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ABSTRACT. The Dunkl transform satisfies some uncertainty principles similar to the
Euclidean Fourier transform. A generalization and a variant of Cowling-Price’s theo-
rem, Beurling’s theorem and Donoho-Stark’s uncertainty principle are obtained for the
Dunkl transform.

1. Introduction

There are many theorems known which state that a function and its
classical Fourier transform on R cannot both be sharply localized. That is, it
is impossible for a nonzero function and its Fourier transform to be simulta-
neously small. Here a concept of the smallness had taken different interpre-
tations in different contexts. Hardy [13], Morgan [21], Cowling and Price [6],
Beurling [2], Miyachi [20] for example interpreted the smallness as sharp
pointwise estimates or integrable decay of functions. Benedicks [1], Slepian
and Pollak [27], Landau and Pollak [15], and Donoho and Stark [7] paid
attention to the supports of functions and gave qualitative uncertainty prin-
ciples for the Fourier transforms.

Hardy’s theorem [13] for the classical Fourier transform % on R asserts
that f and its Fourier transform f = Z(f) can not both be very small. More
precisely, let a and b be positive constants and assume that f is a measurable
function on R such that |f(x)| < Ce~®" ae. and |f(y)| < Ce ™" for some
positive constant C. Then f =0 a.. if ab >}, f is a constant multiple of
e if ab = 1, and there are infinitely many nonzero functions satisfying the
assumptions if ab < %. Considerable attention has been devoted for discov-
ering generalizations to new contexts for the Hardy’s theorem. In particular,
Cowling and Price [6] have studied an L?” version of Hardy’s theorem which
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states that for p,g € [l, 0], at least one of them is finite, if ||e‘”2f\|p < o0 and
||eby2f||q < oo, then f =0 ae. if ab> 1. Another generalization of Hardy’s
theorem is given by Miyachi [20], which states that, if f is a measurable
function on R such that ¢*’f e L'(R) + L*(R) and

Pl &2 /4a
J 10g+|f(é)}¥| dé < o
R v

for some positive constants ¢ and A, then f is a constant multiple of e,
Furthermore, Beurling’s theorem, which was found by Beurling and his proof
was published much later by Hormander [14], says that for any non trivial
function f in L2(R), the product f(x)f(y) is never integrable on R> with
respect to the measure el dxdy. A far reaching generalization of this result
has been recently proved by Bonami, Demange and Jaming [3]. They proved
that, if f e L?(R?) satisfies for an integer N

JJ S ONF W)
reJre (1 x|+ D)™

M gxdy < oo,

then f is of the form f(x)= P(x)e*ﬁ“"Hz where P is a polynomial of degree
strictly lower than NT*" and f is a positive constant.

As a generalization of these Euclidean uncertainty principles for the
classical Fourier transform %, recently, Gallardo and Triméche [12] and
Triméche [31] have proved Hardy’s theorem, Cowling-Price’s theorem and
Beurling’s theorem for the Dunkl transform %p. The purpose of this paper
is, as further generalizations, to obtain variants of their results and Donoho-
Stark’s uncertainty principles for Zp.

The structure of this paper is the following. In §2, we recall the basic
properties of the Dunkl operators; the Dunkl intertwining operator and its
dual, the Dunkl transform %p and related harmonic analysis. §3 is devoted to
generalize Cowling-Price’s theorem for #p. In §4 and §5 we give variants of
Cowling-Price’s theorem. We state Miyachi’s theorem in §6 and we generalize
Beurling’s theorem for %p in §7. §8 is devoted to Donoho-Stark’s uncertainty
principle for Zp.

Throughout this paper, the letter C indicates a positive constant not
necessarily the same in each occurrence.

2. Preliminaries

In order to confirm the basic and standard notations we briefly overview
the theory of Dunkl operators and related harmonic analysis. Main references
are [8, 9, 10, 11, 16, 17, 22, 23, 28, 29, 30].
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2.1. Root system, reflection group, and multiplicity function. Let R be the
Euclidean space equipped with a scalar product {,) and the norm |x|| =
v/ <{x,x>. For o in Rd\{O}, let o, be the reflection in the hyperplane H, = R?
orthogonal to o, i.e. for xeRY,

ou(x)=x—2

A finite set R = R?\{0} is called a root system if RNRa = {o, —a} and 5,R = R
for all x € R.  For a given root system R reflections a,, « € R, generate a finite
group W < O(d), called the reflection group associated with R. We fix a f e
R"\UMRH“ and define a positive root system Ry = {a e R|{a,f) > 0}. We
normalize each € R, as {o,a) =2. A function k: R — C on R is called a
multiplicity function if it is invariant under the action of . We introduce the
index y as

y=y0k) = k().

xeR,

Throughout this paper, we will assume that k(«) > 0 for all e R. We denote
by oy the weight function on R? given by

or(x) = [ Ko xp]*,
aeR,

which is invariant under the action of W and homogeneous of degree 2y, and
by c¢; the Mehta-type constant defined by

k= J e’”xnz/zwk(x)dx.
Rd

Let d > 2. For an integrable function f on R? with respect to a measure
wi(x)dx we have

JR” S (x)or(x)dx = J:C (LM f(rﬁ)wk(ﬂ)dod(ﬂ)>r2y+d1 dr, @1

where do, is the normalized surface measure on the unit sphere S9! of RY.
In particular, if f is radial (i.e. SO(d)-invariant), then there exists a function F
on [0,c0] such that f(x) = F(||x||) = F(r) with ||x|]| =r and

+0o0

J f(xX)or(x)dx = ko F(ryr? =1 dr, (2.2)
RY 0

where

d=| | onpdoap).
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We denote by L” (Rd), 1 < p < oo, the space of measurable functions f on
RY with finite L”-norm | || , with respect to the Lebesgue measure dx and by
L,’(’(Rd) the one with respect to the weighted measure wy(x)dx:

1/p
11y = (], roronwas) " <o it 1<p<on,

11k, o = ess sup [f(x)] < 0.
xeR?

In the following we denote by
— C(R?) the space of continuous functions on R.
— C?(R?%) the space of functions of class C” on RY.
— CI(RY) the space of bounded functions of class C”.
— &(R?)  the space of C*-functions on RY.
- V(Rd) the Schwartz space of rapidly decreasing functions on RY.
- D(Rd) the space of C*-functions on R? with compact support.
— %'(RY) the space of temperate distributions on R?.
— 2R  the set of polynomials on RY and #,,(R) the one of degree m.

2.2. The Dunkl operators and the Dunkl kernel. The Dunkl operators 77,

j=1,2,....d, on R? associated with the positive root system R, and the
multiplicity function k are given by
of S (x) = f(oa(x))
Tif(x) = a_x_,(x) + Z k(“)“jT

aeR;

for f e C'(R?). Then each 7; satisfies the following:
i) For all f and g in C!'(RY), if at least one of them is W-invariant, then

Ti(f9) = (Tif)g + f(T;9).

ii) For all f in C}(R?) and ¢ in ¥ (RY),
| Tir Wt =~ | roTaeodx
We define the Dunkl-Laplace operator /A; on R? by

d
Dif(x) =Y T ()
j=1

Vi) ) —f(%()d))

=AN(x)+2 Z k(oc)( xS )

oeRT
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where A and V are the usual Euclidean Laplacian and nabla operators on R?
respectively. Then for each y e R?, the system

Tiu(x,y) = yju(x,y), j=12,....d
u(0,y) =1

admits a unique analytic solution K(x, y), xeR? called the Dunkl kernel.
This kernel has a holomorphic extension to C¢ x C? and possesses the follow-
ing properties (cf. [22]):

i) For all z,reC? and 1€ C, K(z,1) = K(1,2), K(z,0) =1 and

K(iz,t) = K(z, At). (2.3)
ii) For all veN? xeR? and ze CY,

IDYK (x,2)] < [|x[|™ exp(]|x]| | Re z]|), (24)

where

oM
D’

s T L

In particular, |K(x,—iy)| <1 for all x,yeRY.
iii) For all xeR? and zeC”,

K(x.2)= | 02 du). 25)

where u, is a probability measure on R? with support in the closed ball
B(0, ||x]|) of center 0 and radius ||x||.
The Dunkl intertwining operator ¥ on C(RY) is defined by

V()= | F0)d(y)

where du, is the same measure as in (2.5). Then for all xe R?, ze CY, we
have

K(x,2) = Vi(e©)(x).
Let 'V, denote the operator on D(RY) satisfying for all f e D(R?) and
ge C(RY),

| v = | vidaws @

Rz[
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Then there exists a positive measure v, on R? with support in the set
{xe R ||x|| = |||} for which

VN0 = | S ). 26)

This operator V. is called the dual Dunkl intertwining operator. The oper-
ators Vj and 'V} satisfy the following properties (cf. [29]):

i) ¥y is a topological isomorphism from &(R“) onto itself satisfying the
permutation relations: For all f e &(RY),

TV(f) (x) = Vk(aiyjf) (x).

ii) 'V} is a topological isomorphism from D(RY) (resp. #(R?)) onto itself
satisfying the permutation relations: For all f e D(R?) (resp. .#(RY)),

0

V(L) (y) = a—yjth(f)(y)-

ProposiTION 1 ([12]).  Let (vy),.ge be the family of measures defined by
(2.6) and f be in L,i(R‘l). Then for almost all y € R? with respect to Lebesque
measure on RY, f is vy-integrable and the function

ye | s

which will be also denoted by 'Vi.(f), is Lebesque integrable on RY.  Moreover
for all ge Cy(RY),

j V() ()g(r)dy = J Vi(9) () f (x)a (x)dx. (2.7)
REMARK 1. By taking g=1 in (2.7) we can deduce that for all
J € LL(RY),

Ld Vel f)()dy = J F(X)oop(x)dx. (2.8)

Rd
2.3. The Dunkl transform. The Dunkl transform %, on L,l,(Rd) is given by

Ao = | K - (29)

7Ck

Some basic properties of this transform are the following (cf. [10] and [11]):



Uncertainty principles for the Dunkl transform 247
i) For all feLl(RY),

ii) For all fe%(RY),

. | R
I < — I - (2.10)
k

Ip(Tif)(y) = v Zp(f)(y)- (2.11)
iii) For all fe.%(RY),
Ip(f) =F o 'Vi(f), (2.12)

where Z is the classical Fourier transform on RY.
iv) For all feLl(RY), if Zp(f) belongs to L}(R?), then

13) = | Zo(N K ix. o) (213)

v) For fe(RY), if we define Zp(f)(y) = Zp(f)(-y), then
TpTp = TpTp = Id. (2.14)
PropPOSITION 2. The Dunkl transform Fp is a topological isomorphism

from S (R?) onto itself and for all f in & (R?),

Tp(f)(E) wx(E)deE. (2.15)

R¢

Ld L/ () Peor (x)dx = J

In particular, the Dunkl transform f — Fp(f) can be uniquely extended to an
isometric automorphism on L}(R?).

2.4. The Dunkl convolution. By using the Dunkl kernel in 2.2, we introduce
a generalized translation and an associated convolution structure on RY. For
feZRY and yeRY the Dunkl translation 7,f is defined by

Fp(1,f)(x) = K(ix, y) 7p(f)(x)
(cf. [30]). This transform is related to the usual translation as

o f(x) = (V) (Vi) (Vi) () (x + )l (2.16)

Hence, 7, can also be defined for fe&(R?). If fe&(R?) is radial, ie.
f(x) = F(||x]|), then it follows that

0/ () = Vi(E G Il + [P 4243, 9) ()
(cf. [23]). For example, for > 0, we see that
Ty(eftl\é\lz)(x) = e 1IN+ K (249, x). (2.17)




248 Takeshi KaAwAzoE and Hatem MEJJAOLI

We define the Dunkl convolution product f*pg of f,ge S (Rd) as

Fagl) = | sy (218)

(cf. [28] and [30]). This convolution is commutative and associative and
moreover, it satisfies the following (cf. [28]):

i) For all f,ge D(RY) (resp. #(R?)), f*pg belongs to D(R?) (resp.
<(R%)) and

Fp(f *p 9)(y) = Zp(f)(»)FD(9)(¥)- (2.19)

ii) Let 1< p,q,r < oo such that %—i— —l=11f feL!(RY) and ge

L!(R?) is radial, then f*pge L;(RY) and

1 0 glli.r < 1/ 1lx p 19115 4+ (2.20)

==

2.5. The Sobolev space H;(Rd). Let se R. We define the Dunkl-Sobolev
space H;(RY) as the set of distributions u € '(R¥) satisfying (1 + ||&|| 212 7 ()
€ L,%(Rd), equipped with the scalar product

o = | (14 1P Zo () O o (E)de
and the norm
H“”iﬁﬁ = <“au>H/f-

As shown in [17], if pe N and seR satisfy s >4+ y+ p, then the following
embedding is continuous (i.e. the inclusion is in the sense of topology)

H{(RY) < CP(RY). (2.21)

Lemma 1. Let f e %(RY) and assume that for all n e N, there exists a
positive constant ¢, such that

IAES k.2 < en:
Then for all neN,
|Altlf(x)| =< C(Cn + Cl1+m),
where m = [d”’} + 1 and C is independent of n.

PROOF. Since [ALf(x)| < Cull ALy by (221) and  [|ALf ] yon <
ConllIAL S Nlia + 1A f lli.2) by the definition of HP"(R?), the desired result
follows. u
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2.6. Mean value property associate with the Dunkl Laplacian. Let d > 2.
The mean value operator M2 r> 0, x € R?, associated with the Dunkl Lap-

rox

lacian A\, is defined by for u e &(RY),

M = | | ralmon()do(y).

s

To give a development formula for M,?x, we define a sequence of functions
{vp(0)} )20, 0 <t <r, and a sequence of numbers {h,(r)},., as follows. We
put

" ds
w(1) = J, T

and inductively, let v,(f), p > 1 denote a unique solution of the differential
equation:

Lyajp-10p(1) = vp-1 (1),

0y(r) = 5 0p(1) =0,

where L, ;1 is the Bessel operator given by

& 2+d—1d
L. =4+ .
red/2-1 = ga ‘ dt

We put by(r) =1 and

by(r) =J vp 1 ()27 1. (2.22)
0
Then we see that
b(r) = (223)
r) = .
’ dy(7)

with

227pIl (y + 4+ p)
dy(y) = 2
P(V) F(V +%)

PropoSITION 3 ([16]). For ue &(R?) and xo € R?, it follows that

MP (0 =D by Afuw) + 5| ()AL ma e
p=0

B(O’ r)

where B(0,r) is the closed ball of center 0 and radius r.
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2.7. Heat functions related to the Dunkl operators. The heat kernel Ny (x,s),
xeRY, s> 0, associated with the Dunkl-Laplace operator /\; is given by

1

b s
AV e , (2.24)

Ni(x,s) =
which is a solution of the generalized heat equation:

0
ﬁNk(x’ $) — A Ni(x,s) = 0.

Some basic properties of Ni(x,s) are the following:
i) Zo(Ni(-,9)(x) =Le " and

1 2
Ni(x,s) = _ZJ e K (ix, y)wr (y)dy. (2.25)

Ck Rd
i) For all 2> 0,

Ne(WV2x,28) = A7 OHD N () s).

iii)

[Nk (5 9) g1 = 1. (2.26)
iv) For all s,¢> 0,

Ni(+, 1) *p Ni(+,8)(x) = Ni(x, 1+ 5).

By noting (2.25) and (2.11), we define the heat functions W/(x,s), [ € N,
as

Wk(x,s) = T'Ni(x,s)

i

l s 2 .

=3 JR, vyl UK (ix, y)eor(y)dy, (2.27)
k d

where 7/ =T/ o Tf o---0 T/, Then W{(x,s) = Ni(x,s) and
gk i I —s|x|)?
Fp(Wi(-,5))(x) :c—ky1 R . (2.28)

PrOPOSITION 4 ([31])). Let € 2,(RY) be homogeneous. Then for all
0 >0, there exists a homogeneous Q € e%n(Rd) such that

Fo(b(-)e M) (x) = Q(x)e NI/4, (2.29)



Uncertainty principles for the Dunkl transform 251

3. Cowling-Price’s theorem for the Dunkl transform

We shall prove a generalization of Cowling-Price’s theorem for the Dunkl
transform Zp.

THEOREM 1. Let f be a measurable function on R? such that

eI f ()l

w0 AE D Wi (x)dx < o (3.30)

and

eI\ 7 (1) (&)
R (L+[IEN"

qdé< o0, (3.31)

for some constants a,b >0, n>0, m>1 and 1 < p,q < +0.
i) If ab > }T, then f =0 almost everywhere.

i) If ab=1, then f is of the form f(x)= Qy(x)Ni(x,b) where Qy is a

polynomial with deg Qp < min{% + 2”;7‘{_1 ,’"T*d}. Especially, if
. 2y+d—1 m—d
n£d+2y+pm1n{n+ y+, ,m },
P P q

then f =0 almost everywhere. Furthermore, if meld,d + q] and n > d + 2y,
then f is a constant multiple of Ni(-,b).

iii) If ab <1, then for all §€ b, L[, all functions of the form f(x)=
P(X)Ni(x,0), Pe P, satisfy (3.30) and (3.31).

Proor. Clearly (3.30) implies that f belongs to L} (R?) and thus, Zp(f)(¢)
exists for all & e RY. Moreover, it has an entire holomorphic extension on C¢
satisfying for some s > 0,

|1Z0(f)(2)] < Cellm /a1 4 |[im ), (3.32)

Actually, it follows from (2.9) and (2.4) that for all z = ¢ + iy e CY,

FolNE+ il < [ 1FO]IK & + plends
k JR

IA

ielwnzmaj &V(’?)u ) 7eetl=In2a? g ().
Ck R (1 [|x[[)™”

Then by using the Holder inequality, (3.30) and (2.2) we can obtain that
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1/p'
|9MfXé+MNSCk””“(j<1+nﬂ>wm (It -2’ ()m)p
Rd

’

) 1/p
< CeHnH'/‘ta <JOC(1 + r)nP'/PJrZ“/erflefap/(r7\|;1/2a||>2 dr>
0

< CelnlPAaqy o |||+ Crea=iv

If ab=1, then
|\ Fo(f)(E + in)] < CePII (1 4 ||y /r+Cored=D1r",
Therefore, if we let g(z) = b+ +42]) o, D Fp(f)(z), then
lg(z)| < CeblRe=|)? (1+|/Im Z”)n/p+ 2y+d—1)/p’

Hence it follows from (3.31) that

lg(&)|*
LUHMW“<W

Here we use the following lemma.
LEMMA 2 ([25]). Let h be an entire function on C? such that
Ih(z)| < Ce®Re*(1 4 |[Tm z[])’

for some [ >0, a>0 and

[ e ot < o
re (1 [lx])

for some g =1, m> 1 and Q € Pyy(R?Y). Then h is a polynomial with deg h <
min{l,””TM’d} and, if m < q+ M +d, then h is a constant.

Hence by this lemma ¢ is a polynomial, we say P,, with deg P, <

min{%—kzw;#,mT’d}. Then Zp(f)(x) = Pp(x)e?*I” and thus, f(x)=

Op(x)Ni(x,b) = C;,Q;,(x)e"‘“tz for xeRY, where Q, is a polynomial with
deg Q) = deg P, (see (2.29)). Therefore, nonzero f satisfies (3.30) provided
that

. 2y+d—-1 m—d
n>d+2y+pmm{ﬁ+ rt m }
p

p g

Furthermore, if m <d+ ¢, then g is a constant by Lemma 2 and thus,
2 2

FIp(f)(x) = Ce "M and  f(x) = CNi(x,b) = Cpe M. When n>d+2y

and m > d, these functions satisfy (3.31) and (3.30) respectively. This proves

ii).
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If ab>%, then we can choose positive constants, a;, b; such that
a>a;=g->4. Then f and Fp(f) also satisfy (3.30) and (3.31) with a
and b replaced by a; and b; respectively. Therefore, it follows that Zp(f)(x) =
Pbl(x)e‘blux”z. But then Zp(f) cannot satisfy (3.31) unless P, =0, which
implies f = 0. This proves i).

If ab<1, then for all 5e]b,t[, the functions of the form f(x)=
P(x)Ni(x,0), where Pe 2, satisfy (3.30) and (3.31). This proves iii). |

The following is an immediate consequence of Theorem 1.

COROLLARY 1. Let f be a measurable function on R? such that
Sl < Me M (14 )" ae. (333)

and for all & e RY,
1Z0(f)(&)] < MetIeF (3.34)
for some constants a,b >0, r >0 and M > 0.
i) If ab> %, then f =0 almost everywhere.
i) If ab=1, then f is of the form f(x) = CNi(x,b).
iii) If ab <1, then there are infinity many nonzero f satisfying (3.33) and
(3.34).

4. Cowling-Price’s theorem via the D-spherical harmonics coefficients

We suppose that d >2. We replace the assumption (3.31) by the D-
spherical harmonics coefficients of f. For a non-negative integer /, we put

H* = {Pe|P is homogeneous and A;P = 0},

which is called the space of D-spherical harmonics of degree . We fix a
P; e #;* and define the Dunkl coefficients of f € L,i(Rd ) in the angular variable
by
fird) = | 0P (0). (4.35)
gd-1

Moreover, we define the Dunkl spherical harmonic coefficients of f € L}(RY)
by

Fue(2) =3 L T ) Pi()on(1)daa(0), (4.36)
where
Fo(f) (1) = %Ld FOK (v, —it)on () (4.37)

for 1€ S77!. The relation between f;; and Fj is given by the following.
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PROPOSITION 5. Let notations be as above. Then for z e S4t2-1,
Fa) = C [ el Ko iz (s
R{+

= CZp,(firll - DIl - 171 (2), (4.38)

where Zp, and K; are the Dunkl transform and the Dunkl kernel on R
respectively.

Proor. From (2.3), (4.37) and (4.36) it follows that

Fi i (4) = )f/lj <Ldl K(t, —ilx)P;(t)a)k(t)dad(t)>f(x)wk(x)dx.

Ck JRY
Here we recall the formula for the Dunkl coefficients of the Dunkl kernel.

LemMa 3 ([10]). Let H e #*. Then for all x e RY,
|| K HWodos(0 = CLutt 3o, (439)

where j,, o > —5, is the normalized Bessel function defined by

| 2 (-1)"E”
Ja(Z)F(““);W(f)Jrn)'

Therefore, we see that
Fii(2) = Crk J P srvap 1 (xS (x)or(x)dx.
R

Then by using (2.1) and (4.39) replaced d by d + 2/, we can obtain that for all
c Sd+2171’

Flk ;~ = J J . ]y+d/2+l 1(/Lr) 2y+l+d_1P;(t)f(rt)cak(l)dad(t)dr
J ¥) Jytd /241 1(Ar)r L g

= CJ (J K[(I, _iler)wk<l)dO'd+2[([)>ﬁﬁk(r)r2y+]+a'1 dr
0 Sd+20-1

| el K. i) (.

This established the proposition. |
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THEOREM 2. Let p,ge[l,o[, a,b >0, neld+2y,d+2y+ p] and m > 1.
Let [ be a measurable function on R? such that

ap||x]® »

and

J ” ey (2)]f

s " di < (441)

for all non-negative integers |.

1) If ab> %, then f =0 almost everywhere.

i) If ab=1, then f = CNi(-,b).

iii) If ab <y, then for all §€|b, L[, all functions of the form f(x)=
P(x)Ni(x,0), where P e 2, satisfy (4.40) and (4.41).

PROOF. (4.40) implies that f € L}(R?) and thus, each f; is well-defined.
Moreover, it follows from (4.35), (2.1) and (4.38) that

o apr?
I = Jv w 2rd=1 g,
o (Q+7)

> 2 1/p P
o0 eapr |f(rt)|p rd—
= (JSL[I (JO W}’Z ¢ dr) P](t)a)k(l)d()'d(t))

J e f ()"
R

<c| b
o (L+[x])"

wi(x)dx < 0.

Here we used Holder’s inequality and the compactness of S9! to obtain the
last inequality. Then, by applying this estimate in the polar coordinate (2.2) of
(4.38), the same argument in the proof of Theorem 1 yields that F; x(4) has an
entire holomorphic extension on C and there exists N > 0 such that

|Fp i (u+ iv)| < Ce” /% (1 4 [u])™.

If ab> 1, then |Fj;(u+iv)] < Ce” (1+|o])". Therefore, if we put

Gri(z) = Fia(2)e", then |Gpi(2)] < Ce (14 [o])" and [ S0 dx < oo
by (4.41). Hence, Lemma 2 for d =1 yields that Fy (1) = Cj e " P(2),
where A€ R and P is a polynomial whose degree depends on N and /. By
noting (4.38) and (2.29), the injectivity of the Dunkl transform on R*"* implies
that for all x € R, £, ((Ix]]) = Crillx||' Q(x)Ny.x(x,b), where N; is the heat
kernel on RY%.

If ab>1, then I is finite provided f; s =0 for all /. Therefore, f =0

almost everywhere. If ab =1, then I; is finite provided n — (/ + deg Q)p —
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(2y+d—1)>1, that is, n>d+2y+ (/ +deg Q)p. Therefore, the assump-
tion on n implies that / = () and deg Q =0. Clearly, f = CNy «(x,b) satisfies
(4.40) and (4.41). If ab <1, then for a given family of functions, we see that
Ip()(y) = 0(y)e =3I¥I* for some Q e 2. These functions clearly satisfy (4.40)

and (4.41) for all d € |b,L]. [ |

5. A variant of Cowling-Price’s theorem for the Dunkl transform

Let us suppose that d >2. The aim of this section is to give a d-
dimensional extension of a theorem in [19], which is a variant of Cowling-
Price’s theorem for the Dunkl transform. Our approach is different from [19].

THEOREM 3. Let a,b>0. If fe S (RY) satisfies for all £ R,
Zp(f)(&)] < Ce T
and for all n e N,
18RIk, < C2m)Y(2a) ™, (5.42)
then [ =0 whenever ab > 1.
Let m = [@} + 1. Then Lemma 1 and (5.42) imply that for all x € RY,
AL Tp()(0)P < C2n+2m)!(2a) ™
Therefore, Theorem 3 follows from the following.

THEOREM 4. Let a,b > 0. If fe % (RY) satisfies for all & e R,

Zo(f)(&)] < Ce I (5.43)
and for all neN,
A2 Tp(f)(€)]° < C(2n+2m)!(2a) " (5.44)

with m = [‘”Z} +1, then f =0 whenever ab > 4 L
In order to prove Theorem 4 we need the following lemmas.

LEMMA 4. Let a, m be as above. If F € & (R?) satisfies for all n e N and
xeRY,

|ARF(x)|* < C2n+2m)!(2a)™™", (5.45)

then for all xoeRY, the function re— M, m(F) extends to C as an entire
Sfunction, which satisfies for all z € C,

z|? a
|MP (F)| < Cel?/C). (5.46)
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Proor. It follows from Proposition 3 that for all r>0, xoeR? and
neN, MP (F) satisfies

r, X0

1
b, (r) AV F (xo) J o, (1IN AT (2 F) (D eop (D)dt. (5.47
Z 05 G Ly, HIDAE P ) Okt (547)

Then from (2.22) and (2.23) we can deduce that

lJ oa([lA) A3 (2, F) (Do (1)dt
B(0,r)

dj.

2n+21"(y+ )

su A”“ 7. F)(1)] |.
dk22”+2(n+1)!F(y+2+n+1) ,EB(Op,>| (e F) (1)

Furthermore, from (5.45) we have

|88 (2 ) (1)) = Jox, (A F) (0] < C\/Z(n +m -+ 1)1(2a) 0.

Hence the remainder term of (5.47) tends to zero as n goes to infinity. There-

fore, MP (F) admits the series development

0 2n

r vco Zb” Z

n=0 :0

A k

Thus for all xo € R? the function r+— M?P

;v (F) can be extended to an entire
function on C as

2n

-

n=0""

(5.48)

For all ze C and x; € R, (5.48) and (5.45) imply that

0

z x“ Z |Ak )|

n=0

S AVES)
S AM'F
S, 2201 (n 4y + )| (o)l

0 —n 2n n

(2a)™"|z]| (2a)
<SS Y B arp ()| 2

D
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0 2a -1 z 2\n 2a)"
< C(Z%) SUP<|A’:’F(XO)|22”F((11——2;)+§)>

=0 neN

< C| sup M l?*/a) CweIZ\z/(Za),
neN 2 "F(I’l—i—y—f—f)

because m = {@] + 1. This completes the proof of the lemma. |

LEmMA 5 ([24]). Let ¢,d >0 and F be an entire function on C satisfying
for all zeC,

|F(z)| < Cetlm=
and for all x e R,

|F(x)| < Ce™™®".
Then F =0 whenever ¢ < d.

Proof. of Theorem 4.
Let xo e R?. For zeC, we put

Fy(2) = e /COMP (Fp(f).

Z, X0

By Lemma 4 with F=7p(f) we see that |[MP (7p(f))| < Ce/29) and
therefore, for all z € C,

|Fy (2)] < Celmel/e.
On the other hand, the positivity of the mean value fo()(-) and the relation
(5.43) give
M2, (F()] < M, (),
Then, using (2.17) and (2.4), we obtain

2 1 2
M) = | () sp)n()do(y)
1

= d_k JS N e—2b(x2+‘|x0”_)K(2bXO, xy)wk(y)do-d(y)
< Ce2boll=2) — cp=2b(Iwoll*2xfxol+7)
Hence, for all x <0,

IMP (F(f))] < Ce 2,

X, X0
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But, as a function of x,x — MP

(M2, (Fp(f))| < Ce 2

(Zp(f)) is even, it follows that for all x € R,

Therefore, we see that for x € R,

|F(x)] < Ce™ (! J2a+2b)x*
Then, for all ze C,

|Fyy (2)] < Celml'/a

and for all x eR,

|Fy, (x)] < Co—(1/2a+2b)x*
By Lemma 5 we can conclude that Zp(f) =0 and thus, /' =0. -

As an application of Theorem 3, we can obtain the following.

COROLLARY 2. Let a,b >0 and pe [, If f e % (RY) satisfies for all
£eRY,

1Z(f)(&)] < Ce Il (5.49)
and for all n e N,
1AL FD (NI}, < C(2n+ 2m)!(2a) > (5.50)

with m = [%} + 1, then f =0 for ab>1.

Proor. We put F(x) = (#p(f) *p Ni(-,1/(8D)))(x) where Ni(-,t) is the
heat kernel given by (2.24). Then by (2.20), it follows that for all x € R?,

AR < 15270 () i 1N, 1/ (8B
where p’ is the conjugate exponent of p. (5.50) implies that
|ARF(x)|* < C(2n + 2m)!(2a) "
On the other hand, it follows from (2.18) and (2.17) that for all x € RY,
|[F(x)| < Ce 2N,

Therefore, by Theorem 4 we can obtain that F(x) =0 and thus, Zp(F) = 0.
(2.19) and (2.14) imply that f = 0. |

6. Miyachi’s theorem for the Dunkl transform

For the sake of the readers, in this section we state Miyachi’s theorem for
the Dunkl transform, which is obtained in [4] and [5].
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TuroREM 5 ([4], [5]). Let f be a measurable function on R such that

e f e LP(RY) + LI(RY) (6.51)

and

J log™® w dé < oo, (6.52)
RY

A

for some constants a,b,A >0 and 1 < p,q < 0.

1) If ab > }—P then f =0 almost everywhere.

i) If ab=1, then f = CNi(-,b) with |C| < 4.

iii) If ab <y, then for all §€ b, [, all functions of the form f(x)=
P(x)Ni(x,0), Pe 2, satisfy (6.51) and (6.52).

COROLLARY 3 ([4]). Let f be a measurable function on R such that

e f e LP(RY) + LI(RY) (6.53)
and
J 1Zp(£)(E)]" eI a¢ < oo, (6.54)
Rzl

for some constants a,b >0, 1 < p,q <400 and 0 <r < 0.

1) If ab> %, then f =0 almost everywhere.

i) If ab<1X, then for all 6€|b, |, all functions of the form f(x)=
P(x)Ni(x,0), Pe 2, satisfy (6.53) and (6.54).

ReMARK 2. In (6.51) and (6.53), L}(R?) + L (RY) is essential, because
LYRY) + L{(RY) < LL(RY) + L (RY). Indeed, for f=fi+ frell(RY)+
L!(RY), we put fi,(x)=fi(x) if |fi(x))<1 and 0 otherwise, and
fi,+ :fi _fi7l' Then f = (fl,ac +ﬁ,oo) + (f1,+ ""‘fZ,-‘r) = foo +f+ Since

e = L LAy < AR, < IAllE, and A4 1l y < 240, < ILAIE,
respectively. Therefore, f., € L”(RY) and f; e L} (R?).

7. Beurling’s theorem for the Dunkl transform

Beurling’s theorem and Bonami, Demange, and Jaming’s extension are
generalized for the Dunkl transform as follows.

THEOREM 6. Let NeN, 6 >0 and f e L}(RY) satisfy

J J |f ()| Zp(f) ()] |P(y)|(se||x””J’“wk(x)dxdy < o, (7.55)
Rl[ RLI

(L flxll + v ™
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where P is a polynomial of degree m. If N >d+ mo+2, then

=Y. awliyr ae, (7.56)
|s|<(N—d—md)/2

where r > 0, a¥ € C and Wk(-,r) is given by (2.27).  Otherwise, f(y) = 0 almost
everywhere.

Proor. We start with the following lemma.
LEMMA 6. We suppose that f € L}(RY) satisfies (1.55). Then f € L} (RY).

PrROOF. We may suppose that f #0 in L}(R?). (7.55) and the Fubini
theorem imply that for almost every y e RY,

7)) IP(y)I‘SJ /()]
(T e (1 )™

Since Zp(f) # 0, there exist yo e RY, yg # 0, such that Zp(f)(yo)P(yo) # 0.
Therefore,

eI oy (x)dx < 0.

J WL sl () < .
Il ol vt
Yo
Since 6}7]\, > 1 for large [|x|, it follows that [pa|f(x)|wk(x)dx < 0.
(1 +[ll) m

This lemma and Proposition 1 imply that 'V (f) is well-defined almost every-
where on RY. By the same techniques used in [18], we can deduce that

J J MV (1) Z (VL) )] PO
(1 Il + D™

dydx < oo.

According to Theorem 2.3 in [26], we can deduce that for all x € RY,

i) = Qe M,

where r > 0 and Q is a polynomial of degree strictly lower than ¥~4=¢  Then
it follows from (2.12) that

Fo(f)(») = F o 'Vi(f)(») = Z(0(x)e X4 (1) = R(y)e~ I’

where R is a polynomial of degree deg Q. Hence, applying (2.28), we can find
constants a* such that

o)) = 9:( S Wf<-,r>> (-
|s|<(N—d—md)/2

Then the injectivity of %p yields the desired result. |
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As an application of Theorem 6, we can deduce a Gelfand-Shilov type
theorem for the Dunkl transform by using the same techniques in [18],

CoROLLARY 4. Let N,meN, 6>0, ab>0 with ab>1 and
1< p,g< oo with %—i—é: 1. Let feL,f(Rd) satisfy

|f (x)]e!2 ?/p)Ix(1”
JRd NI wi(x)dx < (7.57)
and
Fo(NON PP 758
v U+ o)™ g |

for some P € P,

i) If ab>1% or (p,q) # (2,2), then f(x) =0 almost everywhere.

i) If ab=1 and (p,q) = (2,2), then f is of the form (71.56) whenever
N > &0 4 | and r=2b>  Otherwise, f(x) =0 almost everywhere.

Proor. Since

(24)” )

4abl|x[[ Iyl <

[Ixl1” +

@b
oLl

it follows from (7.57) and (7.58) that

J J I/ () )||P( I’ otablxl [y
O O R

leoy (x)dxdy < 0.

Then (7.55) is satisfied, because 4ab > 1. Especially, according to the proof of
Theorem 6, we can deduce that

JjeMMMmummwwmmmwmw
RYJRY (L + X[+ [1yID*Y
and "Vi(f) and f are of the forms

2 o2
Vi(N)(x) = 0(x)e M4 and  Fp(f) () = R(y)e M,

where r > 0 and Q, R are polynomials of the same degree strictly lower than

2N-d=mo _ Therefore, substituting these, we can deduce that

dydx < o0,

—(VAYI=(1/2vP)x0)? pdab=1)x] ]3] g
[] QRO g
R(l R(l

(L [l + fv D>

When 4ab > 1, this integral is not finite unless f =0 almost everywhere.
Moreover, it follows from (7.57) and (7.58) that

J |0(x)| e~ (1/AnIxI” o(20)" /)1
R (1+IxIn™

i (x)dx < o0
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and

J |R(y)|e—rHyHZe<(2b>"/q>|\y|\‘1|p(y)‘5
R’ (L +[yn™

Hence, one of these integrals is not finite unless (p,q) = (2,2). When 4ab =1
and (p,q) = (2,2), the finiteness of above integrals implies that r = 2b> and the
rest follows from Theorem 6. |

dy < 0.

8. Donoho-Stark uncertainty principle for the Dunkl transform

We shall investigate the case where f and p(f) are close to zero outside
measurable sets. Here the notion of “close to zero” is formulated as follows.
We say f e L,%(Rd) is e-concentrated on a measurable set E = R if there is
a measurable function g vanishing outside E such that |/ —gll, , <elfl -
Therefore, if we introduce a projection operator Pg as

f(x) if xeE

PEf(x):{o if x¢ E

then f is e-concentrated on E if and only if ||f' — Pgfl,, <ellfllx,. We
define a projection operator Qp as

Orf(x) = 75 ' (Pe(Fp(f))(x).

Then Zp(f) is e-concentrated on W if and only if If = Qwflli <ellfll
We note that, for measurable sets E, W = R,

OwPef(3) = | alt:x) (Do (0,
where

([ _x { \[W lt é (lx7 é)wk(é)dé ifteE
! ift¢ E.

Indeed, by the Fubini theorem we see that

OwPrf(x) %(PEf)( JK(S, ix)or(E)dS

= ¢, i) (t)dr ) K(&, ix)or(£)dE
W(JE >

_ (JW K(&, —inK (&, ix)wk(é)df) o (1)dr.
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The Hilbert-Schmidt norm ||Qw Pkl is given by

12
10w ellus = (] | lats0Poraanoar)

We denote by ||T|, the operator norm on L7(RY). Since Pr and Qy are
projections, it is clear that [|Pg([, = [|Qwll, = 1. Moreover, it follows that

19w PEll us = [|Qw PEll,- (8.59)
LemMA 7. If E and W are sets of finite measure, then
10w Pl s < \/mesi(E)mes (W).

Proor. For each re E, we define ¢,(s) =q(s, 7). (2.13) implies that
Ip(g:)(w) = Pw(K(—iw,t)). Then by Parseval’s identity (2.15) and (2.4) it
follows that

|, s 0Porsds = | 10 Pords
R R

= JRd |,970(g,)(w)|2wk(w)dw < mesi(W).

Hence, by integrating over ¢ € E, we see that ||QWPEH§S < mesy(E)mesi(W).
|

PROPOSITION 6. Let E, W be measurable sets and suppose that || f]; , =
1Zp()lx2 =1 Assume that ep+ew <1, f is ep-concentrated on E and
Ip(f) is ew-concentrated on W. Then

mesi (E)mes (W) > (1 — ex —ew)”.

Proor.  Since ||fl,, = [[Zp(f)llx, =1 and ¢¢ + e < 1, the measures of
E and W must both be non-zero. Indeed, if not, then the ¢g-concentration of
f implies that || f — Pgfl|, , = || fllx» = 1 < e, which contradicts with ez < 1,
likewise for Zp(f). If at least one of mesi(E) and mes,(W) is infinity, then
the inequality is clear. Therefore, it is enough to consider the case where both
E and W have finite positive measures. Since ||Qwl, =1, it follows that

If = OwPefllk2 < If = Owfllir + 11Owf — OwPES ]k 2
<ew +Owlullf — Peflly»

<é+teéew

and thus,

1QwPeS k2= IS

k2= I = OwPESfk2 =1 —ep —ew.
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Then ||QwPe|l, =1 —¢g—ew. (8.59) and Lemma 7 yield the desired in-
equality. |

In the following we shall consider the case of f e L!(R?). As in the L}
case, we say that f e L}(R?) is e-concentrated to E if ||f — Peflley <ellfll-
Let By (W) denote the subspace of L}(R?) which consists of all g e L}(RY)
such that Py f = f. We say that f is e-bandlimited to W if there is a
g € B 1 (W) with ||/ — gl ; <eéllflly,- Here we denote by || Pgl|; the operator
norm of Pr on L}(R?) and by ||PE||'1_W the operator norm of Pg : B (W) —
L}(R%). Corresponding to (8.59) and Lemma 7 in the L? case, we can obtain
the following.

LemMMA 8. ||Pgll; y < mesi(E)mesi(W).

Proor. For f e By (W) we see that

J@) = Fp(NOK(1, i&)wr(S)dS

w

= | ki ([ oKt oo ae

w

= | s (] Kok iggone)de oo
R w
Therefore, [ f1|; ., <mesk(W)[|fllx, by (2.4) and thus,
IPefiy = JE f () |or(x)dx < mesi(E)[|flx, o, < mesi(E)mesi(W)[|f ||y, 1-

Then, for f € By (W),

P
M < mesy(E)mesi (W),
1/ Mk
which implies the desired inequality. |

PrOPOSITION 7. Let fe LL(R?). If f is eg-concentrated to E and ey-
bandlimited to W, then

I—EE—SW

mesy(E)mesg (W) > Tren

Proor.  Without loss of generality, we may suppose that || /||, ; = 1, Since
f is ep-concentrated to E, it follows that ||Pgfll; = [|fllx; — Ilf = Peflly =
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1 —eg. Moreover, since f is gp-bandlimited, there is a g e By (W) with
lg — fllx1 <ew. Therefore, it follows that

1Pegll = WPES iy — I1PE(G = F)llkr =1 —ep —ew
and Hg||k11 < ||f||k71 +éew =1+¢ew. Therefore, for ge By (W),

1PEglli 1 _ 1 —ep—ew
gl — 1+ew

which implies that || Pgl|; j > l_laf—:w‘”" Lemma 8 yields the desired inequality.
|

ProposiTioN 8. Let f e LZ(RY)NLIRY) with || fle, =1 If f is ep-
concentrated to E in L}-norm and Fp(f) is ew-concentrated to W in L}-norm,
then

mesi(E) = (1= eg)’| fley  and — mesc(W)|fiy = (1 —ew)™.
In particular,
mes(E)mesp (W) > c2(1 — eg)*(1 — ew)”.
Proor. Since | fll;, = 1Zp(f)ll;,=1 and Fp(f) is ew-concentrated

to W in L-norm, it follows that ||Pw (Zp(f))llx, = 11Z0(/)lk2 — 1Fp(f) —
Pw(Zp(f)ly»=1—ew and thus,

(1-ew) < | 7@ o)

w

mes
< mesk(W)HfD(f)”/%,oo = k(

HfHkl

by (2.10). Similarly, [|f{|,,=1 and f is sE—concentrated to E in L}-norm,

G%MWMSLWWMMMSWMMD

Here we used the Cauchy-Schwarz inequality and the fact that | f||,,=1.
|
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