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�e Heisenberg uncertainty principle of harmonic analysis plays an important role in modern applied mathematical applications,
signal processing and physics community. �e generalizations and extensions of the classical uncertainty principle to the novel
transforms are becoming one of themost hottest research topics recently. In this paper, we �rstly obtain the uncertainty principle for
Wigner-Ville distribution and ambiguity function associate with the linear canonical transform, and then the �-dimensional cases
are investigated in detail based on the proposed Heisenberg uncertainty principle of the �-dimensional linear canonical transform.

1. Introduction

�e Heisenberg uncertainty principle, proposed by the Ger-
man physicist Heisenberg in 1927, is a basic principle of
quantum mechanics, and it means that the position and the
momentum of a particle cannot be determined simultane-
ously in quantum mechanical systems. On the mathematical
side, we can describe the Heisenberg uncertainty principle
as the product of the variance of � and F(�) (the Fourier
transform of �) which cannot be in�nitely small. We know
that the variance of � and F(�) represents, respectively, the
temporal resolution and the frequency resolution of a signal;
we can therefore obtain that the temporal resolution and
the frequency resolution of any signal cannot be in�nitely
improved simultaneously in signal processing community.

�e linear canonical transform (LCT) is the general-
ization of the traditional Fourier transform (FT) and the
fractional Fourier transform (FRFT), which is used originally
for solving di
erential equations and optical systems analysis
[1]. With the rapid development of the fractional Fourier
transform, the LCT has been paid more and more attention
in applied mathematics and signal processing community.
�e �ltering theory [2], the frame theory [3], the sampling
theory [4–6], the discrete algorithms [7, 8], the Wigner-Ville
distribution in the LCT domain (WDL) [9], and the ambigu-
ity functions in the LCT domain [10] have been investigated

recently. �e LCT can be used to radar signal processing,
communication signal processing, optical signal processing,
image encryption, denoising, and so on.

�e Heisenberg uncertainty principle associated with
one-dimensional FT [11] plays an important role in modern
applied mathematical community, and the other kinds of
the uncertainty principles, such as the uncertainty principle
associated with the classical WVD [11], are well investigated
and studied.�eHeisenberg uncertainty principle associated
with the one-dimensional LCT for real signals is derived
�rstly in [12], and then Zhao et al. derived the similar results
for complex signals [13]. In addition, in [14, 15], Xu et al.
derived uncertainty principle of the LCT in three di
erent
forms. Recently, based on the relationship of the LCT and
the FT, Heisenberg uncertainty principle for the windowed
LCT [16] and the two-dimensional nonseparable LCT [17]
have been obtained. On the other hand, with the increasing
dimension, the calculation of the �-dimensional Heisenberg
uncertainty principle of the LCT has not been well known.

In this paper, we investigate the uncertainty principle
for the Wiger-Ville distribution associated with the linear
canonical transform (WDL) in detail. Firstly, we obtain the
uncertainty principle of the one-dimensional WDL based on
theMoyal identical equation.�en, we derive the Heisenberg
uncertainty principle of the �-dimensional LCT and obtain
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the uncertainty principle of the �-dimensional WDL. �e
paper is organized as follows. Section 2 introduces some
general de�nitions and gives some classical Heisenberg
uncertainty principles. In Section 3, we calculate the uncer-
tainty principle of the WDL. In Section 4, we calculate the
Heisenberg uncertainty principle of the �-dimensional LCT
and obtain the uncertainty principle of the �-dimensional
WDL.

2. Preliminaries

Before we proceed, some important de�nitions and results
related to the LCT and the Heisenberg uncertainty principles
are reviewed in this section.

2.1. �e Linear Canonical Transforms (LCT). For each 2� ×2� symplectic matrix � = ( � �
� � ), where �⊺�� = �, � =( 0 ��

−�� 0 ), the �-dimensional LCT [18, 19] is de�ned as follows:

�̂ (�) = [C (�)�] (�) = ∫
R
�
� (�) (�, ��) � (��) ���, (1)

where

� (�) (�, ��) = �(−	
�/4)
(√2�)
√det (�)
⋅ �	(����−1�/2−����−1��+����−1���/2).

(2)

And the inverse transform is

� (��) = [C (�−1) �̂] (��) = ∫
R
�
�(�−1)∗ (�, ��) �̂ (�) ��.

(3)

We frequently use the one-dimensional LCT in signal
processing [2] as

��,�,�,� (�)
= [C (�)� (�)] (�)

= {{{{{
∫∞
−∞
� (�)√ 1!2�"�(	/2)((�/�)�

2−(2/�)��+(�/�)�2)��, " ̸= 0
√��(	/2)���2� (��) , " = 0,

(4)

where� = ( � �� � ) is the parameter matrix of LCT satisfying$� − "% = 1; that is, det(�) = 1.
�e inverse transform of the one-dimensional LCT

(ILCT) is given by the LCT having parameter &−1 =( � −�
−� � ). Hence, the original signal '(�) can be derived from

C(�)[�](�) via
� (�) = C (�−1) [C (�) [�] (�)] (�)

= √ 1!2�"�(−	�/2�)�
2

× ∫+∞
−∞

C (�) [�] (�) �−	(�/2�)�2 × �	(1/�)����.
(5)

For more detailed de�nitions and properties of the LCT,
one can refer to [20, 21].

2.2. �e Wigner-Ville Distributions (WVD). �e WVD and
the ambiguity function (AF) are important tools for time-
frequency analysis in the classical Fourier domain.�eWVD
of the signals �(�) and *(�) is de�ned as [11, 22]

+�,� (�, �) = ∫
R

�(� + 32) *∗ (� − 32) �−	2����3. (6)

And the AF of the signals �(�) and *(�) is de�ned as

AF�,� (�, �) = ∫
R

�(� + 32) *∗ (� − 32) �	2�����. (7)

Based on the above de�nition, Pei and Ding [23] inves-
tigated the WVD and AF of the signal ��,�,�,�(�), and Zhao
et al. [24] investigated the AF associated with LCT, proposed
the following AF in the LCT domain, and gave the following
de�nition:

AF(2)��,�,�,� (�, �) = ∫
R

��,�,�,� (� + 32)�∗�,�,�,� (� − 32) �−	2�����.
(8)

Di
erent from the above de�nition of the WVD associ-
ated with the LCT, Bai et al. [9] proposed another kind of
de�nition named theWDL.We have the following de�nition:

+�
� (�, �)
= √ 12!�" ∫R �(� +

32)�∗ (� − 32) �(	/2�)(��
2−2��+��2)�3,

(9)

where� = ( � �� � ), $�−"% = 1.�en, the �-dimensionalWDL
is

+�
� (�, �) = ∫

R
�
�(� + 32)�∗ (� − 32)� (�) (�, 3) �3,

(10)

where �(�)(�, 3) is the integral kernel of the �-dimensional
LCT.

�e AF associated with the linear canonical transform
(AFL) [10] is

AFL
�
� (�, �)
= √ 12!�" ∫R �(� +

32)�∗ (� − 32) �(	/2�)(��
2−2��+��2)��,

(11)

where� = ( � �� � ), $� − "% = 1.
For more knowledge of the WVD and the wavelet

transforms, one can refer to [22, 25, 26].

2.3.�eHeisenbergUncertainty Principles. In this subsection,
we review some Heisenberg uncertainty principles. First, the
well-known Heisenberg uncertainty principle of the FT [11]
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is that the product of the variance of �(�) and the variance

of F(�) = (2�)−1/2 ∫
R
�(�)�−	���� is not in�nitely small.

Suppose that

Δ2� = (∫R (� − �0)
27777� (�)77772��)

(∫
R

7777� (�)77772��) , (12)

where �0 = (∫R �|�(�)|2��)/(∫R |�(�)|2��), and
Δ2� = (∫R (� − �0)

2|F (�)|2��)
(∫

R
|F (�)|2��) , (13)

where �0 = (∫R �|F(�)|2��)/(∫R |F(�)|2��).
�en we have

Δ2� ⋅ Δ2� ≥ 14 . (14)

�e equality holds if and only if�(�) = ��−(�−�0)2/2 (where� ∈
R). �e Heisenberg uncertainty principle is useful to analyze
the characteristics of a signal.

Based on the above results, in [11] the authors obtained the
Heisenberg uncertainty principle of the WVD, and we have

∫
R
2
(|' − $|2 + |� − $|2)+�,� (�, �) �� ��
= ∫

R

|' − $|27777� (�)77772�� + ∫
R

|� − "|277777�̂ (�)777772��
≥ <<<<�<<<<222� .

(15)

�e equality holds if and only if �(�) = ��2�	�0�−(�−�0)2/2
(where � ∈ R), and it means that +�,�(�, �) cannot be too
sharply localized.

With the development of the LCT, the Heisenberg uncer-
tainty principle is also extended to the one-dimensional LCT
[15]. Suppose that

Δ2� = (∫R (� − �0)
27777�(�)77772��)

(∫
R

7777�(�)77772��) , (16)

where �0 = (∫R �|�(�)|2��)/(∫R |�(�)|2��), and
Δ2� = (∫R (� − �0)

277777�̂(�)777772��)
(∫

R

77777�̂(�)777772��)
, (17)

where �0 = (∫R �|�̂(�)|2��)/(∫R |�̂(�)|2��).
�en we have

Δ2� ⋅ Δ2� ≥ "24 . (18)

Furthermore, if �(�) is a real signal, the Heisenberg uncer-
tainty principle of the LCT satis�es [12]

Δ2� ⋅ Δ2� ≥ "24 + ($Δ2�)
2. (19)

In addition to the above uncertainty principles, there
are the logarithm uncertainty principle and the entropy
uncertainty principle, and one can �nd in [21].

3. The Main Results

3.1. Uncertainty Principles for the WDL and the AFL. It is
shown in [9] that the WDL can be looked as the generaliza-
tion of the classicalWVDand can also be thought as the a�ne
transform of the autocorrelation function of�(') in the time-
frequency plane.�e associatedMoyal identical equations are
obtained as [9]

∫
R
2

777777+�
�(�, �)777777

2�� �� = <<<<�<<<<42
∫
R
2

7777777+�̂
�(�, �)7777777

2�� �� = <<<<<�̂<<<<<42.
(20)

We can regard+�
�(�, �) as a function of the time domain

and+�̂
�(�, �) as a function of the frequency domain, and then

based on the above equation we obtain the following.

�eorem 1. Suppose that �(�) ∈ @2(R), �̂ = [C(�)�](�),� ∈ A@(2) = AB(2,R), and ‖�‖2 = 1. �en the following
inequality is satis�ed:

∫
R
2
(� − �0)2777777+�

�(�, �)777777
2�� ��

+ ∫
R
2
(� − �0)27777777+�̂

� (�, �)7777777
2�� �� ≥ |"|4 ,

(21)

where �0 = ∫R �|�(�)|2�� and �0 = ∫R �|�̂(�)|2��.
Proof. Firstly, assume that �0 = 0 and �0 = 0; thus the ine-
quality becomes

∫
R
2
�2777777+�

�(�, �)777777
2�� �� + ∫

R
2
�27777777+�̂

�(�, �)7777777
2�� �� ≥ |"|4 .

(22)

Depending on the parameter ", the LCT has two di
erent
expressions. First, if " ̸= 0, then we have

∫
R
2
�2777777+�

�(�, �)777777
2�� �� + ∫

R
2
�27777777+�̂

�(�, �)7777777
2�� ��

= ∫
R
2

�22� |"| ∫R �(� +
32)�∗ (� − 32) �(	/2�)(−2��+��

2)�3
× ∫

R

�∗ (� + 3�2 )�(� − 3
�

2 ) �(	/2�)(2��
�−�(��)2)�3��� ��

+ ∫
R
2

�22� |"| ∫R �̂ (� +
32) �̂∗ (� − 32) �(	/2�)(−2��+��

2)�3
× ∫

R

�̂∗ (� + 3�2 ) �̂(� − 3
�

2 ) �(	/2�)(2��
�−�(��)2)�3��� ��
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= ∫
R
3

�22� |"|� (� + 32)�∗ (� − 32) �(	��
2/2�)�3

× �∗ (� + 3�2 )�(� − 3
�

2 ) �−	�(�
�)2/2��3�

× ∫
R

�	�(��−�)/��� ��
+ ∫

R
3

�22� |"| �̂ (� + 32) �̂∗ (� − 32) �	��
2/2��3

× �̂∗ (� + 3�2 ) �̂(� − 3
�

2 ) �−	�(�
�)2/2��3�

× ∫
R

�	�(��−�)/��� ��
= ∫

R
3
�2�(� + 32)�∗ (� − 32) �	��

2/2�

× F (3 − 3�) �∗ (� + 3�2 )�(� − 3
�

2 )
× �−	�(��)2/2��3 �3���

+ ∫
R
3
�2�̂ (� + 32) �̂∗ (� − 32) �	��

2/2�

× F (3 − 3�) �̂∗ (� + 3�2 ) �̂(� − 3
�

2 )
× �−	�(��)2/2��3 �3���

= ∫
R
2
�27777777� (� + 32)

7777777
27777777�∗ (� − 32)

7777777
2�3 ��

+ ∫
R
2
�27777777�̂ (� + 32)

7777777
27777777�̂∗ (� − 32)

7777777
2�3 ��

= ∫
R
2
(� + 3/2 + � − 3/22 )27777777� (� + 32)

7777777
2

× 7777777�∗ (� − 32)
7777777
2�3 ��

+ ∫
R
2
(� + 3/2 + � − 3/22 )27777777�̂ (� + 32)

7777777
2

× 7777777�̂∗ (� − 32)
7777777
2�3 ��.

(23)

Let ' = � + 3/2 and let I = � − 3/2, and then we get

∫
R
2
�2777777+�

�(�, �)777777
2�� �� + ∫

R
2
�27777777+�̂

� (�, �)7777777
2�� ��

= ∫
R
2
(' + I2 )27777�(')777727777�(I)77772�' �I

+ ∫
R
2
(J + V2 )277777�̂(J)77777277777�̂ (V)777772�J�V

= ∫
R
2
('2 + I2 + 2'I4 ) 7777�(')777727777�(I)77772�' �I

+ ∫
R
2
(J2 + V2 + 2JV4 ) 77777�̂(J)77777277777�̂ (V)777772�J�V

= ∫
R
2

'24 7777�(')777727777�(I)77772�' �I
+ ∫

R
2

I24 7777�(')777727777�(I)77772�' �I
+ ∫

R
2

'I2 7777�(')777727777�(I)77772�' �I
+ ∫

R
2

J24 77777�̂(J)�̂(V)77777
2�J�V

+ ∫
R
2

V
2

4 77777�̂(J)�̂(V)77777
2�J�V

+ ∫
R
2

JV2 77777�̂(J)�̂(V)77777
2�J�V

= ∫
R

'22 7777�(')77772�' + ∫R
J22 77777�̂(J)77777

2�J
≥ (∫

R

'22 7777� (')77772�' ⋅ ∫R
J22 77777�̂ (J)77777

2�J)1/2.
(24)

�is is the uncertainty principle of the LCT, and we know
that this inequality must be ≥ |"|/4. And the inequality

achieves the minimum |"|/4 if and only if � = �2�	√���−]�2 ,
] > 0.

If " = 0, then �̂ = √��(��)�	(���2/2), and hence

∫
R
2
�2777777+�

� (�, �)777777
2�� �� + ∫

R
2
�27777777+�̂

� (�, �)7777777
2�� ��

= ∫
R
2
�2 |�| 77777777� (� +

��2 )
77777777
277777777� (� −

��2 )
77777777
2�� ��

+ ∫
R
2
�2 |�| 77777777�̂ (� +

��2 )
77777777
277777777�̂ (� −

��2 )
77777777
2�� ��

= ∫
R
2
(' + I2 )27777�(')777727777�(I)77772�' �I

+ ∫
R
2
(J + V2 )277777�̂(J)77777277777�̂(V)777772�J�V

= ∫
R
2
(' + I2 )27777�(')777727777�(I)77772�' �I

+ ∫
R
2
(J + V2 )2|�|27777�(� ⋅ J)777727777�(� ⋅ V)77772�J�V

= 12 (1 + 1
|�|2)∫R �27777� (�)77772�� ≥ 0.

(25)
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�e inequality achieves the minimum 0 if and only if the
variance of � is zero.

Secondly, if �0 ̸= 0 and �0 ̸= 0, for " ̸= 0, then we have

∫
R
2
(� − �0)2777777+�

�(�, �)777777
2�� ��

+ ∫
R
2
(� − �0)27777777+�̂

�(�, �)7777777
2�� ��

= ∫
R

(' − �0)22 7777�(')77772�' + ∫
R

(J − �0)22 77777�̂(J)777772�J

≥ (∫
R

(' − �0)22 7777� (')77772�' ⋅ ∫
R

(J − �0)22 77777�̂ (J)777772�J)
1/2

≥ |"|4 .
(26)

And, for " = 0, we have
∫
R
2
(� − �0)2777777+�

�(�, �)777777
2�� ��

+ ∫
R
2
(� − �0)27777777+�̂

�(�, �)7777777
2�� ��

= ∫
R
2
(' − �0 + I − �02 )27777�(')777727777�(I)77772�' �I

+ ∫
R
2
(J − �0 + V − �02 )2|�|2

× 7777� (� ⋅ J)777727777� (� ⋅ V)77772�J�V ≥ 0.

(27)

When " → 0, in case of " ̸= 0, we obtain
∫
R
2
(� − �0)2777777+�

�(�, �)777777
2�� ��

+ ∫
R
2
(� − �0)27777777+�̂

� (�, �)7777777
2�� �� ≥ 0.

(28)

Hence for both cases we obtain

∫
R
2
(� − �0)2777777+�

� (�, �)777777
2�� ��

+ ∫
R
2
(� − �0)27777777+�̂

� (�, �)7777777
2�� �� ≥ |"|4 .

(29)

�is completes the proof of this theorem.

When� = ( 0 1/2�
−2� 0 ), then we have

+�
� (�, �) = √1! ∫R �(� +

32)�∗ (� − 32) �−2�	���3. (30)

�is is theWVD; hence we obtain a new uncertainty relation
for the WVD.

Corollary 2. Suppose that �(�) ∈ @2(R), ‖�‖2 = 1. �en the
following inequality is satis�ed:

∫
R
2
(� − �0)277777+�,�(�, �)777772�� ��
+ ∫

R
2
(� − �0)277777+F(�),F(�) (�, �)777772�� �� ≥ 18� ,

(31)

where �0 = ∫R �|�(�)|2�� and �0 = ∫R �|�̂(�)|2��.
From the proof, one can �nd that the essence of this

uncertainty principle is theMoyal identical equation, and the
Moyal identical equations are also correct for the AF and the
AFL [10]; hence we also obtain the uncertainty principle of
the AFL as follows.

�eorem 3. Suppose that � ∈ @2(R), � ∈ A@(2), ‖�‖2 =1, and both �0 = ∫R �|�(�)|2�� and �0 = ∫R �|�̂(�)|2�� exist.
�en the following inequality is satis�ed:

∫
R
2
(� − �0)2777777&�@��(�, �)777777

2�� ��
+ ∫

R
2
(� − �0)27777777&�@�̂� (�, �)

7777777
2�� �� ≥ |"|4 .

(32)

�e proof is similar to �eorem 1. Denoting

+�,�
� (�, �) = √ 12!�" ∫R �(� +

32) *∗ (� − 32)
× �(	/2�)(��2−2��+��2)�3

(33)

we obtain the following.

�eorem 4. Suppose that, if �1(�), �2(�) ∈ @2(R), �̂	 =[C(�)�	](�), (! = 1, 2), � ∈ A@(2), ‖�	‖2 = 1, and both

�	 = ∫R �|�	(�)|2�� and �	 = ∫R �|�̂	(�)|2�� exist, the following
inequality is satis�ed:

∫
R
2
(� − �1 + �22 )2777777+�1 ,�2

� (�, �)777777
2�� ��

+ ∫
R
2
(� − �1 + �22 )27777777+�̂1 ,�̂2

� (�, �)7777777
2�� �� ≥ |"|4 .

(34)

Proof. For the case of " ̸= 0, we have
∫
R
2
(� − �1 + �22 )2777777+�1 ,�2

� (�, �)777777
2�� ��

+ ∫
R
2
(� − �1 + �22 )27777777+�̂1 ,�̂2

� (�, �)7777777
2�� ��

= ∫
R
2
(� + 3/2 + � − 3/22 − �1 + �22 )2

× 7777777�1 (� + 32)
7777777
27777777�∗2 (� − 32)

7777777
2�3��
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+ ∫
R
2
(� + 3/2 + � − 3/22 − �1 + �22 )2

× 7777777�̂1 (� + 32)
7777777
27777777�̂∗2 (� − 32)

7777777
2�3

= ∫
R

(' − �1)24 7777�1(')77772 + (' − �2)
2

4 7777�(')277772�'
+ ∫

R

(J − �1)24 77777�̂1(J)777772 + (J − �2)
2

4 77777�̂2(J)777772�J
≥ |"|4 .

(35)

And for the case of " = 0, we have
∫
R
2
(� − �1 + �22 )2777777+�1 ,�2

� (�, �)777777
2�� ��

+ ∫
R
2
(� − �1 + �22 )27777777+�̂1 ,�̂2

� (�, �)7777777
2�� ��

= ∫
R
2
(' − �1 + I − �22 )27777�1(')777727777�2(I)77772�' �I

+∫
R
2
(J − �1 + V − �22 )2�27777�1(� ⋅ J)777727777�2(� ⋅ V)77772�J�V

≥ 0.
(36)

When " → 0, in case of " ̸= 0, we have
∫
R
2
(� − �1 + �22 )2777777+�1 ,�2

� (�, �)777777
2�� ��

+ ∫
R
2
(� − �1 + �22 )27777777+�̂1 ,�̂2

� (�, �)7777777
2�� �� ≥ 0.

(37)

�erefore, we �nish the proof of �eorem 4. From
�eorem 4, we know that the lower bound of this uncertainty
principle is only related to�.

Next, when we use �̂ = [C(�1)�](�),�1 = ( �1 �1�1 �1 ) ̸=
�2 = ( �2 �2�2 �2 ),�1,�2 ∈ A@(2), we obtain the following.

�eorem 5. Suppose that, if�(�) ∈ @2(R), �̂ = [C(�1)�](�),‖�‖2 = 1, and both �0 = ∫R �|�(�)|2�� and �0 = ∫R �|�̂(�)|2��
exist, the following inequality is satis�ed:

∫
R
2
(� − �0)2777777+�

�2(�, �)777777
2�� ��

+ ∫
R
2
(� − �0)27777777+�̂

�2 (�, �)7777777
2�� �� ≥ 7777"177774 .

(38)

�e proof is similar to�eorem 4.�eorem 5 implies that
the minimum of this inequality is determined only by�1.

If let �(') ∈ @2(R
), we can also obtain the similar result,
but we need the Heisenberg uncertainty principles of the �-
dimensional LCT. However, so far, there is no result about the
Heisenberg uncertainty principles of the �-dimensional LCT;
hence in the following subsectionwe calculate theHeisenberg
uncertainty principles of the �-dimensional LCT.

3.2. �e Heisenberg Uncertainty Principles of the �-Dimen-
sional LCT. In this subsection, we calculate the Heisenberg
uncertainty principle of the �-dimensional LCT. Our idea is
to convert the LCT to the FT, and then we use the Heisenberg
uncertainty principle of the one-dimensional FT to obtain the
Heisenberg uncertainty principle of the �-dimensional LCT.
�rough calculating the Heisenberg uncertainty principle of
the �-dimensional LCT, we see that the uncertainty principles
of the �-dimensional LCT are essentially the uncertainty
principles of the �-dimensional FT, since the decision e
ected
in the LCT is the FT. We will obtain the following.

�eorem 6. Suppose that �(�1, . . . , �
) ∈ @2(R
) and � ∈AB(2�,R). �en one has

Δ2� ⋅ Δ2� = ∫R� (� − �0)
⊺ (� − �0) 7777�(�)77772��

∫
R
�
7777�(�)77772��

⋅ ∫R� (� − �0)
⊺ (� − �0) 77777�̂(�)777772��

∫
R
�
77777�̂(�)777772��

≥ (√P12 + ⋅ ⋅ ⋅ + √P
2 )2,

(39)

where �0 = (∫
R
� �1|�(�)|2��, . . . , ∫R� �
|�(�)|2��)⊺, �0 =

(∫
R
� �1|�̂(�)|2��, . . . , ∫R� �
|�̂(�)|2��)⊺, and P�	Q are the

eigenvalues of �⊺�.
Proof. Here we assume that ∫

R
� |�(�)|2�� = 1; then by the

Parseval identical equation, we have that ‖�̂‖2 = ‖�‖2 = 1.
Because the LCT has the time shi�ing property, we only need
to discuss �0 = 0, �0 = 0. �us we only need to prove the
following:

Δ2� ⋅ Δ2� = ∫
R
�
�⊺�7777�(�)77772��

⋅ ∫
R
�
�⊺�77777�̂ (�)777772�� ≥ (√P12 + ⋅ ⋅ ⋅ + √P
2 )2.

(40)

When selecting di
erent �, we have di
erent expressions
of the LCT. �erefore, we need to discuss di
erent cases. For
the case of det(�) ̸= 0, we have

Δ2� ⋅ Δ2�
= ∫

R
�
�⊺�7777�(�)77772�� ⋅ ∫

R
�
�⊺�77777�̂(�)777772��

= ∫
R
�
'⊺'7777�(')77772�'
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⋅ ∫
R
�
�⊺�

77777777777∫R� � (')
�(−	
�/4)

(√2�)
√det (�)

× �(−	�⊺�⊺−1�+	(�⊺�−1��/2))�'
77777777777
2

��

= ∫
R
�
'⊺'7777�(')77772�' ⋅ ∫

R
�
V
⊺�⊺�V 1(2�)


× 7777777∫R� �(')�(−	V
−1�+	(�⊺�−1��/2))�'7777777

2�V
= ∫

R
�
'⊺'77777�̃(')777772�'

⋅ ∫
R
�
V
⊺�⊺�V 1(2�)


7777777∫R� �̃ (')�−	V
−1��'7777777

2�V.
(41)

Notice that �⊺� is symmetric; then there exists an
orthogonal matrix T so that �⊺� = T⊺ΛT, where P�	Q are the
eigenvalues of �⊺� and P�	Q are nonnegative. As a result, we
have

Δ2� ⋅ Δ2�
= ∫

R
�
'⊺'77777�̃(')777772�'

⋅ ∫
R
�
V
⊺T⊺ΛTV 1(2�)


7777777∫R� �̃(')�−	V
−1��'7777777

2�V

= ∫
R
�
'⊺'77777�̃(')777772�'

⋅ ∫
R
�
V⊺ΛV 1(2�)


7777777∫R� �̃(')�−	�
⊺���'7777777

2�V
= ∫

R
�
I⊺I77777�̃(T⊺I)777772�I

⋅ ∫
R
�
V⊺ΛV 1(2�)


7777777∫R� �̃(T⊺I)�−	�
⊺��I7777777

2�V
= ∫

R
�
(I21 + ⋅ ⋅ ⋅ + I2
) 7777ℎ(I)77772�I

⋅ ∫
R
�
(P1V21 + ⋅ ⋅ ⋅ + P
V2
) 1(2�)


7777777∫R� ℎ(I)�−	�
⊺��I7777777

2�V
= ∫

R
�
(I21 + ⋅ ⋅ ⋅ + I2
) 7777ℎ(I)77772�I

× ∫
R
�
(P17777777V1 ∫R� ℎ(I)�−2�	�

⊺��I7777777
2

+ ⋅ ⋅ ⋅ + P
7777777V
 ∫R� ℎ(I)�−2�	�
⊺��I7777777

2)�V

= ∫
R
�
(I21 + ⋅ ⋅ ⋅ + I2
) 7777ℎ(I)77772�I

× ∫
R
�
(P17777777∫R� ℎ1(I)�−	2��

⊺��I7777777
2

+ ⋅ ⋅ ⋅ + P
7777777∫R� ℎ
 (I) �−2�	�
⊺��I7777777

2)�V.
(42)

By using the Cauchy inequality, we get

Δ2� ⋅ Δ2�
≥ (∫

R
�
( 7777777I1ℎ (I)√P1ℎ∗1 (I)

7777777
+ ⋅ ⋅ ⋅ + 7777777I
ℎ (I)√P
ℎ∗
 (I)

7777777) �I)
2

= (√P1 ∫
R
�

7777I1ℎ (I) ℎ∗1 (I)7777 �I + ⋅ ⋅ ⋅ + √P

× ∫

R
�

7777I
ℎ (I) ℎ∗
 (I)7777 �I)2

= (√P12 + ⋅ ⋅ ⋅ + √P
2 )2,

(43)

where �̃(') = �(')�	(�⊺�−1��/2), ℎ(') = �̃(T⊺'), ℎ	(I) =(Zℎ(I)/ZI	). �is inequality achieves the minimum (√P1/2+⋅ ⋅ ⋅ + √P
/2)2 if and only if ℎ = �−∑ ]
�2
 (] > 0).
Here we have omitted some steps in the proof, and if

one is familiar with the proof of the Heisenberg uncertainty
principle of the FT, one can obviously see the result. Next, we
discuss the case of det(�) = 0. First, when � = 0, by using

�̂(�) = √det(\)�(\�)�	(�⊺�(�⊺)−1�/2), we have
Δ2� ⋅ Δ2�
= ∫

R
�
'⊺'7777�(')77772�'

⋅ ∫
R
�
�⊺�777777√det (\)�(\�)�	(�⊺�(�⊺)−1�/2)777777

2��
= ∫

R
�
'⊺'7777�(')77772�'

⋅ ∫
R
�
�⊺�77777√det(\)�(\�)777772��

≥ P(∫
R
�
'⊺'7777� (')77772�')2 ≥ 0,

(44)

where P is the minimum eigenvalue of (\−1)⊺\−1 and the
inequality gets the minimum 0 if and only if the variance of� is 0. �e Heisenberg uncertainty principle can be zero; the
reason is that the LCT is only a scaling transform.

For the case of det(�) = 0 but � ̸= 0, we see that � =^ ( Λ� 00 0 )_, ,̂ _ ∈ A`(�), a = rank(�). Similarly, as
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the proof of the case of det(�) ̸= 0, we haveΔ2� ⋅Δ2� ≥ (√P1/2+⋅ ⋅ ⋅ +√P"/2)2, where P�	Q are the nonzero eigenvalues of �⊺�.
If � → 0, then we have that Δ2� ⋅ Δ2� ≥ 0; hence we obtain

Δ2� ⋅ Δ2� ≥ (√P12 + ⋅ ⋅ ⋅ + √P
2 )2. (45)

When � = 1, we see thatΔ2� ⋅Δ2� ≥ (√P/2)2, where P = "2.
�is just is the Heisenberg uncertainty principle of the one-
dimensional LCT.

We have �nished the Heisenberg uncertainty principle of
the �-dimensional LCT, and this uncertainty principle is also
called the Heisenberg-Weyl inequality.

3.3. �e Heisenberg Uncertainty Principles of the �-Dimen-
sional WDL. By �eorem 6, now we can obtain the Heisen-
berg uncertainty principles of the �-dimensional WDL.

�eorem 7. Suppose that �(�) ∈ @2(R
), �̂ = [C(�)�](�),� = ( � �
� � ), det(�) ̸= 0, ‖�‖22 = 1, and both �0 =

(∫
R
�1|�(�)|2��, . . . , ∫R �
|�(�)|2��)⊺ and�0 = (∫R �1|�̂(�)|2��,. . . , ∫
R
�
|�̂(�)|2��)⊺ exist. �en the following inequality is

satis�ed:

∫
R
2�
(� − �0)⊺ (� − �0) 777777+�

� (�, �)777777
2�� ��

+ ∫
R
2�
(� − �0)⊺ (� − �0) 7777777+�̂

�(�, �)7777777
2�� ��

≥ √P14 + ⋅ ⋅ ⋅ + √P
4 ,

(46)

where P�	Q are the eigenvalues of �⊺�.
Proof. Because of det(�) ̸= 0, we have that
∫
R
2�
(� − �0)⊺ (� − �0) 777777+�

�(�, �)777777
2�� ��

+ ∫
R
2�
(� − �0)⊺ (� − �0) 7777777+�̂

�(�, �)7777777
2�� ��

= ∫
R
2�
(� − �0)⊺ (� − �0)

× 7777777∫R� �(� +
32)�∗ (� − 32)� (�) (�, 3) �3

7777777
2�� ��

+ ∫
R
2�
(� − �0)⊺ (� − �0)

× 7777777∫R� �̂ (� +
32) �̂∗ (� − 32)� (�) (�, 3) �3

7777777
2�� ��

= ∫
R
2�
(� − �0)⊺ (� − �0) 7777777� (� + 32)

7777777
27777777�∗ (� − 32)

7777777
2�� ��

+ ∫
R
2�
(� − �0)⊺ (� − �0) 7777777�̂ (� + 32)

7777777
2

× 7777777�̂∗ (� − 32)
7777777
2�� ��

≥ (∫
R
2�
(� − �0)⊺ (� − �0) 7777777� (� + 32)

7777777
2

× 7777777�∗ (� − 32)
7777777
2�� ��)1/2

× (∫
R
2�
(� − �0)⊺ (� − �0) 7777777�̂ (� + 32)

7777777
2

× 7777777�̂∗ (� − 32)
7777777
2�� ��)1/2

≥ √P14 + ⋅ ⋅ ⋅ + √P
4 .
(47)

�is uncertainty principle is based on theMoyal identical
equation, which can be regarded as the inner product of the
WDL, and it shows that the WDL of a signal in the time
domain may be sharply localized. However, the WDL of its
LCT in the frequency domain cannot be sharply localized
simultaneously.

4. Conclusion

In this paper, we �rst establish an uncertainty principle
for the one-dimensional WDL, then we obtain the Heisen-
berg uncertainty principle of the �-dimensional LCT, and
furthermore we obtain the uncertainty principle of the �-
dimensional WDL. Although the �-dimensional WDL has4�2 parameters, the lower bound of the uncertainty principle
of the �-dimensional WDL only depends on �, and we also
discuss the case of � = 0. �e uncertainty principle of the
WDL is di
erent from the uncertainty principle of the WVD

(18), while it reveals the uncertainty relations of +�
�(�, �)

and +�̂
�(�, �). �e applications of the derived Heisenberg

uncertainty principle of theWDL and the AFLwill be studied
in our future papers.
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