
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001 2845

Uncertainty Principles and Ideal Atomic
Decomposition

David L. Donoho, Member, IEEE,and Xiaoming Huo

Abstract—Suppose a discrete-time signal ( ), 0 ,
is a superposition of atoms taken from a combined time–fre-
quency dictionary made of spike sequences1 = and sinusoids
exp 2 ) . Can one recover, from knowledge of
alone, the precise collection of atoms going to make up? Because
every discrete-time signal can be represented as a superposition
of spikes alone, or as a superposition of sinusoids alone, there is
no unique way of writing as a sum of spikesand sinusoids in
general.

We prove that if is representable as ahighly sparsesuperpo-
sition of atoms from this time–frequency dictionary, then there is
only one such highly sparse representation of , and it can be ob-
tained by solving theconvexoptimization problem of minimizing
the 1 norm of the coefficients among all decompositions. Here
“highly sparse” means that + 2 where is the
number of time atoms, is the number of frequency atoms, and

is the length of the discrete-time signal.
Underlying this result is a general 1 uncertainty principle which

says that if two bases are mutually incoherent, no nonzero signal
can have a sparse representation in both bases simultaneously. For
the above setting, the bases are sinuosids and spikes, and mutual
incoherence is measured in terms of the largest inner product be-
tween different basis elements. The uncertainty principle holds for
a variety of interesting basis pairs, not just sinusoids and spikes.
The results have idealized applications to band-limited approxi-
mation with gross errors, to error-correcting encryption, and to
separation of uncoordinated sources.

Related phenomena hold for functions of a real variable, with
basis pairs such as sinusoids and wavelets, and for functions of two
variables, with basis pairs such as wavelets and ridgelets. In these
settings, if a function is representable by a sufficiently sparse
superposition of terms taken from both bases, then there is only
one such sparse representation; it may be obtained by minimum
1 norm atomic decomposition. The condition “sufficiently sparse”

becomes a multiscale condition; for example, that the number of
wavelets at level plus the number of sinusoids in the th dyadic
frequency band are together less than a constant times2 2.

Index Terms—Basis pursuit, combinatorial optimization, convex
optimization, error-correcting encryption, harmonic analysis,
Logan’s phenomenon, matching pursuit, multiple-basis signal
representation, overcomplete representation, ridgelet analysis,
uncertainty principle, wavelet analysis.
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I. INTRODUCTION

RECENTLY, workers in the computational harmonic anal-
ysis community have developed a number of interesting

new signal representations; see [9], [23], [30]. In addition to si-
nusoids and wavelets, we now have Wilson bases, [10], wavelet
packets, and cosine packets [8]. Moreover, the list of such rep-
resentations is expanding all the time; recent additions include
ridgelets and curvelets [5], [4].

In each of these cases, we have an orthonormal basis or tight
frame which has been designed to be effective at representing
objects of a specific type, where “effective” means requiring
very few significant coefficients. The transforms turn out to be
complementary in the sense that the type of objects for which
one transform is well-suited are unlike the objects for which an-
other transform is well-suited. For example, wavelets perform
relatively poorly on high-frequency sinusoids, for which sinu-
soids are (naturally) very effective. On the other hand, sinusoids
perform poorly on impulsive events, for which wavelets are very
effective. In dimension , wavelets do poorly with discontinu-
ities on edges, for which ridgelets are effective, while ridgelets
do poorly on impulsive events [5].

It is natural in such a setting to imagine combining signal rep-
resentations, using terms from each of several different bases.
One supposes that the object of interest is a superposition of
two phenomena, one of which by itself can be effectively repre-
sented in basis and the other of which by itself can be effec-
tively represented in basis, and one hopes that by allowing a
representation built from terms in both bases, one might obtain
an effective representation—far more effective than what one
could obtain using either basis alone. Specifically, one hopes to
represent an object containing two phenomena in superposition
with the efficiency one would expect in analyzing each phenom-
enon separately in its own appropriate basis.

Such speculation leads one to propose the use of dictionaries
made from a concatenation of several

orthonormal bases , and to seek representations of
a signal as

(1.1)

where is an index into the dictionary, naming both
the basis and the specific basis element. The general aim is to
find concrete methods which offer decompositions of better
sparsity through the use of several representations than is
possible through any one representation alone. In the field of
computational harmonic analysis, Mallat and Zhang [24] were
early advocates of this approach, and introduced the “dictionary
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methodology.” Coifman and collaborators have made numerous
related contributions in this field also. In the field of signal
processing, a considerable body of related practical work has
been done in the general area of multiple-basis signal repre-
sentation and signal compression. See, for example, the survey
paper of Berg and Mikhael [3], who mention seminal work of a
decade ago by Mikhael and Spanias [26] and Beex [2]. There
is ongoing more recent work by DeBrunner and collaborators
in signal representation [12] and in image representation [11].
Finally, we mention the thesis of Huo [19].

Mallat and Zhang [24] proposed a heuristic greedy approx-
imation method for representation using overcomplete dictio-
naries, called Matching Pursuit. While Matching Pursuit works
well in many cases, it is known not to provide sparse approxi-
mations in general; see the counterexamples in [7], [13].

As is the concatenation of several bases, the representation
(1.1) is not unique; any single basis alone affords already
decomposition of an arbitrary signal, and consequently many
possibilities for combined decomposition arise. The general
goal would be to find a highly sparse decomposition—one with
very few nonzero terms. This leads to the optimization problem

s.t.

where : is the quasi-norm. Unfortu-
nately, in general, this problem requires a search through subsets
of looking for a sparse subset providing exact decomposition.

Chen, Donoho, and Saunders [6], [7] proposed an alternate
approach to signal decomposition in dictionaries, which they
called Basis Pursuit (BP). It calls for solving theoptimization
problem

s.t.

where is the norm of the coefficients. This
is a convex optimization problem, and can be attacked using
linear programming methods based either on the classical sim-
plex method of linear programming or the recently popular in-
terior point methods [32]. As the norm is, in a certain natural
sense, a convexification of the norm, the problem can
be viewed as a convexification of , one which makes acces-
sible a variety of computationally feasible strategies.

In [7], it was shown that, empirically, the solution of BP is
frequently quite sparse; and that in fact when the underlying
synthesis was made from only a few dictionary elements, the
BP solution mayperfectly recoverthe specific atoms and spe-
cific coefficients used in the synthesis. For example, Chen con-
sidered a sum of four sinusoids and two spikes, decomposed
them in a combined time–frequency dictionary of sinusoids and
spikes, and found that BP recovered exactly the indexes and co-
efficients of the terms involved in the synthesis; this held across
a wide range of amplitude ratios between the sinusoid and spike
components. In contrast, the same signal was analyzed using
Matching Pursuit, the recovery of indexes and coefficients was
only approximate and became very inexact when the sinusoidal
and spike components were at very different amplitudes.

A. Ideal Atomic Decomposition

Our goal in this paper is to prove that in certain specific cases,
when the signal is a sufficiently sparse sum of terms from a dic-
tionary, the BP principle of optimization of the decompo-
sition from that dictionary in fact gives the solution of the
optimization problem and in fact recovers the identities and co-
efficients of the original synthesizing elements perfectly.

The following terminology helps formalize this phenom-
enon. If is an overcomplete system, any representation

is anatomic decompositionusingatoms from the
dictionary. If in fact can be generated by a highly sparse sum,
with the term “highly sparse” given an appropriate definition,
and there is in fact only one such highly sparse way of doing so,
and if an optimization principle finds that decomposition, we
say that the principle leads toideal atomic decompositionunder
the stated sparsity hypothesis. In effect then, we are claiming
that under certain sparsity conditions, the minimum-norm
decomposition in certain dictionaries achieves an ideal atomic
decomposition.

B. Time–Frequency Decomposition

We initially consider the situation where with
the spike basis

and the Fourier basis

Both and are orthonormal bases for .

Theorem I.1: Let

where is a subset of the “time domain” and is a
subset of the “frequency domain” . If

then has a unique solution. Meanwhile, there exist
so that

and has a nonunique solution.

Theorem I.2: Let

with as in Theorem I.1. If

then has a unique solution, which is also the unique solu-
tion of . Meanwhile, there exist so that

and has a nonunique solution.
In short, if the signal truly has a very sparse decomposition

in the time–frequency dictionary, this is unique, and basis pur-
suit ( decomposition) will find it.

C. Relation to the Uncertainty Principle

Underlying Theorems I.1 and I.2 is an uncertainty principle:
the analysisof a signal in the time and frequency domains
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cannot yield a transform pair which is sparse in both domains
simultaneously.

To explain this connection, note that in order to take ideal
atomic decomposition seriously we must know that under
sufficiently strict interpretation of the term “sparsity,”a signal
cannot be sparsely synthesized from both the frequency side
alone and from the time side alone. If this were possible, the
atomic decomposition would be nonunique.

Now suppose there existed a signal whose Fourier transform
was very sparseandwhose representation in the standard basis
was very sparse. Then we would have exactly an example of
such nonunique sparse decomposition: the signal could be rep-
resented in two different ways: as a sparse sum of sinusoids and
as a sparse sum of spikes.

In effect, at the center of our analysis of thedecomposi-
tion in this finite- , discrete-time setting is exactly a certain
picket fence sequence which may equally be viewed either
as a relatively sparse sum of sinusoids or an equally sparse sum
of spikes. This sequence has been studied before in connection
with the uncertainty principle, for which it serves as a kind of
extremal function [15]; see also recent work of Przebinda, De-
Brunner, and Özaydin [27].

The connection between unique decomposition and the un-
certainty principle will emerge repeatedly, and in a quantitative
form, throughout the paper. It is closely connected to work on
the uncertainty principle in [15], [16], however, the uncertainty
principle employed here gives a more symmetric role for time
and frequency.

D. Nonlinearity of the Norm

The phenomenon of ideal atomic decomposition is very spe-
cial; it follows from very particular properties of the norm. In
effect, asks to find the member of a linear subspace closest
to the origin in norm. This closest point problem (which
would be a linear problem in norm) is highly nonlinear in
norm, and the nonlinearity is responsible for our phenomenon.

A precedent for this type of perfect recovery is what has been
called Logan’s Phenomenon in [15]; see also [22], [16]. That
phenomenon occurs when one is trying to find a decomposi-
tion of a signal into band-limited function and impulsive noise;
supposing that the product of the signal bandwidth and the mea-
sure of the support of the noise is sufficiently small, this can be
done perfectly, by finding the band-limited function closest to
the observed signal in an sense. The phenomenon is highly
nonlinear in the sense that perfect reconstruction holds at all
signal/noise ratios. See Section V below.

In a sense, the phenomenon exposed in this paper is due to
the same nonlinearity of the norm, only transposed into the
setting of approximation from arbitrary time–frequency dictio-
naries in which time and frequency play a symmetric role, and
in which there is no need for the frequency support of the signal
to be an interval or even to be known.

E. Other Dictionary Pairs

In fact, the methods of this paper provide insights outside of
the setting of time–frequency pairs. We give two examples. The
first considers dictionaries of sinusoids and wavelets.

Theorem I.3: Let denote a square-integrable function
on the circle . Suppose that is a superposition of sinu-
soids and wavelets

(1.2)

Here, the are the Meyer–Lemarié wavelets, and .
There is a constant with the following property. Let

be the number of Meyer wavelets at resolu-
tion level and let be the number of sinusoids
at frequencies . Suppose that the sum obeys all
the conditions

(1.3)

Consider the overcomplete dictionary consisting of
Meyer–Lemarié wavelets and of high-frequency sinusoids,

. There is at most one way of decomposing a
function in the form (1.2) while obeying (1.3). If has such
a decomposition, it is the unique solution to the minimum
optimization problem

In short, minimum decomposition, which makes no as-
sumption about the sparsity or nonsparsity of the representation
of , nevertheless gives ideal atomic decomposition when suf-
ficient sparsity is present.

Note however, that the notion of sparsity becomeslevel-de-
pendent. We can tolerate more total terms at high resolution than
we can at low resolution. Intuitively, this is because there is less
possibility of confusion between sparse sums of wavelets and
sparse sums of sinusoids as we go to sums limited to dyadic
bands at increasingly high frequencies—the two systems be-
come increasingly disjoint.

Mathematically, we could say that there is an uncertainty
principle: a phenomenon near scale and frequency
cannot have a sparse representation in both the wavelets basis
and the sinusoid basis. The expression of this phenomenon
is the fact that if a function has at most nonzero
wavelet coefficients and sinusoid coefficients at level, then
the function is zero.

For a second example of this kind, we consider combined
dictionaries of wavelets and ridgelets.

Theorem I.4: Let denote a square-integrable func-
tion on . Suppose that is a superposition of wavelets and
ridgelets

(1.4)

Here, the are the usual two-dimensional (2-D) Meyer–
Lemarié wavelets for the plane. The are orthonormal
ridgelets [14] and consists of ridgelets at ridge scales
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. There is a constant with the following
property. Let be the number of wavelets
used in this decomposition at resolution level and let

be the number of ridgelets at level. Suppose
that the sum obeys all the conditions

(1.5)

Consider the overcomplete dictionaryconsisting of Meyer–
Lemarié wavelets and of ridgelets with . There is at most
one way of decomposing a functionin the form (1.4) while
obeying (1.5). If has such a decomposition it is the unique
solution of the minimum optimization problem

In short, minimum decomposition, which makes no as-
sumption about the sparsity or nonsparsity of the representation
of , nevertheless gives ideal atomic decomposition when suf-
ficient sparsity is present.

Again, the notion of sparsity becomeslevel-dependent. We
again tolerate more total terms at high resolution than we do at
low resolution. Intuitively, this is because there is less possibility
of confusion between sparse sums of wavelets and sparse sums
of ridgelets as we go to sums limited to dyadic bands at increas-
ingly high frequencies—the two systems become increasingly
disjoint.

Mathematically, we could say that there is an uncertainty
principle: a phenomenon occurring at scale and frequency

cannot have a sparse representation in both the wavelets basis
and the ridgelets basis. The expression of this phenomenon is
the fact that if a function has at most nonzero wavelet
coefficients and ridgelet coefficients at level, then the function
is zero.

F. Contents

Sections II–IV of the paper prove Theorems I.1 and I.2. Sec-
tion V gives an application to band-limited approximation with
unknown band and impulsive noise. Section VI discusses gener-
alizations of Theorems I.1 and I.2 to the setting of real sinusoids
(as opposed to complex exponentials). Section VII isolates the
concept—mutual incoherence—which makes Theorems I.1 and
I.2 work, and shows that it generalizes to other pairs of orthog-
onal bases; Section VIII shows that in some sense “most pairs of
ortho bases” are mutually incoherent. It also gives applications
to encryption and blind separation of uncoordinated sources.
Sections IX–XI switch gears, establishing Theorems I.3 and I.4.
Section XII describes generalizations to the nonorthogonal set-
ting. Section XIII considers relations of the concepts here to
the classical uncertainty principle for functions of a single real
variable, and applies insights derivable from experience in that
setting. It also suggests that for many situations, the provable
bound of Theorems I.1 and I.2 over-
states severely the required sparsity; often
is sufficient for uniqueness.

II. UNIQUENESS OF OPTIMIZATION

We begin by quoting a simple uncertainty principle from [15].

Theorem II.1: Suppose has nonzero elements
and that its Fourier transform has nonzero ele-
ments. Then and so

(2.1)

The proof identifies the extremal functions for these inequal-
ities. When is a perfect square, (2.1) is attained by

else

and by its frequency and time shifts. The complete catalog of
extremal functions is generated by scalar multiples of

where is an integer in the range , is an integer
in the range , and denotes subtraction modulo.

The key properties of are its sparsity
and its invariance under Fourier transformation

This says that may equally well be viewed as either being
produced by

1) time-domain synthesis using spikes, or

2) frequency-domain synthesis from sinusoids.

In consequence, for , the problem has a nonunique
solution in the overcomplete dictionary

It follows that constraints on sparsity cannot
guarantee uniqueness in this setting for . In fact,

can guarantee uniqueness, as we have claimed previously
in Theorem I.1. We now show this, and thereby prove Theo-
rem I.1.

Suppose that had two decompositions , ,
where both and obey ; then
In other words, if we let denote the nullspace

, then . For , suppose

where the first components are associated with dictionary el-
ements belonging to the spike basis and the lastare associated
with dictionary elements belonging to the Fourier basis. Thus,
partitioning into components, implies

or

In a more transparent notation, is the set of all pairs ,
where and is its Fourier transform.

Returning now to our setting, has, therefore,
the structure of a pair ; by the uncertainty principle in
Theorem II.1, must have at least nonzero entries or else
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. But by hypothesis and .
Hence, ; in short, .

III. U NIQUENESS OF OPTIMIZATION

Suppose that , where is sparse, made from atoms
in sets and in the time and frequency domain, respectively.
We seek a condition on the size ofand which guarantees
that is the unique solution of the optimization problem

.
In order that be the unique solution, we must have

, for every satisfying . Equivalently,
for every , we must have

unless . Now

Note that

and so

Hence, a sufficient condition for uniqueness is that for

(3.1)

In words, every nonzero member ofhas a smaller norm on
the support of than off the support of . Since consists of
all pairs , the condition (3.1) is equivalent to

(3.2)

for every nonzero . Formalizing matters somewhat, we view
this as a time-frequency concentration problem. For given sets

and , let

(3.3)

where the supremum is over all which are
nonzero. This measures the degree to which the jointnorm
can be concentrated to setsand ; the uniqueness of
optimization is therefore implied by

(3.4)

We note that is closely related to a variety of known
time-frequency concentration functionals connected with the
uncertainty principle. See Section V.

The sequence shows that we can have

(3.5)

and, in particular, if is even, there exist , of size
so that

(3.6)

In short, for a sparsity condition on and to imply
uniqueness of a solution to , it must clearly be of the form

, for some . This is the same range
as we contemplated in the condition for uniqueness in the
problem , but it is a necessary restriction: we can see from
the sequence that there are sets so that the
problem has a nonunique solution. Indeed

and one can verify that

else

else

are both solutions of the problem , as are all convex combi-
nations of and . Curiously, is within a factor extremal
for the concentration measure.

Theorem III.1: Let be a subset of the time domain and
be a subset of the frequency domain. Then

(3.7)

In particular, if , then , and
the optimization problem has a unique solution.

We need two lemmas.

Lemma III.2: Let be a Fourier transform pair. Then

(3.8)

Proof: Let . Then from Fourier inversion

with the -normalized sinusoid of frequency , so that

Now

Equation (3.8) follows.

Lemma III.3: Consider the capacity defined by the optimiza-
tion problem

subject to

The value of this optimization problem obeys

(3.9)
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Also, for the frequency-side capacity defined by the optimiza-
tion problem

subject to

we have

(3.10)

Finally

(3.11)

Proof: Candidates for and for
are related by appropriate translation–modulation

Indeed, this transformation preserves thenorm
and the constraint maps to . Hence, any solution
of maps to a solution of , andvice versa. Similar
ideas map solutions of into solutions of , andvice
versa.

Similarly, the formal interchange of time and frequency
domains turns any candidate for into a candidate for

with equal constraint and equal norm. Finally, from
Lemma III.2, we have

On the other hand, let be the Kronecker sequence.
Then obeys the constraint of while

Equation (3.11) follows.

The proof of Theorem III.1 follows directly from Lemma III.3

so

Equation (3.7) follows.

IV. SIMULTANEOUS SOLUTION OF AND

From the results of Section III, we know that a solution to
, if it satisfies , is unique. This must also

solve , because at most one vectormay satisfy
and . In short, any vector obeying

and is simultaneously the solution of and
.

V. APPLICATION: BAND-LIMITED APPROXIMATION WITH

GROSSERRORS

Before continuing with our development of general atomic
decomposition results, we indicate an application. The func-
tional we have studied in Section III is related to time-
frequency concentration functionals connected with band-lim-
ited approximation. Donoho and Stark [15] defined

subject to

In short, this measures the time-side concentration ratio
for objects perfectly localized to on

the frequency side. They gave the inequality

and described applications in the recovery of band-limited sig-
nals facing scattered gross errors. They assumed that one ob-
served

where is a discrete-time band-limited signal with frequency-
domain support purely in a certainknownband and that is
a discrete-time noise, of arbitrary size, supported in a set. In
that setting they showed that whenever the support of the noise
satisfies

the approximant

subject to

recovers perfectly: . Here, is a knownfrequency
band, but the support of the noise is unknown. This is an in-
stance of what they calledLogan’s phenomenonfor band-lim-
ited approximation, after B. F. Logan, who discovered it in
the setting of low-pass approximation to continuous-time sig-
nals [22]. Compare also [16].

The concentration notion given in this paper is not directly
comparable with , nor is the application of approximation
the same as decomposition. In [15], the functional sup-
poses that the object in question is perfectly localized to a set

in the frequency domain, and measures the degree of con-
centration to , while in this paper, the object is not assumed to
be perfectly localized either to or to , and the quantity is
fully symmetric in the roles played by time and frequency. Also,
the approximation in [15] was based on finding the-closest
approximant from a fixed, known band . In short, the signal
was representable as a superposition of sinusoids with fixed and
known frequencies. In contrast, the decomposition here is
based on approximation from an arbitrary collection of times
and/or frequencies, none of which is prespecified. The method
uses whatever combination of spikes and/or sinusoids may be
necessary to decompose the object. If we labelas the com-
ponent of the solution coming from sinusoids andas the
component of the solution coming from spikes, the approach
of this paper may be viewed as a method for also solving the
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problem of band-limited approximation withunknownband !
The results of this paper show that, if

then and .
In short, the atomic decomposition may be viewed as a

method for recovery of a band-limited signal with unknown
band in the presence of sparse gross errors in the time do-
main. The errors may be of arbitrary amplitude, but if the band

and the support of the errors are both sufficiently sparse,
then atomic decomposition gives perfect reconstruction.

In comparing the approach of this paper with the older one,
we see a key difference: namely, that the condition for per-
fect recovery in the band-limited approximation algorithm is

, whereas the condition in the atomic decom-
position algorithm is ; the conditions cover
a somewhat different collection of, pairs.

VI. REAL SINUSOIDS

So far, we have been using as sinusoid basis the traditional
system of complex exponentials . How do
things change if we use instead the real sinusoids, or one of the
discrete cosine transform or discrete sine transform bases [28]?

Let be an orthonormal system for . Let
be the Fourier–Bessel coefficients in this system. Let

and be subsets of the- and -index space, respectively.
Define

so that what we earlier called is the special case with
. Careful inspection of previous arguments

will show that if we put

then for problem

subject to

we have

and, similarly, for problem

subject to

we have

It follows that

Now for the real Fourier basis, for domain
with even

we have

and so

(6.1)

Combining this with arguments of Section III, we immediately
obtain the following.

Theorem VI.1:Let be the basis of spikes and let be
the basis of real sinusoids. If is a superposition of atoms from
sets and and

(6.2)

then the solution to is unique.

What about the solution of ? Arguing as in Section II, we
wish to ask about the minimal cardinality of setsand so
that a pair exists with concentrated to and concen-
trated to . Unless there is no signal 100%
concentrated to , with its real Fourier transform is also per-
fectly concentrated to . The inequality (6.1) therefore shows
that such perfect concentration is impossible, unless

We conclude as follows.

Theorem VI.2:Let , , , , and be the same as in
Theorem VI.1. If

then
• the solution to is unique;

• the solutions of problem and are identical.

Actually, the criterion of uniqueness for the problem can be
sharpened by a factor two. The key is the following uncertainty
principle for the real Fourier transform:

Theorem VI.3:Let be the coefficient vector associated with
the spike basis and letbe the coefficient vector associated with
the real Fourier basis. Supposeand have and nonzero
elements, respectively. We have

and so

A variation of will achieve .
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Proof: Let be the complex Fourier transform of. The
two sequences and are connected in the following way: for
an even

Letting denote the number of nonzero elements in, we
have . By Theorem II.1, , hence

.
Suppose is an integer. As a variation of , we con-

sider

with other entries of vanishing. Hence,

with other entries of vanishing. Then

and the rest of vanishes. Hence, , ,
and .

The following theorem gives uniqueness ofoptimization
for a frequency domain based on the real Fourier transform.

Theorem VI.4:Let , , , , and be the same as in
Theorem VI.1. If

then the solution to is unique. There are, , with

for which the solution to is not unique.

In short, we have a parallel of the earlier situation based on the
complex Fourier transform, only with a lower threshold for the

equivalence effect. There is a similar parallel, with
the same lower threshold, for the various real orthogonal bases
associated with the real discrete cosine transforms and discrete
sine transforms.

VII. M UTUAL INCOHERENCE

The extension from complex sinusoids to real sinusoids gen-
eralizes immediately, to the following result.

Theorem VII.1: Let and be orthonormal bases for
and let

Let be the concatenation of the two bases. Let
, where obeys

then is the unique solution to and also the unique solution
to .

This shows that sufficiently small values of the functional
guarantee the possibility of ideal atomic decom-

position. We call a measure of themutual coherenceof two
bases; if two bases have a very small value ofthen we say
that they are mutually incoherent. Obviously ; if
two orthobases have an element in common, then . On
the other hand

so that can be small for large . There is an easy bound on
how incoherent two bases can be.

Lemma VII.2: For any pair of orthonormal bases , of

Proof: The matrix is an orthonormal matrix. The
sum of squares of entries in an orthonormal matrix is; the
average squared entry is, therefore, ; the maximum entry is
therefore at least .

This shows that the basis pair(Spikes, Sinusoids) yields a
most mutually incoherent pair. For this pair, the sparsity con-
dition leading to ideal atomic decomposition will be most
generous. There are other examples of extremal bases, the pair
(Spikes, Walsh functions) being an example; but these will
seem far less “natural” to those with standard mathematical
training.

Underlying Theorem VII.1 is the following uncertainty prin-
ciple.

Theorem VII.3: Let and be orthonormal bases for .
Let index the collection of nonzero coefficients forin basis
, and index the collection of nonzero coefficients forin

basis . Then

(7.1)

If we compare this result with the earlier uncertainty princi-
ples (Theorems II.1 and VI.3), we see that the general bound
(7.1) can be a factor of two away from sharpness in those cases.
Its generality can be an advantage in some cases. Thus, mutual
incoherence of bases has the following pair of implications.

• No signal can be analyzed in both bases and have simulta-
neously fewer than about nonzero components from

and together.

• A signal which is synthesized from fewer than about
components from and components from is
decomposed by minimum atomic decomposition per-
fectly into those components.

It is curious that was implicitly identified as heuristically
significant by Mallat and Zhang [24] in their initial studies of
Matching Pursuit; however, we emphasize thatis relevant
here for BP optimization, rather than Matching Pursuit
(greedy single-component extraction).
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Fig. 1. Empirical distributions of the normalized maximum entryM(N)=(2 log(N)=N) for N = 64; 128; 256; 512. Each is based on 1000 simulations.

TABLE I
TABLE OF THE MEDIANS OF THEMAXIMUM AMPLITUDE IN A REAL N �N

PSEUDORANDOMORTHOGONAL MATRIX

VIII. R ANDOM ORTHOGONAL BASES

To make the point about generality of these results, we now
consider random orthogonal bases, their incoherence properties,
and some idealized applications.

A. Mutual Incoherence is Generic

Is mutual incoherence special or generic? That is, if one takes
a pair of “random orthogonal” bases of , what will be the
typical size of ?

The question can be reduced as follows: what is the largest
amplitude in a random orthogonal matrix? Here “random”
means uniformly distributed on the orthogonal group.

The largest entry in a random real orthogonal matrix is not
typically larger than

We illustrate this in Table I of results based on generation of 100
pseudorandom orthogonal matrices.

Actually, empirical results seem to suggest that the normal-
ized maximum amplitudes converge

to a limiting distribution. Fig. 1 gives the empirical distribution
out of 1000 simulations.

For a formal result, we have the following.

Theorem VIII.1: Let denote a random real orthogonal ma-
trix, uniformly distributed on . Let . Then the ex-
ceedance probability

obeys as .
Proof: Any fixed column of a random orthonormal ma-

trix, viewed as a vector in , is uniformly distributed on the
-sphere. Each entry can therefore be identified with the

projection on the th coordinate of a randomly chosen point
on the -sphere. This is an exceptionally well-studied

quantity; it is the classical example of so-called “concentration
of measure phenomena” and “isoperimetry” [21]. It is known
that there is very little chance that a random point on the sphere
falls far away from the equator; in fact, most distributional prop-
erties are similar to those which would hold for a Normally dis-
tributed quantity having mean zero and variance . Refer-
ence [21, Theorem 1.1, p. 15] implies

From Boole’s inequality

any

so that taking we get .
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In short, the behavior we saw for the incoherence in
the (Spikes, Sinusoids) pair is not far from the generic behavior.

For “most” pairs of orthogonal bases of , there is an un-
certainty principle threshold and an ideal atomic decomposition
threshold, which are both of order .

B. Application: Error-Correcting Encryption

Here is an amusing application of the use of random or-
thonormal bases in connection with minimummethods.

A. D. Wyner [33], [34], [29] has advocated a method of en-
cryption for real-valued discrete-time signalsof length :
form a random orthogonal matrix, multiply the signal vector
by the matrix and get the encryption . Transmit the en-
cryption to a remote receiver who knows, and who decrypts
via . This is an encryption scheme because the ob-
server of who does not know sees only that the marginal
distribution of the encrypted vector is uniform on the sphere
of radius and so there is no “pattern” in other than the
simple pattern of a uniformly distributed vector on the sphere.

The results of this paper show that we may use minimum
-norm decomposition in an overcomplete dictionary to extend

this encryption scheme so that it is robust against the possibility
of gross errors in transmission or recording. Knowing, the
amplitude of the largest entry in matrix, we encode a vector of

entries by embedding it in a vectorof length
in scattered locations, with the other entries in the vector being
zero. We encrypt according to Wyner’s scheme. We transmit

over a channel prone to a small number of gross errors. The
receiver performs minimum atomic decomposition in a com-
bined dictionary consisting of spikes and columns of.

This variant of the method is robust against gross errors in the
transmission and recording of. Suppose that agrees with
except in entries; i.e., where has only
nonzero entries. We may view as a superposition of terms
from the spike dictionary and terms from the dictionary.
Because , we conclude that minimum atomic
decomposition recovers perfectly both the columns ofthat
correspond to the transmitted data, and the specific locations
where differs from . In addition, it recovers precisely the
entries in the original signal vector.

Note that the errors can be really large: in principle, they can
have an amplitude 1000 or even 10times as large as the am-
plitude of the transmitted signal, and perfect recovery will still
obtain.

Quite generally, then, we can transmit up to
real numbers encrypted in a vector of lengthand be immune
to up to gross errors in the transmission and
recording of the encrypted data.

C. Application: Separation of Two Uncoordinated Sources

The mutual incoherence of random orthogonal bases has
other potential applications. Suppose that an idealized receiver
obtains the superposition of two encoded signals

and the goal is to perfectly separate the two signals. For ex-
ample, is an idealized antenna and the are received sig-
nals from two transmitters which must use the same frequency

band. If we are allowed to use this setup with a preprocessing
of signals, we can arrange for perfect separation of signals, in
principle, even when they are encoded without coordination and
are of radically different amplitudes. The idea is that eachis
a discrete-time signal of length which is obtained from en-
coding a message of at most nonzero entries
by applying a random orthogonal transformationto the mes-
sage vector. Then, with minimum-norm postprocessing at the
receiver, we can separate out the two messages perfectly.

This scheme has several key features.

• Each of the two broadcast signals is encrypted and so not
accessible to others, including the operator of the other
transmitter.

• The transmitters are uncoordinated. The matricesare
generated randomly and independently of each other, and
each can be kept secret (say) from the owner of the other.
Only the receiver operator would need to know both ma-
trices to perform separation.

• The scheme works perfectly, no matter what the relative
sizes of the two signals: it works, in principle, at rather
enormous differences in transmitter strength.

In comparison, more typical separation schemes would assign
each transmitter a subband quasi-disjoint from the other, which
requires coordination; also, they rely on linear methods for sep-
aration which work poorly when the signal strengths are very
different.

IX. M ULTISCALE BASESWITH BLOCK-DIAGONAL STRUCTURE

While the argumentation so far has mostly been quite general,
and could apply to any pair of bases, a special feature of the
analysis so far has been that we hadsmall for large ;

. If we consider the broader field of applications, this
special feature may be absent: we may haveroughly . In
that case, the above development is rather useless as is.

Nevertheless, we may still obtain interesting insights by ex-
tending the approach developed so far. Suppose we have two or-
thonormal bases and , and consider the capacity defined
by the optimization problem

subject to

In effect, the previous analysis relied on the fact that the value
did not depend on, or at most weakly so.

In some interesting cases, the capacities take widely
different values, with the largest values being of orderinde-
pendent of and with many values much smaller than this; in
such an event, the preceding analysis by itself tells us almost
nothing of any use. An example of such a case is whenis
a wavelet basis and is a sinusoid basis; at low frequencies,
wavelets and sinusoids are not incoherent, and the associated
capacity problem has large values; while the value of the
capacity problem tends to zero at high frequencies.

Abstracting this situation, we now consider bases with an
interestingblock-diagonal structure. Informally, the -indexes
can be grouped in blocks in such a way that values within a block
of -indexes have almost the same value , and, in ad-
dition, the basis functions in a certain group coming from basis
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span the same space as the basis functions in a corresponding
group for basis .

Definition IX.1: A pair of orthonormal bases , has
joint block diagonal structure if the following are true.

• There is an orthogonal direct sum decomposition

• There is a grouping of indexes for basis 1 so that

and, similarly, a grouping of indexes for basis so
that

An example of this kind is a combined dictionary
which will be explained in de-

tail later. We record a simple observation, without proof.

Lemma IX.2: If a pair of bases has joint block-diagonal struc-
ture, then the optimization problems and separate into
a direct sum of subproblems, as follows. Let be the ortho-
projection of on , let be the subdictionary formed from

with and define

subject to

and

subject to

Then, if a unique solution to each exists, a solution to
is given by the concatenation of all the individual com-

ponent solutions. Moreover, if a unique solution to each
exists, a solution to is given by the concatenation of all the
individual component solutions.

The next observation is immediate.

Lemma IX.3: In the setting of the previous lemma, let

be the blockwise mutual incoherence. Then, ifcan be rep-
resented as a superposition of terms from and
terms from , and

the solutions of each and each are unique and are
the same.

For our application, consider a dictionary for discrete-time
signals , made by merging the peri-
odized discrete Meyer orthonormal wavelets basis [20] with an
orthonormal basis of certain special orthogonal functions, each
one made up of four complex sinusoids of similar frequencies
which we will call real bi-sinusoids.

The wavelets basis is commonly indexed by
where , , and . The basis
has, for resolution level and gender , a set of
periodized Lemarié scaling functions, and, for resolution levels

, and gender , the Meyer wavelets;

we denote any of these by . Here the effective support of ,
, is roughly of width and so measures scale.

The real bi-sinusoids are certain special functions, de-
riving from the construction of the Meyer–Lemarié wavelets.
With , where and we
define and we have basis functions
in four different groups:

RW1. ,
, ;

RW2. ,
, ;

IW1. ,
, ;

IW2. ,
, .

Here, is the “twin” of , and obeys

while—important point— is a certain “bell function” that
is also used in the construction of the Meyer wavelet basis, and
obeying

The system has been constructed so that it is orthonormal and
spans the same space as the collection of periodized Meyer
wavelets. We call the real bi-sinusoids because they are made
from pairs of real sinusoids.

The key property relating our two bases for can be sum-
marized as follows.

Lemma IX.4: The wavelet coefficients at a given level
are obtained from the real bi-sinusoid coefficients at the same
level by a finite orthogonal transform of length built
from discrete cosine and sine transforms.

Proof: By consulting [20] or by adapting arguments from
[1], one learns that the algorithm for the discrete periodized
Meyer wavelet coefficients at levelof a vector has five steps.
The steps are (for terminology see the cited references)

PMT1. Fourier transform the vector, yielding .

PMT2. Separate into its real and imaginary components.

PMT3. To the frequencies at levelapplyfolding projection
to the real and imaginary components ofseparately,
with polarities and , respectively, pro-
ducing two sequences, and .

PMT4. Apply the discrete sine transform DST-III to the
sequence and the discrete cosine transform DCT-III
to the sequence, yielding sequencesand .

PMT5. Combine the results, according to a simple formula

for

for
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Fig. 2. Flowchart of periodized orthonormal Meyer wavelet transform at
scalej.

The key observation is that all these steps are isometries or else
isometries up to a scale factor . It follows that there is an
orthonormal basis giving the representers of the output of Step 3.
These are exactly the real bi-sinusoids defined earlier

In effect, our real bi-sinusoids were obtained by starting from
this definition; to obtain formulas RW1–IW2, we started with
Kronecker sequences in and inverted the transforms in steps
PMT3, PMT2, and PMT1.

Now, given this identification, it is clear that the transform
mapping real bi-sinusoid coefficients to wavelet coefficients is
just the properly scaled composition of steps PMT4 and PMT5,
which composition is an isometry. This completes the proof.

Fig. 2 gives a depiction of the procedure in the above proof.

In short, we have the following structure.

BD1. is partitioned into an orthogonal sum of linear sub-
spaces

BD2. .

BD3. Each has two different orthonormal bases: the
wavelets : and the bi-sinusoids

: .

BD4. There is a real orthonormal matrix so that

It follows, upon comparison with Lemma IX.2, that for the com-
bined dictionary

using wavelets at all scales and sinusoids at sufficiently fine
scales, the problems and split into a direct sum of
problems and with , for

, and the ortho-projection of onto

subject to

while

subject to

with the component of in handled by

Lemmas IX.2 and IX.3 draw us to calculate

This is the mutual incoherence constantassociated with the
orthogonal transform between the two bases and .
This will determine the ideal atomic decomposition threshold
associated with bases and .

Lemma IX.5: is exactly the same as the constant for the
real Fourier system of cardinality

Proof: Let denote the vector of wavelet coefficients at
level and denote the vector of real bi-sinusoid coefficients
at level stored in order (RW1, RW2, IW1, IW2), then

(9.1)

and

(9.2)

Using column vector notation, we have

(DST-III) (DCT-III)

(DST-III) (DCT-III)

(DST-II) (DST-II)

(DCT-II) (DCT-II)

where is a diagonal matrix

(DST-III) and (DST-II) are the matrices of type-III and type-II
discrete sine transform; (DCT-III) and (DCT-II) are the matrices
of the type-III and type-II discrete cosine transform; and, finally,

is the reversing matrix

..
.

Now the quantity is the amplitude of the largest entry in the
matrix representing and obtained by performing the above
matrix products. However, by inspection, one sees thatwill
turn out to be just the largest amplitude in any one of the four
submatrices representing the various DC/DS transforms. The
closed form for one of these transforms of lengthhas en-
tries of the form times a real sinusoid
or and so we get, by inspection, that the largest
entry in such a matrix is not larger than . Taking

we are done.

And hence we have the following.

Theorem IX.6:Suppose that is a linear combination of
wavelets with , and of real bi-sinu-
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soids with , and the sets of synthesisand obey
level-wise the inequality

(9.3)

There is, at most, one way of writingas such a superposition,
and the corresponding sparse vectoris the unique solution of
both and .

Some remarks follow.

1) If obeys the condition (9.3) only at some levels and not
others, then at least one can say that decomposition ac-
cording to and are identical at all levels where
the condition holds.

2) In essence, the subdictionaries are becoming increasingly
disjoint as , so the sparsity constraint is essentially
less restrictive at large.

No essential role is played in Theorem IX.6 by the finite di-
mensionality of the overall space . Accordingly, we may
consider dictionaries with joint block-diagonal structure in the
form of infinite direct sums and reach similar conclusions.

In fact, there is a simple dictionary of this form, based on
Meyer wavelets on the continuum circle and real bi-si-
nusoids on the continuum circle. Without going into details,
which are exactly parallel to those in the discrete-time case
above (see [1]), we get a sequence of vector spacesand ,

obeying

and each of these is spanned by basis functions in the corre-
sponding groupings. Continuing in this way, we would reach
similar conclusions to Theorem IX.6: under the sparsity condi-
tions

there is, at most, one way of writing a function in obeying
that condition and the minimum--norm decomposition finds
it.

X. MULTISCALE BASESWITH BAND STRUCTURE

A drawback of Theorem IX.6 and the extension to
is that the real bi-sinusoids are not classical sinusoids. At first
blush, one thinks to use the fact that each real bi-sinusoid is a
sum of two real sinusoids which implies, in an obvious notation

-

It follows that if the object is a superposition of wavelets and
real sinusoids, but we use a dictionary of wavelets and real bi-si-
nusoids, then under the sparsity condition

the decomposition into wavelets and real bi-sinusoids is unique
according to and , involving only the precise wavelets
occurring in the expansion ofand the precise real bi-sinusoids
appearing in the expansion of sinusoids by real bi-sinusoids.

However, it seems to us that a conceptually cleaner result is
Theorem I.3 of the Introduction, which assumes thatis made
from wavelets and sinusoids and the dictionary is made from
wavelets and sinusoids. For a result of that form, we generalize
somewhat from block-diagonal structure to band structure.

A further example of ideal atomic decomposition can be
given in a multiscale setting where basis is associated with
a multiresolution decomposition

and basis is associated with another multiresolution decom-
position

But now . The new condition is theblock-bandedness

(10.1)

Consider the following formal structure.

BB1. .

BB2. The index set for the atoms in can be partitioned
into subsets with : .
And similarly for , the index set for the atoms
in can be partitioned into subsets with

: .

BB3. For the capacity

subject to

we have thelevel-wise capacity

subject to

obeying the crucial condition

as

BB4. We have the block-bandedness (10.1).

Lemma X.1: In the settingBB1–BB4, there exists a sequence
of critical numbers with the following interpreta-
tion. If an function is made of a countable
number of atoms from with

(10.2)

then:

a) there is at most one way in whichcan be decomposed
into a sum of atoms obeying this sparsity condition;

b) the minimum -norm decomposition has a unique
solution;

c) the solution is the unique decomposition obeying (10.2);
and

d) we may take

(10.3)



2858 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

Proof: Let collect the indexes of atoms ofappearing
nontrivially in a decomposition . By hypoth-
esis, let have, at most, a finite number of terms from each

and . We are interested in showing that for any object
having coefficients , and in basis

(10.4)

It will follow, as before, that the minimum -norm atomic de-
composition is precisely .

Now for

and, similarly, for

For a vector : , let :
and similarly for . Let
and similarly for . Then from the short-range interaction
between scales (10.1)

and, similarly, for . It follows, letting

that

Now note that

as . In short, if

the sufficient condition (10.4) will follow. Now if, as in (10.3),
, then

This completes the proof.

We now consider a dictionary built from an orthobasis of
Meyer wavelets combined with an orthobasis of true sinusoids.

In this case, the and are just as in the previous sec-
tion, but the are now, simply, the collection of all sines and
cosines and with (i.e., si-
nusoids rather than bi-sinusoids). A key point is that since the
transformation from real bi-sinusoids to real sinusoids involves
only , at two adjacent values , it follows that
the bandedness condition (10.1) holds with . A second
key point is that each in this case differs from the corre-
sponding in the real bi-sinusoid case by at most a factor.

Combining these observations gives a proof of Theorem I.3
of the Introduction in the case where we interpret to
mean “real sinusoids.”

The proof in the case where we interpret to mean
complex sinusoids is similar.

XI. WAVELETS AND RIDGELETS

We now turn to Theorem I.4 of the Introduction. This
example, combining the Meyer wavelets and orthonormal
ridgelets, has a block-banded structure.

We work with functions in and consider
two orthonormal sets: for the 2-D Meyer wavelets [1], [25],
and for the orthonormal ridgelets [14]. The key properties
we use are as follows.

1) The Meyer wavelets have frequency-domain support in a
rectangular annulus : satisfies

2) Orthonormal ridgelets have frequency-domain support in
a circular annulus : for at level ,

3) We use a coarse scale for the Meyer wavelets, and
we use only the part of the ridgelet basis at ridge scales

.

4) We have if , i.e., ,
or , i.e., .

5) For

, for .

In short, we have block bandedness with .
We now calculate the level-wise capacity . We may write

and

The following Lemma shows that and proves
Theorem I.4 of the Introduction.

Lemma XI.1: For the wavelet/ridgelet pair, and

where is a constant independent of.
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Proof: We pass to the frequency domain:

Here the estimates

follow from known closed-form expressions forand .

XII. N ONORTHOGONALDICTIONARIES

Much of what we have done can be generalized to the case
where and are not required to be orthogonal bases. In
this case, we measure incoherence via

which agrees with the previous measure if and are or-
thogonal; here, stands for the matrix inverse to and,
similarly, . We record the essential conclusions.

Theorem XII.1: Let and be bases for , and let
be the dictionary obtained by merging the two

bases. Suppose thatcan be represented as a superposition of
atoms from basis and atoms from basis. If

then the solution to is unique, the solution to is
unique, and they are the same.

Proof: With the capacity now defined by

subject to

where is a basis function and is its adjoint. We use the
estimate, for associated with basis

So, with , the Kronecker sequence located at

Hence,

Arguing as before, this implies that for a subset

It follows that if is generated by atoms in and if

then the solution to is unique; the argument for is
similar.

As an application, consider the basis of geometrically de-
caying sinusoids. Let, for fixed , .
For , let

Then the : are linearly independent
but not orthogonal; they would be orthonormal if , but we
consider only the case , which forbids this. With a
certain application in mind, we are mainly interested invery
close to one, e.g.,such that , is substantial (e.g., ,
or ). We remark that is the dual basis,
where . Let be the impulse basis, and
let . Then

and we conclude that if is a superposition of spikes and de-
caying sinusoids, then supposing

the minimum atomic decomposition will find the common
solution of and .

This should be of interest in magnetic resonance spectroscopy
[18], where the recorded signal is

FID

where the free-induction decay (FID) is a sparse superposition
of decaying exponentials with the representing gross errors
occurring at those moments of time where the FID exceeds the
analog-to-digital converter’s upper bound. The above result says
that if the FID is accurately modeled as having a few oscillations
with common decay rate, then it can be perfectly recovered de-
spite gross recording errors of arbitrary amplitude in unknown
locations. This is of particular interest in connection with the
water-line problem of magnetic resonance spectroscopy, where
the oscillations due to water are so large that they cause the FID
to overflow in the first few recorded samples.

XIII. D ISCUSSION

A. Continuous-Time Uncertainty Principles

The point of view in this paper concerns the sparsity of rep-
resentation in two bases.

If two bases are mutually incoherent, then no signal can have
a highly sparse representation in both bases simultaneously.

In the case of discrete-time signals, this can be tangibly re-
lated to time-frequency concentration because the spikes make
up a time-domain orthobasis. In the case of continuous-time
signals, this “lack of simultaneous sparsity” principle does not
seem to connect directly with classical uncertainty principles.
Those principles concern the extent to which a continuous-time
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function : can have small support in both time
and frequency domains simultaneously.

By restating the argument used in Section III above, we obtain
a continuous-time uncertainty principle. We now briefly explain
that principle, and then turn to some useful implications for our
studies of earlier sections.

Define the Fourier transform by

With the factor in the exponent this is a unitary transforma-
tion. For sets and , define the concentration
functional

This measures the extent to which an integrable function with
integrable Fourier transform can be concentrated to the pair

. We then have, by arguments parallel to Section III.

Theorem XIII.1:

For example, a function cannot have more than 90% of its com-
bined norms in unless .

Proof: Define the capacities

Evidently, is independent of. Similarly, define

and note also that is independent of . From
the completely interchangeable roles of time and frequency,

. From

we have

and so , while setting
with shows that we can have functionswith ,

, and , hence,

Now if

This form of uncertainty principle is more symmetric and so,
in a sense, more natural than relateduncertainty principles
[31] and, of course, it gives the same type of insight.

B. Behavior of for Scattered Sets

The connection to the uncertainty principle is useful, above
all, for the insights it gives back to the possible behavior of

. It suggests immediately that the sufficient condition
for ideal atomic decomposition holds for many sets

and where the combined cardinality of and far ex-
ceeds , cardinalities as large as being possible, if
and have the right “disorganization.”

In [15], the behavior of a functional similar to the quantity
of Section VI was studied for a collection of randomly

generated, highly scattered sets, . Also some basic analysis
of simple , configurations was made. It was found that if

and are in some sense “scattered,” one could have quite
small even though and were very large sets in total
measure. In short, a condition like was found
to be in no waynecessaryfor low concentration, unless and

are very carefully arranged in a “picket-fence” form. In [16],
the behavior of a functional similar to was analyzed in the
case where is an interval. It was found that could have
very large measure, even proportional to, and still one could
have , provided in each interval of a certain length,
there was only a small number of points from; here, the
length of the interval was reciprocal to the size of the frequency
band .

Both of these strands of investigation indicate clearly that the
threshold and the mutual incoherence property should be

viewed simply as worst case measures. Typically, we can relax
our quantitative sparsity constraint significantly, and, as long as

and/or are sufficiently scattered, we will still have favor-
able concentration ratios.

To investigate this idea, we performed a computational ex-
periment in the (Spikes, Sinusoids) dictionary. As in Section III,
we note a simple necessary condition for a sequenceto be
a unique solution of the problem. Suppose the sequence is
supported on a set with sign sequence .
In order for it to be a set of uniqueness for the, it is sufficient
that, for all

In our experiment, we generated 1000 sets with various
, , and , and calculated by linear programming

subject to

As an example, we computed realizations offor
and

Fig. 3 presents a histogram of our results, illustrating that, within
a given set of parameters the obtained values of
exhibit a roughly Normal distribution, with increasing values of
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Fig. 3. Histograms of~�(T; W ; �).N = 32. Ordered from left to right and top to bottom,N = N = 3; 6; 9; 12; 15; 18; 21; 24; respectively.

Fig. 4. Plot ofmedian (~�) versus density� for N = 32; 64; 128. The curve associated withN = 32 is the lowest and the curve associated withN = 128
is the highest.

and leading to increasing, as they must. It is clear that
a simple numerical summary of the distribution, such as the me-
dian of each histogram, will adequately describe the distribution
of .

Fig. 4 presents a display of the median values ofin sim-
ulations at and , plotted as three curves, with

displayed versus thedensity .
We make the following observations.
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• The curves are very similar at different, so that the de-
scription of as dependent on the densityseems reason-
able.

• The curves are almost linear, roughly obeying the equation

• The curves cross the critical threshold concentration
near .

These results suggest that for a large collection of triplets
one has, at the same time, and

; in such cases, the associated has a unique solu-
tion and the method of minimum -norm atomic decomposi-
tion will give a unique solution. This suggests that the results
proved in this paper under restrictive sparsity assumptions may
point the way to a phenomenon valid under far less restrictive
sparsity assumptions.
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