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Abstract

This paper presents a comprehensive analysis of the uncertainty in the measurement of the

peak temperature on the side face of a cutting tool, during the metal cutting process, by

infrared thermography. The analysis considers the use of a commercial off-the-shelf camera

and optics, typical of what is used in metal cutting research. A physics-based temperature

measurement equation is considered and an analytical method is used to propagate the

uncertainties associated with measurement variables to determine the overall temperature

measurement uncertainty. A Monte Carlo simulation is used to expand on the analytical

method by incorporating additional sources of uncertainty such as a point spread function

(PSF) of the optics, difference in emissivity of the chip and tool, and motion blur. Further

discussion is provided regarding the effect of sub-scenel averaging and magnification on the

measured temperature values. It is shown that a typical maximum cutting tool temperature

measurement results in an expanded uncertainty of U = 50.1 ◦C (k = 2). The most significant

contributors to this uncertainty are found to be uncertainties in cutting tool emissivity and PSF

of the imaging system.

(Some figures may appear in colour only in the online journal)

1. Introduction

Industry continually strives to optimize metal cutting processes

so that parts may be made faster, better and at less cost. One

of the important factors to consider when optimizing metal

cutting processes is the maximum temperature of the cutting

tool, which is widely regarded as a key variable affecting the

wear of the cutting tool. Many researchers use infrared (IR)

thermography to measure cutting tool temperatures. Although

specially designed equipment exists for this purpose (e.g.

NIST-developed dual-spectrum system [1, 2]), commercial

off-the-shelf (COTS) thermal cameras are increasingly used

due to their wider field of view and smaller size. This

paper represents an effort to better understand uncertainties

associated with using a COTS IR camera to measure tool

temperatures during metal cutting. The COTS camera used

in this investigation has a lens with 50 mm focal length and

a 15 mm extension tube. The central quarter of the focal

plane array (FPA) produces an image 160 pixels wide and 128

pixels high, corresponding to a field of view 6 mm wide and

4.8 mm high. The frame rate is 800 frames per second and the

integration time typically used is 25 µs. The optical filter has

a 3.9 µm centre wavelength with 0.2 µm bandpass.

Many research efforts using IR thermography to measure

temperature in metal cutting are available in the literature

[3–5]. While a few discuss the uncertainty associated with their

respective measuring instruments and setups, many describe

the measurement as being generally imprecise. However,

the ability to obtain whole temperature fields at and near the

cutting point without contact or interaction with the process

makes IR thermography an alluring technique. In their review,

Davies et al [4] discussed generally agreed principles regarding

uncertainty in metal cutting thermography: (1) emissivity is

typically the largest contributor to uncertainty, and (2) square

of the error increases proportionally with detector wavelength,

the square of temperature, and in inverse proportion to the
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square of emissivity. Whitenton [1, 2] identified many of the

uncertainty sources in metal cutting thermography during the

development of the NIST high-speed dual-spectrum imaging

system. Whitenton’s work focused on uncertainty sources

associated with the unique environmental effects such as

radiation polarization, motion blur, point spread function

(PSF), micro-blackbodies and cavities, oxidation and dynamic

change to emissivity, size of source error and more. However,

it did not give a systematic method for arriving at a combined

uncertainty value for a particular temperature measurement

scenario following the principles of the Guide to the Expression

of Uncertainty in Measurement (GUM) [6]. Miller et al [7]

claimed an error estimate from emissivity of 4% at 200 ◦C to

less than 1% above 550 ◦C using the emissivity uncertainty

calculations developed by Madding [8]. Outeiro et al [9]

claimed a total temperature error of less than 6% when

using a charge-coupled device (CCD) camera sensitive to

visible and near IR requiring relatively high temperatures

(420 ◦C to 757 ◦C) and emissivity. For their thermography

system measuring orthogonal cutting of 1045 steel tubes,

Davies et al [10] provided an uncertainty statement of three

components: calibration uncertainty, random experimental

error and shift in emissivity value. They claimed a combined

standard uncertainty of ±52 ◦C for measured temperatures up

to 850 ◦C, though many of the uncertainty sources later listed

by Whitenton [1, 2] were neglected. Ivester [12] referenced

Whitenton’s work when reporting an expanded uncertainty

of ±25 ◦C (coverage factor k = 2 [11]) for their measured

maximum tool temperatures during orthogonal cutting of

titanium alloy (Ti-6Al-4V). Since thermographic measurement

uncertainties are generally difficult to discern, Arriola et al [13]

took the approach of embedding thermocouples into the tool

face and imaging the tool and thermocouple simultaneously.

Thermography measurement of the thermocouple agreed well

with the thermocouple value, though this procedure required

very special tooling.

More information on thermographic measurement

uncertainty is available from the radiation thermometry

community. However, these works cover a broad range

of applications that either neglect special considerations for

metal cutting or focus on error sources that are negligible

or non-existent in a metal cutting temperature measurement.

Minkina and Dudzik [14, 15] describe the use of Monte

Carlo simulations to determine uncertainty in thermographic

temperature measurements. They state that analytical methods

described in the GUM [6] cannot sufficiently account for

all uncertainty sources due to the complicated nature of

thermographic measurements. The Bureau International

des Poids et Mesures (BIPM) Consultative Committee for

Thermometry Working Group 5 (CCT-WG5) [16] provides

uncertainty budgets for calibration of radiation thermometers

below the ITS-90 silver point (961.78 ◦C) with meticulous

analysis and references to many contributing works by its

members. However, the CCT-WG5 document focuses on

the calibration of single-point detectors and mentions that

components of uncertainty incurred during measurements

(subsequent to calibration) may dominate the total uncertainty

depending on the nature of the measurement environment. As

mentioned in Davies et al’s review [4], this is very likely the

case for metal cutting thermography, e.g. the uncertainty in

emissivity of a measured object such as a cutting tool.

Few papers discuss the errors specific to a thermographic

imaging system or detector array as opposed to a single-

point thermometric system. More often, the detector array

is assumed to act as a single detector without spatially

varying sensitivity or effects from an imperfect optical system.

Minkina and Dudzik [15] discussed PSF briefly, but did not

add it as an uncertainty term in their numerical simulation.

Three terms mentioned by Whitenton [1, 2], namely size of

source effects, motion blur and PSF, substantially affect IR

thermography of metal cutting by attenuating the maximum

tool temperature measurement. Part of this attenuation can be

accounted for by deconvolving a measured PSF [17]. However,

uncertainty in the PSF introduces additional uncertainty in the

tool temperature. While discussions of convolution procedures

can be found in the literature, determination of propagated

uncertainty of a deconvolved thermography image stemming

from an uncertain PSF measurement is not covered.

In this paper, the measurand is the true maximum

temperature of the side face of a cutting tool imaged by an

IR thermal camera during the orthogonal cutting process. The

maximum temperature T depends on governing variables xi

through some functional relationship T = f (x1, x2, . . . , xN ).

The combined standard uncertainty, uc(T ), of the maximum

temperature is determined through the law of propagation of

uncertainty in the absence of variable correlations [6, 11]:

u2
c(T ) = u2

cal(T ) +

N
∑

i=1

(

df

dxi

)2

u2(xi). (1)

Each variable xi of the measurement function f (detailed in

section 2) has its own associated standard uncertainty of the

variable u(xi) that contributes to the overall combined standard

uncertainty uc as shown in equation (1). In this paper, the

sensitivity coefficients Ki = ∂f/∂xi are written as positive

or negative to highlight the direction in which the variable

tends to influence the measurement. Nomenclature for the

component of standard uncertainty ui(T ) (also referred to

as the standard uncertainty due to variable i) is the product

of the sensitivity coefficient Ki and the standard uncertainty

u(xi) of the variable xi . Standard uncertainty of the variable

is determined either through type-A or type-B analyses.

Equation (1) neglects correlation between governing variables.

Discussion of potential correlation and its contribution to the

combined uncertainty is given at the end of this paper.

Some components of the measurement uncertainty may

be determined analytically using an approach outlined in the

GUM. Others, in particular effects that depend on a pixel’s

neighbouring values, are quite complicated in nature and do

not lend themselves to simple analytical methods, but may be

determined through a numerical Monte Carlo approach. This

paper demonstrates both methods and outlines the procedure(s)

to determine the measurement uncertainty applicable to other

similar IR thermographic measurements.
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2. The measurement process chain

Every IR thermography measurement includes an emitting

source of radiation and a detector with related output signal.

As noted by DeWitt and Nutter [18], temperature cannot

be directly measured through radiometric or thermographic

methods, but may only be inferred from the detector signal,

which is directly related to the incident radiation flux.

However, the detector incident flux is not solely from a

single emitting source and is most often contaminated by

extraneous flux sources of varying degree. A physics-based

model (measurement equation) is required to relate radiation

flux from the source whose temperature is to be measured to

the flux incident on the detector and the resulting signal. This

is combined with a detector calibration function that relates

signal to temperature of a pure blackbody source. Variables

used in the measurement equation and calibration function are

required inputs, and have some uncertainty about their nominal

or measured values.

2.1. The physical model

Planck’s law gives the spectral radiance of a blackbody source

Lλ,b, at temperature T , in units of power emitted per surface

area per wavelength per solid angle (W m−3 sr−1) for T given

in units of K:

Lλ,b(T ) =
c1L

λ5[exp(c2/λT ) − 1]
(2)

where c1L = 1.191 0439 × 10−16 W m2 and c2 =
0.014 388 m K are constants [18, 19]. The power per unit

wavelength, or spectral radiant flux (also called spectral

power), �λ (units of W m−1) collected by the optics, from

an object scenel of area A, is approximated by the following:

�λ(T ) ≈ �ALλ,b(T ) (3)

where � is the solid angle formed between the pixel and optics

aperture. The approximate equal sign (≈) is used here since �λ

is in reality scaled by some spectral object emissivity, ελ. For

opaque objects, the reflectivity of the surface is equal to 1−ελ,

thus the scenel also reflects ambient radiation incident upon it.

In a real system, the FPA or sensor will not collect the entire

radiation emitted from the source, but an amount attenuated by

transmission through the environment and optics. Minkina and

Dudzik investigated measurement uncertainty associated with

multiple extraneous flux sources from ambient surroundings,

the air and the optics [15]. For microscopic IR thermographic

measurement over short distances, the transmission band of

the optics, typically determined by a bandpass filter, can be

chosen to not include strong atmospheric absorption lines, so

that emission from and transmission loss through the air may

be neglected. In addition, measurement of small heat sources,

exposure of the optics to the heat source for short durations

of the measurement, and the use of temperature-controlled

optics cause the optics temperature to remain near or below the

ambient temperature (Tamb), and thus emission from the optics

may be assumed to be part of the flux from ambient sources

or negligible. Effects due to emission from and transmission

FPA

Pixel

Object

Scenel

Ambient 

Source

)(,, obbob
TAL

λλ
ε Ω

)()1( ,, ambbob
TAL

λλ
ε Ω−

ob,λΦ

amb,λΦ

Tool

Chip

Workpiece

Workpiece

Rotation

Figure 1. Schematic showing simplified version of flux components
on the FPA used in the measurement equation [1, 2, 7, 16, 20].

through the air and optics may also be ignored if they are

assumed constant through each step of the calibration and

measurement process. This is especially true in the case where

the filter is a cold filter, so that changes in the temperature of

the filter, as well as the radiation emitted by it, are negligible.

Figure 1 shows the schematic representing the orthogonal

cutting tests performed at NIST. The spectral measurement

equation corresponding to this measurement setup is given by

�λ(ελ, Ts, Tamb) = �A[ελLλ,b(Tob) + (1 − ελ)Lλ,b(Tamb)]

S(ελ, Ts, Tamb) = α ·
∫ λ2

λ1

wλ · �λ dλ. (4)

Here, wλ is the spectral responsivity of the camera and the

integration limits coincide with the transmission band of the

optics. Tob is the temperature of the measured object scenel.

For a camera with linear response, α is a scale factor for

conversion of the flux incident on a pixel into signal and

is dependent on the sensor, readout electronics, integration

time, etc.

Equation (4) is further simplified by the following

assumptions: (1) emissivity is not temperature dependent

over the measured range3, (2) emissivity does not vary with

wavelength over the bandpass of the system and (3) if the

camera were measuring a pure blackbody source of ε = 1,

there is a function Sb(T ) that relates the signal S to the

blackbody temperature. When applied to equation (4), these

assumptions yield the non-spectral measurement equation.

S(ε, Tob, Tamb) = ε · Sb(Tob) + (1 − ε) · Sb(Tamb). (5)

The measurement equation (5) can be used to infer the object

scenel temperature Tob if ε, Tamb and Sb are known.

2.2. Calibration function

In order to determine Sb(T ), the function relating the

blackbody source temperature to the signal, a blackbody

calibration is performed. This is done by focusing the camera

at the aperture of a variable temperature blackbody source with

3 This is a material and/or process-dependent assumption. For example, in IR

thermographic measurement of cutting tools, high temperatures may oxidize

the tool surface during cutting, which effectively raises the emissivity.
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a real emissivity very close to 1 and measuring the signal at

different temperatures spanning the range of interest. This is

followed by a curve fitting process to determine a calibration

function F, which approximates the actual signal measured, S:

S ≈ Sb(Tb) ≈ F(T ). (6)

The left approximation sign shows how equations (4) and

(5) are reduced for a blackbody source of emissivity very

close to 1. The right approximation sign states that the

relationship between the output signal S and the calibration

blackbody temperature Tb is approximated by the calibration

function F . The calibration function may be defined using

polynomial, spline or other analytical functions (e.g. Sakuma–

Hattori equation [21]), or a lookup table. Its overall

purpose is to convert between a signal and an equivalent,

hypothetical perfect blackbody temperature called the apparent

temperature, Tapp. With this definition, the calibration equation

(6) and measurement equation (5) may form the combined

measurement equation:

S = F(Tapp) = ε · F(Ttrue) + (1 − ε) · F(Tamb). (7)

Given a measured signal S and F known from calibration,

F may be inverted to solve for apparent temperature Tapp =
F−1(S). During blackbody calibration at high temperatures,

Tapp is usually taken to be equal to the calibration blackbody

temperature because the emissivity is very close to one and the

blackbody emits orders of magnitude more radiation than the

ambient (F(Ttrue) ≫ F(Tamb)). Radiation thermometers and

cameras often output Tapp using an internally stored calibration

function F rather than or in addition to signal values (digital

levels (DLs) or counts). These internal calibrations may or

may not use a measurement equation similar to equation (5)

with user inputs for ε and Tamb.

Once the blackbody calibration is completed, and the

emissivity of the measured object is known, it is possible to

calculate a true object temperature Ttrue from a measurement.

This is done by solving for Ttrue in equation (7):

Ttrue = F−1

[

F(Tapp)

ε
−

(1 − ε)

ε
· F(Tamb)

]

. (8)

2.3. Example calibration functions and measurement

equations

Measurement equations, calibration functions and their

particular use depend on the application, user preferences and

available outputs from the camera and frame grabber software.

Outeiro et al used a measurement equation with the same

components as equation (7) to correct their measurements

for ambient reflection [9]. Rather than substituting their

calibration function F(T ), they used the Stefan–Boltzmann

law, which assumes that the sensor signal is proportional

to T 4, and is only valid for spectral responsivities with a

very large bandwidth. Handheld IR thermometers often

include an internal calibration function that uses the detector

body temperature to calculate the extraneous flux, and an

emissivity setting intended to match the emissivity of the

measured object [22, 23]. Through the use of the measurement

equation, a perfectly matched instrument emissivity setting

will cancel the error associated with object emissivity. Often

with thermal cameras intended to measure over a long distance,

a measurement equation is used, which corrects for air

transmission and emission terms [15, 24, 25].

Two example calibration/measurement methods using

user-determined (external) and internally stored calibrations

are described next. The first is a function called the Sakuma–

Hattori equation used in external calibration. This is the basis

for the analytical method for the measurement uncertainty

given in section 3. The second method, using the internal

camera calibration, is used in the numerical uncertainty

analysis given in section 5.

2.3.1. Sakuma–Hattori equation. The most popular

calibration function used in recent literature is the

Sakuma–Hattori equation [10, 21, 22, 26–28]. This equation

closely approximates Planck’s law integrated over spectral

responsivity, and can be easily inverted. The Planckian form

of the Sakuma–Hattori equation is given by

F(T ) =
C

exp
( c2

AT + B

)

− 1
. (9)

Here, c2 is the second radiation constant defined in equation (2),

and A, B and C are constants determined through least-

squares curve fitting to signal and temperature data from a

blackbody calibration. The denominator in the argument of

the exponential is often written as λx · T , where λx is the

temperature-dependent extended effective wavelength [29]. In

multiple references using the Sakuma–Hattori equation, λx is

assumed to be λx = A + B/T [16, 23, 27–29].

The physical relationship between the coefficients A, B

and C and the system spectral responsivity is given by Saunders

in terms of central wavelength, λ0, and the standard deviation

of wavelengths in the band, σ , for systems with narrow-band

spectral responsivities as [27]

A ≈ λ0 ·

(

1 − 6 ·
(

σ

λ0

)2
)

B ≈
c2

2
·
(

σ

λ0

)2

C =
∫ ∞

0

wλ

λ5
dλ ≈

a

λ5
0

.

(10)

Substituting equation (10) into (9), then into (7) gives

a combined measurement equation in terms of camera

responsivity parameters that is apt for analytical uncertainty

evaluation in section 3 similar to the methods provided in the

ASTM International standard (ASTM E2847-11) [22].

2.3.2. Radiance-based measurement equation with internal

camera calibration. Another method for determining the true

object temperature is to use the internal calibration function

(obtained from a blackbody calibration) stored in the camera
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Figure 2. Blackbody calibration data for the COTS camera fitted to the Sakuma–Hattori equation.

to convert a signal to apparent temperature. It is particularly

useful for handling wide-band spectral responsivities wλ or

spectrally dependent object emissivity. To determine the true

object temperature Ttrue from the camera output Tapp, one must

use the inverted measurement equation similar to equation (7).

However, in this case, F is unknown since it is internal to

the camera. For the purpose of converting Tapp to Ttrue, the

assumption is made that F(T ), which relates the total signal

to an apparent blackbody temperature, can be obtained using

equation (4):

F(Tapp) = α ·
∫ λ2

λ1

wλLλ,b(Tapp) dλ. (11)

Note that the real relationship between signal and an

apparent blackbody temperature is internal to the camera

and this equation is a physics-based tool to approximate

the calibration function for conversion of Tapp to Ttrue. In

application, substituting equation (11) into the left-hand side

of equation (4), and cancelling the scaling constant α, yields

the following measurement equation:
∫ λ2

λ1

wλ

λ5

[

1

exp(c2/λTapp) − 1

]

dλ

=
∫ λ2

λ1

wλ

λ5

[

εob,λ

exp(c2/λTtrue) − 1

+
1 − εob,λ

exp(c2/λTamb) − 1

]

dλ. (12)

Since this combined measurement equation is in integral form,

one cannot explicitly solve for Ttrue. If discrete vectors wλ,

εob,λ and λ are known, given Tapp and Tamb, Ttrue can be solved

numerically by moving the Tapp component to the right of the

equal sign in equation (12), and treating the resulting equation

as a minimization problem.

3. Analytical method for measurement uncertainty
of independent sensors

This section gives an analytical approach for determining

measurement uncertainty components for each independent

sensor in an array. Phenomena such as optical and motion

blurring, pixel crosstalk, etc, cause a given pixel’s values

to be affected by neighbouring pixel values. This is not

easily handled by the analytical method in this section since

these effects are dependent on the particular imaged scene.

Therefore, they are addressed through numerical analysis using

an example scene in the next section.

Building on the combined measurement equation

(equation (7)), the true maximum temperature (measurand)

is described in terms of the variables xi , allowing sensitivity

coefficients Ki to be calculated according to the propagation of

uncertainty in equation (1). First, the uncertainty component

due to calibration is described, which also presents the

nominal values for system responsivity central wavelength,

λ0, and standard deviation of wavelengths in the band, σ .

The other uncertainty components, due to uncertainty in

responsivity, uncertainty in emissivity and uncertainty in

ambient temperature, are then discussed.

3.1. Uncertainty due to calibration curve fitting

Uncertainty in calibration arises from uncertainty in the

temperature of the blackbody and uncertainty caused by

approximating the actual response using a calibration function.

The uncertainty in the blackbody temperature is usually small

if it is calibrated.

The real spectral responsivity of the COTS camera is

known to be governed by the bandwidth of the narrow-band

filter, which has a uniform bandpass between λl = 3.79 µm

and λr = 4.06 µm. This gives a central wavelength of λ0 =
(λr +λl)/2 = 3.925 µm. The standard deviation of the uniform

distribution is given by σ = (λr − λl)/
√

12 = 0.061 µm.

Since these values are known, equation (10) is used to derive

the Sakuma–Hattori coefficients A and B. This leaves the

coefficient C, or a in equation (10), to be determined by least-

squares approximation. Figure 2 shows that a good fit to the

COTS camera calibration data is obtained by using the inverse

Sakuma–Hattori equation to fit the temperatures estimated

based on the measured signal to the actual temperature of the

blackbody. Since the low and high temperatures are of the same

order of magnitude, while the low and high values of intensity

Metrologia, 50 (2013) 637–653 641
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Figure 3. Residual errors from the Sakuma–Hattori calibration fit for the constrained fit (coefficients A and B are set based on the system
spectral response) and the unconstrained fit.

differ by nearly three orders of magnitude, the inverse fit is a

simple way to weight the data points evenly.

This curve fit for the constrained curve in figure 2 resulted

in the following Sakuma–Hattori coefficients: A = 3.9166 µm,

B = 1.7816 µm K and C = 3.570 × 105 (resulting in

a = 3.33 × 108). The unconstrained fit gave A = 4.0879 µm,

B = 0.3870 µm K and C = 2.907 × 105. Both fits used

a radiation constant c2 = 14 388 µm K. The residual errors

�Ti = F−1(Si) − Tb, shown in figure 3, are the difference

between the temperature estimated from the inverse Sakuma–

Hattori curve fit and the actual blackbody temperature. This

shows that curve fitting while constraining A and B to values

expected for known filter characteristics results in residuals up

to 10 ◦C, which also show a systematic pattern. Curve fitting

without these constraints results in residuals less than 1.4 ◦C,

and without any systematic trend.

Although error in calibration depends on the temperature,

a single value for the standard uncertainty due to calibration,

ucal, is given by the standard error of estimate, which is the

standard deviation of all the residual errors. The standard error

of estimate for all �Ti in figure 3 is ucal = 0.67 ◦C for the

unconstrained fit and 6.9 ◦C for the constrained fit.

In reality, the COTS camera uses an internal, piece-wise

linear calibration function rather than a least-squares fit to the

Sakuma–Hattori equation [25]. It also internally compensates

for camera body temperature, which causes slight effects on

the camera responsivity (the fits above used only the calibration

data obtained with camera body temperatures between 28 ◦C

and 30.5 ◦C). Since this internal calibration is expected to be

more accurate than the Sakuma–Hattori fit, the ucal value,

determined above for the unconstrained fit, is a conservative

estimate.

3.2. Measurement equation and sensitivity coefficients

The use of equation (10) to describe the calibration coefficients

allows the investigation of the measurement uncertainty due to

uncertainty in spectral responsivity, u(λ0). Substituting the

responsivity relationships in equation (10) into the Sakuma–

Hattori equation (equation (9)) gives the following form of the

non-spectral measurement equation:

F(T ) =
a

λ5
0

[

exp

(

c2λ
2
0

λ3
0T − 6λ0T 2σ 2 + 1/2c2σ 2

)

− 1

]−1

S = F(Tapp) = ε · F(Ttrue) + (1 − ε) · F(Tamb). (13)

One way to determine the uncertainty of Ttrue is to explicitly

solve for it using equation (13) and take the partial derivatives

with respect to variables, xi . The sensitivity coefficients may

also be determined by implicit differentiation. This method is

used in ASTM E2847-11 [22] and yields

Ki =
∂Ttrue

∂xi

=
∂S

∂xi

·
(

∂S

∂Ttrue

)−1

=
∂F (Tapp)

∂xi

·
(

∂F (Tapp)

∂Ttrue

)−1

. (14)

Since a is a scaling parameter, it is cancelled essentially

from both sides of the equation. While a shift in the central

wavelength λ0 is possible due to filter axis tilt, temperature

changes, etc, it is unlikely that the responsivity bandwidth σcan

change significantly. Therefore, only the variables λ0, ε and

Tamb are analysed for their sensitivity coefficients Kλ, Kε and

Kamb, respectively.

Sensitivity to a shift in central wavelength is usually not of

concern when a single narrow-band filter is being used. In the

calibration process above, it was noted that constraining A and

B to values dictated by the specified central wavelength and

bandpass of the filter did not give as good a fit to the blackbody

calibration data as an unconstrained fit, which indicated a

different central wavelength. For this reason, the sensitivity

to a shift in central wavelength of the filter is also being

studied. However, it should be noted that if there is no scope for

the central wavelength or other parameters of the calibration

function to change between calibration and measurement, they

will not lead to any uncertainty over and above the calibration

uncertainty.

3.3. Calculated sensitivity coefficients and error

The expressions for the sensitivity coefficients Ki given

in equation (14) are solved symbolically using commercial
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Figure 4. Temperature-dependent sensitivity coefficient (top) and
component of standard uncertainty (bottom) due to uncertainty in
the central wavelength of the camera spectral responsivity: ε = 0.8,
Tamb = 20 ◦C and nominal λ0 = 3.9 µm.

computer algebra software. These coefficients depend on the

true temperature of the object being measured Ttrue, and on the

other variables λ0, ε and Tamb. The Ki values are evaluated at

nominal values of their corresponding variable. Uncertainty

components are calculated as ui(Ttrue) = Ki · u(xi). To

summarize the results, the calculated sensitivity coefficients

Ki and the relevant components of standard uncertainty

ui(Ttrue) for variable xi are represented as contour plots using

the uncertainty u(xi) and true object temperature Ttrue as

independent axes.

Nominal values for λ0, ε or Tamb are specific for the COTS

camera used in this study. Figure 4 gives the coefficient Kλ,

and associated component of standard uncertainty uλ(Ttrue)

corresponding to an error in central wavelength u(λ0). A value

of u(λ0) = 0 on the x-axis of the bottom plot in figure 4

corresponds to no uncertainty in λ0.

The vertical 0 ◦C contour at u(λ0) = 0 represents the

fact that, if the uncertainty in λ0 is zero, the corresponding

component of uncertainty in Ttrue is also zero for all measured

Ttrue. The horizontal 0 ◦C contour corresponds to the maximum

of Planck’s curve for a given wavelength λ0, which occurs

at a temperature of 465.1 ◦C (given by Wien’s displacement

law [18]). The sensitivity is zero at this temperature because

the derivative of Planck’s curve with respect to the wavelength

at that temperature is zero. In a similar manner, figure 5 gives

Figure 5. Temperature-dependent sensitivity coefficient (top) and
component of standard uncertainty (bottom) due to uncertainty in
measured object emissivity: λ0 = 3.9 µm, Tamb = 20 ◦C and
nominal ε = 0.8.

the result uε(Ttrue) corresponding to an error in measured object

emissivity u(ε). Since ε is only defined between 0 and 1, the

coefficient Kε is given in units of ◦C/0.1, corresponding to a

change in Ttrue in ◦C per change in ε of 0.1.

In metal cutting, it is common for hot chips in the vicinity

of the tool to cause a higher Tamb that gets reflected by the

surface being measured. The higher the temperature and

volume of chips, and the lower the emissivity of the tool

surface, the higher the effect of ambient temperature reflection.

Figure 6 shows the component of measurement uncertainty due

to uncertainty in ambient reflected temperature, for a surface

with a nominal emissivity of 0.8.

When measuring an object at low temperatures near

Ttrue = Tamb = 20 ◦C, figure 6 (top) shows that an uncertainty

in Tamb has a greater effect on the measurement uncertainty.

At higher measured temperatures, the measurement is much

less sensitive to the error in ambient reflected temperatures.

Nominal values for each variable were set based on the

use of the specific COTS camera configuration and cutting

tools used in this study. However, it is likely that other

systems with different spectral responsivities and measured

object emissivities will result in similar shapes of the resulting

contour plots for the sensitivity coefficients and components.

Metrologia, 50 (2013) 637–653 643



B Lane et al

Figure 6. Temperature-dependent sensitivity coefficient (top) and
component of standard uncertainty (bottom) due to uncertainty in
the ambient reflected temperature (right): ε = 0.8, λ0 = 3.9 µm and
nominal Tamb = 20 ◦C.

These results apply to each detector in a FPA, and highlight

the complex relation between each variable and its uncertainty

component.

4. Numerical study of uncertainties including the
effect of convolution in sensor arrays

Sensors often contain only a single sensing element and

yield a single measurement value. In contrast, an IR

thermal camera uses a 2D FPA to measure an array of

intensity values representing the IR radiation emitted by a

2D array of scenels on the measured surface. Both the

optics and electronics of any camera system can introduce

uncertainties in the images produced. This section describes

the most significant uncertainty sources, setting the stage to

use the Monte Carlo method to determine their magnitudes

in the next section. While it is possible to determine such

uncertainties analytically, the resulting uncertainty statement

is often difficult to use in practice. For example, it may be

possible to relate the temperature uncertainty to the spatial

frequencies present in the thermal image and the motion

and optical blurring. The Monte Carlo simulation using a

‘typical’ thermal image is a simpler way to estimate the relative

magnitude of these uncertainties. In addition, it can verify

some of the uncertainties determined analytically in section 3.

Optical crosstalk arises from unwanted diffraction, scattering

and reflections in the imaging system, which causes the

radiance of more than one scenel to affect the intensity value

of a pixel. Even with a perfect optical system, relative motion

between the camera and the surface being measured can lead

to the radiance of many scenels contributing to a pixel’s

value. Electronic crosstalk arises when the construction of

the electrical circuitry within the FPA causes intensity values

of some pixels to affect the intensity values of other pixels.

Both optical crosstalk and electronic crosstalk are especially

noticeable when there is a high ratio between the intensities of

the brightest and darkest areas of an image.

Optical resolution is determined primarily by the way light

interacts with the optical system of the camera. Optical

resolution is not accurately described by a single number,

but functions such as a PSF. There are several techniques

available for measuring such functions [30–32]. One way

of thinking of a PSF is to imagine the camera focused on a

point source of light incident at the centre of one pixel of the

FPA. If there were no optical or electronic crosstalk, the FPA

would report one bright pixel, with all neighbouring pixels

having an intensity value of 0. Unfortunately, even when

the image is in focus, real optics spread this point over an

area. The function describing how the light is spread is the

PSF corresponding to that pixel of the image. The PSF is

almost always assumed to be radially symmetric and of equal

magnitude at every location in the image, though this is not

always the case. In diffraction-limited optics, the wavelength

of light limits the optical resolution; shorter wavelengths can

resolve smaller features than longer wavelengths. Size of

source effect refers to the fact that IR thermal cameras tend

to underestimate temperature when measuring very small ‘hot

spots’. A ‘hot spot’ is a group of one or more scenels that

are similar in temperature and are significantly hotter than the

surrounding scenels. The surrounding scenels are sometimes

referred to as the ‘background’. Size of source effects arise

from PSF and other causes of crosstalk among pixel values

when the hot spot is larger than a scenel, and from averaging

when the hot spot is smaller than a scenel.

The size of source effect arising when the source is smaller

than a scenel is illustrated in figure 7. 3D finite element method

(FEM) simulation of orthogonal metal cutting was used to

obtain the steady state distribution of temperature over the

side faces of the chip and the tool, as shown in figure 7(b).

Using this in conjunction with an assumed distribution of

emissivity (figure 7(a)), a corresponding (high-resolution)

apparent temperature image (figure 7(c)) can be calculated

using equation (12). To simulate an apparent temperature

image observed by a camera (figure 7(d)), the FEM-generated

apparent temperature image is converted to an intensity image,

is smoothed and resampled to match the scenel size and scenel

spacing of the camera, and is then converted back into an

apparent temperature image. Each pixel in the simulated

camera image results from an averaged area (approximately 6

pixel by 6 pixel group) in the high-resolution image. Naturally,

both maximum apparent temperatures in the tool and in the

chip are lower in this camera resolution image, due to the

averaging, which is the cause of the sub-pixel size of source
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Figure 7. Effect of scenel size and emissivity on a ‘perfect’ (no PSF) camera. The field of view is 1 mm wide. High-resolution
(FEM-generated) images are 6 µm/scenel. Simulated camera resolution image is 37.5 µm/scenel.

effect. This represents how a ‘perfect’ (no PSF) camera and

optical arrangement, with scenel size larger than the hot spot,

would image the scene. The fill factor (scenel size/scenel

spacing) is assumed to be 1.

For the Monte Carlo simulation of the measurement

process, once an apparent temperature image is acquired, it

must be converted to true temperature. From the information

in figures 7(a) and (c), the true temperature can be computed

using equation (12), as shown in figure 7(e). In practice,

precisely knowing the emissivity map is difficult, especially

for the chip. Since we are ultimately trying to measure the tool

temperature, it is expedient to simply use the emissivity of the

tool for the entire image and compute the true temperature,

in which case figure 7(f ) is produced. As expected, the

maximum computed true temperature for the chip is lower than

the actual value, due to the use of the higher tool emissivity

in the calculation. When the true temperature is computed

beginning with the camera resolution image (figure 7(d)) using

a constant emissivity equal to that of the tool, figure 7(g) is

produced. Even the maximum calculated true temperature of

the tool is lower than the true value due to the sub-pixel size

of source error.

Comparing figure 7(d) with figure 7(c), a reduction in

maximum apparent temperature can be observed as noted

before. Figure 8 shows a zoomed view of the high-resolution

image (figure 7(b)) obtained from FEM. The hottest tool

temperatures in the high-resolution image are only a few pixels

wide in the horizontal direction. Since the camera pixel size

is ∼6× larger than the high-resolution image pixel, the size

of the hot spots is smaller than a single pixel in the camera

image, and the combination of the radiation emitted by the hot

spot with that emitted by cooler regions around it results in

Figure 8. A magnified view of the region around the chip–tool
interface in the high-resolution true temperature image. The
maximum chip temperature occurs in a group of a few pixels near
the cutting edge. The maximum tool temperature occurs in a thin
strip of pixels along the rake face.

the sub-pixel size of source error. If only the camera image is

available, this type of size of source error cannot be corrected

unless assumptions are made about the size of the hot spot and

the temperature distribution around it.

Size of source effects may also be seen even when the hot

spot is several pixels in diameter. Figure 9 shows how the size

of a hot spot affects the maximum single pixel temperature

when the hot spot is larger than a pixel. It is modelled based
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Figure 9. Percentage error in measured maximum single pixel temperature value at three hot spot true temperatures: 1000 ◦C, 600 ◦C and
200 ◦C. Error is defined in equation (15). The background is 100 ◦C and the ambient temperature is 20 ◦C.

A thermal image expressed as temperature

The thermal image expressed as intensity

Convolution or deconvolution

New thermal image expressed as intensity

The new thermal image expressed as temperature

Point spread function

Figure 10. PSF is used to either simulate a camera image (using convolution) or correct a camera image (using deconvolution).

on the measured PSF of the COTS camera used in this study.

%Error = 100%

×
∣

∣

∣

∣

Measured Temperature − True Temperature

True Temperature

∣

∣

∣

∣

. (15)

When the size of the hot spot is at least a few pixels wide in

the camera image, size of source error arising from the PSF of

the optics may be simulated or corrected using convolution or

deconvolution with the PSF, as shown in figure 10. In practice,

deconvolution is more sensitive to noise than convolution.

In this study, the Matlab function ‘deconvreg’ was used to

perform deconvolution.

Figure 11 shows the effect of convolving the PSF with

the COTS camera apparent temperature image following the

steps in the flowchart in figure 10. The maximum apparent

temperature within the tool decreases from 848 ◦C to 755 ◦C

and edges in the image are smoothed.

5. Monte Carlo simulation method for uncertainty
estimation

Monte Carlo simulation is used to determine sensitivity

values used in estimation of the uncertainty in temperature

measurement [17, 33]. Using Simpson’s rule to integrate

equation (12), equation (16) is a minimization problem applied

to each pixel. Given ambient temperature, Tamb, and vectors

λi, wi and εi , this can be used to calculate the apparent

temperature, Tapp, given true temperature, Ttrue, or vice versa.

λi is an N element vector defining the wavelengths to be

used in the numerical integration. Each element in λi has

an associated element in wi quantifying the camera’s response

at that wavelength and an associated element in εi quantifying

the target’s emissivity at that wavelength. The narrow-band

filter, which controls the overall system responsivity, has nearly

uniform transmissivity. So the weights, wi , in equation (16)

were assumed to be 1 for all λi spanning the bandpass of the

filter. The εi were assigned either the value of the tool (0.8) or

the workpiece (0.35) independent of wavelength.

N
∑

i=1

wi

λ5
i

(

1

exp(c2/λiTapp) − 1
−

εi

exp(c2/λiTtrue) − 1

−
1 − εi

exp(c2/λiTamb) − 1

)

Minimize−→ 0. (16)

Equation (16), combined with the convolution/deconvolution

technique in figure 10, and the FEM images shown in

figures 7(a) and (b), was used to create a Monte Carlo

simulation of the measurement process. The algorithm is

shown in figure 12 and comprises the main steps of sampling

the random variables, simulating a camera measurement

of the true temperature field in figure 7(a) as influenced

by the random variables, carrying out the data processing

required to calculate the true temperature field from the camera

measurement (similar to figure 7(g)), and calculating the error

in maximum value of the actual true temperature field in

figure 7(a) as compared with the measured true temperature

field.

Estimated values εtool, λ, Tamb and PSF are used to process

thermal camera images in practice. εtool is the emissivity of

the tool. λ is the range of wavelengths of light imaged from

3.79 µm to 4.06 µm. Tamb = 20 ◦C is the ambient temperature.

PSF is a 15 × 15 matrix representing the discretized form

of the PSF for the pixel grid spacing shown in figure 12(b).

Motionx and Motiony represent the horizontal and vertical

motion of the camera relative to the imaged target (cutting tool)

and are used only for simulating the camera measurement, but

not for calculating the temperature field. εchip is the emissivity

of the chip and workpiece, which is not used in temperature

calculations.
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Figure 11. Effect of convolving the PSF with apparent temperature to produce a ‘measured’ image from the ‘perfect’ image.

Figure 12. Simplified representation of Monte Carlo simulation. Statistical analysis of results will be used to determine uncertainties.

In the Monte Carlo simulations, λ is varied from 3.79 µm

to 4.06 µm, over 101 uniform wavelength steps, dλ. The

following nominal values for other variables are used: Tamb =
20 ◦C, εtool = 0.8, εchip = 0.35. Emissivity of the

portions of the image representing air is assumed to be 1.

Figure 13 shows the assumed distributions of the random

variables for the Monte Carlo simulation, which are determined

based on expected worst-case scenarios (type-B uncertainty

estimate). A uniform distribution with a range of −0.025 µm

to +0.025 µm is assumed for dλ to simulate the effect of the

filter bandpass wavelength potentially shifting. A sample from

the distribution, dλ, is added to every element of the vector

λi to simulate shifting of the bandpass by dλ. A log-normal

distribution is assumed for the dTamb to simulate fluctuations in

environment temperature, as well as radiation from hot chips

reflecting off the cutting tool. The distribution for dεtool is

estimated from measurements of the emissivity made while

oxidizing the side faces of the tools. The software ensures
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Figure 13. Probability distributions for dλ,dTamb, dεtool and dεchip.

Figure 14. Resulting values for PSF when (a) dPSF is +2σ , (b) dPSF is 0 and (c) dPSF is −2σ .

εtool + dεtool � 1.0 for each Monte Carlo trial. The distribution

for dεchip is wider than for dεtool since chip emissivity can be

influenced by size of source effects, cavities that approximate

micro-blackbodies, oxidation, and many other sources of

emissivity uncertainty [1].

To simulate error in PSF, dPSF was assigned a normal

distribution with a mean of zero and a standard deviation (σ)

of 0.06 per pixel. The 0.06 per pixel standard deviation is a

type-B estimation combining the observed variation of the PSF

with location and sharpness of focus.

For each Monte Carlo trial, the selected dPSF is used

to modify PSF by first using equation (17), and then

equation (18). Resulting values for PSF when dPSF is +2σ ,

0 and −2σ are shown in figure 14. When dPSF is positive, it

increases the elements of the PSF matrix in proportion to their

distance away from the centre. Equation (18) normalizes PSF

to have a total volume of 1 so that the overall image intensity

is not modified by the PSF.

PSFij = PSFij · (1 + (dPSF ·
√

i2 + j 2)) (17)

PSFij =
PSFij

∑

i

∑

j PSFij

. (18)

To model relative vibratory motion between the camera and the

cutting tool, a 3×3 matrix, Motion, is convolved with the image

in the same manner as PSF in figure 11. For each Monte Carlo

trial, values dMotionx and dMotiony are selected, where each

has a normal distribution and a standard deviation of 0.1 pixel.

These are first applied to equation (19) to create a 3×3 matrix.

Equation (20) is then used to ensure that the average image

intensity is not changed.

Motionij =

















0 max(0, 0

dMotiony)

max(0, 1 max(0,

dMotionx) dMotionx)

0 max(0, 0

dMotiony)

















(19)

Motionij =
Motionij

∑

i

∑

j Motionij

. (20)

Determination of maximum temperature in an image may be

affected by bad pixels in the camera since thermal cameras

often have a few bad pixels. To avoid problems associated

with bad pixels, the average temperature over a small area

of a few pixels in the hottest portion of the image may be

used as a definition of the measurand instead of single pixel

values. This works well if the size of the hot spot is really

a few pixels or larger. However, if the hot spot is small

enough, the average of a few pixels may produce a maximum

temperature measurement which is ‘biased’ low. The Monte

Carlo simulation records maximum temperatures in two ways;

the maximum single pixel value and the maximum 3 pixel by

3 pixel average.
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Table 1. Summary statistics for 1200 trials to characterize the sensitivity of measured maximum temperatures to variations in the error
sources (random variables).

Measured max.
true temperature

With PSF No PSF
Error sources correction correction

dPSF dMotionx dMotiony 1 3 × 3 1 3 × 3

Statistic dλ/µm dTamb/
◦C dεtool dεchip /pixel−1 /pixel /pixel pixel/◦C pixel/◦C pixel/◦C pixel/◦C

Mean −0.0005 4.24 0.0003 −0.0038 −0.002 0.038 0.042 912.1 873.2 820.7 807.5
Std. error 0.0004 0.16 0.0010 0.0014 0.002 0.002 0.002 0.7 0.5 0.4 0.4
Median −0.0015 2.52 −0.0001 −0.0025 −0.001 0.000 0.004 911.8 873.1 820.7 807.6
Std. dev. (σ) 0.0148 5.46 0.0341 0.0488 0.061 0.059 0.059 24.7 18.0 14.7 14.2
Sample var. 0.0002 29.79 0.0012 0.0024 0.004 0.003 0.003 608.1 322.8 215.0 200.8
Kurtosis −1.2260 19.47 −0.1726 0.0096 −0.029 2.749 1.658 0.0 0.1 0.0 0.0
Skewness 0.0580 3.77 0.0642 −0.0040 −0.008 1.757 1.492 0.2 0.1 0.1 0.1
Minimum −0.0250 0.04 0.01041 −0.1730 −0.209 0.000 0.000 847.0 816.1 772.9 762.2
Maximum 0.0250 52.50 0.1058 0.1420 0.182 0.338 0.318 1009.1 939.7 872.6 858.0

Table 2. Linear regression produces coefficients which will ultimately be used in uncertainty analysis.

With PSF correction No PSF correction

Fit coefficients 1 pixel 3 × 3 pixel 1 pixel 3 × 3 pixel

Associated Coefficient Fit Standard Fit Standard Fit Standard Fit Standard
error source name Units value error value error value error value error

Intercept Kint
◦C 917.9 0.15 874.9 0.09 821.4 0.06 808.5 0.05

dλ Kλ
◦C µm−1 −161 6.43 −141 3.89 −127 2.45 −124 2.03

dTamb Kamb
◦C ◦C−1 −0.004a 0.017 0.008a 0.011 0.006a 0.007 0.005a 0.005

dεtool Kε-tool
◦C/0.1 45.3 0.28 42.6 0.17 37.5 0.11 36.2 0.09

dεchip Kε-chip
◦C/0.1 0.8 0.19 0.4 0.12 3.8 0.07 4.9 0.06

dPSF Kpsf
◦C pixel −271 1.56 −166 0.95 −113 0.59 −107 0.49

dMotionx Kmotion-x
◦C/pixel −178 1.62 −55.3 0.98 −21.1 0.62 −28.4 0.51

dMotiony Kmotion-y
◦C/pixel 5.8 1.61 −2.3 0.98 −4.2 0.61 −3.5 0.51

Goodness of fit r2 none 0.982 0.988 0.993 0.995

a Fit value for Kamb is not statistically significant due to standard error larger than the fit value, and a P -value of 0.8

1200 trials of the Monte Carlo simulation were performed.

Summary statistics are shown in table 1. The left-hand side

of the table quantifies the statistics of the actual samples

for each of the random variables. Whether a variable had

one-sided variation or symmetric deviations about the mean

is most clearly evident from the maximum and minimum

values recorded in the last two rows. The right-hand side of

the table lists the results for the statistics of the measurand.

Results are also included for measured maxima when no PSF

correction (deconvolution) is used in the calculation of the

true temperature field. The single pixel maximum with PSF

correction is of primary interest. However, the maximum 3

pixel by 3 pixel average and the maximum true temperature

without PSF correction are also recorded. It can be noted

from the mean values that the 1 pixel measured maximum true

temperature with or without PSF correction is lower than the

maximum true temperature of 973 ◦C in figure 7(b). In other

cases, it may be higher if the estimated emissivity is too low

or the estimated PSF is too wide (dPSF > 0).

A least-squares linear regression was performed to

determine the coefficients of the linear approximation in

equation (21):

Measured Maximum = Kint + Kλ dλ + Kamb dTamb

+Kε,tool dεtool + Kε,chip dεchip + Kpsf dPSF

+Kmotion,x dMotionx + Kmotion,y dMotiony . (21)

In the above equation, Kint represents the nominal value of

measured maximum temperature if there were no variation

in the error sources listed in table 1. Shown in table 2,

the linear regression gave goodness of fit values, r2, ranging

between 0.982 and 0.995, indicating good fits. Except for Kint,

the coefficients may be thought of as sensitivities, indicating

how much the measured maximum temperature changes for

an error in an assumed value. For example, Kε,tool has a

value of 45.3 ◦C/0.1 for the 1 pixel maximum which includes

PSF correction. Thus, if tool emissivity is incorrect by 0.05,

one would expect an error of about 22.7 ◦C in the measured

maximum value.

Note that dTamb, dMotionx and dMotiony have

statistically significant non-zero mean values and/or skewness

in table 1. Consider dMotionx for example. There is no such

thing as ‘negative blur’, so the mean value for dMotionx is

non-zero. Also, the measured maximum temperature would
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Table 3. Standard deviations and sensitivity coefficients of the different sources of uncertainty in maximum tool temperature.

With PSF correction No PSF correction

Uncertainty source 1 pixel 3 × 3 pixel 1 pixel 3 × 3 pixel

Standard uncertainty Sensitivity Sensitivity Sensitivity Sensitivity

Name Value Units Value Units Value Units Value Units Value Units

u(λ) 0.0148 µm −161 ◦C µm−1 −141 ◦C µm−1 −127 ◦C µm−1 −124 ◦C µm−1

u(Tamb) 5.46 ◦C 0.004a ◦C/◦C 0.008a ◦C/◦C 0.006a ◦C/◦C 0.005a ◦C/◦C
u(εtool) 0.341 0.1 45.3 ◦C/0.1 42.6 ◦C/0.1 37.5 ◦C/0.1 36.2 ◦C/0.1
u(εchip) 0.488 0.1 0.8 ◦C/0.1 0.4 ◦C/0.1 3.8 ◦C/0.1 4.9 ◦C/0.1
U(PSF) 0.061 pixel−1 −271 ◦C pixel −166 ◦C pixel −113 ◦C pixel −107 ◦C pixel
u(Motionx) 0.059 pixel −178 ◦C/pixel −55.3 ◦C/pixel −21.1 ◦C/pixel −28.4 ◦C/pixel
u(Motiony) 0.059 pixel 5.8 ◦C/pixel −2.3 ◦C/pixel −4.2 ◦C/pixel −3.5 ◦C/pixel

a Fit value for kamb is not statistically significant due to standard error larger than the fit value, and a P -value of 0.8.

never be increased due to motion blur. Thus, any motion

blur will generally result in a lowered measured maximum

temperature. This results in the mean of the measured

maximum temperatures in table 1 being several degrees lower

than the corresponding Kint in table 2.

Note that Kint is several degrees higher than the

corresponding mean of the measured maximum temperatures

in table 1. Kint equals the mean of the measured maxima

only when all the error source distributions (dλ, dTamb, etc)

are symmetric about zero. As previously mentioned, dTamb,

dMotionx and dMotiony were chosen such that their

probability distributions had non-zero means and skewness.

Sensitivities associated with dεchip, dPSF, dMotionx and

dMotiony (Kε,chip, Kpsf , Kmotion,x and Kmotion,y) address how

one pixel in the sensor array is affected by neighbouring pixel

values. It is tempting to assume that sensitivities associated

with dλ, dTamb and dεtool (Kλ, Kamb and Kε,tool) are inherently

single sensor by nature, and should agree exactly with the

single sensor values found analytically in section 3. However,

this is not guaranteed to be strictly true in all situations.

Section 3 showed that these sensitivities (Kλ, Kamb and Kε,tool)

are non-linear functions of temperature. Now consider the case

where there is a range of different temperatures within a given

scenel. The intensities associated with those temperatures are

effectively averaged together and interpreted as the apparent

temperature for that scenel. However, due to temperature

dependence, each intensity within the scenel has a different

associated value for sensitivity. Since the reported temperature

for a scenel is the result of an average of the intensities,

the overall sensitivity for the scenel is a weighted average

of the sensitivities, where the weights are determined by the

intensities. Fortunately, if emissivity is constant within the

scenel, the scenel value for both intensity and sensitivity is

dominated by the same brightest (hottest) temperature since it

has the most weight. Thus, the sensitivity for the scenel will

tend to be ‘close’ to the analytically derived value.

Using the results of Monte Carlo simulation statistics

shown in tables 1 and 2, standard uncertainties and their

associated sensitivities are summarized in table 3. The

standard deviations (σ) of the uncertainty sources shown in

table 1 are used as the estimates of the standard uncertainties

(u(xi)) of those variables. The fit coefficients (Ki) in

Table 4. Typical uncorrected difference between measured and
actual maximum temperature.

With PSF correction No PSF correction

Difference/◦C 1 pixel 3 × 3pixel 1 pixel 3 × 3pixel

Compared to −55 −98 −152 −165
high-resolution image

Compared to camera −8 −51 −105 −118
resolution image

table 2 are listed as estimates for sensitivity of measured

maximum temperature to the standard uncertainty. Note

that the associated standard error from the linear fit is large

compared with Kamb. However, it was clear from the values

that Kamb and resulting u(Tamb) are very small.

The difference values shown in table 4 compare the actual

single pixel maximum for both the high-resolution image and

the camera resolution image to the intercept (Kint) values in

table 2. The difference value for the single pixel maximum

with PSF correction is −55 ◦C. This indicates that, considering

the high-resolution image as a representative ‘true’ image,

the measured maximum temperature will likely be 55 ◦C

lower than the actual maximum. As discussed in section 4,

this difference is large because the width of the hot spot

is significantly smaller than a scenel in the camera image,

causing a sub-pixel size of source error. When very high

temperature gradients are present, the measured maximum

temperature can be brought closer to the actual value only

by increasing the optical magnification. The next row in

table 4 compares the measured maxima to the single pixel

maximum in the camera resolution image. This indicates

the bias if there were no sub-pixel size of source error. In

this case, the difference value for the single pixel maximum

with PSF correction is −8 ◦C. This is primarily caused by

the error due to dMotionx (motion blur) not corrected for

in processing the thermal images, which always lowers the

maximum temperature measured. If one has an accurate value

for motion blur, one may correct for it using the same procedure

as the PSF correction. An estimate of motion blur may be

gained by using an accelerometer, displacement gauge, or

high-speed visible light camera. Another important conclusion

from table 4 is that correcting for the blurring due to the PSF is
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Table 5. Sensitivity coefficients and standard uncertainty components from the numerical and analytical uncertainty analyses.

Monte Carlo simulation Analytical Units

Calibration, ucal — 0.67 ◦C
Sensitivity to wavelength, kλ −161 −161 ◦C µm−1

Uncertainty component, uλ 2.4 2.4 ◦C
Sensitivity to ambient reflected temperature, Kamb −0.004 −0.0003 ◦C/◦C
Uncertainty component, uamb −0.02 0.0016 ◦C
Sensitivity to tool emissivity, Kε,tool 45.3 45.7 ◦C/0.1
Uncertainty component, uε,tool 15.5 15.6 ◦C
Sensitivity to chip emissivity, Kε,chip 0.8 — ◦C/0.1
Uncertainty component, uε,chip 0.4 ◦C
Sensitivity to PSF, Kpsf −271 — ◦C pixel
Uncertainty component, upsf 16.5 ◦C
Sensitivity to X-motion blur, Kmotion,x −178 — ◦C/pixel
Uncertainty component, umotion,x 10.5 ◦C
Sensitivity to Y -motion blur, Kmotion,y 5.8 — ◦C/pixel
Uncertainty component, umotion,y 0.3 ◦C
Combined standard uncertainty for single-pixel maximum Ttrue = 912.15 ◦C:

No correlation: uc = 25.1 ◦C
Full correlation: uc,ρ=1 = 46.3 ◦C

essential to obtain an accurate measurement of the maximum

temperature.

6. Combined uncertainty

The standard uncertainty of each input variable and the

magnitude of its sensitivity coefficient shown in table 3

are multiplied together to obtain the standard uncertainty in

temperature due to that variable, ui = |Ki | · u(xi), and these

are listed in table 5. For instance, the standard uncertainty in

wavelength u(λ0) = 0.015 µm is multiplied with its sensitivity

coefficient |Ki | = 161 ◦C µm−1 to obtain ui = 2.39 ◦C. Note

from figure 13 that u(λ0) and u(Tamb) are not assumed normal

distributions, but the standard deviation of the samples is used

to define their respective standard uncertainty. Calibration

coefficients and uncertainty components from the analytical

approach are calculated from the functions that generated

figure 2 through figure 4.

Given these inputs, table 5 gives the standard uncertainty

components used to calculate the combined standard

uncertainty for the example measurement given in section 5.

It can be seen that uncertainties due to PSF, tool emissivity

and motion in the X direction are the three largest standard

uncertainty components. Since the numerical and analytical

approach produced components of standard uncertainty that

are in good agreement as shown in table 5 for variables where

both are available, values from the Monte Carlo simulation are

used to form the combined uncertainty.

In the introduction, equation (1) presented the combined

uncertainty calculation in the absence of correlated variables.

In reality, some of the input variables are correlated to some

degree. Determining this correlation will require replacing the

linear model in equation (21) with a non-linear model and a

much larger number of simulations. Rather than measuring

or assuming correlations, Minkina and Dudzik calculated

combined uncertainty for a variety of estimated correlations

between all their model input variables [15]. They found

that of all the tested correlations, the combined standard

uncertainty is affected most by the correlation between

emissivity and reflected radiance from ambient sources.

Neglecting this correlation may over- or underestimate the

combined uncertainty by up to 1%. The worst-case scenario

yielding the largest calculated combined uncertainty occurs

if all correlation terms are positive. For the case of perfect

correlation of all variables in a manner yielding the highest uc,

the combined standard uncertainty is the square of the sum of

each of the individual standard uncertainties:

uc(T )2 = u2
cal(T ) +

N
∑

i=1

u2
i + 2

N−1
∑

i=1

N
∑

j=i+1

ujuiρ(xi, xj )

uc,ρ=1(T )2 =

(

ucal(T ) +

N
∑

i=1

ui

)2

for ρ(xi, xj ) = 1.

(22)

Table 5 lists the combined uncertainty for no correlations

(best-case scenario, equation (1)), as well as the combined

uncertainty for positive correlations affecting every variable

pair (worst-case scenario, equation (22)).

For a coverage factor of k = 2, the expanded uncertainty

for the non-correlated case is U(Ttrue) = 50.1 ◦C, and

for the worst-case scenario involving perfect correlation

U(Ttrue) = 92.5 ◦C. Minkina and Dudzik also concluded

that correlation between emissivity and ambient temperature

had the highest effect on uncertainty compared with other

correlations [15]. Given the very low standard uncertainty of

ambient temperature u(Tamb) in table 3, correlations with Tamb

would contribute little to the combined uncertainty in equation

(22). Therefore, the true expanded uncertainty is likely closer

to that assuming no correlations.

7. Discussion

For microscopic thermography of targets with relatively large

temperature gradients around small areas of interest, PSF

measurement and deconvolution is recommended. Without

it, the peak temperature can be biased significantly lower
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by as much as 150 ◦C for the measurement conditions used

here. When performing thermographic imaging of ‘hot spots’

smaller than the scenel size, the measured temperature is

biased lower than the true peak temperature of the object.

Under the measurement conditions used here, blurring by the

PSF is the biggest contributor to error causing the measured

maximum temperature to be lower than the actual maximum

temperature by about 50 ◦C. For this reason, it is compensated

by incorporating PSF deconvolution. Size of source effects

stemming from sub-scenel hot spots cannot be corrected

through deconvolution.

According to the GUM, measurement bias should be

corrected for if known and the uncertainty of that correction

factor added to the uncertainty budget. In the example

measurement of section 5, PSF deconvolution is the only

‘known’ corrective factor, and is accounted for in the budget

in table 5. However, the uncertainty in PSF correction

becomes the biggest source of uncertainty, higher than even the

uncertainty due to emissivity, which is usually considered to be

the source of the largest uncertainty. If the PSF is characterized

well, and some method of achieving repeatable focus is

adopted, this component of uncertainty can be decreased.

Motion blur may also be corrected using deconvolution similar

to PSF, if the motion is known with very low uncertainty.

The best way to reduce the bias due to size of source effects

is to decrease the scenel size to approach the scale of the ‘hot

spot’, or simply put, increase the magnification of the system.

The magnification is limited, however, by the wavelength of

the IR radiation measured, which sets the diffractive limit or

minimum possible resolution of the optics system. Higher

magnification also increases the motion blur (assuming the

same motion exists) with respect to the scenel size, narrows the

depth of field thus increasing the risk of unfocused blur, and

reduces the incident radiant flux on each pixel. Due to the lower

flux, longer integration times are necessary, which further

increase any motion blur. In short, higher magnification will

decrease the inherent bias, though camera sensitivity also needs

to be increased as well to reduce the necessary integration time.

Uncertainty components depend heavily on the attributes

of the camera, the measured thermal scene and definition of

the measurand. The combined uncertainty statement given is

strictly applicable only to the particular attributes considered

here. However, the procedure(s) outlined here to determine

the measurement uncertainty are applicable to other similar IR

thermographic measurements.

8. Conclusions

Analytical and numerical approaches were used to characterize

the uncertainty of IR thermographic measurement of the

maximum temperature of metal cutting tools. Some salient

features are as follows:

(1) A simple procedure is given for estimating uncertainty

stemming from thermal camera calibration. This is

based on the standard error of estimate of a least-squares

fit of the Sakuma–Hattori equation to calibration data.

The Sakuma–Hattori fit allows for uncertainty analysis

through analytical means.

(2) Both analytical and numerical methods are used to

determine the standard uncertainties arising from three

input variables, namely the central wavelength of the

camera spectral responsivity, tool emissivity and ambient

reflected temperature. Both methods gave results in close

agreement for these uncertainty components.

(3) The numerical method makes it easy to calculate standard

uncertainties due to variation of emissivity over the scene,

PSF and motion blur, which otherwise are not easy to

calculate, and have not been discussed in the metal cutting

literature. In addition, the Monte Carlo method is more

flexible in that it can use different probability distributions

for the measurement variables such as log-normal or

uniform distributions.

(4) The analytical method can easily show how components of

uncertainty vary with measured temperature and process

variables by providing algebraic solutions that detail the

non-linear interactions among the variables, over a wide

range of these variables. These complex relationships can

be communicated through plots similar to figure 4 through

figure 6.

(5) The two highest sources of uncertainty are from the

tool emissivity and point spread function. Emissivity

is regarded as the source of highest thermographic

measurement uncertainty in most of the literature [4], but it

is shown here that PSF can contribute to uncertainty on the

same order of magnitude as emissivity. It is believed that

this is the first study discussing measurement uncertainty

of peak tool temperatures due to PSF. For microscopic

thermography of targets with relatively large temperature

gradients around small areas of interest, PSF measurement

and deconvolution are recommended to compensate for

the bias induced by the PSF. Additionally, increasing the

spatial resolution, by increasing the magnification and/or

the sharpness of the PSF, will help reduce the measurement

uncertainty.

(6) For the example thermographic scene given in figure 7, the

expanded measurement uncertainty for the PSF-corrected,

single pixel maximum temperature is U = 50.1 ◦C

(k = 2), neglecting correlations among the variables. This

corresponds to a relative expanded uncertainty of about

4% (for the example scene in kelvin).
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