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Uncertainty Principles and ldeal Atomic
Decomposition

David L. Donohg Member, IEEEand Xiaoming Huo

Abstract—Suppose a discrete-time signab(¢), 0 < ¢ < N, I. INTRODUCTION
is a superposition of atoms taken from a combined time—fre- . . .
quency dictionary made of spike sequenceb,— .} and sinusoids ECENTLY, workers in the computational harmonic anal-
exp{2miwt/N)/+/N. Can one recover, from knowledge ofS ysis community have developed a number of interesting

alone, the precise collection of atoms going to make u§? Because new signal representations; see [9], [23], [30]. In addition to si-
every discrete-time signal can be represented as a superpositionnusoids and wavelets, we now have Wilson bases, [10], wavelet
of spikes alone, or as a superposition of sinusoids alone, there 'Spackets, and cosine packets [8]. Moreover, the list of such rep-

;gnlé?:,jue way of writing 5 as a sum of spikesand sinusoids in resentations is expanding all the time; recent additions include

We prove that if S is representable as aighly sparsesuperpo- dgelets and curvelets [5], [4]. . .
sition of atoms from this time—frequency dictionary, then there is In each of these cases, we have an orthonormal basis or tight

only one such highly sparse representation of, and it can be ob-  frame which has been designed to be effective at representing
tained by solving the convexoptimization problem of minimizing objects of a specific type, where “effective” means requiring

the £ norm of the coefficienis among all decompositions. Here very few significant coefficients. The transforms turn out to be
“highly sparse” means that N; + N., < v N /2 where N, is the y g ’

number of time atoms, N, is the number of frequency atoms, and COmMplementary in the sense that the type of objects for which

N is the length of the discrete-time signal. one transform is well-suited are unlike the objects for which an-
Underlying this resultis ageneralé! uncertainty principle which  other transform is well-suited. For example, wavelets perform

says that if two bases are mutually incoherent, no nonzero signal relatively poorly on high-frequency sinusoids, for which sinu-

can have a sparse representation in both bases simultaneously. For___. . . -
the above setting, the bases are sinuosids and spikes, and mutua oids are (naturally) very effective. On the other hand, sinusoids

incoherence is measured in terms of the largest inner product be- P€rform poorly onimpulsive events, for which wavelets are very
tween different basis elements. The uncertainty principle holds for effective. In dimensior2, wavelets do poorly with discontinu-

a variety of interesting basis pairs, not just sinusoids and spikes. ities on edges, for which ridgelets are effective, while ridgelets
The results have idealized applications to band-limited approxi- g poorly on impulsive events [5].

mation with gross errors, to error-correcting encryption, and to . : : : : . : }
separation of uncoordinated sources. Itis na_tural in s_uch a setting to imagine combmln_g signal rep
Related phenomena hold for functions of a real variable, with €Sentations, using terms from each of several different bases.
basis pairs such as sinusoids and wavelets, and for functions of two One supposes that the object of interest is a superposition of
variables, with basis pairs such as wavelets and ridgelets. In thesetwo phenomena, one of which by itself can be effectively repre-
settings, if a fU?Ct'O” f 'Sk repfrese“gabklebby a Slﬁ]ﬁ'c'eﬁ“y §pars|e sented in basi$ and the other of which by itself can be effec-
superposition of terms taken from both bases, then there is only .. ; ;
one such sparse representation; it may be obtained by minimum tively repres_ented_ in bass and pne hopes that by aII_owmg a.
¢! norm atomic decomposition. The condition “sufficiently sparse”  F€Presentation built from terms in both bases, one might obtain
becomes a multiscale condition; for example, that the number of an effective representation—far more effective than what one
wavelets at levelj plus the number of sinusoids in _thejth2dyadic could obtain using either basis alone. Specifically, one hopes to
frequency band are together less than a constant time//2. represent an object containing two phenomena in superposition
Index Terms—Basis pursuit, combinatorial optimization, convex With the efficiency one would expect in analyzing each phenom-
optimization, error-correcting encryption, harmonic analysis, enon separately in its own appropriate basis.
Logan’s phenomenon, miatchlng pursuit, multllc:]Ile-t:ass S'I‘J”‘?" Such speculation leads one to propose the use of dictionaries
representation, overcomplete representation, ridgelet analysis, ¢, _ ¢ @, U. ..U ®,, made from a concatenation of several
uncertainty principle, wavelet analysis. .
orthonormal base®, = {¢q4 ;}, and to seek representations of

a signalS(t) as

= apy (1.1)
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methodology.” Coifman and collaborators have made numeroiis Ideal Atomic Decomposition

related _contribution_s in this field also. In the fielld of signal Our goal in this paper is to prove that in certain specific cases,
processing, a considerable body of related practical work Ngen the signal is a sufficiently sparse sum of terms from a dic-
been QOne in the general area of multiple-basis signal rePf@hary, the BP principle of! optimization of the decompo-
sentation and signal compression. See, for example, the SUNYR¥ 1 trom that dictionary in fact gives the solution of tHe

paper of Berg and Mikhael [3], who mention seminal work of 8timization problem and in fact recovers the identities and co-
decade ago by Mikhael and Spanias [26] and Beex [2]. Th&Bicients of the original synthesizing elements perfectly.

is ongoing more recent work by DeBrunner and collaborators,o following terminology helps formalize this phenom-
in_ signal represeptation [12]_ and in image representation [1l,on 1f & is an overcomplete system, any representation
Finally, we mention the thesis of Huo [19]', i S=>"_ «a-¢- is anatomic decompositionsingatoms from the
Mallat and Zhang [24] proposed a heuristic greedy approictionar Ry ;
L : , - y. If S'in fact can be generated by a highly sparse sum,
imation method for representation using overcomplete dicligz, the term “highly sparse” given an appropriate definition,
naries, called Matchl_ng Pursuit. While Matc_hmg Pursuit Workénd there is in fact only one such highly sparse way of doing so,
well in many cases, it is known not to provide sparse approXjyq i an optimization principle finds that decomposition, we
mat|0n§ in general; see t_he counterexamples in [7], [13]. say that the principle leads tdeal atomic decompositiaomder
As @ is the concatenation of several bases, the representatiQf stated sparsity hypothesis. In effect then, we are claiming

(1.1) is not unique; any single basis alone affords alreagyar ynder certain sparsity conditions, the minimérmorm
decomposition of an arbitrary signfl] and consequently many gecomposition in certain dictionaries achieves an ideal atomic
possibilities for combined decomposition arise. The gener&’écomposition.

goal would be to find a highly sparse decomposition—one with
very few nonzero terms. This leads to the optimization probleB1 Time—Frequency Decomposition

We initially consider the situation whede = &; U ¢, with
(Po): min[lallo,  StS=Y ap, ®, the spike basis
v ¢1,7(t) = Li=ry, 7=0,1,...,N—1
where||aflo = #{7: @, # 0} is the£° quasi-norm. Unfortu- and®. the Fourier basis
nately, in general, this problem requires a search through subsgtzsw(t) _ 1 exp(2niwt/N), w=0,1,...,N—1.
of ® looking for a sparse subset providing exact decomposition. ’ VN

Chen, Donoho, and Saunders [6], [7] proposed an altern&eth ®, and®, are orthonormal bases ftf;.
approach to signal decomposition in dictionaries, which they thaqrem 1.1: Let

called Basis Pursuit (BP). It calls for solving tHeoptimization
problem S= "+ Y ayp,
~ET ~EW
) whereT is a subset of the “time domaif{{1, )} andW is a
(P): minflafy,  stS =3 ayp, subset of the “frequency domai{2, w)}. If
B IT|+ |W| < VN

where||a|l; = Y |a | is the/* norm of the coefficients. This then (£%) has a unique solution. Meanwhile, there exist
is a convex optimization problem, and can be attacked usifg, 7', W) so that

linear programming methods based either on the classical sim- |T| 4 |W| = VN

plex method of linear programming or the recently popular "};{nd
terior point methods [32]. As th& normis, in a certain natural
sense, a convexification of th#® norm, the problen{;) can ~ Theorem [.2: Let

(Fp) has a nonunique solution.

be viewed as a convexification @F), one which makes acces- S = Z Uy Py
sible a variety of computationally feasible strategies. yETUW

In [7], it was shown that, empirically, the solution of BP iswith 7", W as in Theorem I.1. If
frequently quite sparse; and that in fact when the underlying 17|+ |W| < %\/N

SBgnSho?j'ﬂSo\éV?nsamae?feez:?”: only z;\hfew dlc.t]!.onatry elemznts, Emaen(Pl) has a unique solution, which is also the unique solu-
o on mayp -Uly TeCOVEINE SPECIC atoms and Spe~; ) ¢ (FPo). Meanwhile, there exigts, 7', W) so that

cific coefficients used in the synthesis. For example, Chen con-

sidered a sum of four sinusoids and two spikes, decomposed T+ [W] = VN

them in a combined time—frequency dictionary of sinusoids a@td (2’ ) has a nonunique solution.

spikes, and found that BP recovered exactly the indexes and coln short, if the signab truly has a very sparse decomposition

efficients of the terms involved in the synthesis; this held acrogsthe time—frequency dictionary, this is unique, and basis pur-

a wide range of amplitude ratios between the sinusoid and spskét (¢ decomposition) will find it.

components. In contrast, the same signal was analyzed using . ) o

Matching Pursuit, the recovery of indexes and coefficients whs Relation to the Uncertainty Principle

only approximate and became very inexact when the sinusoidalUnderlying Theorems 1.1 and 1.2 is an uncertainty principle:

and spike components were at very different amplitudes.  the analysisof a signal in the time and frequency domains
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cannot yield a transform pair which is sparse in both domainsTheorem 1.3: Let f(#) denote a square-integrable function
simultaneously. on the circlgl0, 27). Suppose thaf is a superposition of sinu-

To explain this connection, note that in order to take ideabids and wavelets
atomic decomposition seriously we must know that under

sufficiently strict interpretation of the term “sparsity”signal £(6) = Z axtA(0) + Z cneim (1.2)
cannot be sparsely synthesized from both the frequency side N oo

alone and from the time side alonk this were possible, the

atomic decomposition would be nonunique. Here, they, are the Meyer—Lemarié wavelets, ang= 2701,

Now suppose there existed a signal whose Fourier transfofimere is a constant” with the following property. Let
was very sparsandwhose representation in the standard basi¥;(WaveLeTs) be the number of Meyer wavelets at resolu-
was very sparse. Then we would have exactly an exampletiain level j and let/V;(Sivusoips) be the number of sinusoids
such nonunique sparse decomposition: the signal could be rapfrequencie®’ < n < 2/*1. Suppose that the sum obeys alll
resented in two different ways: as a sparse sum of sinusoids #mel conditions
as a sparse sum of spikes. '

In effect, at the center of our analysis of thedecomposi- N;(WaveLETs) + N;(SiNusoms) < C - 27/2,
tion in this finite-V, discrete-time setting is exactly a certain j=jdo+1,.... (1.3)
picket fence sequenddI which may equally be viewed either
as a relatively sparse sum of sinusoids or an equally sparse stomsider the overcomplete dictionarg consisting of
of spikes. This sequence has been studied before in connecNyer—Lemarié wavelets and of high-frequency sinuseit,
with the uncertainty principle, for which it serves as a kind of > ngy > 2/t There is at most one way of decomposing a
extremal function [15]; see also recent work of Przebinda, Dfinction f in the form (1.2) while obeying (1.3). If has such
Brunner, and Ozaydin [27]. a decomposition, it is the unique solution to the minimém

The connection between unique decomposition and the wptimization problem
certainty principle will emerge repeatedly, and in a quantitative
form, throughout the paper. It is closely connected to work on . =
the uncertainty principle in [15], [16], however, the uncertainty mmz el + Z [enl-
principle employed here gives a more symmetric role for time A
and frequency.

n>ng

In short, minimum#* decomposition, which makes no as-
sumption about the sparsity or nonsparsity of the representation
. _ o of f, nevertheless gives ideal atomic decomposition when suf-

The phenomenon of ideal atomic decomposition is very Spgrient sparsity is present.
cial; it follows from very particular properties of tf& norm. In Note however, that the notion of sparsity becores®l-de-
effect,(11) asks tofind the member of a linear subspace closggindentwe can tolerate more total terms at high resolution than
to the origin in£" norm. This closest point problem (‘.’V?'Chwe can at low resolution. Intuitively, this is because there is less
would be a linear problem iff normy is highly nonlinear if®  possibility of confusion between sparse sums of wavelets and
norm, and the nonlinearity is responsible for our phenomenogparse sums of sinusoids as we go to sums limited to dyadic

A precedent for this type of perfect recovery is what has begands at increasingly high frequencies—the two systems be-
called Logan’s Phenomenon in [15]; see also [22], [16]. Th@bme increasingly disjoint.
phenomenon occurs when one is trying to find a decomposi-Mmathematically, we could say that there is an uncertainty
tion Of a Signal intO band'limited function and impUISiVe nois%rincip|e: a phenomenon near Scaej and frequencyzj
supposing that the product of the signal bandwidth and the meannot have a sparse representation in both the wavelets basis
sure of the support of the noise is sufficiently small, this can Bd the sinusoid basis. The expression of this phenomenon
done perfectly, by finding the band-limited function closest tg the fact that if a functionf has at mostC - 2//2 nonzero
the observed signal in aft sense. The phenomenon is highlyyavelet coefficients and sinusoid coefficients at leyethen
nonlinear in the sense that perfect reconstruction holds at @l function is zero.
signal/noise ratios. See Section V below. For a second example of this kind, we consider combined

In a sense, the phenomenon exposed in this paper is dugjit@ionaries of wavelets and ridgelets.
the same nonlinearity of th& norm, only transposed into the

setting of approximation from arbitrary time—frequency dictio- TheoreQm |.4:Let f(z1, x2) denote a square-integrable func-
naries in which time and frequency play a symmetric role, arfitpn On£". Suppose thaf is a superposition of wavelets and
in which there is no need for the frequency support of the sigrfifgelets
to be an interval or even to be known.

D. Nonlinearity of the/! Norm

F=) agvq+ ) Barx (1.4)
Q

E. Other Dictionary Pairs €A

In fact, the methods of this paper provide insights outside bfere, the are the usual two-dimensional (2-D) Meyer—
the setting of time—frequency pairs. We give two examples. Themarié wavelets for the plane. The, are orthonormal
first considers dictionaries of sinusoids and wavelets. ridgelets [14] andA consists of ridgelets at ridge scales
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j > jo + 2. There is a constant’ > 0 with the following II. UNIQUENESS OF£® OPTIMIZATION
property. Let N;(WaveLeTs) be the number of wavelets
used in this decomposition at resolution levgland let

N, (RipceLETS) be the number of ridgelets at levelSuppose ~ Theorem I1.1: Suppose(z;);—;' has N, nonzero elements

We begin by quoting a simple uncertainty principle from [15].

that the sum obeys all the conditions and that its Fourier transforifiz,,)Y 3 hasN,, nonzero ele-
ments. ThenV,N,, > N and so
N;(WaveLeTs) + N, (RIpGELETS) < O - 27/2) N, + N, > 2v/N. 2.1)
Jj=Jo+2,.... (15)

The proof identifies the extremal functions for these inequal-
Consider the overcomplete dictionadyconsisting of Meyer— ities. Whenq is a perfect square, (2.1) is attained by
Lemarié wavelets and of ridgelets withe A. There is at most
one way of decomposing a functighin the form (1.4) while III, = { 1 t=I/N,1=0,1,..., VN -1

obeying (1.5). Iff has such a decomposition it is the unique 0, else
solution of the minimun?! optimization problem and by its frequency and time shifts. The complete catalog of
extremal functions is generated by scalar multiples of
> lagl+ > 1A expl2mi/N -w - (+ & 7) ML,
Q A

wherew is an integer in the randge< w < v N, 7 is an integer

. . . in the rangé) <+ < v/ N, ande denotes subtraction modulé.
In short, minimum¢* decomposition, which makes no as- g&=7 < ©

. . . . The key properties dfII are its sparsityN, + N, = 2v N
sumption about the sparsity or nonsparsity of the representat y prop P YN+ V)

. ! : i ‘L%h its invariance under Fourier transformation
of f, nevertheless gives ideal atomic decomposition when suf-

ficient sparsity is present. F(IIT) = IIL.

Agaln, the notion of sparsity bec_omka/el-dt_-:‘pendenNVe TQis says thalIl may equally well be viewed as either being
again tolerate more total terms at high resolution than we do a

. o . . . ..produced by

low resolution. Intuitively, this is because there is less pOSS|b|I|R/
of confusion between sparse sums of wavelets and sparse sunt) time-domain synthesis usingN spikes, or
of ridgelets as we go to sums limited to dyadic bands atincreas-) frequency-domain synthesis fropilV sinusoids.
ingly high frequencies—the two systems become increasingly )
disjoint. In consequence, faf =IIT, the problen{F;) has a nonunique

Mathematically, we could say that there is an uncertainplution in the overcomplete dictionary
principle: a phenomenon occurring at scate’ and frequency
2/ cannot have a sparse representation in both the wavelets basis . _
and the ridgelets basis. The expression of this phenomenoff i§llows that constraints on sparsity; + N, < K cannot
the fact that if a functiorf has at mosg’ - 2/ nonzero wavelet guarantee uniqueness in this setting for- VN. In fact, K =
coefficients and ridgelet coefficients at leyethen the function vV can guarantee uniqueness, as we have claimed previously

{srrkrs}U{siNusoDs}.

is zero. in Theorem 1.1. We now show this, and thereby prove Theo-
rem I.1.
F. Contents Suppose tha$ had two decomposition$ = ®at, S=oa?,

. where both! anda? obey||a’|lo < v/ N; then0=&(at —a?).
Sections II-1V of the paper prove Theorems |.1 and 1.2. Sef:n other words, if we letA” denote the nullspacd/ —

tion V gives an application to band-limited approximation witty .~ 1 2
unknown band and impulsive noise. Section VI discusses gen ‘Sr'-(b‘s = 0}, thena® —a® € V. For§ €V, suppose

alizations of Theorems I.1 and 1.2 to the setting of real sinusoid$= (81,00, 61,15 -+ 01, N=1)> 02,095 02, 1) - - -, (2, N—1))

(as opposed to complex exponentials). Section VIl isolates th ) . L
concept—mutual incoherence—which makes Theorems I.1 a\p{%ere the firstV components are associated with dictionary el-

I.2 work, and shows that it generalizes to other pairs of ortho ment_s t_)elonglng tothe spike ba_3|s and the élat_e asso<_:|ated
onal bases: Section VIl shows that in some sense “most pair h dictionary elements belonging to the Fourier basis. Thus,

ortho bases” are mutually incoherent. It also gives applicatioﬂgrt't'on'ng‘5 = (6%, 6%) into components; € A implies

to encryption and blind separation of uncoordinated sources. D6+ D382 =0

Sections IX—XI switch gears, establishing Theorems 1.3 and 1.4.

Section Xl describes generalizations to the nonorthogonal s8t

ting. Section XIII considers relations of the concepts here to 52 = —oTst.

the classical uncertainty principle for functions of a single real

variable, and applies insights derivable from experience in tHata more transparent notatiof; is the set of all pair§z, —2),
setting. It also suggests that for many situations, the provabiberer = () " andi = (i.,) 5 is its Fourier transform.
bound|T| 4 |W| < const - v/N of Theorems I.1 and 1.2 over-  Returning now to our setting, = o' — o? has, therefore,
states severely the required sparsity; offEp-|W| < const- N the structure of a paifz, —); by the uncertainty principle in
is sufficient for uniqueness. Theorem 1.1 must have at leagy/N nonzero entries or else
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§ = 0. But by hypothesigla*|lo < VN and|la?[lo < VN. and, in particular, if/N is even, there exist’|, |W| of size ¥
Hence,§ = 0; in short,a! = o?. so that

[1l. UNIQUENESS OFf* OPTIMIZATION W, W) > (3.6)

Suppose thaf = ®«, whereq is sparse, made from atoms,
in sets” andW in the time and frequency domain, respectivel
We seek a condition on the size’BfandW which guarantees |
that « is the unique solution of thé' optimization problem

n short, for a sparsity condition ofi’ and W to imply
lequeness of a solution {@, ), it must clearly be of the form
|T| + |W| < K, for someK < +/N. This is the same range
as we contemplated in the condition for uniqueness in/the
(F). roblem(Fy), but it is a necessary restriction: we can see from

~In order th?ta be t~he ;J.n'q.ueq)sf)lu_t'?;’ ve/e _mulst trav he sequenc@&IlI that there are setd’| = + N so that the
[l > ladls, for everya satisfying®a = ¢a. Equivalently, problem(P;) has a nonunique solution. Indeed
for every§ € N (@5 = 0), we must have

I = &, - III = &, - I11
llor+ 6]l — llall > 0 ' ’
and one can verify that
unlessé = 0. Now

1_J 1L y=(L1),¢te€supp{IIT}
lac 8l = llalli = D= 18,1+ D (g + 8] = o) “ = {0, else
(TUW)e TUW e
2 _ )1, v = (2, w), w € supp{III}
Note that @ {07 else
ooy 4+ 6] — |y | > —16,] are both solutions of the problef#, ), as are all convex combi-
nations ofx! ande?. CuriouslyITT is within a factor2 extremal
and so for the u(T, W) concentration measure.
lloe + 6|1 = ||ee]ly > Z 16| — Z 16, Theorem 111.1: Let T be a subset of the time domain aAd
(TUW)e TUW be a subset of the frequency domain. Then
Hence, a sufficient condition for uniqueness is thatsfgt 0 (T, W) < 17+ W] (3.7)
VN+1
doll< > 16l YéeN. @31 o
o (T In particular, if|T| + |W| < 1v/N, thenu(T, W) < 1/2, and

the optimization probleni?; ) has a unique solution.
In words, every nonzero member.gfhas a smallef norm on

the support ofx than off the support ofe. SinceN consists of We need iwo lemmas.

all pairs(z, —2), the condition (3.1) is equivalent to Lemma lll.2: Let (z, &) be a Fourier transform pair. Then
Z 4] +Z || < 5 (Il +[12[]1) 3.2) 2]l 2 VN ||| (3.8)
o ) Proof: Let|z:| = ||z||e. Then from Fourier inversion
for every nonzerac. Formalizing matters somewhat, we view
this as a time-frequency concentration problem. For given sets St )
T andW, let Tr = Z o (1)
2 |z 4+ 20 [ , 2 R
(T, W) = sup T WA (3.3) with e, thel=-normalized sinusoid of frequen@g{,—, so that
[l /ly +[1€]]2 < 1ls
: || < (|21l ewloo-
where the supremum is over all = (x;)]* " which are N
nonzero. This measures the degree to which the imtorm ow
can be concentrated to sefsand W; the uniqueness of! lew|loo = 1mx| exp{2miwt/N}| = 1
optimization is therefore implied by witee \/_ VN’
(T, W) < L (3.4) Equation (3.8) follows. O
7 2" .

Lemmallll.3: Consider the capacity defined by the optimiza-

We note thay:.(T", W) is closely related to a variety of known tion problem

time-frequency concentration functionals connected with the

uncertainty principle. See Section V. (K1) min ||z||; + ||2]]1, subjectto z, = 1.
The sequencEII,; shows that we can have

71+ W]
2V N

The value of this optimization problem obeys

(T, W) 2 (35)

Val(K, ,) = Val(Ky o), 7=1,2,...,N—1. (3.9)
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Also, for the frequency-side capacity defined by the optimiza- V. APPLICATION: BAND-LIMITED APPROXIMATION WITH
tion problem GROSSERRORS

Before continuing with our development of general atomic
decomposition results, we indicate an application. The func-
we have tional (T, W) we have studied in Section Il is related to time-

frequency concentration functionals connected with band-lim-
Val(K> ,,) = Val(K> o), w=1,2,..., N —1. (3.10) ited approximation. Donoho and Stark [15] defined

(K2, w) min ||z||1 + [|2]|1, subjectto #, =1

Finally ;|-Tt| | )
po(T, W) = sup Tl subject tosupp{,} € W.
Zl1
In short, tr)\jslmeasures the time-side concentration ratio
Proof: Candidatesz(*-9 for (K1) and 257 for Do lwl/ Do _|xt|for objectsz pe_rfectly Ipcalized td¥ on
(K, .) are related by appropriate translation—-modulation the frequency side. They gave the inequality

Val(K;, o) = Val(Ks o) = 1+ VN. (3.11)

LT (1,0) po(T, W) < [T[W|/N
t toT
33501’7) = exp{igﬂwT}@gUl:O). and described applications in the recovery of band-limited sig-

nals facing scattered gross errors. They assumed that one ob-
Indeed, this transformation preservesthaorm||z||; + ||Z||; served
and the constraint, = 1 maps taz, = 1. Hence, any solution

of (K1,0) maps to a solution ofK; ), andvice versaSimilar S(t) = B(t) + (1)
l;jeerzz map solutions ¢z, ,,) into solutions o &2, ), andvice whereB is a discrete-time band-limited signal with frequency-

Similarly, the formal interchange of time and frequenc omain support purely in a certakmownband ¥’ and thate is

domains turns any candidate f0K; () into a candidate for discreFe-time hoise, of arbitrary size, supported in d'sét .
(K» o) with equal constraint and équal norm. Finally, fron%hat setting they showed that whenever the support of the noise

Lemma 1lI.2, we have satisfies

Val(Ky o) > 1+VN. po(T, W) < 1/2

the /! approximant
On the other hand, let = ¢, o) be the Kronecker sequence. PP

Thenz obeys the constraint ¢f; () while B = argmin ||S — X||; subject tosupp(X) € W
X
ol + 3]l = 1+ V. recoversB perfectly: B = B. Here, W is aknownfrequency

band, but the suppof of the noise is unknown. This is an in-
stance of what they calledogan’s phenomenoior band-lim-
The proof of Theorem I11.1 follows directly from Lemma lll.3 ited £* approximation, after B. F. Logan, who discovered it in
the setting of low-pass approximation to continuous-time sig-
|e| < Val(Ky, )™ (]l + [|£]]1) nals [22]. Compare also [16].
| 2] < Val(Ko, )7 (||lz]]1 + 12]1) The concentration notiop given in this paper is not directly
comparable withyg, nor is the application of* approximation
SO the same ag' decomposition. In [15], the functional sup-
. poses that the object in question is perfectly localized to a set
20 ||+ 20 [ . .
T W < Z Val(Ky )~ + Z Val(Ky )t W in the frequen(;y QOmgln, and measures _the degree of con-
Nzl + 12— — ot — W centration tdrl’, Whlle in t_hls paper, the object is not assumed to
be perfectly localized either t6 or to W, and the quantity: is

Equation (3.11) follows.

-1
=T+ |W]|) (\/N + 1) . fully symmetric in the roles played by time and frequency. Also,
the/! approximation in [15] was based on finding t#eclosest
Equation (3.7) follows. approximant from a fixed, known baridl. In short, the signal

was representable as a superposition of sinusoids with fixed and
known frequencies. In contrast, tiié decomposition here is
based on approximation from an arbitrary collection of times
From the results of Section Ill, we know that a solution tand/or frequencies, none of which is prespecified. The method
(Py), if it satisfies||allo < $V/N, is unique. This must also uses whatever combination of spikes and/or sinusoids may be
solve(F,), because at most one vectemay satisfyS = ®a  necessary to decompose the object. If we ldbels the com-
and|jallo < $V/N. In short, any vectory obeying|jaflo < ponent of thef* solution coming from sinusoids andas the
%\/N andS = ®« is simultaneously the solution ¢#”;) and component of thé! solution coming from spikes, the approach
(Fo). of this paper may be viewed as a method for also solving the

IV. SIMULTANEOUS SOLUTION OF £° AND #%
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problem of band-limited approximation witlnknowrband'!

2
The results of this paper show that, if a1 () = Vv sin(2rkt/N),  k=1,2,..., Nj2—1
A 1 2
[supp(B)] + [supp(e)] < VN ean(t) =\ cos(@mkt/N), k=12 ... N/2—1
- o 1
thenB = B andlc =e N _ on_1(t) =4/ = (=1
In short, the* atomic decomposition may be viewed as a N

method for recovery of a band-limited signal with unknowgye have

bandW in the presence of sparse gross errors in the time do-

main. The errors may be of arbitrary amplitude, but if the band M= \/z
W and the suppor” of the errors are both sufficiently sparse, N
thens* atomic decomposition gives perfect reconstruction.

In comparing the approach of this paper with the older one,
we see a key difference: namely, that the condition for per- J(T, W) < V2(|T| + |[W|)/VN. (6.1)
fect recovery in the band-limited approximation algorithm is
|T||W| < N/2, whereas the condition in the atomic decomcombining this with arguments of Section Ill, we immediately
position algorithm i§7’| + |W| < $+/N; the conditions cover obtain the following.

a somewhat different collection @f, W pairs.

d so

Theorem VI.1:Let &, be the basis of spikes and k&t be
the basis of real sinusoids.$fis a superposition of atoms from
sets7”andW and

So far, we have been using as sinusoid basis the traditional
system of complex exponentials i ci2/N) =5 How do T+ W] < 5/N/2 (6.2)
things change if we use instead the real sinusoids, or one of
discrete cosine transform or discrete sine transform bases [2

Let ((pw)i\):& be an orthonormal system féy . Let&,, = What about the solution @¢f%)? Arguing as in Section Il, we
(x, ¢w) be the Fourier—Bessel coefficients in this system. Letish to ask about the minimal cardinality of sdtsandW so
T andW be subsets of the andw-index space, respectively.that a paifz, ) exists withx concentrated t@ andz concen-

VI. REAL SINUSOIDS

%n the solution td.F; ) is unique.

Define trated toW. Unlessi(T', W) > 1 there is no signat 100%
Sz + 3 [l concentrated td@’, with its real Fourier transforni is also per-
AT, W ) = T W fectly concentrated téV. The inequality (6.1) therefore shows
pAEs VY5 ) = Sup Izl + 112 that such perfect concentration is impossible, unless
so that what we earlier callgd T, W) is the special case with 7]+ |W]| > v/ N/2.
O = %emwt/ N Careful inspection of previous arguments
will show that if we put We conclude as follows.

M= max max low(t)] Theorem VI.2:Let &1, ®5, S, T, andW be the same as in
woot Theorem VI.1. If

then for problem 1
|7+ W] < > N/2

(KLt) min ||z||1 + ||Z]]1, subjecttox; =1
then
we have * the solution toF,) is unique;
Val(K, ;) > 14+ M1, Vi « the solutions of problemiF,) and( P, ) are identical.

Actually, the criterion of uniqueness for tif& problem can be

and, similarly, for problem g : _
y P sharpened by a factor two. The key is the following uncertainty

(Ko, ) min ||z||1 + |Z|]1, subjecttoz,, =1 principle for the real Fourier transform:
we have Theorem VI1.3: Letz be the coefficient vector associated with
. _ the spike basis and Ig¢tbe the coefficient vector associated with
Val(Ks ) 21+ M7, V. the real Fourier basis. Supposandz haveN; andN,, nonzero

elements, respectively. We have
It follows that P Y

T+ |W N,-N, > N/2
i, wy < L t /
(1+M~=) and so
Now for the real Fourier basis, fordomain=0, 1, ..., N —1, .
with N even Ny + Ny > V2N,

wo(t) =1/VN A variation of ITI will achieve N, + N,, = v2N + 1.
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Proof: Letz be the complex Fourier transform of The thenc is the unique solution t@P; ) and also the unique solution
two sequences andz are connected in the following way: forto (F).

an eveny This shows that sufficiently small values of the functional

M(®,, ®,) guarantee the possibility of ideal atomic decom-
position. We callM a measure of theutual coherencef two
bases; if two bases have a very small valué.bthen we say
that they are mutually incoherent. Obviously< A < 1; if
two orthobases have an element in common, ther= 1. On
the other hand

Zo =29
In-1=1Tn/2
k=1,2...,N/2—-1
k=1,2,...,N/2—1.

Top =Tp + TNk,
Top—1 = (&g — TN_k),
Letting /V,, denote the number of nonzero elements:jrwe

Y 1
haveN,, > 5N,. By Theorem I.1N; - N, > N, hence M (SPIKES, COMPLEX SINUSOIDS) = 1/VN

Ny - Ny, > $N.
Suppose/N/2 is an integer. As a variation dfiT, we con- so thatd/ can be small for large¥. There is an easy bound on
sider how incoherent two bases can be.
T0=T sy =Tysy = = Ty_yaw = 1 RAI?emma VI1.2: For any pair of orthonormal basés, ¢, of
with other entries of: vanishing. Hence,
S _ s _ M(®,, &) > 1/VN.
Tog =2 1\’/2_372 N/Q—---—Q:N_\/N—/Q—l ( 1 2)_ /

Proof: The matrix®¥'®, is an orthonormal matrix. The

with other entries of vanishing. Then £1 % 4
sum of squares of entries in an orthonormal matrixvisthe

To =1, average squared entry is, therefdr2y; the maximum entry is
Fn_1=1, therefore at least/v/N. O
TN =TyaN = Tayay = = Iy oy = 1 This shows that the basis pdigpikes, Sinusoids) yields a

and the rest of vanishes. Hencey, — /—N/2, N, = V2N, m_(_)st mutuglly mcqherent pa|_For this pair, _the spgrsny con-
o dition leading to ideal atomic decomposition will be most
andN,, = +/N/2+ 1. O .
generous. There are other examples of extremal bases, the pair
The following theorem gives uniqueness#foptimization (Spikes, Walsh functions) being an example; but these will
for a frequency domain based on the real Fourier transform. seem far less “natural” to those with standard mathematical

. training.
Theorem VI.4:Let &4, ®5, S, T, andW be the same as in . . . . .
Theorem VI.1. If CipLIJenderIylng Theorem VII.1 is the following uncertainty prin-

IT|+|W| < +/N/2

then the solution t¢F) is unique. There ar§, T, W with

|T)+ W] >/ N/2

for which the solution td Fp) is not unique.

Theorem VI1.3: Let ®; and®, be orthonormal bases f@’ .
Let 7" index the collection of nonzero coefficients foin basis
1, andW index the collection of nonzero coefficients ferin
basis2. Then

IT|+|W|>(1+M"). (7.1)

In short, we have a parallel of the earlier situation based on the
complex Fourier transform, only with a lower threshold for the e compare this result with the earlier uncertainty princi-
(P1) & (Fo) equivalence effect. There is a similar parallel, withyes (Theorems 11.1 and VI.3), we see that the general bound
the same lower threshold, for the various real orthogonal ba%g_s,l) can be a factor of two away from sharpness in those cases.

associated with the real discrete cosine transforms and discrl?éegenerality can be an advantage in some cases. Thus, mutual
sine transforms. incoherence of bases has the following pair of implications.

» No signal can be analyzed in both bases and have simulta-
neously fewer than abod¥ —! nonzero components from
$; and®, together.

VII. M UTUAL INCOHERENCE

The extension from complex sinusoids to real sinusoids gen-

eralizes immediately, to the following result.

Theorem VII.1: Let ®; and®, be orthonormal bases fé
and let

M(®1, ®2) = sup{[(¢1, ¢2)|: ¢1 € @1, P2 € Pa}.

« A signal which is synthesized from fewer than abafit*
components fromb; and M~ components fron®, is
decomposed by minimur atomic decomposition per-
fectly into those components.

It is curious thatM was implicitly identified as heuristically

Let & = &; U &, be the concatenation of the two bases. Lefignificant by Mallat and Zhang [24] in their initial studies of

S = ®a, wherea obeys

1
laflo < 5 (14+87)

Matching Pursuit; however, we emphasize thatis relevant
here for BP /! optimization, rather than Matching Pursuit
(greedy single-component extraction).
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N=64 N=128
150 200 T
150
100
100
50
50
0 0
0.6 0.8 1 1.2 1.4 0.6 1.4
N=256 N=512
200 " 200
150 150
100 100
50 1 50
0 0
0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 14

Fig. 1. Empirical distributions of the normalized maximum entfy ') /(2 \/log(N)/N) for N = 64, 128, 256, 512. Each is based on 1000 simulations.

TABLE | to a limiting distribution. Fig. 1 gives the empirical distribution
TABLE OF THE MEDIANS OF THEMAXIMUM AMPLITUDE INA REAL N X N out of 1000 simulations.

PSEUDORANDOM ORTHOGONAL MATRIX .
For a formal result, we have the following.

Size N | Median M(N) | 21/} | Median pov)

&) \/ v 2y/log(N)/N) Theorem VIII.1: Let U denote a random real orthogonal ma-
zi g‘iggg g'gggg 8'2233 trix, uniformly distributed onO(N). Lete > 0. Then the ex-
128 0.3543 0.3804 0.9099 ceedance probability
256 0.2706 0.2944 0.9193
512 0.2052 0.2208 0.9296 TeN =P <Ini?x [Uii] > 2/ 1og(N)/N (1 + C)>
1024 0.1549 0.1645 0.9413

obeysr, y — 0asN — oc.
Proof: Any fixed column of a random orthonormal ma-
VIIl. RANDOM ORTHOGONAL BASES trix, viewed as a vector ilR”, is uniformly distributed on the
To make the point about generality of these results, we naW-sphere. Each entryy; ; can therefore be identified with the
consider random orthogonal bases, their incoherence propertggjection on theith coordinate of a randomly chosen point

and some idealized applications. (U;, j); ontheN-sphere. This is an exceptionally well-studied
quantity; it is the classical example of so-called “concentration
A. Mutual Incoherence is Generic of measure phenomena” and “isoperimetry” [21]. It is known

Is mutual incoherence special or generic? Thatis, if one talgfg It tfhere IS v;ary I|ttrlle chance t.hatfa randomdpow_\t'; on thel sphere
a pair of “random orthogonal” bases &, what will be the alls far away _romt eequatqr, in fact, most distributional prop-
erties are similar to those which would hold for a Normally dis-

typical size ofAM? . d itV havi d vari ;
The question can be reduced as follows: what is the Iargérél?me quantity having mean zero an variangsy. Refer-
nce [21, Theorem 1.1, p. 15] implies

amplitude in a random orthogonal matrix? Here “randont®

means uniformly distributed on the orthogonal group. P (|Uij| > ¢/VN — 2‘) < 2-exp{—¢?/2}, ¢>0.
The largest entry in a random real orthogonal matrix is not o )
typically larger than From Boole’s inequality
~2\/log. (N)/VN. P (any|;| > (VN ) <3 P (51> ¢/VN)
We illustrate this in Table | of results based on generation of 100 Y N—9
pseudorandom orthogonal matrices. <2.N? .exp{_T .<2/2}

Actually, empirical results seem to suggest that the normal-
ized maximum amplituded/(N)/(2/log(N)/N) converge so that taking, = 2./log(N)(1 + ¢) we getr,, y — 0. O
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In short, thel//N behavior we saw for the incoherence irband. If we are allowed to use this setup with a preprocessing
the (Spikes, Sinusoids) pair is not far from the generic behaviof. signals, we can arrange for perfect separation of signals, in

For “most” pairs of orthogonal bases 8", there is an un- principle, even when they are encoded without coordination and
certainty principle threshold and an ideal atomic decompositiane of radically different amplitudes. The idea is that e&¢lis

threshold, which are both of ordér(y/ N/ log(N)). a discrete-time signal of lengt which is obtained from en-
coding a messags; of at mostK < M —!/2 nonzero entries
B. Application: Error-Correcting Encryption by applying a random orthogonal transformatiéyto the mes-
Here is an amusing application of the use of random o¥age vector. Then, with minimufi-norm postprocessing at the
thonormal bases in connection with minim#fnmethods. receiver, we can separate out the two messages perfectly.
A. D. Wyner [33], [34], [29] has advocated a method of en- This scheme has several key features.
cryption for real-valued discrete-time signaisof length V: « Each of the two broadcast signals is encrypted and so not
form a random orthogonal matrix, multiply the signal vector accessible to others, including the operator of the other
by the matrix and get the encryptidh= US. Transmit the en- transmitter.

cryption to a remote receiver who knows and who decrypts .
via § = UTE. This is an encryption scheme because the ob-
server of E who does not know/ sees only that the marginal
distribution of the encrypted vectds is uniform on the sphere
of radius||.S|| and so there is no “pattern” i&' other than the
simple pattern of a uniformly distributed vector on the sphere.
The results Of th|s paper ShOW that we may use minimum d The SCheme WOI’kS perfectly, no matter What the I‘elative
¢£'-norm decomposition in an overcomplete dictionary to extend ~ Sizes of the two signals: it works, in principle, at rather
this encryption scheme so that it is robust against the possibility €normous differences in transmitter strength.

of gross errors in transmission or recording. Knowilg the |, comparison, more typical separation schemes would assign
amphtudj of the largest entry in matiix, we encode a vector of gach transmitter a subband quasi-disjoint from the other, which
K < M~ /2 entries by embedding itin a vectsrof lengthV requires coordination; also, they rely on linear methods for sep-

in scattered locations, with the other entries in the vector beiggstion which work poorly when the signal strengths are very
zero. We encrypf according to Wyner’s scheme. We transmigjitferent.

E over a channel prone to a small number of gross errors. The
receiver performs minimurét atomic decomposition in a com-
bined dictionary consisting of spikes and columng/of

This variant of the method is robust against gross errors in theWhile the argumentation so far has mostly been quite general,
transmission and recording & Suppose thak agrees withz ~ and could apply to any pair of bases, a special feature of the
except inK entries; i.e.,.E = E + Z whereZ has onlykX analysis so far has been that we bddsmall for largeV; M =
nonzero entries. We may V|e}E} as a Superposition df terms O(N_I/Q). If we consider the broader field of applications, this
from the spike dictionary an& terms from thel/ dictionary. Special feature may be absent: we may hayeoughly 1. In
Because2K < M~—!, we conclude that minimurdt atomic that case, the above development is rather useless as is.
decomposition recovers perfectly both the columnd/ofhat ~ Nevertheless, we may still obtain interesting insights by ex-
correspond to the transmitted data, and the specific locatidggding the approach developed so far. Suppose we have two or-
where E differs from E. In addition, it recovers precisely thethonormal base€; and®., and consider the capacity defined
entries in the original signal vectdt. by the optimization problem

Note that the errors can be really large: in principle, they c : T T
have an amplitude 1000 or evenﬁi/mnegs as Igrge gs the gm-atlkw win |83 ], + |2 ],
plitude of the transmitted signal, and perfect recovery will stilh effect, the previous analysis relied on the fact that the value
obtain. Val(K.,) did not depend or, or at most weakly so.

Quite generally, then, we can transmit ugov'N /log(N)) In some interesting cases, the capacitieK i, ) take widely
real numbers encrypted in a vector of lengfhrand be immune different values, with the largest values being of ortiénde-
to up toO(v/N /log(N)) gross errors in the transmission angendent ofV and with many values much smaller than this; in
recording of the encrypted data. such an event, the preceding analysis by itself tells us almost

nothing of any use. An example of such a case is wheris

C. Application: Separation of Two Uncoordinated Sources a wavelet basis and. is a sinusoid basis; at low frequencies,

The mutual incoherence of random orthogonal bases H4avelets and sinusoids are not incoherent, and the associated
other potential applications. Suppose that an idealized recei¢@Pacity problentx’,) has large values; while the value of the

obtains the superposition of two encoded signals capacity problenf &', ) tends to zero at high frequencies.
R—E, +E Abstracting this situation, we now consider bases with an
- = L 2

interestingblock-diagonal structurelnformally, the~-indexes
and the goal is to perfectly separate the two signals. For ean be grouped in blocks in such a way that values within a block
ample, R is an idealized antenna and th& are received sig- of v-indexes have almost the same vaW(X ), and, in ad-
nals from two transmitters which must use the same frequerdiyion, the basis functions in a certain group coming from basis

The transmitters are uncoordinated. The matrideare
generated randomly and independently of each other, and
each can be kept secret (say) from the owner of the other.
Only the receiver operator would need to know both ma-
tricesU; to perform separation.

IX. MULTISCALE BASESWITH BLOCK-DIAGONAL STRUCTURE

subject to{z, ¢) =1
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1 span the same space as the basis functions in a correspondiagienote any of these hjs. Here the effective support ofy,
group for basi<. A = (4, k, €),isroughly of width/V/27 and sgj measures scale.
The real bi-sinusoidg,, are certain special functions, de-
riving from the construction of the Meyer—Lemarié wavelets.
With w = (w, o), wherew € [27, 2/F1) ando € {1, 2} we
define(2; = [27, 2/+1) x {1, 2} and we have basis functions

Definition 1X.1: A pair of orthonormal base®,, ®, has
joint block diagonal structure if the following are true.
» There is an orthogonal direct sum decomposition

RV=XoeX,9...0X,. in four different groups:
» There is a grouping of indexd§ _; for basis 1 so that RW1. e, (t) = bj(w) cos(2rwt/N)—b;(w') cos(2rw't /N),
SPAN((f)A/:’YEFLj):Xj w < 2 '4/3’02 1’
and, similarly, a grouping of indexd_; for basis2 so RW2.¢..(t) = bj(w) cos(2mwt /N )+b;(w’) cos(2mw't/N),
that w>2-4/3,0 =1,
IW1. e, (t) = bj(w)sin(2rwt/N) —b; (w') sin(2rw't /N),
SPAN(¢p: v € I's ) = X, w< 2 -4/3,0 =2
IW2. e, (t) = bj(w)sin(2rwt/N) +b; (w') sin(2rw't /N),
An example of this kind is a combined dictionary w>2-4/3, 0 = 2.

(WAVELETS, siNUsorps) which will be explained in de-

;. PR
tail later. We record a simple observation, without proof. Here,w'" is the “twin” of w, and obeys

Lemma IX.2: If a pair of bases has joint block-diagonal struc- 2w =w-2, w<2-4/3
ture, then the optimization probler(g,) and( P, ) separate into 2y = — 2w > 27 .4/3,
a direct sum of subproblems, as follows. I%{) be the ortho-
projection ofS on X ;, let®) be the subdictionary formed from
¢ withy € I'; ; UL ; and define

while—important poimt—b; (w) is a certain “bell function” that

is also used in the construction of the Meyer wavelet basis, and
obeying

. ; () i ) — W) o) .
(Pp, ;) min Ha Ho , subjectto SV = oV« bj(w)? + by (w')? = 2/N, we [27, 2,
and
. p . ; N7 The systene,, has been constructed so that itis orthonormal and
. ) U — el ) w
(F1,j) min Ha H ,+ SubjecttoS = &l spans the same spaldé as the collection of periodized Meyer

wavelets. We call the,, real bi-sinusoids because they are made
from pairs of real sinusoids.

The key property relating our two bases ¥ can be sum-
marized as follows.

Then, if a unique solution to eadlF,, ;) exists, a solution to
(Py) is given by the concatenation of all the individual com
ponent solutions. Moreover, if a unique solution to eéeh ;)
exists, a solution t@P; ) is given by the concatenation of all the
individual component solutions. Lemma IX.4: The wavelet coefficients at a given leyel- jq

are obtained from the real bi-sinusoid coefficients at the same

The next observation is immediate. - S
level j by a finite orthogonal transfori; of length2’ built

Lemma IX.3: In the setting of the previous lemma, let from discrete cosine and sine transforms.
) ) Proof: By consulting [20] or by adapting arguments from
Mj=M{py v €05} 19417 €250 [1], one learns that the algorithm for the discrete periodized

be the blockwise mutual incoherence. ThenSitan be rep- Meyer wavelet coefficients at levglf a vectorz has five steps.
resented as a superposition/f, ; terms froml; ; and NV, ; The steps are (for terminology see the cited references)

terms froml’; ;, and PMT1. Fourier transform the vectar, yielding z.
N j+Noj < %Mj_l PMT2. Separate: into its real and imaginary components.

PMT3. To the frequencies at levelapplyfolding projection

the solutions of eactF;, ;) and eacl{ ;) are unique and are to the real and imaginary componentsiafeparately,

the same. with polarities(+, —) and(—, +), respectively, pro-
For our application, consider a dictionary for discrete-time ducing two sequencegs; ); and(dj );.

signalsS(t), t =0, 1, ..., N — 1, made by merging the peri-  pMT4. Apply the discrete sine transform DST-III to thé

odized discrete Meyer orthonormal wavelets basis [20] with an sequence and the discrete cosine transform DCT-III

orthonormal basis of certain special orthogonal functions, each to thed’ sequence, yielding sequencﬁésandcfj.

one made up of four complex sinusoids of similar fre(;1uenciespl\/|.|.5
which we will call real bi-sinusoids ' o
The wavelets basis is commonly indexed by= (j, k, ¢) for A=(j, k, 1), an= (=) (@ +d, ),

Combine the results, according to a simple formula

wherej > jo, k € {0, ..., 271} ande € {0, 1}. The basis E—0. 1 91 2o
has, for resolution levej = j, and gender = 0, a set of L B T H{ G
periodized Lemarié scaling functions, and, for resolution levels for A=(, 22+k, 1), ax=(-1) (G—dy; ),
7 =Jo, jo+1,..., 41, and gendee = 1, the Meyer wavelets; E=0,1,...,2/ —1.
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=) i while
=i DET-1H ' ' o
g —.thd L g & (P.,;) min Ha(” subject to.S) = U)o
1
FFT /ﬂe\.:..l part 3 \ with the componen§ @) of S in V;, handled by
" S ] €y,

§00 = 3 (o, S)en.

\\‘]mug part / o
o

T | ! i Lemmas IX.2 and IX.3 draw us to calculate
wb(j) L] DCT-II
5=} M; = sup{[{¥1,», V2,)|, A € Aj, w € Q)

Iy it
| PMT1 | PMTZ | PMT3 | PMT4 | PMTS | o _ ' _
This is the mutual incoherence consta#itassociated with the
.. orthogonal transform between the two bades; and Vs ;.
Flowchart of periodized orthonormal Meyer wavelet transform af'his will determine the ideal atomic decompésition thréshold
associated with basés; ; and¥, ;.

The key observation is that all these steps are isometries or elseemma 1X.5: M; is exactly the same as the constant for the
isometries up to a scale facta¥'/2. It follows that there is an real Fourier system of cardinalify = 27/-!
orthonormal basis giving the representers of the output of Step 3.

These are exactly the real bi-sinusoids defined earlier
d = (z, eu) w=(,1) Proof: Let«; denote the vector of vya\_/elet (_:oefficign_ts at
L Ten ’ level j and~; denote the vector of real bi-sinusoid coefficients
dj =(z, c), w=(,2). at levelj stored in order (RW1, RW2, IW1, IW2), then

In effect, our real bi-sinusoids were obtained by starting from vi(w) = (S, ew), w € Qy 9.1)
this definition; to obtain formulas RW1-I1W2, we started with, 4
Kronecker sequences §&; and inverted the transforms in steps
PMT3, PMT2, and PMT1. aj(N)=(5 9a) AEA; (©2)
Now, given this identification, it is clear that the transfoffn  Using column vector notation, we have
mapping real bi-sinusoid coefficients to wavelet coefficients is D (DST-Il) (DCT-IIN)
o[ ) k

Fig. 2.
scalej.

M, = 27 G=2/2,

just the properly scaled composition of steps PMT4 and PMT5,
which composition is an isometry. This completes the priaof.

Fig. 2 gives a depiction of the procedure in the above proof. : _1 [(DST'”) _(DST'”)R} [D } -
2 [(DCT-I) (DCT-I)R D|™

I N _ ) whereD is a diagonal matrix

BD1. R is partitioned into an orthogonal sum of linear sub- .

spaces Dy = (=1)F k=0,1,2,...,2 —1

(DST-III) and (DST-II) are the matrices of type-Ill and type-II

discrete sine transform; (DCT-III) and (DCT-II) are the matrices

BD2. dim(W,) = 2/+L, of the type-lll and type-Il discrete cosine transform; and, finally,

’ eR is the reversing matrix

—R(DST-II)  R(DCT-II)

In short, we have the following structure.

ViieW;, W11 @---dWj,.

BD3. Each W; has two different orthonormal bases: th
wavelets¥; ; = (¢x: A € A;) and the bi-sinusoids 1
\Ij27j = (Cw: w € QJ) R=
BDA4. There is a real orthonormal matrix; so that 1
Now the quantity}/; is the amplitude of the largest entry in the
matrix representing/; and obtained by performing the above
) ) matrix products. However, by inspection, one sees Atiawill
Itfollows, upon comparison with Lemma IX.2, that for the Comg, . ot to be just the largest amplitude in any one of the four
bined dictionary submatrices representing the various DC/DS transforms. The
&=, U(Wy j, U-—-UPy ;) U (U, U---Ul, ;) closed form for one of these transforms of lengdéhhas en-
tries of the form,/2/N times a real sinusoidos(argument)
using wavelets at all scales and sinusoids at sufficiently firg sin(argument) and so we get, by inspection, that the largest
scales, the problemg%) and (#;) split into a direct sum of entry in such a matrix is not larger thagi2/N. Taking N =
problems(P, ;) and (P ;) with &) = W, ; U W, 4, for 21 we are done. O
J=Jo, jo+1, ..., 51, andS¥) the ortho-projection of onto
W;

U, =U;0y .

And hence we have the following.

) ) ) W D) Theorem IX.6:Suppose that is a linear combination of
(Fo,;) min Ha ’ HO’ subject to 5%/ = &Y/ waveletsyn, A = (4, k, ) with A € A, and of real bi-sinu-
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soidse,, with w € §2, and the sets of synthestlsand{2 obey However, it seems to us that a conceptually cleaner result is

level-wise the inequality Theorem 1.3 of the Introduction, which assumes thé made
1 ' from wavelets and sinusoids and the dictionary is made from
[ANT [+ QN ;] < 3 (1 + 2(1_2)/2) . (9.3) wavelets and sinusoids. For a result of that form, we generalize

somewhat from block-diagonal structure to band structure.

A further example of ideal atomic decomposition can be
given in a multiscale setting where badis is associated with
a multiresolution decomposition

There is, at most, one way of writir§as such a superposition,
and the corresponding sparse veetas the unique solution of
both (Fy) and(F;).

Some remarks follow.

2 =vi Ly .. 1 1
1) If S obeys the condition (9.3) only at some levels and not L0 2m) = Vi, @ Wy, & @ Wi & Wy, @

others, then at least one can say that decomposition aed basisb, is associated with another multiresolution decom-
cording to( /) and(F;) are identical at all levels where position
the condition holds.

2) Inessence, the subdictionaries are becoming increasingly

disjointasj — oo, so the sparsity constraintis essentiallBut now! # W2. The new condition is thielock-bandedness
less restrictive at largg.

L0, 2m)=VieW, & aW eW? & .

. . . o Winw; =0, lj — 4| > h. (10.1)
No essential role is played in Theorem IX.6 by the finite di-

mensionality of the overall spacRN. Accordingly, we may  Consider the following formal structure.
consider dictionaries with joint block-diagonal structure in the
. . L . BB1. & = ¢, U ®,.

form of infinite direct sums and reach similar conclusions. ] . N

In fact, there is a simple dictionary of this form, based on BB2. Theindex ser’; for the atoms inb; can be partitioned
Meyer wavelets on the continuum cirdle; 27) and real bi-si- into subsetd’;, ; with W = sran{pyiy € T}
nusoids on the continuum circle. Without going into details, And similarly for @5, the index set’, for the at2oms
which are exactly parallel to those in the discrete-time case in @, can be partitioned into subsdts, ; with W =

above (see [1]), we get a sequence of vector spgeand iV, sean{py:y € [y}
j > jo obeying BB3. For the capacity

L2[07 27T) = ‘7j0 D Wjo D Wjo-l—l D--- K(fy) = lnf{HalHl + HaQHl}
and each of these is spanned by basis functions in the corre- (fioy) =1
qunding groupings. Continuing in this way, we woqld reach subjectto{ a! = ((f, ¢,): v €Ty)
similar conclusions to Theorem IX.6: under the sparsity condi- 5
tions o = ({f, py): 7y €L2)

i . we have thdevel-wise capacit
ANTL | +]QNTe,l < C-272 =0, jo+1, ... pacty

there is, at most, one way of writing a functionif obeying C(7) = inf K(7), subjecttoy € Iy ;U T’ 5

that condition and the minimurii-norm decomposition finds obeying the crucial condition
it.
C(j) — +oo, asj — +oc.
X. MULTISCALE BASESWITH BAND STRUCTURE

A drawback of Theorem I1X.6 and the extensionf0, 2r) _ . )
is that the real bi-sinusoids are not classical sinusoids. At first-émmaX.1:In the setting3B1-BB4 there exists a sequence
blush, one thinks to use the fact that each real bi-sinusoid i€&Critical numbersV; — +oo with the following interpreta-

. ) o e = : . 2 ion f — i
sum of two real sinusoids which implies, in an obvious notatidiPn- IfanL* function f =3 __ . cv, ¢~ is made of a countable
number of atoms fronh® with

#{y el ULy} <N; (10.2)

BB4. We have the block-bandedness (10.1).

N,;(REAL BI-SINUSOIDS) < E Nj/(REAL SINUSOIDS).
l7—5"1<1

It follows that if the objectf is a superposition of wavelets andthen:
real sinusoids, but we use a dictionary of wavelets and real bi-si-a) there is at most one way in whighcan be decomposed

nusoids, then under the sparsity condition into a sum of atoms obeying this sparsity condition;
; b) the minimumit-norm decompositiori’;) has a unique
N;(WAVELETS) 4+ N;(REAL SINUSOIDS) < 2972, ) solution: P ) q
J=Jo+1l,jo+2, ... c) the solution is the unique decomposition obeying (10.2);
and

the decomposition into wavelets and real bi-sinusoids is uniqueOI K
according tq F) and( P ), involving only the precise wavelets ) we may take
occurring in the expansion gfand the precise real bi-sinusoids

P - rb/
appearing in the expansion of sinusoids by real bi-sinusoids. Ni=1 T2 05 i) (10.3)
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Proof: Letl'y collect the indexes of atoms gfappearing In this case, thé/;, and W; are just as in the previous sec-
nontrivially in a decompositiorf = > er Gy BY hypoth- tion, but theW; are now, S|mply, the collection of all sines and
esis, lef, have, at most, a finite number of terms from each cosmes:os(we) andsin(wé) with 20 < w < 2U+Y (i.e., si-
I'; ; andl'y, ;. We are interested in showing that for any objeatusoids rather than bi-sinusoids). A key point is that since the
g having coefficients:! = (g, ¢,), v € T'; andz? inbasis2  transformation from real bi-sinusoids to real sinusoids involves

1 onlyI';,T';, at two adjacent valugg — j'| < 1, it follows that
D+ ) 8 < 5 (H (@), +[[(=3) Hl) - (10.4) the bandedness condition (10.1) holds with= 1. A second

Lol ToNle key point is that eacld’() in this case differs from the corre-
It will follow, as before, that the minimuri-norm atomic de- SPONdingC(3) in the real bi-sinusoid case by at most a factor
composition is precisely = 37 oo+ Combining thesg observations gives a proof of Theorem 1.3
Now forv € 'y ; of the Introduction in the case where we interpnatusoips to
mean “real sinusoids.”
|$w| <C@ (Hlel + H$2H ) The proof in the case where we interpsetusoips to mean

and, similarly, fory € F2 ; complex sinusoids is similar.

|22] <)~ (=M, + [1=%]],) XI. WAVELETS AND RIDGELETS

For a vectorz! = (a:A/: v €I), letatd = (a:A/: v eIy ,) We now turn to Theorem |.4 of the Introduction. This
and similarly forz® 7. Let my ; = [|z%9||1/(||=*]]1 + ||z?]|1) example, combining the Meyer wavelets and orthonormal
and similarly form, ;. Then from the short-range interactionridgelets, has a block-banded structure.

between scales (10.1) We work with functionsf(z;, 2) in L2(R*) and consider
two orthonormal sets: fob; the 2-D Meyer wavelets [1], [25],
and for ®, the orthonormal ridgelets [14]. The key properties

ENESe/Fime Z (mo gt ) | (| +[22]],) we use are as follows.

3" —jl<h
and, similarly, fora:i. It follows, letting 1) The Meyerwaveletslhave frequency-domain s_upport ina
rectangular annulud ;: supp{v; &, x,,-(£)} satisfies
Lo j=Tony Ul ;)

;= ; ; 8 8 . 2 .2
’ ’ ’ te {——ww —7r2j:|\|:——7r23, —7r23:| .
that 3 3 3

2) Orthonormal ridgelets have frequency-domain supportin
Z Z 24| < Z O~ (#To,5) - Z (m1, g+ m2,57) a circular annulus42' for A at levely,

i To,; I—j|<h
n ’ Jl( 1 2 ) €| € 7r2’ §7r2j
=t + =211 - 372
Now note that 3) We use a coarse scale> 0 for the Meyer wavelets, and
we use only the part of the ridgelet basis at ridge scales
ZO N#To ) Y (mu g 472, 0) We use ony the p g g
|j’—j|<h J > Jo + 2
4) We haved! N A% = 0if V282 < 227 ie.,j < j' -3,
e 89i" « 29j i@ 4l < i _
< Z(m,y + 72, j7) Z C) "' #T0, orz2 <z.le.j <j-2
5/ —3I1<h 5) For
<sup YOG #D, 5 W} = span{tj a1 }
I i< W} = sean{e; x,i,1}
asy>; (my, j +m2, ) < 1. Inshort, if Wi L W7 =0, for|j' —j| > 2.
. 1 In short, we have block bandedness with= 2.
SuP . El; C) "#lo,; < 9 We now calculate the level-wise capadity;). We may write
3 =7 4

K(7) =(1+1/sup{| (5, )7 £ 7'})
the sufﬂment condition (10.4) will follow. Now if, as in (10.3), and

#lo, ; 4h+2 C(j), then C(j) =inf{K(y):yel'y ;Ul's ;}.

sup Y C(j) T #h The following Lemma shows that(;) < C2~#/2 and proves
I —ilzn Theorem 1.4 of the Introduction.
<sup > CG)! 4hl+ 5 Cl) = L . Lemma XI.1: For the wavelet/ridgelet pair, ande 'y ; U
I —il<h 2,
This completes the proof. ) SUP{[(1h), &y, ko, P A} < C279/2

We now consider a dictionary built from an orthobasis of sup{[{px; 5, ke, ko, 2|2 (7, K1, k2, €)} < c2I/?
Meyer wavelets combined with an orthobasis of true sinusoidshereC is a constant independent of
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Proof: We pass to the frequency domain:
1,

1 N
T
< 5 [9lllfls

1

27

=C.279/2,
Here the estimates
[9]]oe < C279
1Al < C2/?
follow from known closed-form expressions f@ﬁrandﬁ .

XIl. N ONORTHOGONAL DICTIONARIES

Much of what we have done can be generalized to the cé%ee(
where®; and ®, are not required to be orthogonal bases. IR°

this case, we measure incoherence via

M(®;, ®3) = max Irﬁx |(I)1_1(I)2|7‘,j , mi?x |<I>2_1<I>1

J

which agrees with the previous measure@if and ®, are or-
thogonal; hereﬁ)l_1 stands for the matrix inverse t; and,
similarly, ®;*. We record the essential conclusions.

Theorem XIl.1: Let ®; and ®, be bases foRR", and let

d = &; U &, be the dictionary obtained by merging the two

bases. Suppose th&tcan be represented as a superposition
N atoms from basig andV, atoms from basig. If

1.
N1+ N < §M(‘I>1, Py)~t

then the solution to ;) is unique, the solution tgF,) is
unique, and they are the same.

Proof: With the capacity K ) now defined by
(K.,) inf H<I>1_1xH1 + H‘PQ_IxHI , subjectto(z, ¢7) =1

wherey., is a basis function ang, is its adjoint. We use the
estimate, fory associated with basis

<$v Qaf» = <(I>2_1$v (I)g(pf/>
< @ =], [0z

So, withé,, the Kronecker sequence locatedyat

(REE

o .

A
|asei%s |

< max @g@g_l)T

y1€l, 2 €l
<M.

Y17v2

Hence,
VAL(K,) > 14+ M~

Arguing as before, this implies that for a subkgtC I’

> |97 ]+ > |5 "2l

~elgNI'y ~ETgNI'2

- —1
< (LAY T ol (o e, + 12 ) -

2859

It follows that if S is generated by atoms Iy and if
1~
ITo| < §M*1

then the solution tqP;) is unique; the argument fdiFy) is
similar. O

As an application, consider the bagis of geometrically de-
caying sinusoids. Let, for fixeg € (0, 1), z = pexp{2ni/N}.
Fory = (2, w), let

Py (t) =2 —=

Thenthe{y,:w =0, 1, ..., N — 1} are linearly independent
but not orthogonal; they would be orthonormapif= 1, but we
consider only the case < p < 1, which forbids this. With a
tain application in mind, we are mainly interestechivery
se toone, e.gp,such thap™ ~ ¢, cis substantial (e.gL,/10,

or 1/4). We remark that? (t) = (2)™ - \/—% is the dual basis,
wherez = p~!exp{2ri/N}. Let®; be the impulse basis, and
let® = &, U ®,. Then

M(®1, ®2) = p /YN =¢/VN

and we conclude that if is a superposition of spikes and de-
caying sinusoids, then supposing

1
#(sSPIKES) + #(DECAYING SINUSOIDS) < % VN
C

e minimum#! atomic decomposition will find the common
solution of (Fy) and ().

This should be of interest in magnetic resonance spectroscopy
[18], where the recorded signal is

S(t) = FID(¢) + &(¢)

where the free-induction decay (FID) is a sparse superposition
of decaying exponentials with tkét) representing gross errors
occurring at those moments of time where the FID exceeds the
analog-to-digital converter’'s upper bound. The above result says
that if the FID is accurately modeled as having a few oscillations
with common decay rate, then it can be perfectly recovered de-
spite gross recording errors of arbitrary amplitude in unknown
locations. This is of particular interest in connection with the
water-line problem of magnetic resonance spectroscopy, where
the oscillations due to water are so large that they cause the FID
to overflow in the first few recorded samples.

XIll. D IscussION
A. Continuous-Time Uncertainty Principles

The point of view in this paper concerns the sparsity of rep-
resentation in two bases.

If two bases are mutually incoherent, then no signal can have
a highly sparse representation in both bases simultaneously.

In the case of discrete-time signals, this can be tangibly re-
lated to time-frequency concentration because the spikes make
up a time-domain orthobasis. In the case of continuous-time
signals, this “lack of simultaneous sparsity” principle does not
seem to connect directly with classical uncertainty principles.
Those principles concern the extent to which a continuous-time
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function f = (f(¢): t € R) can have small support in both time This form of uncertainty principle is more symmetric and so,

and frequency domains simultaneously. in a sense, more natural than relateduncertainty principles
By restating the argument used in Section Il above, we obtdBil] and, of course, it gives the same type of insight.

a continuous-time uncertainty principle. We now briefly explain

that principle, and then turn to some useful implications for ol8. Behavior ofi. for Scattered Sets

studies of earlier sections.

; X The connection to the uncertainty principle is useful, above
Define the Fourier transform by

all, for the insights it gives back to the possible behavior of
. ) w(T, W). It suggests immediately that the sufficient condition
flw)= /f(t) exp{~2miwt} dt. (1 < 1/2) for ideal atomic decomposition holds for many sets

T andW where the combined cardinality @f andW far ex-

With the 2% factor in the exponent this is a unitary transformac- . : . ;
. : . “cteedsy N, cardinalities as large as- IV being possible, i’
tion. For setsI” ¢ RandW C R, define the concentration and W have the right “disorganization.”

functional In [15], the behavior of a functional similar to the quantity
pe(T, W) po of Section VI was studied for a collection of randomly
A generated, highly scattered sétd¥ . Also some basic analysis
= sup { Jrlf)]dt + fWA"f(w)' dw: felL'n j’-"Ll} . of simpleT’, W configurations was made. It was found that if
I f e + Nl fll T andW are in some sense “scattered,” one could have quite
This measures the extent to which an integrable function wi

ﬁqnall i+ even thoughl” and W were very large sets in total
integrable Fourier transform can be concentrated to the pg"aasure. In short, a condition liK&]|W|/V < 1/2 was found

(I', W). We then have, by arguments parallel to Section 111 {0 b€ in no waynecessaryor low concentration, unless and
W are very carefully arranged in a “picket-fence” form. In [16],
Theorem XIII.1: the behavior of a functional similar @, was analyzed in the
case wherédV is an interval. It was found that’ could have
pe(T, W) < |T| + |W|. verv | : .
y large measure, even proportional¥e and still one could

For example, a function cannot have more than 90% of its coRave o < 1/2, provided in each interval of a certain length,

bined L! norms in(7, W) unless|T| + |W| > 0.9. there was only a small number of points frdfi) here, the
Proof: Define the capacities length of the interval was reciprocal to the size of the frequency
. band V.
(Ki,e) mf[[fllee + (Il SO=1 Both of these strands of investigation indicate clearly that the

VN threshold and the mutual incoherence property should be
viewed simply as worst case measures. Typically, we can relax
(K2,o) inf|[fllp +[fllp: flw) =1 our quantitative sparsity constraint significantly, and, as long as
T and/orW are sufficiently scattered, we will still have favor-
and note also thaWal(K, ..) is independent ofv. From able concentration ratios.

the completely interchangeable roles of time and frequency,To investigate this idea, we performed a computational ex-

Evidently, Val( K ) is independent of. Similarly, define

Val(K3,0) = Val(Ki, o). From periment in the (Spikes, Sinusoids) dictionary. As in Section IlI,
. we note a simple necessary condition for a sequenct be
f(0) = /f(w) dw a unique solution of thé! problem. Suppose the sequence is
supported on a s& U W with sign sequence, = sign(c.).
we have In order for it to be a set of uniqueness for Heit is sufficient
. that, for allé € A/
£ < N Fll .
. . e 6 < =||6]]1.
and soVal(K1 o) > 1, while settingf(t) = exp{—t*/o?} T%;V 0y < 2” I
with & — 0 shows that we can have functiofisvith f(0) = 1, _ _ ]
II£ll7: ~ 0, and||f||;. = 1, hence, In our experiment, we generated 1000 $€ts W with various

N, N, andN,,, and calculated by linear programming
Val(KLo) =1.
(T, W; ¢) =sup »_e,8,, subjectto||é]y <1,6€N.

Now if [|fll + 1 £l =1 v
. As an example, we computed realizationgidfor N = 32
[ 1solde+ [ 1) and
T w

< / Val(Ky ,)~! dt+/ Val(K> )" dw N, =N, €13,6,9, 12, 15, 18, 21, 24}.
T w

:/ 1dt+/ 1 dw Fig. 3 presents a histogram of our results, illustrating that, within
T w a given set of parameterg, N;, V,,, the obtained values gf

= |T|+ |W]|. O  exhibit a roughly Normal distribution, with increasing values of
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Fig. 3. Histograms ofi(T', W;¢e). N = 32. Ordered from left to right and top to bottodY, = N, = 3, 6, 9, 12, 15, 18, 21, 24, respectively.

05 i

median of the maximum possible concentrations

04r 1

03 1 It 1 Il 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

density v

Fig. 4. Plot ofmedian (&) versus density for N = 32, 64, 128. The curve associated witN = 32 is the lowest and the curve associated with= 128
is the highest.

N, andN,, leading to increasing, as they must. Itis clear that Fig. 4 presents a display of the median valueg df sim-

a simple numerical summary of the distribution, such as the mdations atV = 32, 64 and128, plotted as three curves, with
dian of each histogram, will adequately describe the distributienedian (/i) displayed versus thdensityr = (N, + N,, )/ (2N).
of 1. We make the following observations.
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The curves are very similar at differeit, so that the de-
scription of i as dependent on the densitgeems reason-

able.

(11]

« The curves are almost linear, roughly obeying the equation

[12]
median(fi) = 0.32 4+ 0.79v.
" . [13]
* The curves cross the critical threshold concentration
1/2 nearv = 0.2. [14]

These results suggest that for a large collection of triplet§]

(T, W, ¢) one has, at the same tim&;| + |W| ~ N/5 and

£ < 0.5; in such cases, the associatdd ) has a unique solu-

[16]

tion and the method of minimuré-norm atomic decomposi- [17]
tion will give a unique solution. This suggests that the resultg,g;
proved in this paper under restrictive sparsity assumptions may

point the way to a phenomenon valid under far less restrictivé-®]

sparsity assumptions.
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