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Heisenberg and Schrödinger uncertainty principles give lower bounds for the prod-
uct of variances Var��A�Var��B� if the observables A ,B are not compatible, namely,
if the commutator �A ,B� is not zero. In this paper, we prove an uncertainty prin-
ciple in Schrödinger form where the bound for the product of variances
Var��A�Var��B� depends on the area spanned by the commutators i�� ,A� and
i�� ,B� with respect to an arbitrary quantum version of the Fisher information.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2748210�

I. INTRODUCTION

Let X ,Y be random variables on a probability space �� ,G , p� and consider the covariance
Covp�X ,Y�ªEp�XY�−Ep�X�Ep�Y� and the variance Varp�X�ªCovp�X ,X�. The best one can get
from the Cauchy-Schwartz inequality is the following inequality:

Varp�X�Varp�Y� − �Covp�X,Y��2 � 0. �1.1�

The uncertainty principle is one of the most striking consequences of noncommutativity in quan-
tum mechanics and is a key point in which quantum probability differs from classical probability.
We shall limit our discussion to the matrix case. If � is a state �i.e., density matrix�, A ,B observ-
ables �i.e., self-adjoint matrices�, set Cov��A ,B�ªTr��AB�−Tr��A�Tr��B�. Define also the sym-
metrized covariance as Cov�

s�A ,B�ª 1
2 �Cov��A ,B�+Cov��B ,A�� and the variance as Var�A�

ªCov��A ,A�=Cov�
s�A ,A�. Again from the Cauchy-Schwartz inequality, one gets the following

inequality:

Var��A�Var��B� − �Cov�
s�A,B��2 �

1

4
�Tr���A,B���2, �1.2�

which is known as the Schrödinger uncertainty principle. By omitting the covariance part, one gets
the Heisenberg uncertainty principle �see Refs. 12 and 27�. Inequality �1.2� states that the condi-
tion �A ,B��0 �i.e., A ,B are not compatible� gives a limitation to the simultaneous “smallness” of
both Var��A� and Var��B�, and this has very important consequences in quantum mechanics.
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However, noncommutativity can enter also from another side. One may naturally ask if there
are similar bounds for the product Var��A�Var��B� due to the fact that the observables A ,B do not
commute with the state �. Indeed this is the case, and our main result will provide such a bound
in terms of an “area” spanned by the commutators i�� ,A� and i�� ,B�.

To state our result we have to introduce the notion of quantum Fisher information. Let us
denote by Fop the class of normalized symmetric operator monotone functions on �0, +��. It is by
now a classical result of Petz that to each function f �Fop, one can associate a Riemannian metric
�A ,B��,f on the state manifold that is monotone and therefore a quantum version of the Fisher
information �see Refs. 2 and 23�. For example, the functions,

f��x� ª ��1 − ��
�x − 1�2

�x� − 1��x1−� − 1�
, x � 0, � � �0,1/2� ,

are associated with a quantum Fisher information that is related to the well known Wigner-Yanase-
Dyson �WYD� skew information. Indeed, for the WYD information of parameter �, one has

−
1

2
Tr����,A���1−�,A�� =

��1 − ��
2

�i��,A�,i��,A���,f�
.

We denote by Area�
f �u ,v� the area spanned by the tangent vectors u ,v with respect to the Rie-

mannian monotone metric associated with f �at the point ��. For f �Fop, let us define f�0�
ª limx→0 f�x�; f is said regular if f�0��0 �see Ref. 9�. The subset of regular elements of Fop is
denoted by Fop

r .
The goal of the present paper is to prove the following inequality:

Var��A�Var��B� − �Cov�
s�A,B��2 �

1

4
�f�0� Area�

f �i��,A�,i��,B���2, ∀ f � Fop
r . �1.3�

Note that inequality �1.3� holds trivially in the nonregular case. Our result has been inspired
by particular cases of the above theorem that have been proved recently. Luo and Zhang19 con-
jectured inequality �1.3� for the Wigner-Yanase metric, namely, for the function f1/2. This conjec-
ture was proved shortly after by Luo and Zhang.21 The case of WYD metric �namely, the metric
associated with f� for �� �0,1 /2�� was proved independently by Kosaki13 and by Yanagi et al.28

In the paper of Gibilisco and Isola,6 they emphasized the geometric aspects of the question and
they succeeded to formulate Eq. �1.3� for a general quantum Fisher information.

It is worth to emphasize the dynamical meaning of inequality �1.3�. Indeed, each positive
�self-adjoint� operator H determines a time evolution of a state � according to the formula �H�t�
ªe−iHt�eiHt. If �� ,H�=0, then there is no evolution. Therefore, we may say that the bound given
by Eq. �1.3� appears for those pairs of observables that are “dynamically incompatible,” that is, for
pairs H ,K such that the associated evolutions �H�t� ,�K�t� are different and nontrivial �this is
equivalent to the linear independence of �� ,H� and �� ,K��.

As a by-product of the work needed to prove our main result, we derive also other two
inequalities interesting per se. Indeed, a crucial ingredient in the proof of Eq. �1.3� is the following
formula:

f̃�x� ª
1

2
��x + 1� − �x − 1�2 f�0�

f�x� 	 ,

that associates to any element f �Fop another element f̃ �Fop. Let A0ªA−Tr��A�I and denote by
L� ,R�, respectively, the left and right multiplication by �. Let mf be the mean associated with f
�see Sec. VI below� and define
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C�
f �A0� ª Tr�mf�L�,R���A0�A0�, I�

f �A� ª Var��A� − C�
f̃ �A0� .

Hansen introduced I�
f �A� in the paper9 with a different approach. We shall call it “metric adjusted

skew information” or “f information” to stress the dependence on the function f . One may
consider I�

f �A� as a generalization of the WYD information. Let fRLD�x�=2x / �x+1�; we prove the
following inequality:

Var��A�Var��B� � �I�
f �A� + C�

fRLD�A0���I�
f �B� + C�

fRLD�B0��, ∀ f � Fop
r . �1.4�

Moreover, we also prove that if f �Fop,

Var��A�Var��B� � C�
f �A0�C�

f �B0� +
1

4
�Tr���A,B���2 ⇔ f�x� � 
x . �1.5�

Inequality �1.4� is a refinement of an inequality proved by Luo, for the Wigner-Yanase metric, and
by Hansen, in the general case �see Refs. 18 and 9�. Inequality �1.5� for the function 
x is due to
Park and, independently, to Luo �see Refs. 22 and 16�. Here we simply prove the optimality of
their bound in Fop.

The plan of the paper is as follows.
Sections II–IV contain preliminary notions. In Sec. II we recall the standard Heisenberg and

Schrödinger uncertainty principles. In Sec. III we give the fundamental definitions and theorems
for number and operator means. In Sec. IV we review the classification theorem for the quantum
Fisher informations.

Sections V–VIII contain the core of the paper. In Sec. V we show that to any operator

monotone function f �Fop, one may associate another element f̃ �Fop by formula �5.1�; we study
the properties of the mean mf̃ and of an associated function Hf, discussing, in particular, how they
behave as functions of f . In Sec. VI we prove the main result, namely, inequality �1.3�. Further-
more, we study the right side of the above inequality as a function of f and relate it to quantum
evolution of states, as said before. In Sec. VII we introduce the f correlation �a kind of generalized
WYD correlation� and the f information and discuss their relation with the quantum Fisher infor-
mation associated with f �Fop. In this way, we are able to show how inequality �1.3� generalizes
the previously known results. Moreover, we prove that by choosing the SLD �Symmetric Loga-
rithmic Derivative or Bures-Uhlmann� metric, the lower bound given in Eq. �1.3� is optimal and
strictly greater than the previously known optimal bound �given by the Wigner-Yanase metric�. In
Sec. VIII we prove a necessary and sufficient condition to get the equality in Eq. �1.3�.

In Sec. IX we prove inequality �1.4�. In Sec. X we produce counterexamples to prove the
logical independence of the uncertainty principles studied in this paper, that is, inequalities �1.3�
and �1.4�, from the standard Heisenberg-Schrödinger uncertainty principles. In Sec. XI we discuss
what happens for not faithful and pure states, also at the light of the notion of radial extension for
quantum Fisher information. In Sec. XII we show the optimality of an improvement of the
Heisenberg uncertainty principle recently proposed by Park and Luo, namely, we prove inequality
�1.5�.

II. HEISENBERG AND SCHRöDINGER UNCERTAINTY PRINCIPLES

Let MnªMn�C� �Mn,saªMn�C�sa� be the set of all n�n complex matrices �all n�n self-
adjoint matrices�. We shall denote general matrices by X ,Y , . . ., while letters A ,B , . . . will be used
for self-adjoint matrices. The Hilbert-Schmidt scalar product is denoted by �A ,B�=Tr�A*B�. The
adjoint of a matrix X is denoted by X†, while the adjoint of a superoperator T : �Mn , �· , · ��
→ �Mn , �· , · �� is denoted by T*. Let Dn be the set of strictly positive elements of Mn and Dn

1�Dn

be the set of strictly positive density matrices, namely,
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Dn
1 = �� � Mn�Tr � = 1,� � 0� .

From now on, we shall treat the case of faithful states, namely, ��0. We shall consider the general
case ��0 at the end of the paper, in Sec. XI, where we shall also discuss in detail what happens
for pure states.

Definition 2.1: Suppose that ��Dn
1 is fixed. Define X0ªX−Tr��X�I.

Definition 2.2: For A ,B�Mn,sa and ��Dn
1 define covariance and variance as

Cov��A,B� ª Tr��AB� − Tr��A�Tr��B� = Tr��A0B0� ,

Var��A� ª Tr��A2� − Tr��A�2 = Tr��A0
2� .

Proposition 2.1:

2 Re�Cov��A,B�� = Cov��A,B� + Cov��B,A� = Tr���A0,B0�� ,

2i Im�Cov��A,B�� = Cov��A,B� − Cov��B,A� = Tr���A,B�� ,

where, for any X ,Y �Mn, �X ,Y�ªXY −YX, �X ,Y�ªXY +YX.
We define the symmetrized covariance as Cov�

s�A ,B�ª 1
2 �Cov��A ,B�+Cov��B ,A��

=Re�Cov��A ,B��. The Cauchy-Schwartz inequality implies

�Cov��A,B��2 � Var��A�Var��B� .

From this, one gets the Schrödinger and Heisenberg uncertainty principles which are stated in the
following theorem.

Theorem 2.1: �See Ref. 27� For A ,B�Mn,sa and ��Dn
1, one has

Var��A�Var��B� − �Cov�
s�A,B��2 �

1

4
�Tr���A,B���2

that implies

Var��A�Var��B� �
1

4
�Tr���A,B���2.

III. MEANS FOR POSITIVE NUMBERS AND MATRICES

For this section we refer to the exposition contained in Ref. 26.
Definition 3.1: Let R+

ª �0, +��. A mean for pairs of positive numbers is a function m :R+

�R+→R+ such that

�i� m�x ,x�=x,
�ii� m�x ,y�=m�y ,x�,
�iii� x	y⇒x	m�x ,y�	y,
�iv� x	x� ,y	y�⇒m�x ,y�	m�x� ,y��,
�v� m is continuous, and
�vi� for t�0, one has m�tx , ty�= t ·m�x ,y�.

We denote by Mnu the set of means.
Definition 3.2: Fnu is the class of functions f :R+→R+ such that

�i� f�1�=1,
�ii� tf�t−1�= f�t�,
�iii� t� �0,1�⇒ f�t�� �0,1�,
�iv� t� �1,��⇒ f�t�� �1,��,
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�v� f is continuous, and
�vi� f is monotone increasing.

Proposition 3.1: There is bijection between Mnu and Fnu given by the formulas

mf�x,y� ª yf�xy−1�, fm�t� ª m�1,t� .

Remark 3.1:

f � g ⇔ mf � mg.

Here below we report the Kubo-Ando theory of matrix means �see Ref. 14� as exposed in Ref.
26. In the sequel, for any pairs of matrices A, B, we shall write A	B whenever B−A is positive
semidefinite.

Definition 3.3: Recall that Dnª �A�Mn�C� �A�0�. A mean for pairs of positive matrices is a
function m�· , · � :Dn�Dn→Dn such that conditions �i�–�v� of Definition 3.1 hold �with the matrix
partial order defined above� and the transformer inequality,

Cm�A,B�C* � m�CAC*,CBC*�, ∀ C ,

replaces �vi�. We denote by Mop the set of matrix means.
Example 3.1: The arithmetic, geometric, and harmonic �matrix� means are given, respec-

tively, by

A � B ª

1
2 �A + B� ,

A # B ª A1/2�A−1/2BA−1/2�1/2A1/2,

A!B ª 2�A−1 + B−1�−1.

Let us recall that a function f : �0,��→R is said operator monotone if, for any n�N, any A,
B�Mn such that 0�A�B, the inequalities 0� f�A�� f�B� hold. An operator monotone function
is said symmetric if f�x�=xf�x−1� and normalized if f�1�=1.

Definition 3.4: Fop is the class of operator monotone functions f :R+→R+ such that condi-
tions �i�–�v� of Definition 3.2 hold �with the matrix partial order defined above�.

Note that the above definition is redundant �see, for example, Ref. 1�; however, it emphasizes
well the similarity with the number case. Indeed, one has the following result.

Proposition 3.2: Fop is the class of functions f :R+→R+ such that

�i�� f�1�=1,
�ii�� tf�t−1�= f�t�, and
�iii�� f is operator monotone increasing.

Equivalently, f �Fop if and only if f is a normalized, symmetric, operator monotone function.
The fundamental result, due to Kubo and Ando, is the following.
Theorem 3.1: There is bijection between Mop and Fop given by the formula

mf�A,B� ª A1/2f�A−1/2BA−1/2�A1/2.

When A and B commute, we have that

mf�A,B� ª A · f�BA−1� .

Theorem 3.2: Among matrix means, arithmetic is the largest while harmonic is the smallest.
Proof: See Theorem 4.5 in Ref. 14. �

Corollary 3.1: For any f �Fop and for any x ,y�0, one has

072109-5 Uncertainty principle J. Math. Phys. 48, 072109 �2007�

Downloaded 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



2x

1 + x
� f�x� �

1 + x

2
,

2xy

x + y
� mf�x,y� �

x + y

2
.

IV. QUANTUM FISHER INFORMATIONS

In what follows, given a differential manifold N, we denote by T�N the tangent space to N at
the point ��N. In the commutative case a Markov morphism is a stochastic map T :Rn→Rm. Let

Pn ª �� � Rn��i � 0�, Pn
1
ª �� � Pn�
 �i = 1� .

The natural representation for the tangent space is given by

T�Pn
1 = �v � Rn�


i
vi = 0� .

In this case a monotone metric is defined as a family of Riemannian metrics g= �gn� on �Pn
1�, n

�N, such that

gT���
m �TX,TX� � g�

n�X,X�

holds for every Markov morphism T :Rn→Rm, for every ��Pn
1 and for every X�T�Pn

1.
The Fisher information is the Riemannian metric on Pn

1 defined as

�u,v��,F ª 

i

uivi

�i
, u,v � T�Pn

1.

Theorem 4.1: �See Ref. 2� There exists a unique monotone metric on Pn
1 (up to scalars) given

by the Fisher information.
In the noncommutative case, a Markov morphism is a completely positive and trace preserv-

ing operator T :Mn→Mm. Recall that there exists a natural identification of T�Dn
1 with the space of

self-adjoint traceless matrices, namely, for any ��Dn
1,

T�Dn
1 = �A � Mn,sa�Tr�A� = 0� .

In perfect analogy with the commutative case, a monotone metric in the noncommutative case
is a family of Riemannian metrics g= �gn� on �Dn

1�, n�N, such that

gT���
m �TX,TX� � g�

n�X,X�

holds for every Markov morphism T :Mn→Mm, for every ��Dn
1, and for every X�T�Dn

1. Mono-
tone metrics are usually normalized in such a way that �A ,��=0 implies gf ,��A ,A�=Tr��−1A2�.

To a normalized symmetric operator monotone function f �Fop, one associates the so-called
Chentsov-Morozowa �CM� function

cf�x,y� ª
1

yf�xy−1�
= mf�x,y�−1 for x,y � 0.

Define L��A�ª�A, and R��A�ªA�; observe that they are self-adjoint operators on Mn,sa. Since L�

and R� commute we may define cf�L� ,R��=mf�L� ,R��−1. Since mf is a matrix mean one gets the
following result.

Proposition 4.1: �See Ref. 23� mf�L� ,R�� and cf�L� ,R�� are positive and therefore self-adjoint.
Now we can state the fundamental theorems about noncommutative monotone metrics.
Theorem 4.2: �See Ref. 23� There exists a bijective correspondence between monotone met-
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rics on Dn
1 and normalized symmetric operator monotone functions f �Fop. This correspondence

is given by the formula

�A,B��,f ª Tr�Acf�L�,R���B�� = Tr�Amf�L�,R��−1�B�� .

We set �A��,f
2
ª �A ,A��,f. Because of the above theorems, we shall use the terms “monotone

metrics” and “quantum Fisher informations” �QFI� with the same meaning.
For a symmetric operator monotone function, define f�0�ª limx→0 f�x�=limx→+��f�x� /x�. Of

course, f�0��0. The condition f�0��0 is relevant because it is a necessary and sufficient condi-
tion for the existence of the so-called radial extension of a monotone metric to pure states �see
Refs. 25 and 24 or Sec. XI�. Following Ref. 9 we say that a function f �Fop is regular if and only
if f�0��0. The corresponding operator mean, CM function, associated QFI, etc., are said regular
too. The class of regular �nonregular� functions f �Fop is denoted by Fop

r �Fop
n �.

As proved by Lesniewski and Ruskai, each QFI is the Hessian of a suitable relative entropy
�see Ref. 15�.

V. THE FUNCTION f̃ AND THE PROPERTIES OF THE ASSOCIATED MEAN

In Ref. 9 the following result has been proved.
Proposition 5.1: �Proposition 3.4 in Ref. 9�
If f �Fop is regular, define the representing function as

df�x,y� ª
�x + y�

f�0�
− �x − y�2cf�x,y�, x,y � 0.

Then, the function df is positive and operator concave.
Definition 5.1: For f �Fop and x�0, set

f̃�x� ª
1

2
��x + 1� − �x − 1�2 f�0�

f�x� 	 . �5.1�

Proposition 5.2:

f � Fop ⇒ f̃ � Fop.

Proof: Easy calculations show that f̃ is normalized and symmetric. To prove that f is operator
monotone note that

�a� if f is not regular then f̃�x�= 1
2 �1+x� and the conclusion follows;

�b� if f is regular then f̃�x�= �f�0� /2�d�x ,1�. Since d is positive and operator concave so is f̃ .
We get the conclusion because operator concavity is equivalent to operator monotonicity
�see Ref. 10�. �

Remark 5.1: Note that f regular ⇒ f̃ not regular.

Following the terminology of Sec. III, we associate to f̃ both a number and an operator mean
by the formulas

mf̃�x,y� ª y f̃�xy−1� ,

mf̃�A,B� ª A1/2 f̃�A−1/2BA−1/2�A1/2.

Remark 5.2: Observe that mf̃�x ,y�= ��x+y� /2�− �f�0� /2���x−y�2 /yf�x /y��.
From Corollary 3.1 one obtains this result.
Corollary 5.1: For any f �Fop and for any x ,y�0, one has
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2x

1 + x
� f̃�x� �

1 + x

2
,

2xy

x + y
� mf̃�x,y� �

x + y

2
.

Moreover we have the following result, whose proof is elementary.
Proposition 5.3: For every x�0 and f ,g�Fop,

f̃�x� � g̃�x� ⇔
f�0�
f�x�

�
g�0�
g�x�

.

We synthetize some results in Table I.
Example 5.1: Let x�0 and �� �0,1 /2�. If we set

fSLD�x� ª
1 + x

2
, fWY�x� ª �1 + 
x

2
�2

, f��x� ª ��1 − ��
�x − 1�2

�x� − 1��x1−� − 1�
, fRLD�x� ª

2x

1 + x
,

one has �see Table I�

f̃SLD�x� =
2x

1 + x
, f̃WY�x� = 
x, f̃��x� ª

x� + x1−�

2
, f̃RLD�x� ª

1 + x

2
.

Note that if x�0 is fixed, the function �� �0,1 /2��x�+x1−��R+ is decreasing. This im-
plies

f̃SLD � f̃WY � f̃� � f̃RLD,

and therefore

mf̃SLD
� mf̃WY

� mf̃�
� mf̃RLD

,

that is, a refined arithmetic-geometric-harmonic inequality,

2xy

x + y
� 
xy �

1

2
�x�y1−� + x1−�y�� �

1 + x

2
, x,y � 0, � � �0,1/2� .

Remark 5.3: The metrics associated with the functions f� are equivalent to the metrics
induced by noncommutative 
 divergences, where �= �1−
� /2 �see Ref. 11�. They are very
important in information geometry and are related to the WYD information �see, for example,
Refs. 3,4,5 and 7�. Defining ���x�ª ��1+x�� /2�1/� for �� �1/2 ,1�, one has ���Fop. The two
parametric families f� ,�� give us a continuum of operator monotone functions from the smallest

TABLE I. We have, for some QFI the name, the function f , the mean mf, the value of f at 0, the function f̃ , and
the mean mf̃.

QFI f mf f�0� f̃ mf̃

RLD 2x / �x+1� 2/ �1/x+1/y� 0 �1+x� /2 �x+y� /2

WYD���
�� �−1,0�

��1−���x−1�2 /
�x�−1��x1−�−1�

��1−���x−y�2 /
�x�−y���x1−�−y1−��

0 �1+x� /2 �x+y�2

BKM �x−1� / log x �x−y� / �log x−log y� 0 �1+x� /2 �x+y� /2

WYD���
�� �0,1 /2�

��1−���x−1�2 /
�x�−1��x1−�−1�

��1−���x−y�2 /
�x�−y���x1−�−y1−��

��1−�� �x�+x1−�� /2 �x�y1−�+x1−�y�� /2

WY ��1+
x� /2�2 ��
x+
y� /2�2 1 /4 
x 
xy

SLD �1+x� /2 �x+y� /2 1 /2 2x / �x+1� 2/ �1/x+1/y�
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function 2x / �x+1� to the largest function �1+x� /2. Further examples of this kind of “bridges” can
be found in. Refs. 8 and 9. Note that also g0�x�ª
x is an element of Fop.

In the sequel we need to study the following function.
Definition 5.2: For any f �Fop, set

Hf�x,y,w,z� ª ��x + y� − mf̃�x,y��mf̃�w,z� + ��w + z� − mf̃�w,z��mf̃�x,y�, x,y,w,z � 0.

Proposition 5.4: For any f ,g�Fop,

f̃ � g̃

⇓
Hf�x,y,w,z� � Hg�x,y,w,z�, ∀ x,y,w,z � 0.

Proof: Since

�x + y� − mf̃�x,y� = �x + y� −
x + y

2
+

�x − y�2

2y

f�0�
f�x/y�

=
x + y

2
+

�x − y�2

2y

f�0�
f�x/y�

,

we have

Hf�x,y,w,z� ª ��x + y� − mf̃�x,y��mf̃�w,z� + ��w + z� − mf̃�w,z��mf̃�x,y�

= � x + y

2
+

�x − y�2

2y

f�0�
f�x/y���w + z

2
−

�w − z�2

2z

f�0�
f�w/z��

+ �w + z

2
+

�w − z�2

2z

f�0�
f�w/z��� x + y

2
−

�x − y�2

2y

f�0�
f�x/y��

=
1

2
��x + y��w + z� − � �x − y�2

y

�w − z�2

z
�� f�0�

f�x/y�
f�0�

f�w/z��	 . �5.2�

Since, from Proposition 5.3,

f̃ � g̃ ⇒
f�0�
f�t�

�
g�0�
g�t�

� 0, ∀ t � 0,

we obtain

Hf�x,y,w,z� � Hg�x,y,w,z�, ∀ x,y,w,z � 0

by elementary computations. �

Note that for f nonregular, one has

Hf�x,y,w,z� =
1

2
�x + y��w + z� .

On the other hand, for the function fSLD= 1
2 �1+x�, one has from Eq. �5.2�,

HSLD�x,y,w,z� =
1

2
��x + y��w + z� −

1

4
� �x − y�2�w − z�2

��x + y�/2���w + z�/2��	 = 2
xy�w2 + z2� + wz�x2 + y2�

�x + y��w + z�
.

Therefore, we have the following bounds.
Corollary 5.2: For any f �Fop,

0 	 2� xy�w2 + z2� + wz�x2 + y2�
�x + y��w + z� 	 � Hf�x,y,w,z� �

1

2
�x + y��w + z�, ∀ x,y,w,z � 0.

Remark 5.4: Note that for every x�0,
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fSLD�0�
fSLD�x�

=
1/2

�1 + x�/2
=

1

1 + x
�

1

1 + x + 2
x
=

1

�1 + 
x�2
=

1/4

�1 + 
x�2/4
=

fWY�0�
fWY�x�

,

so that for every x ,y ,w ,z�0,

HSLD�x,y,w,z� 	 HWY�x,y,w,z� .

VI. THE MAIN RESULT

Proposition 6.1: Given f �Fop, let �ªmf̃�L� ,R��. Recall that B0ªB−Tr��B�. One has

(i) Tr�B0��I��=0,
(ii) Tr�I��B0��=0, and
(iii) Tr���I��=1.

Proof.

�i� Since �L�−R���I�=0 and Tr��B0�=Tr��B�−Tr��B�=0, we have

�B0,mf̃�L�,R���I�� = Tr�B0mf̃�L�,R���I�� =
1

2
Tr�B0�L� + R���I�� −

1

2
f�0�Tr�B0cf�L�,R��

��L� − R��2�I�� =
1

2
Tr�B0� + �B0� = Tr��B0� = 0.

�ii� It is a simple consequence of �i� and of Proposition 4.1 Indeed,

�I,mf̃�L�,R���B0�� = �mf̃�L�,R���I�,B0� = 0.

�iii�

Tr���I�� = Tr�mf̃�L�,R���I�� =
1

2
Tr��L� + R���I�� −

1

2
f�0�Tr�cf�L�,R���L� − R��2�I�� = Tr���

= 1 . �

Proposition 6.2:

f�0��i��,A�,i��,B���,f = Tr��AB� + Tr��BA� − 2 Tr�A��B�� .

Proof: Let us introduce the shorthand notation

ĉf�x,y� ª �x − y�2cf�x,y� ,

so that by definition

f�0�ĉf�x,y� = �x + y� − 2mf̃�x,y� .

Therefore, we have

f�0��i��,A�,i��,B���,f = f�0�Tr��i��,A��cf�L�,R���i��,B���

= f�0���i��,A��,cf�L�,R���i��,B���

= f�0��i�L� − R���A�,cf�L�,R�� � �i�L� − R����B��

= f�0��A,�i�L� − R���* � cf�L�,R�� � �i�L� − R����B��

= f�0��A,− i�L� − R�� � cf�L�,R�� � �i�L� − R����B��

= f�0��A, ĉf�L�,R���B��
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= f�0�Tr�Aĉf�L�,R���B��

= Tr�A�f�0�ĉf�L�,R����B��

= Tr�A�L� + R� − 2mf̃�L�,R����B��

= �Tr��AB� + Tr��BA� − 2 Tr�Amf̃�L�,R���B�� .

�

Proposition 6.3:

f�0��i��,A�,i��,B���,f = 2�Re�Cov��A,B�� − Tr���A0�B0�� .

Proof: We have that

f�0��i��,A�,i��,B���,f = Tr��AB� + Tr��BA� − 2 Tr�A��B��

= Cov��A,B� + Cov��B,A� + 2 Tr��A�Tr��B� − 2 Tr�A��B��

= 2 Re�Cov��A,B�� + 2�Tr��A�Tr��B� − Tr�A��B��� .

Moreover, because of Proposition 6.1,

Tr��A�Tr��B� − Tr���A�B� = Tr��A�Tr��B� − Tr���A0 + Tr��A�I��B0 + Tr��B�I��

= Tr��A�Tr��B� − �Tr���A0�B0� + Tr��A�Tr���I�B0�

+ Tr���A0�I�Tr��B� + Tr��A�Tr��B�Tr���I�I��

= Tr��A�Tr��B� − Tr���A0�B0� − Tr��A�Tr��B�

= − Tr���A0�B0� . �

Therefore, the conclusion follows.
We recall some consequences of the spectral theorem we need in the sequel. Let � be a state,


i its eigenvalues, and Ei the associated eigenprojectors. The spectral decompositions of L� and R�

are the following:

L� = 

i


iLEi
, R� = 


i


iREi
.

Therefore, from the spectral theorem for commuting self-adjoint operators, we get the following
result.

Corollary 6.1: Let � be a state, 
i its eigenvalues, and Ei the projectors of the associated
eigenspaces. If s : �0, +��� �0, +��→R is a continuous function, then

s�L�,R�� = 

i,j

s�
i,
 j�LEi
REj

.

Let V be a finite dimensional real vector space with a scalar product g�· , · �. We define, for
v ,w�V,

Areag�v,w� ª 
g�v,v�g�w,w� − �g�v,w��2.

In the Euclidean plane, Areag�v ,w� is the area of the parallelogram spanned by v and w. If we are
dealing with a � point-depending Riemannian metric, we write Area�

g. If f �Fop, we denote by
Area�

f the area functional associated with the monotone metric �· , · ��,f.
We are now ready for the main results.
Theorem 6.1: For any f ,g�Fop,
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(i)

Var��A�Var��B� − �Cov�
s�A,B��2 � � f�0�

2
Area�

f �i��,A�,i��,B���2

.

(ii)

g̃ � f̃ ⇒
g�0�

2
Area�

g�i��,A�,i��,B�� �
f�0�

2
Area�

f �i��,A�,i��,B�� .

Proof: Fix A ,B�Mn,sa. Let us introduce, for the sake of brevity,

F�f� ª �Var��A�Var��B� − �Cov�
s�A,B��2� − � f�0�

2
Area�

f �i��,A�,i��,B���2

.

Then, we have to show that F�f��0 and g̃� f̃ ⇒F�g��F�f�.
Let ��i� be a complete orthonormal base composed of eigenvectors of � and �
i� the corre-

sponding eigenvalues. Set aij ��A0�i �� j� and bij ��B0�i �� j�. Note that aij�Aijª the i , j entry of
A.

Then we calculate

Var��A� = Tr��A0
2� =

1

2

i,j

�
i + 
 j�aijaji,

Var��B� = Tr��B0
2� =

1

2

i,j

�
i + 
 j�bijbji,

Cov�
s�A,B� = Re�Cov��A,B�� = Re�Tr��A0B0�� =

1

2

i,j

�
i + 
 j�Re�aijbji� ,

f�0�
2

�i��,A���,f
2 = Var��A� − Tr�A0mf̃�L�,R��A0� =

1

2

i,j

�
i + 
 j�aijaji − 

i,j

mf̃�
i,
 j�aijaji,

f�0�
2

�i��,B���,f
2 =

1

2

i,j

�
i + 
 j�bijbji − 

i,j

mf̃�
i,
 j�bijbji,

f�0�
2

�i��,A�,i��,B���,f = Re�Cov��A,B�� − Re�Tr�mf̃�L�,R���A0�B0�� =
1

2

i,j

�
i + 
 j�Re�aijbji�

− 

i,j

mf̃�
i,
 j�Re�aijbji� .

Set

� ª Var��A�Var��B� −
f�0�2

4
�i��,A���,f

2 �i��,B���,f
2

=
1

2 

i,j,k,l

��
i + 
 j�mf̃�
k,
l� + �
k + 
l�mf̃�
i,
 j� − 2mf̃�
i,
 j�mf̃�
k,
l��aijajibklblk

=
1

4 

i,j,k,l

��
i + 
 j�mf̃�
k,
l� + �
k + 
l�mf̃�
i,
 j� − 2mf̃�
i,
 j�mf̃�
k,
l���aijajibklblk + aklalkbijbji� ,
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� ª �Cov�
s�A,B��2 −

f�0�2

4
��i��,A�,i��,B���,f

2 �2 =
1

2 

i,j,k,l

��
i + 
 j�mf̃�
k,
l� + �
k + 
l�mf̃�
i,
 j�

− 2mf̃�
i,
 j�mf̃�
k,
l��Re�aijbji�Re�aklblk� ,

Ki,j,k,l ª Ki,j,k,l��,A,B� ª �aij�2�bkl�2 + �akl�2�bij�2 − 2 Re�aijbji�Re�aklblk� .

Since

�aij�2�bkl�2 + �akl�2�bij�2 � 2�aijbji��aklblk� � 2�Re�aijbji�Re�aklblk�� ,

we have that Ki,j,k,l�0. Note that Ki,j,k,l does not depend on f .
Then

F�f� = � − � =
1

4 

i,j,k,l

��
i + 
 j�mf̃�
k,
l� + �
k + 
l�mf̃�
i,
 j� − 2mf̃�
i,
 j�mf̃�
k,
l��

���aij�2�bkl�2 + �akl�2�bij�2 − 2 Re�aijbji�Re�aklblk�� =
1

4 

i,j,k,l

Hf�
i,
 j,
k,
l�Ki,j,k,l.

Because of Proposition 5.4 and Corollary 5.2, one has

f̃ � g̃ ⇒ 0 � Hf�
i,
 j,
k,
l� � Hg�
i,
 j,
k,
l� ,

and therefore

f̃ � g̃ ⇒ 0 � F�f� � F�g� ,

and we get the thesis. �

The standard Schrödinger uncertainty principle reads as

Area�
Covs

�A,B� �
1

2
�Tr���A,B��� ,

while the main result of the present paper can be expressed as

Area�
Covs

�A,B� �
f�0�

2
Area�

f �i��,A�,i��,B�� .

Corollary 3.2: For any f �Fop, A ,B�Mn,sa, one has

fSLD�0�
2

Area�
fSLD�i��,A�,i��,B�� �

f�0�
2

Area�
f �i��,A�,i��,B�� .

Proof: Immediate consequence of Corollary 3.1 �

Remark 6.1: Setting

N�
f �A,B� ª Area�

Covs
�A,B� −

f�0�
2

Area�
f �i��,A�,i��,B�� � 0,

we may strengthen the main result to

Area�
Covs

�A,B� �
f�0�

2
Area�

f �i��,A�,i��,B�� + N�
SLD�A,B� .
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The above geometric considerations take a particularly interesting form when considering the
dynamics of quantum states. Suppose that we have a positive �self-adjoint� operator H determining
a quantum evolution. The state � evolves according to the formula

�H�t� ª e−itH�eitH.

We say that �H�t� is the time evolution of �=�H�0� determined by H. For the evolution �H�t�, this
is equivalent to satisfy the quantum analog of the Liouville theorem in classical statistical me-
chanics, namely, the Landau-von Neumann equation.

Definition 6.1: Let ��t� be a curve in Dn
1 and let H�Mn,sa. We say that ��t� satisfies the

Landau-von Neumann equation with respect to H if

�̇�t� =
d

dt
��t� = i���t�,H� .

Satisfying the Landau-von Neumann equation is equivalent to ��t�=�H�t�=e−itH�eitH.
From Theorem 6.1, we get the following inequality.
Proposition 6.4: Let ��0 be a state and H ,K�Mn,sa. Suppose that �=�H�0�=�K�0�. Then,

for any f �Fop, one has

Area�
Covs

�H,K� �
f�0�

2
Area�

f ��̇H�0�, �̇K�0�� .

Therefore, as we said in the Introduction, the bound on the right side of our inequality appears
when the evolutions �H�t� ,�K�t� are different and not trivial.

VII. THE f-CORRELATION ASSOCIATED WITH QUANTUM FISHER INFORMATIONS

Mainly to confront our result with previous results, we introduce the notions of f correlation
and f information.

Definition 7.1:

C�
f �A,B� = C�

f �B,A� ª Tr�mf�L�,R���A�B� ,

C�
f �A� ª C�

f �A,A� .

Definition 7.2: For A ,B�Mn,sa, ��Dn
1, and f �Fop, the metric adjusted correlation �or f

correlation� and the metric adjusted skew information �or f information� are defined as

Corr�
f �A,B� ª Tr��AB� − C�

f̃ �A,B� = Tr��AB� − Tr�mf̃�L�,R���A�B� ,

I�
f �A� ª Corr�

f �A,A� .

The definition of Corr�
f �A ,B� appeared in Ref. 9 in a different form. For the f correlation there

is an analog of Proposition 2.1 for covariance.
Lemma 7.1: For any A ,B�Mn,sa, ��Dn

1, and f �Fop, one has

2 Re�Corr�
f �A,B�� = Corr�

f �A,B� + Corr�
f �B,A� = f�0��i��,A�,i��,B���,f ,

2i Im�Corr�
f �A,B�� = Corr�

f �A,B� − Corr�
f �B,A� = Tr���A,B�� .

Proof: We have that

Corr�
f �A,B� − Corr�

f �B,A� = Tr���A,B�� ,

which is purely imaginary.
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This implies

Re�Corr�
f �A,B�� = Re�Corr�

f �B,A�� ,

so that

2 Re�Corr�
f �A,B�� = Corr�

f �A,B� + Corr�
f �B,A� ,

2i Im�Corr�
f �A,B�� = Corr�

f �A,B� − Corr�
f �B,A� .

Since

Corr�
f �A,B� + Corr�

f �B,A� = Tr��AB� + Tr��BA� − 2 Tr�A��B�� ,

the conclusion follows from Proposition 6.2. �

Corollary 7.1:

I�
f �A� = Corr�

f �A,A� =
f�0�

2
�i��,A�,i��,A���,f =

f�0�
2

�i��,A���,f
2 .

Remark 7.1: If

f��x� ª ��1 − ��
�x − 1�2

�x� − 1��x1−� − 1�
, � � �0,

1

2
	 ,

then

I�
f��A� =

f��0�
2

Tr�i��,A�cf�
�L�,R��i��,A�� = −

1

2
Tr����,A���1−�,A�� ,

so I�
f��A� coincides with the WYD skew information.
Let us reformulate the main result in terms of f correlation.
Proposition 7.1: For any f �Fop, one has

� f�0�
2

Area�
f �i��,A�,i��,B���2

= I�
f �A�I�

f �B� − �Re�Corr�
f �A,B���2.

Proof:

� f�0�
2

Area�
f �i��,A�,i��,B���2

=
f�0�2

4
��i��,A�,i��,A���,f�i��,B�,i��,B���,f − �i��,A�,i��,B���,f

2 �

= � f�0�
2

�i��,A���,f
2 �� f�0�

2
�i��,B���,f

2 � − � f�0�
2

�i��,A�,i��,B���,f�2

= I�
f �A�I�

f �B�

− �Re�Corr�
f �A,B���2 . �

Therefore, our main result states that

Var��A�Var��B� − �Re�Cov��A,B���2 � I�
f �A�I�

f �B� − �Re�Corr�
f �A,B���2.

Recall that we introduced, for fixed � ,A ,B, the functional
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F�f� = Var��A�Var��B� − �Cov�
s�A,B��2 − � f�0�

2
Area�

f �i��,A�,i��,B���2

= Var��A�Var��B� − �Re�Cov��A,B���2 − I�
f �A�I�

f �B� + �Re�Corr�
f �A,B���2.

As the main result, we proved that, for any f ,g�Fop, F�f��0 and f̃ � g̃⇒F�f��F�g�.
Corollary 7.2: Suppose that � ,A ,B are fixed. Then the function of � given by

F��� ª F�f��

is decreasing on �0, 1
2
� and F�1/2��0; therefore F����0.

Proof: Given x�0, the function �� f̃��x�= 1
2 �x�+x1−�� is decreasing in �0, 1

2
�, so that

�1 � �2 ⇒ f̃�1
� f̃�2

⇒ F��1� � F��2� .
�

Remark 7.2: The above corollary was the content of Theorem 5, the main result in Ref. 13,
and of Proposition IV.1 in Ref. 28. Note that, because of Corollary 7.2 the optimal bound previ-
ously known was given by fWY, namely, the bound of Wigner-Yanase metric �this was due to
Kosaki in Ref. 13�. Remark 5.4 implies that the bound given by the SLD area is strictly greater
than that given by the WY area.

Proposition 7.2:

Cov��A,B� = Corr�
f �A,B� + C�

f̃ �A0,B0� ,

Var��A� = I�
f �A� + C�

f̃ �A0� .

Proof: The calculations of Proposition 6.3 imply that

Corr�
f �A,B� − Cov��A,B� = Tr��A�Tr��B� − Tr���A�B� = − Tr�mf̃�L�,R���A0�B0� = − C�

f̃ �A0,B0� .

�

Luo17 suggested that if one considers the variance as a measure of “uncertainty” of an ob-
servable A in the state �, then the above equality splits the variance in a “quantum” part �I�

f �A��
plus a “classical” part �C�

f̃ �A0��.

VIII. CONDITIONS FOR EQUALITY

In this section we give a necessary and sufficient condition to have equality in our main result.
Proposition 8.1: The inequality of Theorem 6.1 is an equality if and only if A0 and B0 are

proportional.
Proof: If A0=
B0, with 
�R, then

Var��A�Var��B� − ��Re�Cov��A,B���2� = Tr��A0
2�Tr��B0

2� − �Re�Tr��A0B0���2 = Tr���
B0�2�Tr��B0
2�

− �Re�Tr��
B0B0���2 = 
2 Tr��B0
2�2 − 
2�Tr��B0

2��2 = 0.

In this case the inequality is just the equality 0=0.
Now we suppose that A0 ,B0 are not proportional and we prove that the inequality is strict. We

use the same notations as in the proof of Theorem 6.1.
Note that
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Var��A�Var��B� − �Re�Cov��A,B���2 − I�
f �A�I�

f �B� + �Re�Corr�
f �A,B���2

= � − � =
1

4 

i,j,k,l

Hf�
i,
 j,
k,
l�Ki,j,k,l�A,B�

and

Hf�
i,
 j,
k,
l� � 0, Ki,j,k,l�A,B� � 0, ∀ i, j,k,l .

Therefore, the strict inequality is equivalent to �−��0, which is, in turn, equivalent to

Ki,j,k,l�A,B� � 0,

for some i , j ,k , l.
From the fact that A0 ,B0 are not proportional, one can derive that also the matrices �aij� , �bij�

are not proportional and this implies �the other cases being trivial� that there exist �complex�
aij ,bij ,akl ,bkl�0 and �real� 
 ,��0 such that

aij = 
bij, akl = �bkl, 
 � � .

We get

Ki,j,k,l�A,B� = �aij�2�bkl�2 + �akl�2�bij�2 − 2 Re�aijbji�Re�aklblk�

= �aij�2�bkl�2 + ��bkl�2�aij



�2

− 2 Re�aij
aij



�Re��bklblk�

= �1 +
�2


2 ��aij�2�bkl�2 − 2
�



�aij�2�bkl�2

= �1 +
�2


2 − 2
�



��aij�2�bkl�2 = �1 −

�



�2

�aij�2�bkl�2 � 0,

because

�1 −
�



� � 0.

Therefore,

� − � � 0,

and this ends the proof. �

The particular case f = f� �where �� �0, 1
2
�� of the above proposition has been proved in

Proposition 6 in Ref. 13.

IX. ANOTHER INEQUALITY

The study of the mean mf̃ allows us to get another inequality that can be seen as an uncertainty
principle in Heisenberg form. Recall that

fRLD�x� ª
2x

x + 1
.

Proposition 9.1:

Var��A� � I�
f �A� + C�

fRLD�A0�, ∀ f � Fop.

Proof: We use the notations employed in the proof of Theorem 6.1. Since
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Var��A� = Tr��A0
2� =

1

2

i,j

�
i + 
 j�aijaji,

I�
f �A� = Var��A� − Tr�A0mf̃�L�,R��A0� =

1

2

i,j

�
i + 
 j�aijaji − 

i,j

mf̃�
i,
 j�aijaji,

C�
fRLD�A0� = 


i,j
mh0

�
i,
 j�aijaji,

using Corollary 5.1 we have

Var��A� − I�
f �A� − C�

fRLD�A0� = 

i,j

�mf̃�
i,
 j� − mh0
�
i,
 j���aij�2 � 0 . �

From this we get the following inequality.
Theorem 9.1:

Var��A�Var��B� � �I�
f �A� + C�

fRLD�A0���I�
f �B� + C�

fRLD�B0��, ∀ f � Fop. �9.1�

Since C�
fRLD�A0��0, we obtain, as a corollary, two results due to Luo, for the case f = fWY

= 1
4 �1+
x�2, and to Hansen, for the general case �see Refs. 18 and 9�.

Proposition 9.2:

Var��A� � I�
f �A�, ∀ f � Fop.

Theorem 9.2:

Var��A�Var��B� � I�
f �A�I�

f �B� =
f�0�2

4
�i��,A���,f

2 �i��,B���,f
2 , ∀ f � Fop.

Let us study how the bound I�
f �A�I�

f �B� depends on f .
Proposition 9.3: For any f ,g�Fop,

f � g ⇒ C�
f �A0� � C�

g�A0� ,

f̃ � g̃ ⇒ I�
f �A� � I�

g�A� .

Proof: We still use notations of Theorem 6.1. Since mf �mg,

C�
g�A0� − C�

f �A0� = 

i,j

mg�
i,
 j�aijaji − 

i,j

mf�
i,
 j�aijaji = 

i,j

�mg�
i,
 j� − mf�
i,
 j���aij�2 � 0.

The second inequality is an immediate consequence of the first one. �

Corollary 9.1:

I�
SLD�A� � I�

f �A�, ∀ f � Fop.

Proof: Immediate consequence of Corollary 5.1. �

Corollary 9.2:

f̃ � g̃ ⇒ I�
f �A�I�

f �B� � I�
g�A�I�

g�B� .

We discuss, now, the equality in Theorem 9.2.
Proposition 9.4:

Var��A�Var��B� = I�
f �A�I�

f �B� ⇔ A0 = B0 = 0.
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Proof: Because of Proposition 9.2, we have

Var��A�Var��B� = I�
f �A�I�

f �B� ⇔ Var��A� = I�
f �A�, Var��B� = I�

f �B� .

Hence, we need to show Var��A�= I�
f �A�⇔A0=0. Indeed, using the same notations as in Theorem

6.1,

Var��A� = I�
f �A� ⇔ Tr�A0mf̃�L�,R��A0� = 0 ⇔ 


i,j
mf̃�
i,
 j�aijaji = 0 ⇔ aij = 0, ∀ i, j ⇔ A0 = 0.

�

X. RELATION WITH THE STANDARD UNCERTAINTY PRINCIPLES

Some authors tried to prove the following inequalities:

� f�0�
2

Area�i��,A�,i��,B���2

= I�
f �A�I�

f �B� − �Re�Corr�
f �A,B���2 �

1

4
�Tr���A,B���2, �10.1�

I�
f �A�I�

f �B� �
1

4
�Tr���A,B���2. �10.2�

They wanted to obtain the standard Heisenberg-Schrödinger uncertainty principles as conse-
quences of the uncertainty principles discussed in the present paper. Actually inequality �10.1� has
been proved false for f = f�, that is, for the WYD case �see pp. 632 and 642–644 in Ref. 13, p.
4404 in Ref. 28, and Ref. 20�. However, the discussion of Secs. VI–IX shows that the upper
bounds

G�f� =
f�0�

2
Area�i��,A�,i��,B��, N�f� ª I�

f �A�I�
f �B�

can be larger than those of the WYD metric �we showed it for the SLD metric in Remark 5.4�. It
is, therefore, natural to ask if the above inequalities, that are false for the WYD metric, can be true
for some different QFI �for example, for the SLD metric�. The following theorem shows that this
is not the case, even on 2�2 matrices.

Theorem 10.1: There exist 2�2 self-adjoint matrices A and B and a density matrix � such
that

I�
f �A�I�

f �B� 	
1

4
�Tr���A,B���2, ∀ f � Fop.

Therefore, for these � ,A ,B, we also have

� f�0�
2

Area�i��,A�,i��,B���2

= I�
f �A�I�

f �B� − �Re�Corr�
f �A,B���2 	

1

4
�Tr���A,B���2, ∀ f � Fop.

Proof: We use notations of Theorem 6.1: let ��i� be a complete orthonormal base composed of
eigenvectors of � and �
i� the corresponding eigenvalues. Set aij ��A0�i �� j� and bij ��B0�i �� j�.
In what follows, 
1�
2�0, 
1+
2=1, and

� = �
1 0

0 
2
�, A = � 0 i

− i 0
�, B = �0 1

1 0
�

�in terms of Pauli matrices, A=−�2 and B=�1�. Simple calculations show that �aii�= �bii�=0, while
�aij�= �bij�=1 for any i , j such that i� j. Therefore,
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Var��A� = Tr��A0� =
1

2

i,j

�
i + 
 j�aijaji =
1

2
��
1 + 
2� + �
2 + 
1�� = 1,

C�
f̃ �A0� = 


i,j
mf̃�
i,
 j�aijaji = �mf̃�
1,
2� + mf̃�
1,
2�� = 2mf̃�
1,
2� ,

I�
f �A� = Var��A� − C�

f̃ �A0� = 1 − 2mf̃�
1,
2� .

By the same reasoning,

Var��B� = 1,

C�
f̃ �B0� = 2mf̃�
1,
2� ,

I�
f �B� = 1 − 2mf̃�
1,
2� .

Moreover, by direct calculation, one has

1

4
�Tr���A,B���2 = �
1 − 
2�2.

Now, recall that since mf̃ is a mean �and because of Corollary 3.1�, one has for any f �Fop,


1 � mf̃�
1,
2� � 
2 � 0,

1 − 2mf̃�
1,
2� = �
1 + 
2� − 2mf̃�
1,
2� � 0.

Hence, the following inequalities are equivalent:

I�
f �A�I�

f �B� 	
1

4
�Tr���A,B���2,

�1 − 2mf̃�
1,
2��2 	 �
1 − 
2�2,

�
1 + 
2� − 2mf̃�
1,
2� 	 
1 − 
2,

2
2 	 2mf̃�
1,
2� ,


2 	 mf̃�
1,
2� ,

and so we get the conclusion. �

Note that

1

4
�Tr���A,B���2 � I�

f �A�I�
f �B�

is obviously false, in general: if one takes A=B, the left side is zero and the right side could be
positive at the same time.

A similar argument applies to the inequality
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1

4
�Tr���A,B���2 � I�

f �A�I�
f �B� − �Re�Corr�

f �A,B���2 = � f�0�
2

Areaf�i��,A�,i��,B���2

.

Indeed, one may choose � ,A ,B such that �A ,B�=0 while �� ,A� , �� ,B� are not proportional, so that
they span a positive area.

We may conclude that the Heisenberg and Schrödinger uncertainty principles,

Var��A�Var��B� �
1

4
�Tr���A,B���2,

Area�
Covs

�A,B� �
1

2
�Tr���A,B��� ,

cannot be deduced from the uncertainty principles,

Var��A�Var��B� � I�
f �A�I�

f �B� ,

Area�
Covs

�A,B� �
f�0�

2
Area�

f �i��,A�,i��,B�� ,

and vice versa.
The above described mistake appeared several times in the literature �see Theorem 2 in Ref.

18, Theorem 2 in Ref. 19, Theorem 1 in Ref. 21, and Note 1, Sec. 3.2 in Ref. 9�. It can be helpful
to explain its origin, again along the lines of Ref. 13 �see also Ref. 28�.

We have seen that

1

2i
Tr���A,B�� =

1

2i
�Corr�

f �A,B� − Corr�
f �B,A�� = Im�Corr�

f �A,B�� ,

and therefore

1

4
�Tr���A,B���2 = �Im�Corr�

f �A,B���2 � �Corr�
f �A,B��2.

If there were a Cauchy-Schwartz-type estimate,

�Corr�
f �A,B��2 � Corr�

f �A,A�Corr�
f �B,B� , �10.3�

using, for example, Theorem 9.2, one would get a refined Heisenberg uncertainty principle in the
form

Var��A�Var��B� � I�
f �A�I�

f �B� �
1

4
�Tr���A,B���2.

By Theorem 10.1 we know that this is impossible. The wrong point is the Cauchy-Schwartz
estimate �Eq. �10.3��, which is false. This depends on the following facts. The sesquilinear form

Corr�
f �X,Y� ª Tr��X†Y� − Tr�X†mf̃�L�,R���Y��

on the complex space Mn is not positive �see p. 632 in Ref. 13�. On the other hand, Corr�
f �A ,B� is

not a real form on the real space Mn,sa: also in this case, one cannot prove the desired Cauchy-
Schwartz inequality. The best one can have is a Cauchy-Schwartz estimate only for the �real�
positive bilinear form Re�Corr�

f �A ,B�� on Mn,sa �see Ref. 13 �p. 643� and Ref. 20�. This would
simply imply
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� f�0�
2

Area�
f �i��,A�,i��,B���2

= I�
f �A�I�

f �B� − �Re�Corr�
f �A,B���2 � 0.

XI. NOT FAITHFUL STATES AND PURE STATES

We discuss, now, the general case ��0.
Proposition 11.1: The function mf̃ : �0,��� �0,��→ �0,�� has a continuous extension to

�0,��� �0,��.
Proof: If f is regular then, for example,

lim
�x,y�→�0,y0�

mf̃�x,y� =
y0

2
−

f�0�y0
2

2y0f�0�
= 0.

If f is not regular then mf̃�x ,y�= �x+y� /2 and we are done �see Ref. 9�. �

The definition of f correlation still makes sense and the inequality of Theorem 6.1

Var��A�Var��B� − �Re�Cov��A,B���2 � I�
f �A�I�

f �B� − �Re�Corr�
f �A,B���2,

holds by continuity for arbitrary �not necessarily faithful� states.
In what follows, we study the pure state case.
Corollary 11.1: If s : �0, +��� �0, +��→R is a continuous function and � is a pure state, then

s�L�,R���A� = �A� .

Proof: Consequence of Corollary 6.1 �

Lemma 11.1: If � is pure, then Tr���A����B���=Tr��A��Tr��B��.
Proof: Suppose for simplicity that �=diag�1,0 , . . . ,0� �the general case follows easily from

this�. Then �A�=diag�A11,0 , . . . ,0� and the same holds for B. Therefore ��A����B��
=diag�A11B11,0 , . . . ,0�. This implies

Tr���A����B��� = A11B11 = Tr��A��Tr��B�� . �

Lemma 11.2: If � is pure, then

Tr�mf�L�,R���A�B� = Tr��A�Tr��B� .

Proof: By Corollary 11.1, one has

mf�L�,R���A� = �A� ,

and therefore

Tr�mf�L�,R���A�B� = Tr��A�B� = Tr���A����B��� = Tr��A��Tr��B�� = Tr��A�Tr��B� .

�

Corollary 11.2: If � is pure, then

C�
f �A0,B0� = Tr�mf�L�,R���A0�B0� = Tr��A0�Tr��B0� = 0.

Proposition 11.2: If � is pure, then

Corr�
f �A,B� = Cov��A,B�, ∀ f � Fop.

Proof: Immediate from the above corollary and Proposition 7.2. �

The case I�
f �A�=Var��A� was proved by Hansen in Theorem 3.8 �p. 16� in Ref. 9.

Therefore, on pure states we have the equalities

Var��A�Var��B� − �Re�Cov��A,B���2 = I�
f �A�I�

f �B� − �Re�Corr�
f �A,B���2,
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Var��A�Var��B� = I�
f �A�I�

f �B� .

This implies that if a sequence of faithful states Dn converges to the pure state �, then the limit

lim
n→+�

� f�0�
2

AreaDn

f �i�Dn,A�,i�Dn,B���2

= lim
n→+�

IDn

f �A�IDn

f �B� − �Re�CorrDn

f �A,B���2 = I�
f �A�I�

f �B�

− �Re�Corr�
f �A,B���2 = Var��A�Var��B� − �Re�Cov��A,B���2

does not depend on f .
This result has an interesting alternative explanation, using a theorem by Petz and Sudar that

describes the possible extension of QFI to pure states �see Ref. 25�. We devote the rest of the
section to explain this phenomenon.

Let Mn
0=Mn

0�C� be the set of faithful states whose eigenvalues are all distinct. Recall that the
pure states are identified with CPn−1, the complex projective space. On CPn−1 one has a natural
metric, the Fubini-Study metric �denoted by �· , · ��,FS�. We denote by D the elements of Mn

0 and by
� the elements of CPn−1. We can define a projection � :Mn

0→CPn−1 as follows: ��D��CPn−1 is
the pure state associated with the one-dimensional eigenspace corresponding to the largest eigen-
value of D�Mn

0. With this definition, � :Mn
0→CPn−1 is a smooth fiber bundle. The structure group

is U�1��U�n−1� �where U�k� is the group of k�k unitary matrices�. The fiber space is �−1�e�,
where e is the ray generated by the vector �1,0 , . . . ,0��Cn. Now, fix a monotone metric �· , · �D,f.
We denote by TD� the differential of � at D and let HD be the orthogonal complement of
ker�TD�� with respect to �· , · �D,f. Since TD� is surjective, the restriction of TD� gives a linear
isomorphism between HD and T��D�CPn−1. For any tangent vector A�T��D�CPn−1, there is a
unique “lift” AD�HD�TD�Mn

0� such that �TD���AD�=A.
Definition 11.1: �Ref. 25� We say that the sequence Dn�Mn

0 radially converges to �
�CPn−1 if Dn→� as density matrices in Mn and ��Dn�=�, ∀n�N.

Definition 11.2: �Ref. 25� A metric k on CPn−1 is a radial extension of a metric g on Mn
0 if for

any sequence Dn�Mn
0, radially convergent to a point ��CPn−1, and for any tangent vectors

A ,B�T�CPn−1, one has

lim
n→+�

g�ADn
,BDn

� = k�A,B� .

Theorem 11.1: (Ref. 25) A monotone metric admits a radial extension if and only if it is
regular, namely, if and only if f�0��0. In this case the associated extension is just a multiple of
the Fubini-Study metric according to the formula

lim
n→+�

�ADn
,BDn

�Dn,f =
1

2f�0�
�A,B��,FS.

Lemma 11.3: (Ref. 24) With the above definition,

��D� = � ⇒ �D,A� = ���,A��D,

namely, the lift of commutator is the commutator of the lift.
This implies the following result.
Proposition 11.3: If Dn→� radially, then

lim
n→+�

f�0�AreaDn

f �i�Dn,A�,i�Dn,B�� =
1

2
Area�

FS�i��,A�,i��,B�� .

Hence, we have obtained the limit behavior by a totally different argument.
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XII. OPTIMALITY OF AN IMPROVEMENT FOR HEISENBERG UNCERTAINTY PRINCIPLE

The following result has been proved by Park in Ref. 22 and independently by Luo in Ref. 16.
Theorem 12.1: If g0�x�=
x, then

Var��A�Var��B� � C�
g0�A0�C�

g0�B0� +
1

4
�Tr���A,B���2.

Note that the term C�
g0�A0�C�

g0�B0� disappears for pure states. We prove that the above result is
the best one can have considering functions f �Fop.

Theorem 12.2: For any f �Fop, we have

Var��A�Var��B� � C�
f �A0�C f

��B0� +
1

4
�Tr���A,B���2 ⇔ f�x� � 
x .

Proof: We have

f�x� � g�x� ⇒ mf�x,y� � mg�x,y� ⇒ C�
f �A0� � C�

g�A0� ,

and therefore if f�x��
x we are done.
If f�x0��
x0 for a certain x0, we produce a counterexample. To this end, we do the same

process we did in the proof of Theorem 10.1.
Consider again 
1�
2�0, 
1+
2=1, and

� = �
1 0

0 
2
�, A = � 0 i

− i 0
�, B = �0 1

1 0
� .

We have calculated

Var��A� = 1, C�
f �A0� = 2mf�
1,
2� ,

Var��B� = 1, C�
f �B0� = 2mf�
1,
2� ,

Tr���A,B�� = �
1 − 
2�2.

In this case the inequality

Var��A�Var��B� � C�
f �A0�C�

f �B0� +
1

4
�Tr���A,B���2

reads as

1 · 1 � 2mf�
1,
2�2mf�
1,
2� + �
1 − 
2�2,

that is,

1 � 4�mf�
1,
2��2 + �
1 − 
2�2

or

1 � 4�
2f�
1


2
��2

+ �
1 − 
2�2.

For g0�x�=
x, we have
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4�
2g0�
1


2
��2

+ �
1 − 
2�2 = 1.

Therefore, if for some x0�1 we have f�x0��
x0, then for 
1 /
2=x0,

C�
f �A0�C�

f �B0� +
1

4
�Tr���A,B���2 = 4�
2f�
1


2
��2

+ �
1 − 
2�2 � 4�
2
�
1


2
��2

+ �
1 − 
2�2

= 1 = Var��A�Var��B� ,

that is, the inequality is false. �
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