.27 0.18 0.78 5.27 3.47 0.88 4.42

Results (mm) 34.95 51.89 23.79 29.37 40.21 26.47 29.31 18 31.75

SWI

AE (mm) 4.11 2.95 1.32 0.05 0.26 1.47 1.05 0.05 1.41

RE (%) 10.53 6.18 5.27 0.18 0.65 5.26 3.47 0.29 3.98

Results (mm) 34.95 50.58 23.79 29.37 40.26 26.47 29.32 18.1 31.61

Measured (mm) 39.06 47.63 25.11 29.42 40.53 27.94 30.37 18.16 32.28

powerful the statistics. However, the sample number is o�en
very limited, and randomly chosen initial values do not
perfectly match with the dynamical mode. Although close
to actual weather at initial time, the predicted results o�en
deviate rapidly from the actual atmospheric condition due to
the adjustment of the mode itself [39]. �e Singular Vector
method is better able to deal with many nonquantitative
hypotheses in the data assimilation, increase the number
of ensemble members, and more easily capture the errors
generated by analysis. It can also determine the direction of
the fastest disturbance and have a better dispersion. Disad-
vantages of this method are that the components of errors
that do not grow are ignored and the calculations are tedious
[40, 41].

�e BGM proposed by Toth and Kalnay [38, 42] was
designed to model how growing errors are bred and main-
tained in a conventional analysis cycle through successive
use of short-range forecasts, with the bred modes o�ering an
estimate of possible growing error 	elds in the analysis. �e
growth rate obtained by this method is better than that of the
Monte Carlo method and even higher than the growth rate
of the lagged average forecasting. A formula for the speci	c
perturbation is generated:

� = 9 × Rmse × Rand, (10)

where � is random perturbation 	eld and 9 is perturbation
amplitude coe�cient. In order to make the disturbance
amplitude not too large, 9 is set equal to 1. Rmse is the
mean square error between themeasured rainfall and rainfall
estimation from radar data assimilation. Rand is a random
distribution function which is evenly distributed between

−1 and 1, where the equation [43] for producing a random
number that is uniformly distributed in [:, ;] is

�� = : + (; − :) >�, (11)

where >� is a uniformly distributed random number that
belongs to [0, 1].

Using the measured data of eight storm events from 19
rain gauge stations and radar estimations calibrated by the
KLM method, 100 sets of random perturbation 	eld were
produced for each event by the BGM of initial disturbance.
�en 200 sets of disturbance for each event, formed a�er
the superposition and deduction of the perturbation 	eld,
were used as the input to the Xinanjiang hydrological model.
For the eight storm events, this resulted in 1600 predicted
hydrographs. �e in
uence of the propagation of rainfall
input error on runo� simulation was quanti	ed using the
three previously described goodness-of-	t statistics.

4. Results and Discussion

4.1. Evaluation of Methods of Assimilation of Radar Rainfall
Data. A comparison of uncalibrated and calibrated results
of 	ve kinds of assimilation methods for eight storm events
(Table 2) revealed that, among the methods, the SWImethod
produced results closest to the observed data, followed by
the VAR method, with a mean absolute error smaller than
that of the SWI method. �e next best method was the OPT
method, followed by the KLM method and, 	nally, the AVG
method. �e average of the results across the eight storm
events (Table 2) allows a rapid comparison of the relative
performances of the 	ve assimilation methods.
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Figure 2: Hourly gauged rainfall observations compared to radar-based estimations: (a) uncalibrated classi	ed Z-R data, (b) Kalman 	lter,
(c) average calibration, (d) optimum interpolation, (e) variational calibration, and (f) statistical weight integration.

For AVG, the accuracy of regional total precipitation esti-
mation improved a�er calibration, and the accuracy would
improve further with more rain gauges. One problem with
the AVG method is that it does not account for the shi�ing
location of the focus of intense rainfall during storm events.
AVG cannot assign greater weight to points independently
identi	ed to be of particular interest, and it does not consider
the representativeness of the data derived by the automatic
rain gauges and radar echoes. �ese problems explain the
relatively low performance of the AVG method.

Variable terrain, synoptic conditions, and precipitation
intensity impart a high degree of spatial and temporal

variability to radar rainfall data that presents a challenge
for data assimilation. �e results indicated that the KLM
method of data assimilation, with its strong theoretical basis
and consideration of the distribution of error in determining
the calibration factor, produced a better result than the AVG
method.�eKLMmethod can improve accuracy by reducing
the relative deviation and degree of dispersion between
the hyetometer and radar rainfall data and eliminating the
intrusion of nonrainfall echoes from rainfall estimation.�is
method calibrates the radar estimated rainfall distribution
	eld in the time domain rather than the spatial structure
error of precipitation, which means it is more suitable for
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the calibration of stable stratiform cloud precipitation and
in places with low density of rain gauges. �ese may be the
key factors that limit the calibration accuracy of the KLM
method. �e spatial structure and distribution of rain clouds
are complicated and changeable, with mixed convective
precipitation being a common phenomenon. Under these
conditions, the OPT and VAR methods, which have similar
results (Table 2), outperform the KLM method. �is relative
performance di�erencewould also apply in places with a high
density of rain gauges. While each precipitation calibration
model has its advantages depending on the conditions, SWI
combines the advantages of the other four methods and gives
an appropriate weighting a�er the calculation. On this basis
the SWI method would be expected to be superior to the
other data assimilationmethods tested here [44], and this was
supported by the results (Table 2).

Scatterplots of hourly gauged rainfall and uncalibrated
and calibrated radar-based rainfall (Figure 2) illustrated the
good agreement between the rainfall distribution obtained
by the SWI method and gauged rainfall. �e VAR and OPT
assimilation methods also performed well. �e KLM and
AVG method produced noticeably poorer results (Figure 2).

4.2. HydrologicalModel for FloodHydrograph Prediction. �e
Xinanjiang hydrological model was applied in the White
Lotus River catchment taking into consideration temporal
and spatial variation of rainfall and the nonlinear e�ects of
watershed topography and river channel characteristics on
the runo� concentration and dispersed in
ow and nonlin-
ear convergence. Model parameters were calibrated by the
method of Rosenbrock [45]. �e three indexes certainty
factor, peak relative error, and peak time di�erence were
used to evaluate the 
ood forecasting results. Goodness-of-
	t statistics (Table 3) and simulated hydrographs (Figure 3)
indicated that themethods of SWI, OPT, andVARwere supe-
rior in producing rainfall input data for storm hydrograph
modelling. In particular, the SWI simulated hydrographs
were in almost perfect agreement with the observed data.�e
rainfall data generated by themethods of KLM,AVG, andUC
led to unsatisfactory hydrograph prediction.

4.3. Uncertainty Analysis of Hydrological Forecasting. �e
relative error of predicted results increased a�er assimilated
rainfall data were randomly disturbed compared with the
undisturbed peak 
ow, 
ood volume, and peak time di�er-
ence. �e peak 
ow and 
ood volume were increased by 5%
and 8%, respectively (Figures 4 and 5), which means that
the model input errors increased when they were processed
through the hydrological model. Also, most of the predicted
peak times lagged the observed times (Figure 6).

�e error of precipitation input data in hydrological
modelling is a signi	cant source of error in predicted peak

ow, 
ood volume, and peak time. �erefore, the spread
of precipitation uncertainty has a great in
uence on runo�
prediction. In China, practical applications usually adopt
qualitative rainfall prediction and assumed rainfall input,
and this would have implications for the forecast period and
accuracy of 
ood forecasting. At present, both the accuracy
and resolution of rainfall forecasts provided by numerical

weather prediction (NWP) cannot meet the requirements of
quantitative 
ood forecasting, and this situation may con-
tinue to exist into the foreseeable future. Weather radar and
satellite remote sensing (SRS) can perform an important role
in quantitative precipitation forecasting. Use of precipitation
forecasts obtained by SRS as the input of hydrological models
to simulate and predict runo� warrants further research
attention. �is could be a key step towards improving the
accuracy of 
ood forecasting. It will be necessary to develop
methods for combining and assimilating the SRS data and
observed data from rain gauges for producing better precipi-
tation forecasts. SRS has su�ciently high spatial and temporal
resolution to e�ectively characterize the instantaneous distri-
bution of precipitation throughout a catchment, while rain
gauges can provide high-precision single-point observations.

�e generation of 
oods is a complex and dynamic
process. Modelling this process can be improved through the
use of rainfall input data with high spatial and temporal reso-
lution. How to best make use of rainfall information available
from multiple sources, including gauge networks, radar, and
satellite monitoring, is one of the key problems to be solved
in hydrological modelling and forecasting.

5. Conclusions

Because of the high level of risk posed by 
oods, especially

ash 
oods, it is critical that warning procedures make use
of accurate nowcasting and short-range runo� forecasting
capability. Precipitation data is the most important input to
hydrological models used for forecasting hydrographs.While
rainfall data is usually sourced from a network of gauges, an
alternative is weather radar detector, which o�ers superior
spatial and temporal resolution but at the cost of lowprecision
and accuracy. �is paper investigated methods of precip-
itation data assimilation with the objective of improving
the quality of radar-based rainfall estimates as a means of
achieving more reliable 
ood forecasts. Using data from a
network of rain gauges in the White Lotus River in Hubei
Province, China, and data from the weather radar detector
based in nearby Wuhan, 	ve established methods of assimi-
lating radar data estimated by the classi	ed �-� relationship
were applied. �e assimilated data was compared with the
observed rainfall data and then used in a hydrological model
to predict historical 
ood hydrographs. Finally, BGM was
used for the perturbation of radar data to evaluate the e�ect
of the rainfall data input error on runo� simulation.�emain
conclusions arising from this work were as follows:

(1) Statistical weight integration, variational calibration,
and optimum interpolation were superior methods
of data assimilation, while Kalman 	lter and average
calibration methods gave a less satisfactory result.

(2) For modelling storm event hydrographs, rainfall data
generated by the statistical weight integration, varia-
tional calibration, and optimum interpolation meth-
ods resulted in hydrographs that were the closest 	t
to the gauged data. Rainfall data generated by the
average calibration and Kalman 	lter methods of data
assimilation resulted in unsatisfactory hydrograph
prediction.
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Table 3: Comparison of 
ood hydrograph prediction using di�erent rainfall data assimilation methods. MPF is measured peak 
ow and FPF
is forecast peak 
ow.

Method Flood event MPF (m3/s) FPF (m3/s) NS PRE (%) PTD (h)

UC

050408 313.3 58.4 −0.73 81.36 1

050429 618.2 167.6 −1.05 72.89 32

050609 187.9 96.8 −0.47 48.48 2

060411 232.7 157 −0.87 32.53 15

060508 240.9 108.1 −0.59 55.13 10

060627 189.6 76.6 −2.95 59.6 4

060705 310.9 134.8 −3 56.64 1

060726 147.3 113.4 0.2 23.01 8

KLM

050408 313.3 275.6 0.83 12.03 2

050429 618.2 562.2 0.87 9.06 1

050609 187.9 166.7 0.9 11.28 1

060411 232.7 214.7 0.9 7.74 1

060508 240.9 224.1 0.9 6.97 1

060627 189.6 168.5 0.84 11.13 2

060705 310.9 262.7 0.82 15.5 2

060726 147.3 136.1 0.86 7.6 1

AVG

050408 313.3 283.3 0.79 9.58 1

050429 618.2 651.5 0.86 5.39 5

050609 187.9 155.1 0.88 17.46 2

060411 232.7 196.2 0.83 15.69 0

060508 240.9 212.2 0.85 11.91 1

060627 189.6 155.2 0.44 18.14 4

060705 310.9 250.5 0.65 19.43 1

060726 147.3 108.2 0.22 26.54 0

OPT

050408 313.3 311.7 0.89 0.51 2

050429 618.2 615.4 0.9 0.45 1

050609 187.9 187.6 0.9 0.16 3

060411 232.7 231.7 0.89 0.43 2

060508 240.9 240.3 0.9 0.25 2

060627 189.6 188.6 0.89 0.53 1

060705 310.9 307.1 0.89 1.22 2

060726 147.3 144.6 0.9 1.83 3

VAR

050408 313.3 313.3 0.9 0.54 0

050429 618.2 618.2 0.91 0.36 0

050609 187.9 187.9 0.89 0.85 1

060411 232.7 232.7 0.9 1.16 2

060508 240.9 240.9 0.9 0.23 1

060627 189.6 189.6 0.89 0.63 1

060705 310.9 310.9 0.89 1.21 2

060726 147.3 147.3 0.74 0.47 0

SWI

050408 313.3 312.5 0.89 0.26 1

050429 618.2 616.6 0.89 0.26 0

050609 187.9 187.9 0.9 0.34 2

060411 232.7 207.2 0.87 10.96 1

060508 240.9 240.6 0.89 0.12 0

060627 189.6 188.6 0.89 0.53 1

060705 310.9 307.2 0.89 1.19 1

060726 147.3 146.8 0.9 0.34 2
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Figure 3: Comparison of simulated hydrographs for eight storm events using rainfall input data derived from 	ve assimilation methods and
uncalibrated radar data.� is measured hydrograph.
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Figure 4: Relationship between relative error in predicted 
ood
peak magnitude and rainfall relative error.
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Figure 5: Relationship between relative error in predicted 
ood vol-
ume and rainfall relative error.

(3) �e random errors generated by model input had a
tendency to increase during the process of running
the hydrological model. Also, most of predicted 
ood
peak times were lagged.

(4) As hydrometeorology ensemble forecasts become
more widely available and the data acquisition meth-
ods develop, there will be an ongoing need for evalu-
ation of uncertainty in input data.

(5) �is paper provides critical descriptive analysis of
the main assimilation methods and the e�ect of the
errors on uncertainty of 
ood forecasting. It demon-
strates that weather radar has potential to improve
the precision of hydrological forecasting, which has
implications for improved 
ood control and disas-
ter mitigation. �e in
uence of the propagation of
rainfall input error on three simulated factors of
hydrological forecast is quanti	ed.
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