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Abstract

Heisenberg and Schrödinger uncertainty principles give lower bounds for the product of variances

Varρ(A) · Varρ(B) if the observables A,B are not compatible, namely if the commutator [A,B] is

not zero.

In this paper we prove an uncertainty principle in Schrödinger form where the bound for the

product of variances Varρ(A) ·Varρ(B) depends on the area spanned by the commutators i[ρ, A] and

i[ρ,B] with respect to an arbitrary quantum version of the Fisher information.
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1 Introduction

Let X,Y be random variables on a probability space (Ω,G, p) and consider the covariance Covp(X,Y ) :=

Ep(XY )− Ep(X)Ep(Y ) and the variance Varp(X) := Covp(X,X). The best one can get from Cauchy-

Schwartz inequality is the following inequality

Varp(X) · Varp(Y )− |Covp(X,Y )|2 ≥ 0. (1.1)

The uncertainty principle is one of the most striking consequences of non-commutativity in Quantum

Mechanics and is a key point in which quantum probability differs from classical probability. We shall

∗Dipartimento SEFEMEQ, Facoltà di Economia, Università di Roma “Tor Vergata”, Via Columbia 2, 00133 Rome,

Italy. Email: gibilisco@volterra.uniroma2.it – URL: http://www.economia.uniroma2.it/sefemeq/professori/gibilisco
†Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy. Email:

daniele.imparato@polito.it
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limit our discussion to the matrix case. If ρ is a state (i.e. density matrix), A,B observables (i.e. self-

adjoint matrices), set Covρ(A,B) := Tr(ρAB)−Tr(ρA)·Tr(ρB). Define also the symmetrized covariance

as Covsρ(A,B) := 1
2 [Covρ(A,B)+Covρ(B,A)] and the variance as Var(A) := Covρ(A,A) = Covsρ(A,A).

Again from Cauchy-Schwartz inequality one gets the following inequality

Varρ(A) ·Varρ(B)− |Covsρ(A,B)|2 ≥ 1

4
|Tr(ρ[A,B])|2, (1.2)

which is known as the Schrödinger uncertainty principle. By omitting the covariance part, one gets

the Heisenberg uncertainty principle (see [12][27]). Inequality (1.2) states that the condition [A,B] 6= 0

(i.e. A,B are not compatible) gives a limitation to the simultaneous “smallness” of both Varρ(A) and

Varρ(B) and this has very important consequences in Quantum Mechanics.

But non-commutativity can enter also from another side. One may naturally ask if there are similar

bounds for the product Varρ(A) · Varρ(B) due to the fact that the observables A,B do not commute

with the state ρ. Indeed this is the case, and our main result will provide such a bound in terms of an

“area” spanned by the commutators i[ρ,A] and i[ρ,B].

To state our result we have to introduce the notion of quantum Fisher information. Let us denote by

Fop the class of normalized symmetric operator monotone functions on (0,+∞). It is a by now classical

result of Petz that to each function f ∈ Fop one can associate a Riemannian metric 〈A,B〉ρ,f on the

state manifold that is monotone and therefore a quantum version of the Fisher information (see [2] [23]).

For example, the functions

fβ(x) := β(1 − β)
(x− 1)2

(xβ − 1)(x1−β − 1)
x > 0, β ∈ (0, 1/2],

are associated to a quantum Fisher information that is related to the well known Wigner-Yanase-Dyson

(WYD) skew information. Indeed, for the WYD-information of parameter β one has

−1

2
Tr([ρβ , A] · [ρ1−β , A]) =

β(1− β)

2
〈i[ρ,A], i[ρ,A]〉ρ,fβ .

We denote by Areafρ(u, v) the area spanned by the tangent vectors u, v with respect to the Riemannian

monotone metric associated to f (at the point ρ). For f ∈ Fop let us define f(0) := lim
x→0

f(x); f is said

regular if f(0) > 0 (see [9]). The subset of regular elements of Fop is denoted by F r
op.

The goal of the present paper is to prove the following inequality

Varρ(A) ·Varρ(B)− |Covsρ(A,B)|2 ≥ 1

4

(

f(0) · Areafρ(i[ρ,A], i[ρ,B])
)2

∀f ∈ F r
op. (1.3)

Note that inequality (1.3) holds trivially in the non-regular case. Our result has been inspired by

particular cases of the above theorem that have been proved recently. Luo and Z. Zhang [21] conjectured
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the inequality (1.3) for the Wigner-Yanase metric, namely for the function f1/2. This conjecture was

proved shortly after by Luo himself and Q. Zhang [19]. The case of Wigner-Yanase-Dyson metric (namely

the metric associated to fβ for β ∈ (0, 1/2)) was proved independently by Kosaki [13] and by Yanagi

et al. [28]. In our paper [7] we emphasized the geometric aspects of the question and we succeeded to

formulate (1.3) for a general quantum Fisher information.

It is worth to emphasize the dynamical meaning of the inequality (1.3). Indeed, each positive

(self-adjoint) operator H determines a time evolution of a state ρ according to the formula ρH(t) :=

e−iHtρeiHt. If [ρ,H ] = 0, then there is no evolution. Therefore, we may say that the bound given by

(1.3) appears for those pairs of observables that are “dynamically incompatible”, that is, for pairs H,K

such that the associated evolutions ρH(t), ρK(t) are different and non-trivial (this is equivalent to the

linear independence of [ρ,H ] and [ρ,K]).

As a by-product of the work needed to prove our main result, we derive also other two inequalities

interesting per se. Indeed, a crucial ingredient in the proof of (1.3) is the following formula

f̃(x) :=
1

2

[

(x+ 1)− (x− 1)2
f(0)

f(x)

]

,

that associates to any element f ∈ Fop another element f̃ ∈ Fop. Let A0 := A − Tr(ρA)I and denote

by Lρ, Rρ respectively the left and right multiplication by ρ. Let mf be the mean associated to f (see

Section 6 below) and define

Cf
ρ(A0) := Tr(mf (Lρ, Rρ)(A0) · A0), Ifρ (A) := Varρ(A)− Cf̃

ρ(A0).

Hansen introduced Ifρ (A) in the paper [9] with a different approach. We shall call it “metric adjusted

skew information” or “f -information” to stress the dependence on the function f . One may consider

Ifρ (A) as a generalization of Wigner-Yanase-Dyson information. Let fRLD(x) = 2x
x+1 ; we prove the

following inequality

Varρ(A) ·Varρ(B) ≥ [Ifρ (A) + CfRLD
ρ (A0)] · [Ifρ (B) + CfRLD

ρ (B0)] ∀f ∈ F r
op. (1.4)

Moreover, we also prove that, if f ∈ Fop,

Varρ(A) ·Varρ(B) ≥ Cf
ρ(A0)C

f
ρ(B0) +

1

4
|Tr(ρ[A,B])|2 ⇐⇒ f(x) ≤

√
x. (1.5)

Inequality (1.4) is a refinement of an inequality proved by Luo, for the Wigner-Yanase metric, and by

Hansen, in the general case (see [16], [9]). Inequality (1.5) for the function
√
x is due to Park and,

independently, to Luo (see [22] [18]). Here we simply prove the optimality of their bound in Fop.

The plan of the paper is the following.
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Sections 2, 3, 4 contain preliminary notions. In Section 2 we recall the standard Heisenberg and

Schrödinger uncertainty principles. In Section 3 we give the fundamental definitions and theorems for

number and operator means. In Section 4 we review the classification theorem for the quantum Fisher

informations.

Sections 5, 6, 7, 8 contain the core of the paper. In Section 5 we show that to any operator monotone

function f ∈ Fop one may associate another element f̃ ∈ Fop by formula (5.1); we study the properties of

the mean mf̃ and of an associated function Hf , discussing, in particular, how they behave as functions

of f . In Section 6 we prove the main result, namely the inequality (1.3). Furthermore, we study the right

side of the above inequality as a function of f and relate it to quantum evolution of states, as said before.

In Section 7 we introduce the f -correlation (a kind of generalized Wigner-Yanase-Dyson correlation) and

the f -information and discuss their relation with the quantum Fisher information associated to f ∈ Fop.

In this way, we are able to show how the inequality (1.3) generalizes the previously known results.

Moreover, we prove that by choosing the SLD (Bures-Uhlmann) metric the lower bound given in (1.3)

is optimal and strictly greater than the previously known optimal bound (given by the Wigner-Yanase

metric). In Section 8 we prove a necessary and sufficient condition to get the equality in (1.3).

In Section 9 we prove the inequality (1.4). In Section 10 we produce counterexamples to prove the

logical independence of the uncertainty principles studied in this paper - that is, inequalities (1.3) and

(1.4) - from the standard Heisenberg-Schrödinger uncertainty principles. In Section 11 we discuss what

happens for not faithful and pure states, also at the light of the notion of radial extension for quantum

Fisher information. In Section 12 we show the optimality of an improvement of Heisenberg uncertainty

principle recently proposed by Park and Luo, namely we prove the inequality (1.5).

2 Heisenberg and Schrödinger Uncertainty Principles

Let Mn := Mn(C) (resp. Mn,sa := Mn(C)sa) be the set of all n× n complex matrices (resp. all n × n

self-adjoint matrices). We shall denote general matrices by X,Y, ... while letters A,B, ... will be used for

self-adjoint matrices. The Hilbert-Schmidt scalar product is denoted by 〈A,B〉 = Tr(A∗B). The adjoint

of a matrix X is denoted by X† while the adjoint of a superoperator T : (Mn, 〈·, ·〉) → (Mn, 〈·, ·〉) is

denoted by T ∗. Let Dn be the set of strictly positive elements of Mn and D1
n ⊂ Dn be the set of strictly

positive density matrices; namely,

D1
n = {ρ ∈ Mn|Trρ = 1, ρ > 0}.
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From now on, we shall treat the case of faithful states, namely ρ > 0. We shall consider the general case

ρ ≥ 0 at the end of the paper, in Section 11, where we shall also discuss in detail what happens for pure

states.

Definition 2.1. Suppose that ρ ∈ D1
n is fixed. Define X0 := X − Tr(ρX)I.

Definition 2.2. For A,B ∈ Mn,sa and ρ ∈ D1
n define covariance and variance as

Covρ(A,B) := Tr(ρAB) − Tr(ρA) · Tr(ρB) = Tr(ρA0B0),

Varρ(A) := Tr(ρA2)− Tr(ρA)2 = Tr(ρA2
0).

Proposition 2.3.

2Re{Covρ(A,B)} = Covρ(A,B) + Covρ(B,A) = Tr(ρ{A0, B0}),

2iIm{Covρ(A,B)} = Covρ(A,B) − Covρ(B,A) = Tr(ρ[A,B]),

where, for any X,Y ∈ Mn, [X,Y ] := XY − Y X, {X,Y } := XY + Y X.

We define the symmetrized covariance as Covsρ(A,B) := 1
2 [Covρ(A,B)+Covρ(B,A)] = Re{Covρ(A,B)}.

The Cauchy-Schwartz inequality implies

|Covρ(A,B)|2 ≤ Varρ(A)Varρ(B).

From this one gets the Schrödinger and Heisenberg uncertainty principles which are stated in the fol-

lowing theorem.

Theorem 2.4. (see [27])

For A,B ∈ Mn,sa and ρ ∈ D1
n one has

Varρ(A)Varρ(B)− |Covsρ(A,B)|2 ≥ 1

4
|Tr(ρ[A,B])|2,

that implies

Varρ(A)Varρ(B) ≥ 1

4
|Tr(ρ[A,B])|2.

3 Means for positive numbers and matrices

For this Section we refer to the exposition contained in [26].

Definition 3.1. Let R+ := (0,+∞). A mean for pairs of positive numbers is a function m : R+×R+ →

R+ such that
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(i) m(x, x) = x,

(ii) m(x, y) = m(y, x),

(iii) x < y =⇒ x < m(x, y) < y,

(iv) x < x′, y < y′ =⇒ m(x, y) < m(x′, y′),

(v) m is continuous,

(vi) for t > 0 one has m(tx, ty) = t ·m(x, y).

We denote by Mnu the set of means.

Definition 3.2. Fnu is the class of functions f : R+ → R+ such that

(i) f(1) = 1,

(ii) tf(t−1) = f(t),

(iii) t ∈ (0, 1) =⇒ f(t) ∈ (0, 1),

(iv) t ∈ (1,∞) =⇒ f(t) ∈ (1,∞),

(v) f is continuous,

(vi) f is monotone increasing.

Proposition 3.3. There is bijection between Mnu and Fnu given by the formulas

mf (x, y) := yf(xy−1), fm(t) := m(1, t).

Remark 3.4.

f ≤ g ⇐⇒ mf ≤ mg.

Here below we report the Kubo-Ando theory of matrix means (see [14]) as exposed in [26]. In the

sequel, for any pairs of matrices A, B, we shall write A < B whenever B −A is positive semidefinite.

Definition 3.5. Recall that Dn := {A ∈ Mn(C)|A > 0}. A mean for pairs of positive matrices is a

function m(·, ·) : Dn ×Dn → Dn such that conditions (i)−−(v) of Definition 3.1 hold (with the matrix

partial order defined above) and the transformer inequality

Cm(A,B)C∗ ≤ m(CAC∗, CBC∗), ∀C,

replaces (vi). We denote by Mop the set of matrix means.
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Example 3.6. The arithmetic, geometric and harmonic (matrix) means are given respectively by

A∇B := 1
2 (A+B),

A#B := A
1

2 (A− 1

2BA− 1

2 )
1

2A
1

2 ,

A!B := 2(A−1 +B−1)−1.

Let us recall that a function f : (0,∞) → R is said operator monotone if, for any n ∈ N, any A,

B ∈ Mn such that 0 ≤ A ≤ B, the inequalities 0 ≤ f(A) ≤ f(B) hold. An operator monotone function

is said symmetric if f(x) = xf(x−1) and normalized if f(1) = 1.

Definition 3.7. Fop is the class of operator monotone functions f : R+ → R+ such that conditions

(i)−−(v) of Definition 3.2 hold (with the matrix partial order defined above).

Note that the above definition is redundant (see for example [1]); however, it well emphasizes the

similarity with the number case. Indeed, one has the following result.

Proposition 3.8. Fop is the class of functions f : R+ → R+ such that

(i′) f(1) = 1,

(ii′) tf(t−1) = f(t),

(iii′) f is operator monotone increasing.

Equivalently, f ∈ Fop iff f is a normalized, symmetric, operator monotone function.

The fundamental result, due to Kubo and Ando, is the following.

Theorem 3.9. There is bijection between Mop and Fop given by the formula

mf (A,B) := A
1

2 f(A− 1

2BA− 1

2 )A
1

2 .

When A and B commute, we have that

mf (A,B) := A · f(BA−1).

Theorem 3.10. Among matrix means, arithmetic is the largest while harmonic is the smallest.

Proof. See Theorem 4.5 in [14].
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Corollary 3.11. For any f ∈ Fop and for any x, y > 0 one has

2x

1 + x
≤ f(x) ≤ 1 + x

2
,

2xy

x+ y
≤ mf (x, y) ≤

x+ y

2
.

4 Quantum Fisher Informations

In what follows, given a differential manifold N, we denote by TρN the tangent space to N at the point

ρ ∈ N. In the commutative case a Markov morphism is a stochastic map T : Rn → R
m. Let

Pn := {ρ ∈ R
n|ρi > 0}, P1

n := {ρ ∈ Pn|
∑

ρi = 1}.

The natural representation for the tangent space is given by

TρP
1
n = {v ∈ R

n|
∑

i

vi = 0}.

In this case a monotone metric is defined as a family of Riemannian metrics g = {gn} on {P1
n}, n ∈ N,

such that

gmT (ρ)(TX, TX) ≤ gnρ (X,X)

holds for every Markov morphism T : Rn → Rm, for every ρ ∈ P1
n and for every X ∈ TρP

1
n.

The Fisher information is the Riemannian metric on P1
n defined as

〈u, v〉ρ,F :=
∑

i

uivi
ρi

u, v ∈ TρP
1
n.

Theorem 4.1. (see [2])

There exists a unique monotone metric on P1
n (up to scalars) given by the Fisher information.

In the noncommutative case a Markov morphism is a completely positive and trace preserving opera-

tor T : Mn → Mm. Recall that there exists a natural identification of TρD
1
n with the space of self-adjoint

traceless matrices, namely for any ρ ∈ D1
n

TρD
1
n = {A ∈ Mn,sa|Tr(A) = 0}.

In perfect analogy with the commutative case, a monotone metric in the noncommutative case is a

family of Riemannian metrics g = {gn} on {D1
n}, n ∈ N, such that

gmT (ρ)(TX, TX) ≤ gnρ (X,X)
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holds for every Markov morphism T : Mn → Mm, for every ρ ∈ D1
n and for every X ∈ TρD

1
n. Monotone

metrics are usually normalized in such a way that [A, ρ] = 0 implies gf,ρ(A,A) = Tr(ρ−1A2).

To a normalized symmetric operator monotone function f ∈ Fop one associates the so-called CM

(Chentsov–Morozowa) function

cf (x, y) :=
1

yf(xy−1)
= mf (x, y)

−1 for x, y > 0.

Define Lρ(A) := ρA, and Rρ(A) := Aρ; observe that they are self-adjoint operators on Mn,sa. Since Lρ

and Rρ commute we may define cf(Lρ, Rρ) = mf (Lρ, Rρ)
−1. Since mf is a matrix mean one gets the

following result.

Proposition 4.2. (see [23])

mf(Lρ, Rρ) and cf (Lρ, Rρ) are positive and therefore self-adjoint.

Now we can state the fundamental theorems about noncommutative monotone metrics.

Theorem 4.3. (see [23])

There exists a bijective correspondence between monotone metrics on D1
n and normalized symmetric

operator monotone functions f ∈ Fop. This correspondence is given by the formula

〈A,B〉ρ,f := Tr(A · cf (Lρ, Rρ)(B)) = Tr(A ·mf (Lρ, Rρ)
−1(B)).

We set ||A||2ρ,f := 〈A,A〉ρ,f . Because of the above theorems we shall use the terms “Monotone

Metrics” and “Quantum Fisher Informations” (shortly QFI) with the same meaning.

For a symmetric operator monotone function define f(0) := lim
x→0

f(x) = lim
x→+∞

f(x)

x
. Of course,

f(0) ≥ 0. The condition f(0) 6= 0 is relevant because it is a necessary and sufficient condition for the

existence of the so-called radial extension of a monotone metric to pure states (see [24][25] or Section 11

below). Following [9] we say that a function f ∈ Fop is regular iff f(0) 6= 0. The corresponding operator

mean, CM function, associated QFI, etc. are said regular too. The class of regular (resp. non-regular)

functions f ∈ Fop is denoted by F r
op (resp. F n

op).

As proved by Lesniewski and Ruskai each quantum Fisher information is the Hessian of a suitable

relative entropy (see [15]).

5 The function f̃ and the properties of the associated mean

In [9] it has been proved the following result.
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Proposition 5.1. (Proposition 3.4 in [9])

If f ∈ Fop is regular, define the representing function as

df (x, y) :=
(x+ y)

f(0)
− (x− y)2cf (x, y), x, y > 0.

Then, the function df is positive and operator concave.

Definition 5.2. For f ∈ Fop and x > 0 set

f̃(x) :=
1

2

[

(x+ 1)− (x− 1)2
f(0)

f(x)

]

. (5.1)

Proposition 5.3.

f ∈ Fop =⇒ f̃ ∈ Fop.

Proof. Easy calculations show that f̃ is normalized and symmetric. To prove that f is operator monotone

note that:

(a) if f is not regular then f̃(x) = 1
2 (1 + x) and the conclusion follows;

(b) if f is regular then f̃(x) = f(0)
2 d(x, 1). Since d is positive and operator concave so is f̃ . We get

the conclusion because operator concavity is equivalent to operator monotonicity (see [10]).

Remark 5.4. Note that f regular =⇒ f̃ not regular.

Following the terminology of Section 3 we associate to f̃ both a number and an operator mean by

the formulas

mf̃ (x, y) := y · f̃(xy−1),

mf̃(A,B) := A
1

2 f̃(A− 1

2BA− 1

2 )A
1

2 .

Remark 5.5. Observe that mf̃ (x, y) =
x+ y

2
− f(0)

2

(x− y)2

yf(xy )
.

From Corollary 3.11 one obtains this result.

Corollary 5.6. For any f ∈ Fop and for any x, y > 0 one has

2x

1 + x
≤ f̃(x) ≤ 1 + x

2
,

2xy

x+ y
≤ mf̃ (x, y) ≤

x+ y

2
.

Moreover we have the following result, whose proof is elementary.

Proposition 5.7. For every x > 0 and f, g ∈ Fop

f̃(x) ≤ g̃(x) ⇐⇒ f(0)

f(x)
≥ g(0)

g(x)
.
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We synthetize some results in the following Table.

Table I

QFI f mf f(0) f̃ mf̃

RLD 2x
x+1

2
1

x
+ 1

y

0 1+x
2

x+y
2

WYD(β) β(1−β)(x−1)2

(xβ−1)(x1−β−1)
β(1−β)(x−y)2

(xβ−yβ)(x1−β−y1−β)
0 1+x

2
x+y
2

β ∈ (−1, 0)

BKM x−1
log x

x−y
log x−log y 0 1+x

2
x+y
2

WYD(β) β(1−β)(x−1)2

(xβ−1)(x1−β−1)
β(1−β)(x−y)2

(xβ−yβ)(x1−β−y1−β)
β(1− β) xβ+x1−β

2
xβy1−β+x1−βyβ

2

β ∈ (0, 12 )

WY
(

1+
√
x

2

)2 (√
x+

√
y

2

)2
1
4

√
x

√
xy

SLD 1+x
2

x+y
2

1
2

2x
x+1

2
1

x
+ 1

y

In the above table we have, for some quantum Fisher informations: the name, the function f , the mean mf , the value of f at

0, the function f̃ and the mean mf̃ .

Example 5.8. Let x > 0 and β ∈ (0, 12 ). If we set

fSLD(x) :=
1 + x

2
, fWY (x) :=

(

1 +
√
x

2

)2

, fβ(x) := β(1−β)
(x− 1)2

(xβ − 1)(x1−β − 1)
, fRLD(x) :=

2x

1 + x
.
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One has (see the above table)

f̃SLD(x) =
2x

1 + x
, f̃WY (x) =

√
x, f̃β(x) :=

xβ + x1−β

2
, f̃RLD(x) :=

1 + x

2
.

Note that if x > 0 is fixed the function β ∈ (0, 12 ) 7→ xβ + x1−β ∈ R+ is decreasing. This implies

f̃SLD ≤ f̃WY ≤ f̃β ≤ f̃RLD,

and therefore

mf̃SLD
≤ mf̃WY

≤ mf̃β
≤ mf̃RLD

,

that is a refined arithmetic-geometric-harmonic inequality

2xy

x+ y
≤ √

xy ≤ 1

2
(xβy1−β + x1−βyβ) ≤ 1 + x

2
x, y > 0, β ∈ (0, 1/2).

Remark 5.9.

The metrics associated with the functions fβ are equivalent to the metrics induced by noncommuta-

tive α-divergences, where β = 1−α
2 (see [11]). They are very important in information geometry and are

related to Wigner-Yanase-Dyson information (see for example [4][5] [6]). Defining ℓγ(x) := ((1+xγ)/2)
1

γ

for γ ∈ [1/2, 1] one has ℓγ ∈ Fop. The two parametric families fβ, ℓγ give us a continuum of operator

monotone functions from the smallest function 2x
x+1 to the largest function 1+x

2 . Further examples of

this kind of “bridges” can be found in [8] [9]. Note that also g0(x) :=
√
x is an element of Fop.

In the sequel we need to study the following function.

Definition 5.10. For any f ∈ Fop set

Hf (x, y, w, z) := [(x+ y)−mf̃ (x, y)]mf̃ (w, z) + [(w + z)−mf̃ (w, z)]mf̃ (x, y) x, y, w, z > 0.

Proposition 5.11. For any f, g ∈ Fop

f̃ ≤ g̃

⇓

Hf (x, y, w, z) ≤ Hg(x, y, w, z) ∀x, y, w, z > 0.

Proof. Since

(x + y)−mf̃ (x, y) = (x+ y)− x+ y

2
+

(x− y)2

2y
· f(0)
f(xy )

=
x+ y

2
+

(x− y)2

2y
· f(0)
f(xy )
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we have

Hf (x, y, w, z) := [(x + y)−mf̃ (x, y)]mf̃ (w, z) + [(w + z)−mf̃ (w, z)]mf̃ (x, y)

=

(

x+ y

2
+

(x− y)2

2y
· f(0)
f(xy )

)

·
(

w + z

2
− (w − z)2

2z
· f(0)

f(wz )

)

+

(

w + z

2
+

(w − z)2

2z
· f(0)

f(wz )

)

·
(

x+ y

2
− (x − y)2

2y
· f(0)
f(xy )

)

=
1

2

[

(x+ y)(w + z)−
(

(x− y)2

y

(w − z)2

z

)

(

f(0)

f(xy )
· f(0)

f(wz )

)]

.

(5.1)

Since, from Proposition 5.7,

f̃ ≤ g̃ ⇒ f(0)

f(t)
≥ g(0)

g(t)
> 0 ∀t > 0,

we obtain

Hf (x, y, w, z) ≤ Hg(x, y, w, z) ∀x, y, w, z > 0

by elementary computations.

Note that for f non-regular one has

Hf (x, y, w, z) =
1

2
(x+ y)(w + z).

On the other hand, for the function fSLD = 1
2 (1 + x) one has from (5.1)

HSLD(x, y, w, z) =
1

2

[

(x+ y)(w + z)− 1

4

(

(x− y)2(w − z)2

x+y
2 · w+z

2

)]

= 2
xy(w2 + z2) + wz(x2 + y2)

(x + y)(w + z)
.

Therefore, we have the following bounds.

Corollary 5.12. For any f ∈ Fop

0 < 2

[

xy(w2 + z2) + wz(x2 + y2)

(x+ y)(w + z)

]

≤ Hf (x, y, w, z) ≤
1

2
(x+ y)(w + z) ∀x, y, w, z > 0.

Remark 5.13. Note that for every x > 0

fSLD(0)

fSLD(x)
=

1
2

1+x
2

=
1

1 + x
>

1

1 + x+ 2
√
x
=

1

(1 +
√
x)2

=
1
4

(1+
√
x)2

4

=
fWY (0)

fWY (x)
,

so that for every x, y, w, z > 0

HSLD(x, y, w, z) < HWY (x, y, w, z).
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6 The main result

Proposition 6.1. Given f ∈ Fop , let ∆ := mf̃ (Lρ, Rρ). Recall that B0 := B − Tr(ρB). One has

(i) Tr(B0 ·∆(I)) = 0,

(ii) Tr(I ·∆(B0)) = 0,

(iii) Tr(∆(I)) = 1.

Proof. (i) Since (Lρ −Rρ)(I) = 0 and Tr(ρB0) = Tr(ρB)− Tr(ρB) = 0 we have

〈B0,mf̃(Lρ, Rρ)(I)〉 = Tr(B0mf̃ (Lρ, Rρ)(I))

=
1

2
Tr(B0(Lρ +Rρ)(I)) −

1

2
f(0)Tr(B0cf (Lρ, Rρ)(Lρ −Rρ)

2(I))

=
1

2
Tr(B0ρ+ ρB0) = Tr(ρB0)

= 0.

(ii) It is a simple consequence of (i) and of Proposition 4.2. Indeed,

〈I,mf̃ (Lρ, Rρ)(B0)〉 = 〈mf̃ (Lρ, Rρ)(I), B0〉 = 0.

(iii)

Tr(∆(I)) = Tr(mf̃ (Lρ, Rρ)(I))

=
1

2
Tr((Lρ +Rρ)(I))−

1

2
f(0)Tr(cf (Lρ, Rρ)(Lρ −Rρ)

2(I))

= Tr(ρ)

= 1.

Proposition 6.2.

f(0) · 〈i[ρ,A], i[ρ,B]〉ρ,f = Tr(ρAB) + Tr(ρBA) − 2Tr(A ·∆(B)).

Proof. Let us introduce the shorthand notation

ĉf (x, y) := (x− y)2cf (x, y),

so that by definition

f(0) · ĉf (x, y) = (x+ y)− 2mf̃(x, y).
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Therefore, we have

f(0) · 〈i[ρ,A], i[ρ,B]〉ρ,f = f(0) · Tr
(

(i[ρ,A]) · cf (Lρ, Rρ)(i[ρ,B])
)

= f(0) · 〈(i[ρ,A]), cf (Lρ, Rρ)(i[ρ,B])〉

= f(0) · 〈i(Lρ −Rρ)(A), cf (Lρ, Rρ) ◦ (i(Lρ −Rρ))(B)〉

= f(0) · 〈A, (i(Lρ −Rρ))
∗ ◦ cf (Lρ, Rρ) ◦ (i(Lρ −Rρ))(B)〉

= f(0) · 〈A,−i(Lρ −Rρ) ◦ cf (Lρ, Rρ) ◦ (i(Lρ −Rρ))(B)〉

= f(0) · 〈A, ĉf (Lρ, Rρ)(B)〉

= f(0) · Tr(A · ĉf (Lρ, Rρ)(B))

= Tr(A · (f(0) · ĉf (Lρ, Rρ))(B))

= Tr(A · (Lρ +Rρ − 2mf̃ (Lρ, Rρ))(B))

= Tr(ρAB) + Tr(ρBA)− 2Tr(A ·mf̃ (Lρ, Rρ)(B))).

Proposition 6.3.

f(0) · 〈i[ρ,A], i[ρ,B]〉ρ,f = 2
(

Re{Covρ(A,B)} − Tr(∆(A0)B0)
)

.

Proof. We have that

f(0) · 〈i[ρ,A], i[ρ,B]〉ρ,f = Tr(ρAB) + Tr(ρBA)− 2Tr(A ·∆(B))

= Covρ (A,B) + Covρ (B,A) + 2Tr(ρA) · Tr(ρB)− 2Tr(A ·∆(B))

= 2Re{Covρ(A,B)} + 2
(

Tr(ρA) · Tr(ρB)− Tr(A ·∆(B))
)

;

moreover, because of Proposition 6.1,

Tr(ρA)Tr(ρB)− Tr(∆(A)B) = Tr(ρA)Tr(ρB)− Tr(∆(A0 +Tr(ρA)I)(B0 +Tr(ρB)I))

= Tr(ρA)Tr(ρB)−
[

Tr(∆(A0)B0) + Tr(ρA)Tr(∆(I)B0)

+ Tr(∆(A0)I)Tr(ρB) + Tr(ρA)Tr(ρB)Tr(∆(I)I)
]

= Tr(ρA)Tr(ρB)− Tr(∆(A0)B0)− Tr(ρA)Tr(ρB)

= −Tr(∆(A0)B0).

Therefore, the conclusion follows.
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We recall some consequences of the spectral theorem we need in the sequel. Let ρ be a state, λi its

eigenvalues and Ei the associated eigenprojectors. The spectral decompositions of Lρ and Rρ are the

following

Lρ =
∑

i

λiLEi
Rρ =

∑

i

λiREi
.

Therefore, from the spectral theorem for commuting selfadjoint operators we get the following result.

Corollary 6.4. Let ρ be a state, λi its eigenvalues and Ei the projectors of the associated eigenspaces.

If s : [0,+∞)× [0,+∞) → R is a continuous function then

s(Lρ, Rρ) =
∑

i,j

s(λi, λj)LEi
REj

.

Let V be a finite dimensional real vector space with a scalar product g(·, ·). We define, for v, w ∈ V ,

Areag(v, w) :=
√

g(v, v) · g(w,w)− |g(v, w)|2.

In the Euclidean plane Areag(v, w) is the area of the parallelogram spanned by v and w. If we are dealing

with a ρ point-depending Riemannian metric, we write Areagρ. If f ∈ Fop we denote by Areafρ the area

functional associated to the monotone metric 〈·, ·〉ρ,f .

We are now ready for the main results.

Theorem 6.5. For any f, g ∈ Fop

(i)

Varρ(A)Varρ(B)− |Covsρ(A,B)|2 ≥
(

f(0)

2
·Areafρ(i[ρ,A], i[ρ,B])

)2

,

(ii)

g̃ ≥ f̃ =⇒ g(0)

2
· Areagρ(i[ρ,A], i[ρ,B]) ≤ f(0)

2
· Areafρ(i[ρ,A], i[ρ,B]).

Proof. Fix A,B ∈ Mn,sa. Let us introduce, for the sake of brevity,

F (f) :=
(

Varρ(A)Varρ(B)− |Covsρ(A,B)|2
)

−
(

f(0)

2
·Areafρ(i[ρ,A], i[ρ,B])

)2

.

Then, we have to show that F (f) ≥ 0, and g̃ ≥ f̃ =⇒ F (g) ≥ F (f).

Let {ϕi} be a complete orthonormal base composed of eigenvectors of ρ and {λi} the corresponding

eigenvalues. Set aij ≡ 〈A0ϕi|ϕj〉 and bij ≡ 〈B0ϕi|ϕj〉. Note that aij 6= Aij := the i, j entry of A.
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Then we calculate

Varρ(A) = Tr(ρA2
0) =

1

2

∑

i,j

(λi + λj)aijaji

Varρ(B) = Tr(ρB2
0) =

1

2

∑

i,j

(λi + λj)bijbji

Covsρ(A,B) = Re{Covρ(A,B)} = Re{Tr(ρA0B0)} =
1

2

∑

i,j

(λi + λj)Re{aijbji}

f(0)

2
||i[ρ,A]||2ρ,f = Varρ(A) − Tr(A0mf̃ (Lρ, Rρ)A0) =

1

2

∑

i,j

(λi + λj)aijaji −
∑

i,j

mf̃ (λi, λj)aijaji

f(0)

2
||i[ρ,B]||2ρ,f =

1

2

∑

i,j

(λi + λj)bijbji −
∑

i,j

mf̃ (λi, λj)bijbji

f(0)

2
〈i[ρ,A], i[ρ,B]〉ρ,f = Re{Covρ(A,B)} − Re{Tr(mf̃ (Lρ, Rρ)(A0) ·B0)}

=
1

2

∑

i,j

(λi + λj)Re{aijbji} −
∑

i,j

mf̃ (λi, λj)Re{aijbji}.

Set

ξ := Varρ (A) Varρ (B)− f(0)2

4
||i[ρ,A]||2ρ,f · ||i[ρ,B]||2ρ,f

=
1

2

∑

i,j,k,l

{

(λi + λj)mf̃ (λk, λl) + (λk + λl)mf̃ (λi, λj)− 2mf̃(λi, λj)mf̃ (λk, λl)
}

aijajibklblk

=
1

4

∑

i,j,k,l

{

(λi + λj)mf̃ (λk, λl) + (λk + λl)mf̃ (λi, λj)− 2mf̃(λi, λj)mf̃ (λk, λl)
}

{aijajibklblk + aklalkbijbji},

η := |Covsρ(A,B)|2 − f(0)2

4
|〈i[ρ,A], i[ρ,B]〉2ρ,f |2

=
1

2

∑

i,j,k,l

{

(λi + λj)mf̃ (λk, λl) + (λk + λl)mf̃ (λi, λj)− 2mf̃(λi, λj)mf̃ (λk, λl)
}

Re{aijbji}Re{aklblk},

Ki,j,k,l := Ki,j,k,l(ρ,A,B) := |aij |2|bkl|2 + |akl|2|bij |2 − 2Re{aijbji}Re{aklblk}.

Since

|aij |2|bkl|2 + |akl|2|bij |2 ≥ 2 |aijbji| |aklblk| ≥ 2 |Re {aijbji}Re {aklblk}| ,

we have that Ki,j,k,l ≥ 0. Note that Ki,j,k,l does not depend on f .

Then

F (f) = ξ − η =
1

4

∑

i,j,k,l

{

(λi + λj)mf̃ (λk, λl) + (λk + λl)mf̃ (λi, λj)− 2mf̃ (λi, λj)mf̃ (λk, λl)
}

·

·
{

|aij |2|bkl|2 + |akl|2|bij |2 − 2Re{aijbji}Re{aklblk}
}

=
1

4

∑

i,j,k,l

Hf (λi, λj , λk, λl) ·Ki,j,k,l.
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Because of Proposition 5.11 and Corollary 5.12 one has that

f̃ ≤ g̃ =⇒ 0 ≤ Hf (λi, λj , λk, λl) ≤ Hg(λi, λj , λk, λl)

and therefore

f̃ ≤ g̃ =⇒ 0 ≤ F (f) ≤ F (g)

and we get the thesis.

The standard Schrödinger uncertainty principle reads as

AreaCovs

ρ (A,B) ≥ 1

2
|Tr(ρ[A,B])|,

while the main result of the present paper can be expressed as

AreaCovs

ρ (A,B) ≥ f(0)

2
· Areafρ(i[ρ,A], i[ρ,B]).

Corollary 6.6. For any f ∈ Fop, A,B ∈ Mn,sa, one has

fSLD(0)

2
·AreafSLD

ρ (i[ρ,A], i[ρ,B]) ≥ f(0)

2
· Areafρ(i[ρ,A], i[ρ,B]).

Proof. Immediate consequence of Corollary 5.6.

Remark 6.7. Setting

Nf
ρ (A,B) := AreaCovs

ρ (A,B)− f(0)

2
· Areafρ(i[ρ,A], i[ρ,B]) ≥ 0,

we may strengthen the main result to

AreaCovs

ρ (A,B) ≥ f(0)

2
· Areafρ(i[ρ,A], i[ρ,B]) +NSLD

ρ (A,B).

The above geometric considerations take a particularly interesting form when considering the dy-

namics of quantum states. Suppose we have a positive (self-adjoint) operator H determining a quantum

evolution. The state ρ evolves according to the formula

ρH(t) := e−itHρeitH .

We say that ρH(t) is the time evolution of ρ = ρH(0) determined by H . For the evolution ρH(t) this is

equivalent to satisfy the quantum analogue of Liouville theorem in classical statistical mechanics, namely

the Landau-von Neumann equation.
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Definition 6.8. Let ρ(t) be a curve in D1
n and let H ∈ Mn,sa. We say that ρ(t) satisfies the Landau-von

Neumann equation w.r.t. H if

ρ̇(t) =
d

dt
ρ(t) = i[ρ(t), H ].

Satisfying the Landau-von Neumann equation is equivalent to ρ(t) = ρH(t) = e−itHρeitH .

From Theorem 6.5 we get the following inequality.

Proposition 6.9. Let ρ > 0 be a state and H,K ∈ Mn,sa. Suppose that ρ = ρH(0) = ρK(0). Then, for

any f ∈ Fop, one has

AreaCovs

ρ (H,K) ≥ f(0)

2
· Areafρ(ρ̇H(0), ρ̇K(0)).

Therefore, as we said in the Introduction, the bound on the right side of our inequality appears when

the evolutions ρH(t), ρK(t) are different and not trivial.

7 The f-correlation associated to quantum Fisher informations

Mainly to confront our result with previous results we introduce the notions of f -correlation and f -

information.

Definition 7.1.

Cf
ρ(A,B) = Cf

ρ(B,A) := Tr(mf (Lρ, Rρ)(A) ·B)

Cf
ρ(A) := Cf

ρ(A,A).

Definition 7.2. For A,B ∈ Mn,sa, ρ ∈ D1
n and f ∈ Fop, the metric adjusted correlation (or f -

correlation) and the metric adjusted skew information (or f -information) are defined as

Corrfρ(A,B) := Tr(ρAB)− Cf̃
ρ(A,B) = Tr(ρAB) − Tr(mf̃ (Lρ, Rρ)(A) ·B),

Ifρ (A) := Corrfρ(A,A).

The definition of Corrfρ(A,B) appeared in [9] in a different form. For the f -correlation there is an

analogue of Proposition 2.3 for covariance.

Lemma 7.3. For any A,B ∈ Mn,sa, ρ ∈ D1
n and f ∈ Fop one has

2Re{Corrfρ(A,B)} = Corrfρ(A,B) + Corrfρ(B,A) = f(0) · 〈i[ρ,A], i[ρ,B]〉ρ,f

2iIm{Corrfρ(A,B)} = Corrfρ(A,B) − Corrfρ(B,A) = Tr(ρ[A,B]).
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Proof. We have that

Corrfρ(A,B)− Corrfρ(B,A) = Tr(ρ[A,B]),

which is purely imaginary.

This implies

Re{Corrfρ(A,B)} = Re{Corrfρ(B,A)},

so that

2Re{Corrfρ(A,B)} = Corrfρ(A,B) + Corrfρ(B,A),

2iIm{Corrfρ(A,B)} = Corrfρ(A,B)− Corrfρ(B,A).

Since

Corrfρ(A,B) + Corrfρ(B,A) = Tr(ρAB) + Tr(ρBA)− 2Tr(A ·∆(B)),

the conclusion follows from Proposition 6.2.

Corollary 7.4.

Ifρ (A) = Corrfρ(A,A) =
f(0)

2
· 〈i[ρ,A], i[ρ,A]〉ρ,f =

f(0)

2
· ||i[ρ,A]||2ρ,f .

Remark 7.5. If

fβ(x) := β(1 − β)
(x− 1)2

(xβ − 1)(x1−β − 1)
β ∈

(

0,
1

2

]

,

then

I
fβ
ρ (A) =

fβ(0)

2
Tr(i[ρ,A]cfβ (Lρ, Rρ)i[ρ,A]) = −1

2
Tr([ρβ , A] · [ρ1−β, A]),

so I
fβ
ρ (A) coincides with the Wigner-Yanase-Dyson skew information.

Let us reformulate the main result in terms of f -correlation.

Proposition 7.6. For any f ∈ Fop one has

(

f(0)

2
· Areafρ(i[ρ,A], i[ρ,B])

)2

= Ifρ (A) Ifρ (B)−
∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

.

Proof.

(

f(0)

2
· Areafρ(i[ρ,A], i[ρ,B])

)2

=
f(0)2

4

(

〈i[ρ,A], i[ρ,A]〉ρ,f · 〈i[ρ,B], i[ρ,B]〉ρ,f − 〈i[ρ,A], i[ρ,B]〉2ρ,f
)

=

(

f(0)

2
· ||i[ρ,A]||2ρ,f

)

·
(

f(0)

2
· ||i[ρ,B]||2ρ,f

)

−
(

f(0)

2
〈i[ρ,A], i[ρ,B]〉ρ,f

)2

= Ifρ (A) Ifρ (B)−
∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

.
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Therefore, our main result states that

Varρ(A)Varρ(B) − |Re{Covρ(A,B)}|2 ≥ Ifρ (A) Ifρ (B)−
∣

∣

∣
Re
{

Corrfρ (A,B)
}∣

∣

∣

2

.

Recall that we introduced, for fixed ρ,A,B, the functional

F (f) = Varρ(A)Varρ(B)− |Covsρ(A,B)|2 −
(

f(0)

2
·Areafρ(i[ρ,A], i[ρ,B])

)2

= Varρ(A)Varρ(B)− |Re{Covρ(A,B)}|2 − Ifρ (A) Ifρ (B) +
∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

.

As the main result, we proved that, for any f, g ∈ Fop, F (f) ≥ 0 and f̃ ≤ g̃ =⇒ F (f) ≤ F (g).

Corollary 7.7. Suppose ρ,A,B are fixed. Then the function of β given by

F (β) := F (fβ)

is decreasing on (0, 12 ] and F (1/2) ≥ 0; therefore F (β) ≥ 0.

Proof. Given x > 0, the function β 7→ f̃β(x) =
1
2 (x

β + x1−β) is decreasing in (0, 1
2 ], so that

β1 ≤ β2 =⇒ f̃β1
≥ f̃β2

=⇒ F (β1) ≥ F (β2).

Remark 7.8. The above corollary was the content of Theorem 5, the main result in [13] and of Proposi-

tion IV.1 in [28]. Note that, because of Corollary 7.7, the optimal bound previously known was given by

fWY , namely the bound of Wigner-Yanase metric (this was due to Kosaki in [13]). Remark 5.13 implies

that the bound given by the SLD area is strictly greater then that given by the WY area.

Proposition 7.9.

Covρ(A,B) = Corrfρ(A,B) + Cf̃
ρ(A0, B0),

Varρ(A) = Ifρ (A) + Cf̃
ρ(A0).

Proof. The calculations of Proposition 6.3 imply that

Corrfρ(A,B) − Covρ(A,B) = Tr(ρA)Tr(ρB)− Tr(∆(A)B)

= −Tr(mf̃ (Lρ, Rρ)(A0)B0)

= −Cf̃
ρ(A0, B0).
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Luo (see [17]) suggested that if one consider the variance as a measure of “uncertainty” of an ob-

servable A in the state ρ then the above equality splits the variance in a “quantum” part (Ifρ (A)) plus

a “classical” part (Cf̃
ρ(A0)).

8 Conditions for equality

In this section we give a necessary and sufficient condition to have equality in our main result.

Proposition 8.1. The inequality of Theorem 6.5 is an equality if and only if A0 and B0 are proportional.

Proof. If A0 = λB0, with λ ∈ R, then

Varρ(A)Varρ(B)− |Re{Covρ(A,B)|2} = Tr(ρA2
0)Tr(ρB

2
0)− |Re{Tr(ρA0B0)}|2

= Tr(ρ(λB0)
2)Tr(ρB2

0)− |Re{Tr(ρλB0B0)}|2

= λ2Tr(ρB2
0)

2 − λ2|Tr(ρB2
0)|2

= 0.

In this case the inequality is just the equality 0 = 0.

Now we suppose that A0, B0 are not proportional and we prove that the inequality is strict. We use

the same notations as in the proof of Theorem 6.5.

Note that

Varρ (A) Varρ (B)− |Re {Covρ (A,B)}|2 − Ifρ (A) Ifρ (B) +
∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

=

= ξ − η =
1

4

∑

i,j,k,l

Hf (λi, λj , λk, λl) ·Ki,j,k,l(A,B),

and

Hf (λi, λj , λk, λl) > 0, Ki,j,k,l(A,B) ≥ 0 ∀i, j, k, l.

Therefore, the strict inequality is equivalent to ξ − η > 0, which is, in turn, equivalent to

Ki,j,k,l(A,B) > 0

for some i, j, k, l.

From the fact that A0, B0 are not proportional one can derive that also the matrices {aij}, {bij} are

not proportional and this implies (the other cases being trivial) that there exist (complex) aij , bij , akl, bkl 6=
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0 and (real) λ, µ 6= 0 such that

aij = λbij akl = µbkl λ 6= µ.

We get

Ki,j,k,l(A,B) = |aij |2|bkl|2 + |akl|2|bij |2 − 2Re{aijbji}Re{aklblk}

= |aij |2|bkl|2 + |µbkl|2
∣

∣

aij
λ

∣

∣

2 − 2Re
{

aij
aij
λ

}

Re{µbklblk}

=

(

1 +
µ2

λ2

)

· |aij |2|bkl|2 − 2
µ

λ
|aij |2|bkl|2

=

(

1 +
µ2

λ2
− 2

µ

λ

)

· |aij |2|bkl|2

=
(

1− µ

λ

)2

· |aij |2|bkl|2 > 0

because
(

1− µ

λ

)

6= 0.

Therefore,

ξ − η 6= 0

and this ends the proof.

The particular case f = fβ (where β ∈ (0, 1/2]) of the above proposition has been proved in Propo-

sition 6 in [13].

9 Another inequality

The study of the meanmf̃ allows us to get another inequality that can be seen as an uncertainty principle

in Heisenberg form. Recall that

fRLD(x) :=
2x

x+ 1
.

Proposition 9.1.

Varρ(A) ≥ Ifρ (A) + CfRLD
ρ (A0) ∀f ∈ Fop.
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Proof. We use the notations employed in the proof of Theorem 6.5. Since

Varρ(A) = Tr(ρA2
0) =

1

2

∑

i,j

(λi + λj)aijaji

Ifρ (A) = Varρ(A) − Tr(A0mf̃ (Lρ, Rρ)A0) =
1

2

∑

i,j

(λi + λj)aijaji −
∑

i,j

mf̃ (λi, λj)aijaji

CfRLD
ρ (A0) =

∑

i,j

mh0
(λi, λj)aijaji,

using Corollary 5.6 we have

Varρ(A)− Ifρ (A)− C
fRLD
ρ (A0) =

∑

i,j

[mf̃ (λi, λj)−mh0
(λi, λj)]|aij |2 ≥ 0.

From this we get the following inequality.

Theorem 9.2.

Varρ(A) · Varρ(B) ≥ [Ifρ (A) + CfRLD
ρ (A0)] · [Ifρ (B) + CfRLD

ρ (B0)] ∀f ∈ Fop. (9.1)

Since CfRLD
ρ (A0) ≥ 0 we obtain, as a corollary, two results due to Luo, for the case f = fWY =

1
4 (1 +

√
x)2, and to Hansen, for the general case (see [16], [9]).

Proposition 9.3.

Varρ(A) ≥ Ifρ (A) ∀f ∈ Fop.

Theorem 9.4.

Varρ(A) ·Varρ(B) ≥ Ifρ (A) · Ifρ (B) =
f(0)2

4
· ||i[ρ,A]||2ρ,f · ||i[ρ,B]||2ρ,f ∀f ∈ Fop.

Let us study how the bound Ifρ (A) · Ifρ (B) depends on f .

Proposition 9.5. For any f, g ∈ Fop

f ≤ g =⇒ Cf
ρ(A0) ≤ Cg

ρ(A0),

f̃ ≤ g̃ =⇒ Ifρ (A) ≥ Igρ (A).

Proof. We still use notations of Theorem 6.5. Since mf ≤ mg,

Cg
ρ(A0)− Cf

ρ(A0) =
∑

i,j

mg(λi, λj)aijaji −
∑

i,j

mf (λi, λj)aijaji

=
∑

i,j

[mg(λi, λj)−mf (λi, λj)]|aij |2 ≥ 0.

The second inequality is an immediate consequence of the first one.
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Corollary 9.6.

ISLD
ρ (A) ≥ Ifρ (A) ∀f ∈ Fop.

Proof. Immediate consequence of Proposition 5.6.

Corollary 9.7.

f̃ ≤ g̃ =⇒ Ifρ (A)I
f
ρ (B) ≥ Igρ (A)I

g
ρ (B).

We discuss, now, the equality in Theorem 9.4.

Proposition 9.8.

Varρ(A) ·Varρ(B) = Ifρ (A) · Ifρ (B) ⇐⇒ A0 = B0 = 0.

Proof. Because of Proposition 9.3 we have

Varρ(A) · Varρ(B) = Ifρ (A) · Ifρ (B) ⇐⇒ Varρ(A) = Ifρ (A), Varρ(B) = Ifρ (B).

Hence, we need to show Varρ(A) = Ifρ (A) ⇐⇒ A0 = 0. Indeed, using the same notations as in Theorem

6.5,

Varρ(A) = Ifρ (A) ⇐⇒ Tr(A0mf̃ (Lρ, Rρ)A0) = 0 ⇐⇒
∑

i,j

mf̃ (λi, λj)aijaji = 0

⇐⇒ aij = 0, ∀i, j ⇐⇒ A0 = 0.

10 Relation with the standard uncertainty principles

Some authors tried to prove the following inequalities

(

f(0)

2
·Area(i[ρ,A], i[ρ,B])

)2

= Ifρ (A) Ifρ (B)− |Re(Corrfρ(A,B))|2 ≥ 1

4
|Tr(ρ[A,B])|2, (10.1)

Ifρ (A) Ifρ (B) ≥ 1

4
|Tr(ρ[A,B])|2. (10.2)

They wanted to obtain the standard Heisenberg-Schrödinger uncertainty principles as consequences of

the uncertainty principles discussed in the present paper. Actually the inequality (10.1) has been proved

false for f = fβ, that is, for the Wigner-Yanase-Dyson case (see p.632, 642-644 in [13], p.4404 in [28]

and [20]). But the discussion of Section 6, 7, 9 shows that the upper bounds

G(f) =
f(0)

2
·Area(i[ρ,A], i[ρ,B]) N(f) := Ifρ (A) Ifρ (B)
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can be larger than those of the WYD metric (we showed it for the SLD metric in Remark 5.13). It is,

therefore, natural to ask if the above inequalities, that are false for the WYD metric, can be true for

some different quantum Fisher information (for example for the SLD metric). The following theorem

shows that this is not the case, even on 2× 2 matrices.

Theorem 10.1. There exist 2× 2 self-adjoint matrices A and B, and a density matrix ρ such that

Ifρ (A) Ifρ (B) <
1

4
|Tr(ρ[A,B])|2 ∀f ∈ Fop.

Therefore, for these ρ,A,B we also have

(

f(0)

2
· Area(i[ρ,A], i[ρ,B])

)2

= Ifρ (A) Ifρ (B)−|Re(Corrfρ(A,B))|2 <
1

4
|Tr(ρ[A,B])|2 ∀f ∈ Fop.

Proof. We use notations of Theorem 6.5: let {ϕi} be a complete orthonormal base composed of eigen-

vectors of ρ, and {λi} the corresponding eigenvalues. Set aij ≡ 〈A0ϕi|ϕj〉 and bij ≡ 〈B0ϕi|ϕj〉. In what

follows λ1 > λ2 > 0, λ1 + λ2 = 1 and

ρ =







λ1 0

0 λ2






, A =







0 i

−i 0






, B =







0 1

1 0






,

(in terms of Pauli matrices, A = −σ2 and B = σ1). Simple calculations show that |aii| = |bii| = 0, while

|aij | = |bij | = 1 for any i, j such that i 6= j. Therefore,

Varρ(A) = Tr(ρA0)

=
1

2

∑

i,j

(λi + λj)aijaji

=
1

2
((λ1 + λ2) + (λ2 + λ1))

= 1,

Cf̃
ρ(A0) =

∑

i,j

mf̃ (λi, λj)aijaji

= (mf̃ (λ1, λ2) +mf̃ (λ1, λ2))

= 2mf̃(λ1, λ2),

Ifρ (A) = Varρ(A)− C
f̃
ρ(A0) = 1− 2mf̃(λ1, λ2).
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By the same reasoning,

Varρ(B) = 1

Cf̃
ρ(B0) = 2mf̃(λ1, λ2)

Ifρ (B) = 1− 2mf̃(λ1, λ2).

Moreover, by direct calculation, one has that

1

4
|Tr(ρ[A,B])|2 = (λ1 − λ2)

2.

Now, recall that, since mf̃ is a mean (and because of Corollary 3.11) one has for any f ∈ Fop

λ1 > mf̃ (λ1, λ2) > λ2 > 0,

1− 2mf̃(λ1, λ2) = (λ1 + λ2)− 2mf̃(λ1, λ2) ≥ 0.

Hence, the following inequalities are equivalent

Ifρ (A) Ifρ (B) <
1

4
|Tr(ρ[A,B])|2

(1− 2mf̃ (λ1, λ2))
2 < (λ1 − λ2)

2

(λ1 + λ2)− 2mf̃(λ1, λ2) < λ1 − λ2

2λ2 < 2mf̃(λ1, λ2)

λ2 < mf̃ (λ1, λ2),

and so we get the conclusion.

Note that

1

4
|Tr(ρ[A,B])|2 ≥ Ifρ (A) Ifρ (B)

is obviously false, in general: if one takes A = B, the left side is zero and the right side could be positive

at the same time.

A similar argument applies to the inequality

1

4
|Tr(ρ[A,B])|2 ≥ Ifρ (A) Ifρ (B)−

∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

=

(

f(0)

2
Areaf (i[ρ,A], i[ρ,B])

)2

;

indeed, one may choose ρ,A,B such that [A,B] = 0 while [ρ,A], [ρ,B] are not proportional, so that they

span a positive area.
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We may conclude that the Heisenberg and Schrödinger uncertainty principles

Varρ (A)Varρ (B) ≥ 1

4
|Tr(ρ[A,B])|2,

AreaCovs

ρ (A,B) ≥ 1

2
|Tr(ρ[A,B])|,

cannot be deduced from the uncertainty principles

Varρ (A) Varρ (B) ≥ Ifρ (A) · Ifρ (B) ,

AreaCovs

ρ (A,B) ≥ f(0)

2
·Areafρ(i[ρ,A], i[ρ,B]),

and vice versa.

The above described mistake appeared several times in the literature (see Theorem 2 in [16], Theorem

2 in [21], Theorem 1 in [19] and Note 1, Section 3.2 in [9]). It can be helpful to explain its origin, again

along the lines of [13] (see also [28]).

We have seen that

1

2i
Tr(ρ[A,B]) =

1

2i
(Corrfρ(A,B)− Corrfρ(B,A)) = Im(Corrfρ(A,B))

and therefore

1

4
|Tr(ρ[A,B])|2 = |Im(Corrfρ(A,B))|2 ≤ |Corrfρ(A,B)|2.

If there were a Cauchy-Schwartz type estimate

|Corrfρ(A,B)|2 ≤ Corrfρ(A,A) · Corrfρ(B,B) (11.1)

using, for example, Theorem 9.4 one would get a refined Heisenberg uncertainty principle in the form

Varρ(A) ·Varρ(B) ≥ Ifρ (A) · Ifρ (B) ≥ 1

4
|Tr(ρ[A,B])|2.

By Theorem 10.1 we know that this is impossible. The wrong point is the Cauchy-Schwartz estimate

(11.1), which is false. This depends on the following facts. The sesquilinear form

Corrfρ(X,Y ) := Tr(ρX†Y )− Tr(X† ·mf̃ (Lρ, Rρ)(Y ))

on the complex space Mn is not positive (see p. 632 in [13]). On the other hand, Corrfρ(A,B) is not

a real form on the real space Mn,sa: also in this case one cannot prove the desired Cauchy-Schwartz

inequality. The best one can have is a Cauchy-Schwartz estimate only for the (real) positive bilinear

form Re{Corrfρ(A,B)} on Mn,sa (see p.643 in [13] and [20]). This would imply simply

(

f(0)

2
· Areafρ(i[ρ,A], i[ρ,B])

)2

= Ifρ (A) Ifρ (B)−
∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

≥ 0.
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11 Not faithful states and pure states

We discuss, now, the general case ρ ≥ 0.

Proposition 11.1. The function mf̃ : (0,∞)× (0,∞) → (0,∞) has a continuous extension to [0,∞)×

[0,∞).

Proof. If f is regular then, for example,

lim
(x,y)→(0,y0)

mf̃ (x, y) =
y0
2

− f(0)y20
2y0f(0)

= 0.

If f is not regular then mf̃ (x, y) =
x+y
2 and we are done (see [9]).

The definition of f -correlation still makes sense and the inequality of Theorem 6.5

Varρ (A)Varρ (B)− |Re {Covρ (A,B)}|2 ≥ Ifρ (A) Ifρ (B)−
∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

holds by continuity for arbitrary (not necessarily faithful) states.

In what follows we study the pure state case.

Corollary 11.2. If s : [0,+∞)× [0,+∞) → R is a continuous function, and ρ is a pure state, then

s(Lρ, Rρ)(A) = ρAρ.

Proof. Consequence of Corollary 6.4.

Lemma 11.3. If ρ is pure, then Tr((ρAρ)(ρBρ)) = Tr(ρAρ) · Tr(ρBρ).

Proof. Suppose for simplicity that ρ = diag(1, 0, ..., 0) (the general case follows easily from this). Then

ρAρ = diag(A11, 0, ..., 0) and the same holds for B. Therefore (ρAρ)(ρBρ) = diag(A11B11, 0, ..., 0). This

implies

Tr((ρAρ)(ρBρ)) = A11B11 = Tr(ρAρ) · Tr(ρBρ).

Lemma 11.4. If ρ is pure, then

Tr(mf (Lρ, Rρ)(A)B) = Tr(ρA) · Tr(ρB).

Proof. By Corollary 11.2 one has

mf (Lρ, Rρ)(A) = ρAρ
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and therefore

Tr(mf (Lρ, Rρ)(A)B) = Tr(ρAρB)

= Tr((ρAρ)(ρBρ))

= Tr(ρAρ) · Tr(ρBρ)

= Tr(ρA) · Tr(ρB).

Corollary 11.5. If ρ is pure, then

Cf
ρ(A0, B0) = Tr(mf (Lρ, Rρ)(A0)B0) = Tr(ρA0) · Tr(ρB0) = 0.

Proposition 11.6. If ρ is pure, then

Corrfρ(A,B) = Covρ(A,B) ∀f ∈ Fop.

Proof. Immediate from the above Corollary and Proposition 7.9

The case Ifρ (A) = Varρ(A) was proved by Hansen in Theorem 3.8 p.16 in [9].

Therefore, on pure states we have the equalities

Varρ (A) Varρ (B)− |Re {Covρ (A,B)}|2 = Ifρ (A) Ifρ (B)−
∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

,

Varρ (A) Varρ (B) = Ifρ (A) Ifρ (B) .

This implies that, if a sequence of faithful states Dn converges to the pure state ρ, then the limit

lim
n→+∞

(

f(0)

2
·AreafDn

(i[Dn, A], i[Dn, B])

)2

= lim
n→+∞

IfDn
(A) IfDn

(B)−
∣

∣

∣Re
{

CorrfDn
(A,B)

}∣

∣

∣

2

= Ifρ (A) Ifρ (B)−
∣

∣

∣Re
{

Corrfρ (A,B)
}∣

∣

∣

2

= Varρ (A)Varρ (B)− |Re {Covρ (A,B)}|2

does not depend on f .

This result has an interesting alternative explanation, using a theorem by Petz and Sudar that

describes the possible extension of quantum Fisher information to pure states (see [24]). We devote the

rest of the section to explain this phenomenon.
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Let M0
n = M0

n(C) be the set of faithful states whose eigenvalues are all distinct. Recall that the pure

states are identified with CPn−1, the complex projective space. On CPn−1 one has a natural metric, the

Fubini-Study metric (denoted by 〈·, ·〉ρ,FS). We denote by D the elements of M0
n and by ρ the elements

of CPn−1. We can define a projection π : M0
n → CPn−1 as follows: π(D) ∈ CPn−1 is the pure state

associated to the one-dimensional eigenspace corresponding to the largest eigenvalue of D ∈ M0
n. With

this definition, π : M0
n → CPn−1 is a smooth fiber bundle. The structure group is U(1)×U(n−1) (where

U(k) is the group of k × k unitary matrices). The fiber space is π−1(e) where e is the ray generated by

the vector (1, 0, ..., 0) ∈ Cn. Now, fix a monotone metric 〈·, ·〉D,f . We denote by TDπ the differential

of π at D and let HD be the orthogonal complement of ker(TDπ) with respect to 〈·, ·〉D,f . Since TDπ

is surjective, the restriction of TDπ gives a linear isomorphism between HD and Tπ(D)CP
n−1. For any

tangent vector A ∈ Tπ(D)CP
n−1 there is a unique “lift” AD ∈ HD ⊂ TD(M0

n) such that (TDπ)(AD) = A.

Definition 11.7. [24] We say that the sequence Dn ∈ M0
n radially converges to ρ ∈ CPn−1 if Dn → ρ

as density matrices in Mn and π(Dn) = ρ, ∀n ∈ N.

Definition 11.8. [24] A metric k on CPn−1 is a radial extension of a metric g on M0
n if for any sequence

Dn ∈ M0
n, radially convergent to a point ρ ∈ CPn−1, and for any tangent vectors A,B ∈ TρCP

n−1, one

has

lim
n→+∞

g(ADn
, BDn

) = k(A,B).

Theorem 11.9. [24]

A monotone metric admits a radial extension if and only if it is regular, namely iff f(0) 6= 0. In this

case the associated extension is just a multiple of the Fubini-Study metric according to the formula

lim
n→+∞

〈ADn
, BDn

〉Dn,f =
1

2f(0)
〈A,B〉ρ,FS .

Lemma 11.10. [25]

With the above definition,

π(D) = ρ =⇒ [D,A] = ([ρ,A])D,

namely, the lift of commutator is the commutator of the lift.

This implies the following result.

Proposition 11.11. If Dn → ρ radially then

lim
n→+∞

f(0) ·AreafDn
(i[Dn, A], i[Dn, B]) =

1

2
·AreaFS

ρ (i[ρ,A], i[ρ,B]).

Hence, we have obtained the limit behavior by a totally different argument.
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12 Optimality of an improvement for Heisenberg uncertainty

principle

The following result has been proved by Park in [22] and indipendently by Luo in [18].

Theorem 12.1. If g0(x) =
√
x then

Varρ(A) ·Varρ(B) ≥ Cg0
ρ (A0)C

g0
ρ (B0) +

1

4
|Tr(ρ[A,B])|2.

Note that the term Cg0
ρ (A0)C

g0
ρ (B0) disappears for pure states. We prove that the above result is the

best one can have considering functions f ∈ Fop.

Theorem 12.2. For any f ∈ Fop we have

Varρ(A) · Varρ(B) ≥ C
f
ρ(A0)C

f
ρ(B0) +

1

4
|Tr(ρ[A,B])|2 ⇐⇒ f(x) ≤

√
x.

Proof. We have

f(x) ≤ g(x) =⇒ mf (x, y) ≤ mg(x, y) =⇒ Cf
ρ(A0) ≤ Cg

ρ(A0)

and therefore if f(x) ≤ √
x we are done.

If f(x0) >
√
x0 for a certain x0 we produce a counterexample. To this end, we do the same we did

in the proof of Theorem 10.

Consider again λ1 > λ2 > 0, λ1 + λ2 = 1 and

ρ =







λ1 0

0 λ2






, A =







0 i

−i 0






, B =







0 1

1 0






.

We have calculated

Varρ(A) = 1 Cf
ρ(A0) = 2mf (λ1, λ2)

Varρ(B) = 1 Cf
ρ(B0) = 2mf(λ1, λ2),

Tr(ρ[A,B]) = (λ1 − λ2)
2.

In this case the inequality

Varρ(A) · Varρ(B) ≥ Cf
ρ(A0)C

f
ρ(B0) +

1

4
|Tr(ρ[A,B])|2

reads as

1 · 1 ≥ 2mf(λ1, λ2) · 2mf (λ1, λ2) + (λ1 − λ2)
2,
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that is,

1 ≥ 4(mf (λ1, λ2))
2 + (λ1 − λ2)

2

or

1 ≥ 4

(

λ2f

(

λ1

λ2

))2

+ (λ1 − λ2)
2.

For g0(x) =
√
x we have

4

(

λ2g0

(

λ1

λ2

))2

+ (λ1 − λ2)
2 = 1.

Therefore, if for some x0 6= 1 we have f(x0) >
√
x0 then for λ1

λ2
= x0

Cf
ρ(A0)C

f
ρ(B0) +

1

4
|Tr(ρ[A,B])|2 = 4

(

λ2f

(

λ1

λ2

))2

+ (λ1 − λ2)
2

> 4

(

λ2

√

(

λ1

λ2

)

)2

+ (λ1 − λ2)
2

= 1

= Varρ(A) ·Varρ(B)

that is, the inequality is false.
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