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Abstract. Critical decisions frequently rely on high-dimensional output
from complex computer simulation models that show intricate cross-variable,
spatial and temporal dependence structures, with weather and climate predic-
tions being key examples. There is a strongly increasing recognition of the
need for uncertainty quantification in such settings, for which we propose
and review a general multi-stage procedure called ensemble copula coupling
(ECC), proceeding as follows:

1. Generate a raw ensemble, consisting of multiple runs of the computer
model that differ in the inputs or model parameters in suitable ways.

2. Apply statistical postprocessing techniques, such as Bayesian model av-
eraging or nonhomogeneous regression, to correct for systematic errors in
the raw ensemble, to obtain calibrated and sharp predictive distributions for
each univariate output variable individually.

3. Draw a sample from each postprocessed predictive distribution.
4. Rearrange the sampled values in the rank order structure of the raw

ensemble to obtain the ECC postprocessed ensemble.
The use of ensembles and statistical postprocessing have become routine

in weather forecasting over the past decade. We show that seemingly unre-
lated, recent advances can be interpreted, fused and consolidated within the
framework of ECC, the common thread being the adoption of the empirical
copula of the raw ensemble. Depending on the use of Quantiles, Random
draws or Transformations at the sampling stage, we distinguish the ECC-Q,
ECC-R and ECC-T variants, respectively. We also describe relations to the
Schaake shuffle and extant copula-based techniques. In a case study, the ECC
approach is applied to predictions of temperature, pressure, precipitation and
wind over Germany, based on the 50-member European Centre for Medium-
Range Weather Forecasts (ECMWF) ensemble.
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1. INTRODUCTION

In a vast range of applications, critical decisions de-
pend on the output of complex computer simulation
models, with examples including weather and climate
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predictions and the management of floods, wildfires,
air quality and groundwater contaminations. There is
a much increased recognition of the need for quan-
tifying the uncertainty in the model output, as ev-
idenced by the creation of pertinent American Sta-
tistical Association (ASA) and Society for Industrial
and Applied Mathematics (SIAM) interest groups, and
by the recent launch of the SIAM/ASA Journal on
Uncertainty Quantification. As SIAM President Nick
Trefethen (2012) notes succinctly,

“An answer that used to be a single number
may now be a statistical distribution.”

Frequently, the goal is prediction, and we are witness-
ing a transdisciplinary change of paradigms in the tran-
sition from deterministic or point forecast to proba-
bilistic or distributional forecasts (Gneiting, 2008). The
goal is to obtain calibrated and sharp, joint predic-
tive distributions of future quantities of interest, from
which any desired functionals, such as event probabil-
ities, moments, quantiles and prediction intervals can
be extracted, for a full quantification of the predic-
tive uncertainty. In this context, calibration refers to
the statistical compatibility of the probabilistic fore-
casts and the observations, in that events predicted to
occur with probability p ought to realize with empiri-
cal frequency p. Sharpness refers to the concentration

of the predictive distributions and is a property of the
probabilistic forecasts only (Gneiting, Balabdaoui and
Raftery, 2007). While our data examples all concern
weather forecasting, where the recognition of the need
for uncertainty quantification can be traced at least to
Cooke (1906), the methods and principles we discuss
apply in much broader contexts, both predictive and in
other settings, where one seeks to quantify the uncer-
tainty in our incomplete knowledge of current or past
quantities and events.

Focusing attention on the setting of our case study,
accurate predictions of future weather are of consid-
erable value for society. Medium-range weather fore-
casts, with lead times up to two weeks, are obtained by
numerically solving the partial differential equations
that describe the physics of the atmosphere, with initial
conditions provided by estimates of the current state of
the atmosphere (Kalnay, 2003). In order to account for
the uncertainties in the forecast, national and interna-
tional meteorological centers use ensembles of numer-
ical weather prediction (NWP) model output, where
the ensemble members differ in terms of the two ma-
jor sources of uncertainty, namely, the initial conditions
and the parameterization of the NWP model (Palmer,
2002; Gneiting and Raftery, 2005). To give an exam-
ple, Figures 1 and 2 illustrate forecasts of surface tem-
perature and six-hour precipitation accumulation over

FIG. 1. 48-hour ahead ECWMF ensemble forecast for temperature over Germany valid 2:00 am on April 1, 2011, in the unit of degrees

Celsius. Six randomly selected members are shown. The top left panel shows the locations of the three stations used in the subsequent case

study.
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FIG. 2. 24-hour ahead ECWMF ensemble forecast for six-hour precipitation accumulation over Germany valid 2:00 am on May 20, 2010,
in the unit of millimeters. Six randomly selected members are shown.

Germany issued by the European Centre for Medium-
Range Weather Forecasts (ECMWF) as a part of its
50-member real-time ensemble, which operates at a
horizontal resolution of approximately 32 km and lead
times up to ten days (Molteni et al., 1996; Leutbecher
and Palmer, 2008). The valid time of these forecasts is
00:00 Universal Time Coordinated (UTC) in meteoro-
logical format, which we convert to local time in what
follows.

While the goal of NWP ensemble systems is to cap-
ture the inherent uncertainty in the prediction, they are
subject to systematic errors, such as biases and disper-
sion errors. It is therefore common practice to statisti-
cally postprocess the output of NWP ensemble fore-
casts, with state of the art techniques including the
ensemble Bayesian model averaging (BMA) approach
developed by Raftery et al. (2005) and the nonho-
mogeneous regression (NR) or ensemble model out-
put statistics (EMOS) technique proposed by Gneiting
et al. (2005).

To illustrate the idea, let y denote the weather quan-
tity of interest, such as temperature at a specific loca-
tion and look-ahead time, and write x1, . . . , xM for the
corresponding M ensemble member forecasts. The en-
semble BMA approach employs mixture distributions
of the general form

y|x1, . . . , xM ∼

M
∑

m=1

wmf (y|xm),

where the left-hand side refers to the conditional dis-
tribution given the ensemble member forecasts. Here
f (y|xm) denotes a parametric probability distribution
or kernel that depends on the ensemble member fore-
cast xm in suitable ways, with the mixture weights
w1, . . . ,wM reflecting the members’ relative contribu-
tions to predictive skill over a training period. BMA
postprocessed predictive distributions based on the 50-
member ECMWF ensemble are illustrated in Figure 3
for temperature, where the kernel is normal and the
postprocessing corrects for both a low bias and un-
derdispersion, and in Figure 4 for precipitation, where
the kernel comprises a point mass at zero along with
a power transformed gamma distribution for positive
accumulations.

In contrast, the NR predictive distribution is a single
parametric distribution of the general form

y|x1, . . . , xM ∼ g(y|x1, . . . , xM),

where g is a parametric distribution function with loca-
tion, scale and shape parameters depending on the en-
semble values in suitable ways. For example, g could
be normal with the mean an affine function of the en-
semble member forecasts and the variance an affine
function of the ensemble variance.

Statistical postprocessing techniques such as ensem-
ble BMA and NR have been shown to substantially im-
prove the predictive skill of the NWP ensemble output
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FIG. 3. 48-hour ahead BMA postprocessed predictive distributions for temperature in Berlin based on the 50-member ECMWF ensemble.
The ensemble forecast is shown in red, the realizing observation in blue. Left: predictive density valid 2:00 am on April 1, 2011. Right: 10th,
50th and 90th percentiles of the predictive distributions valid 2:00 am on April 1–14, 2011.

(Wilks and Hamill, 2007; Hagedorn et al., 2012). Fre-
quently, such methods apply to each weather variable
at each location and each lead time individually and,
therefore, they may fail to take cross-variable, spatial
and temporal interactions properly into account. NWP
models rely on discretizations of the equations that
govern the physics of the atmosphere and, thus, mul-
tivariate dependence structures tend to be reasonably
well represented in the raw ensemble system. How-

ever, these structures may fail to be retained if the uni-
variate margins are postprocessed individually. In low-
dimensional or highly structured settings, parametric
approaches to the modeling of multivariate dependence
structures in the forecast errors are feasible, such as in
the recent work of Pinson (2012), Schuhen, Thorarins-
dottir and Gneiting (2012) and Sloughter, Gneiting and
Raftery (2013) on wind vectors, or in the approach of
Gel, Raftery and Gneiting (2004) and Berrocal, Raftery

FIG. 4. 24-hour ahead BMA postprocessed predictive distributions for six-hour precipitation accumulation in Frankfurt based on the

50-member ECMWF ensemble. The ensemble forecast is shown in red, the realizing observation in blue. Left: mixed discrete-continuous

predictive distribution valid 2:00 am on May 20, 2010, comprising a point mass of 0.033 at zero, which is indicated by the thick black bar,
and a density at positive accumulations, with mass 0.967. Right: 10th, 50th and 90th percentiles of the predictive distribution distributions

valid 2:00 am on May 18–31, 2010.
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and Gneiting (2007) that relies on geostatistical models
in spatial settings.

However, the statistical postprocessing of a full
NWP ensemble forecast poses extremely high-dimen-
sional problems. For instance, we might be interested
in five weather variables at 500 × 500 grid boxes, ten
vertical levels and 72 lead times, for a total of 900
million variables. While not all of them may need
to be considered simultaneously, critical applications,
such as air traffic control (Chaloulos and Lygeros,
2007), air quality (Delle Monache et al., 2006) and
flood management (Cloke and Pappenberger, 2009;
Schaake et al., 2010), depend on physically realistic
probabilistic forecasts of spatio-temporal weather tra-
jectories and therefore may entail much higher dimen-
sions than can readily be incorporated into a parametric
model.

To address this challenge, we propose and review
a general multi-stage procedure called ensemble cop-
ula coupling (ECC), originally hinted at by Bremnes
(2007) and Krzysztofowicz and Toth (2008), and re-
cently investigated and developed by Schefzik (2011).
The ECC approach allows for the multivariate rank de-
pendence structure of the raw NWP ensemble to be
preserved in the postprocessed ensemble, proceeding
roughly as follows.

Univariate postprocessing. Apply statistical post-
processing techniques, such as ensemble BMA or NR,
to obtain calibrated and sharp marginal predictive dis-
tributions for each weather variable, location and look-
ahead time individually.

Quantization. Draw a discrete sample of the same
size as the raw ensemble from each univariate, post-
processed predictive distribution.

Ensemble reordering. Arrange the sampled values
in the rank order structure of the raw ensemble to ob-
tain the ECC postprocessed ensemble.

An illustration of the ECC approach is given in Fig-
ure 5, a dynamic version of which is available in the
supplementary material (Schefzik, Thorarinsdottir and
Gneiting, 2013). Here, the setting is four dimensional.
We consider surface temperature and sea level pres-
sure in Berlin and Hamburg, respectively. The scatter-
plot matrix in the top panel illustrates the 50-member
ECMWF ensemble forecast at a 24 hours lead time.
Clearly, there are dependencies between the margins;
for example, there is a positive association between
temperature in Berlin and temperature in Hamburg,
and there are negative associations between tempera-
ture and pressure. The scatterplot matrix in the middle

panel is constructed from samples of the individually
BMA postprocessed predictive distributions. Here, the
systematic errors in the margins have been corrected, at
the cost of a loss of the error dependence structure. The
bottom panel elucidates the effects of the ECC ensem-
ble reordering; while the margins remain unchanged
from the middle panel, the rank dependence structure
of the raw ensemble is restored.

Owing to the intuitive appeal and striking simplic-
ity, which incurs essentially no computational costs be-
yond the marginal postprocessing, approaches of ECC
type are rapidly gaining prominence at weather cen-
ters worldwide, with variants recently having been im-
plemented by Flowerdew (2012), Pinson (2012) and
Roulin and Vannitsem (2012), among others. Our goal
here is to interpret, fuse and consolidate these and other
seemingly unrelated advances within the framework of
ECC. As we will demonstrate, the common thread of
the approaches lies in the adoption of the empirical
copula of the raw ensemble, thereby restoring its rank
dependence structure and justifying the term ensemble
copula coupling.

The remainder of the paper is organized as follows.
In Section 2 we review and discuss statistical post-
processing techniques for univariate NWP ensemble
output. General copula approaches to the handling of
multivariate output are discussed in Section 3, with
subsequent focus on the ECC approach in Section 4,
where we distinguish the ECC-Q, ECC-R and ECC-T
variants, depending on the use of Quantiles, Random
draws or Transformations at the quantization stage.
Section 5 turns to a case study on probabilistic predic-
tions of temperature, pressure, precipitation and wind
over Germany, based on the ECMWF ensemble. The
paper closes with Section 6, where we discuss benefits
and limitations of the ECC approach and return to the
general theme of uncertainty quantification for high-
dimensional output from complex simulation models
with intricate dependence structures.

2. UNIVARIATE POSTPROCESSING: BAYESIAN

MODEL AVERAGING (BMA) AND

NONHOMOGENEOUS REGRESSION (NR)

Following the pioneering work of Hamill and
Colucci (1997), various types of statistical postpro-
cessing techniques for the output of NWP ensemble
forecasts have been developed, with Wilks and Hamill
(2007), Bröcker and Smith (2008), Schmeits and Kok
(2010) and Ruiz and Saulo (2012) providing critical
reviews. As noted, postprocessing aims to correct for



ENSEMBLE COPULA COUPLING 621

(a) Raw ECMWF ensemble (b) Individual BMA postprocessing

(c) ECC postprocessed ensemble

FIG. 5. 24-hour ahead ensemble forecasts of temperature and pressure at Berlin and Hamburg, valid 2:00 am on May 27, 2010. The units

used are degrees Celsius and hPa.

biases and dispersion errors in the ensemble output,
and state-of-the-art techniques can roughly be divided
into mixture approaches, building on the ensemble
Bayesian model averaging (BMA) approach of Raftery
et al. (2005), and regression approaches, such as the

nonhomogeneous regression (NR) method put forth by
Gneiting et al. (2005).

Specifically, consider a univariate weather quantity
of interest, y, and write x1, . . . , xM for the correspond-
ing M ensemble member forecasts. As noted, the en-
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TABLE 1
Ensemble BMA implementations for univariate weather quantities. In the case of

precipitation amount, we refer to y1/3 ∈R
+, because the gamma kernels apply to cube

root transformed precipitation accumulations. In the case of wind direction, S denotes

the circle, zm is a bias-corrected ensemble member value on the circle, and κm is a

concentration parameter, for m = 1, . . . ,M

Weather quantity Range Kernel (f ) Mean Variance

Temperature y ∈R Normal am + bmxm σ 2
m

Pressure y ∈R Normal am + bmxm σ 2
m

Precipitation amount y1/3 ∈R
+ Gamma am + bmx

1/3
m cm + dmxm

Wind speed y ∈R
+ Gamma am + bmxm cm + dmxm

Wind direction y ∈ S von Mises zm κ−1
m

Visibility y ∈ [0,1] Beta am + bmx
1/2
m cm + dmx

1/2
m

semble BMA approach uses mixture distributions of
the general form

y|x1, . . . , xM ∼

M
∑

m=1

wmf (y|xm),(2.1)

where the left-hand side refers to the conditional dis-
tribution of y given the ensemble member forecasts
x1, . . . , xM , and f (y|xm) is a parametric distribu-
tion that depends on xm only.1 The mixture weights
w1, . . . ,wm are nonnegative and sum to 1; they reflect
the corresponding member’s relative contributions to
predictive skill over a training period. In contrast, the
NR predictive distribution is a single parametric distri-
bution of the general form

y|x1, . . . , xM ∼ g(y|x1, . . . , xM),(2.2)

where the right-hand side refers to a parametric fam-
ily of probability distributions, with the parameters de-
pending on all ensemble members simultaneously.

The particular choice of a parametric model for the
BMA kernel f or the NR distribution g depends on the
weather quantity at hand. Table 1 sketches ensemble
BMA implementations for temperature and pressure
(Raftery et al., 2005), where the kernel f (y|xm) is nor-
mal with mean a0m + a1mxm and variance σ 2

m, precip-
itation (Sloughter et al., 2007), wind speed (Sloughter,
Gneiting and Raftery, 2010), wind direction (Bao
et al., 2010) and visibility (Chmielecki and Raftery,

1In the case of ensembles with nonexchangeable members the
distribution f might depend on member specific statistical param-
eters. Furthermore, in some implementations f might depend on
observed variables or on NWP model output for quantities other
than y, such as in the approach of Glahn et al. (2009). Similar com-
ments apply to the NR technique.

2011). Furthermore, ensemble BMA implementations
are available for fog (Roquelaure and Bergot, 2008),
visibility and ceiling (Chmielecki and Raftery, 2011).
Frequently, the parameters in the specifications for the
mean and the variance of the kernels are subject to
constraints; for example, the variance parameters are
often assumed to be constant across ensemble mem-
bers. If the ensemble is generated in such a way that
its members are statistically indistinguishable or ex-
changeable, as in the case of the ECMWF ensemble,
the BMA weights as well as the BMA mean and vari-
ance parameters are assumed to be constant across en-
semble members (Fraley, Raftery and Gneiting, 2010).
Table 2 hints at NR implementations for tempera-
ture and pressure (Gneiting et al., 2005), where the
postprocessed predictive distribution is normal with
mean a + b1x1 + · · · + bMxM and variance c + dS2

where S2 is the ensemble variance, for precipitation
(Wilks, 2009; Scheuerer, 2013) and for wind speed
(Thorarinsdottir and Gneiting, 2010; Thorarinsdottir
and Johnson, 2012).

TABLE 2
NR implementations for univariate weather quantities. In the case

of precipitation amount, we refer to the distinct approaches of

Wilks (2009) and Scheuerer (2013)

Weather quantity Range Distribution (g)

Temperature y ∈ R Normal
Pressure y ∈ R Normal
Precipitation amount y ∈R

+ Truncated logistic
y ∈R

+ Generalized extreme value
Wind components y ∈ R Normal
Wind speed y ∈R

+ Truncated normal
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In the remainder of this section we provide a de-
tailed description of the postprocessing methods for the
weather variables temperature, pressure, precipitation
and wind which are analyzed in our case study. Gener-
ally, the ensemble BMA method is more flexible, while
the NR technique is more parsimonious. In terms of the
predictive performance, the general experience is that
the BMA and NR approaches yield comparable results.
Software for estimation and prediction is available in
the form of the ensembleBMA (Fraley et al., 2011)
and ensembleMOS packages in R.2

2.1 Temperature and Pressure

For the weather variables temperature and pressure,
Raftery et al. (2005) propose the ensemble BMA spec-
ification

y|x1, . . . , xM ∼

M
∑

m=1

wmN
(

am + bmxm, σ 2
m

)

,(2.3)

where N (μ,σ 2) denotes a normal distribution with
mean μ and variance σ 2. The BMA weights w1, . . . ,

wM , the mean parameters a1, . . . , aM and b1, . . . , bM ,
and the variance parameters σ 2

1 , . . . , σ 2
M , which in the

standard implementation are assumed to be constant
across ensemble members, are estimated on training
data. This type of mixture approach has been applied
successfully at weather centers worldwide,3 and we
give an example in Figure 3.

Gneiting et al. (2005) propose an NR approach for
temperature and pressure, in which the predictive dis-
tribution is normal,

y|x1, . . . , xM

(2.4)
∼ N

(

a + b1x1 + · · · + bMxM , c + dS2)

,

where S2 =
∑M

m=1(xm − x̄)2/M denotes the ensemble
variance. If the ensemble members are exchangeable, it
needs to be assumed that b1 = · · · = bM . This approach
has also been applied at weather centers internation-
ally, as exemplified in the work of Hagedorn, Hamill
and Whitaker (2008) and Kann et al. (2009).

2These packages are available for download at www.r-
project.org.

3A real-time ensemble BMA implementation for predictions
of temperature and precipitation over the Pacific Northwest re-
gion of the United States is available to the general public
at www.probcast.com, based on the University of Washington
mesoscale ensemble in the form described by Eckel and Mass
(2005).

2.2 Precipitation

While of critical applied importance, probabilistic
forecasts for quantitative precipitation pose technical
challenges, in that the predictive distribution is mixed
discrete-continuous, comprising both a point mass at
zero and a density on the positive real axis, which
might be considerably skewed.

Sloughter et al. (2007) propose an ensemble BMA
model of the general form (2.1) for precipitation ac-
cumulation, where the kernel f (y|xm) is a Bernoulli–
Gamma mixture. The Bernoulli component provides a
point mass at zero via a logistic regression link, in that

logitf [y = 0|xm] = log
f [y = 0|xm]

f [y > 0|xm]
(2.5)

= αm + βmx1/3
m + γmδm,

where δm equals 1 if xm = 0 and equals 0 otherwise.
The continuous part of the kernel is a gamma distribu-
tion in terms of the cube root transformation, y1/3, of
the precipitation accumulation, so that

f
(

y1/3|xm

)

= f [y = 0|xm]1{y=0}

(2.6)
+ f [y > 0|xm]h

(

y1/3|xm

)

1{y>0},

where h denotes a gamma distribution with mean μm

and variance σ 2
m, with

μm = am + bmx1/3
m and σ 2

m = cm + dmxm,(2.7)

and where 1A denotes the indicator function of the
event A. Figure 4 shows an example of the resulting
BMA postprocessed predictive distribution in terms of
the nontransformed precipitation accumulation, y.

Turning to the NR approach, we follow Roulin and
Vannitsem (2012) and interpret the logistic regression
technique of Wilks (2009) in this setting. To put the
method into context, forecasts for the probability of
the precipitation amount exceeding a certain threshold
have commonly been obtained using either quantile re-
gression (Bremnes, 2004) or logistic regression (Wilks
and Hamill, 2007; Hamill, Hagedorn and Whitaker,
2008). If a full predictive distribution is sought, such
methods frequently fail, as they typically are inconsis-
tent across thresholds, violating the monotonicity con-
straint for cumulative distribution functions. For quan-
tile regression, Dette and Volgushev (2008) and Kneib
(2013) describe possible solutions to this problem. In
the case of the logistic regression approach, Wilks
(2009) proposes an elegant remedy. In his method, the

http://www.r-project.org
http://www.probcast.com
http://www.r-project.org
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FIG. 6. 24-hour ahead NR postprocessed predictive distributions for the u wind component at Hamburg based on the 50-member ECMWF

ensemble. The ensemble forecast is shown in red, the realizing observation in blue. Left: predictive density valid 2:00 am on April 1, 2011.
Right: 10th, 50th and 90th percentiles of the predictive distributions valid 2:00 am on April 1–14, 2011.

postprocessed predictive cumulative distribution func-
tion takes the form

G(y|x1, . . . , xM)
(2.8)

=
exp(a + b1x1 + · · · + bmxM + h(y))

1 + exp(a + b1x1 + · · · + bmxM + h(y))
,

where h grows strictly monotonically and without
bounds as a function of the precipitation accumulation
y ≥ 0. Linear choices for h result in mixtures of a point
mass at zero and a truncated logistic distribution and,
in light of the parametric family in (2.8), the technique
can be interpreted as an NR approach. More general
formulations that allow for interaction terms have re-
cently been proposed by Ben Bouallègue (2013). As
an alternative, Scheuerer (2013) introduces an NR ap-
proach in terms of generalized extreme value (GEV)
distributions.

2.3 Wind

A wind vector can be represented by wind speed
and wind direction or by its u (zonal or west–east)
and v (meridional or north–south) velocity compo-
nents. Wind speed is a nonnegative continuous vari-
able. Sloughter, Gneiting and Raftery (2010) provide
an ensemble BMA implementation, where the kernel
is a gamma distribution with the mean and the variance
being affine functions of the respective ensemble mem-
ber forecast. Thorarinsdottir and Gneiting (2010) and
Thorarinsdottir and Johnson (2012) develop an NR ap-
proach in which the predictive distribution is truncated

normal. Wind direction is a circular quantity and Bao
et al. (2010) propose an ensemble BMA specification
where the kernel is a von Mises distribution.

When a wind vector is represented by its u and v

components, the methods described in Section 2.1 for
temperature and pressure become available, and exam-
ples of NR postprocessed predictive distributions of the
form (2.4) for the u component are shown in Figure 6.
In recent work, truly bivariate postprocessing tech-
niques for wind vectors have become available, taking
dependencies between the components into account
(Pinson, 2012; Schuhen, Thorarinsdottir and Gneiting,
2012; Sloughter, Gneiting and Raftery, 2013). These
methods are discussed in subsequent sections.

2.4 Estimation

Ensemble postprocessing techniques depend on the
availability of training data for estimating the predic-
tive model. Typically, optimum score approaches have
been used for estimation (Gneiting et al., 2005), with
the maximum likelihood technique being a special case
thereof (Gneiting and Raftery, 2007), and Bayesian ap-
proaches offering alternatives (Di Narzo and Cocchi,
2010).

The training data are usually taken from a rolling
training period consisting of the recent past, includ-
ing the most recent available ensemble forecasts along
with the corresponding realizing values. Common
choices for the length of the training period range from
20 to 40 days. In schemes of this type, the training set is
updated continually, thereby allowing the estimates to
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adapt to changes in the seasons and weather regimes.
Clearly, there is a trade-off here, in that larger train-
ing periods may allow for better estimation in prin-
ciple, thereby reducing estimation variances, but may
introduce biases due to seasonal effects. More flexi-
ble, adaptive estimation approaches, such as recursive
maximum likelihood techniques, have been proposed
and studied by Pinson et al. (2009), Raftery, Kárný and
Ettler (2010) and Pinson (2012).

In addition to deciding on the temporal extent of
training sets, choices regarding their spatial composi-
tion are to be made. Local approaches use training data
from the station location or grid box at hand only, re-
sulting in distinct sets of coefficients that are tailored
to the local terrain, while regional approaches com-
posite training sets spatially, to estimate a single set
of coefficients that is then used over an entire region
(Thorarinsdottir and Gneiting, 2010). Recently, flexi-
ble spatially adaptive approaches have been developed
that estimate coefficients at each station location indi-
vidually, interpolating them to sites where no observa-
tional assets are available (Kleiber et al., 2011; Kleiber,
Raftery and Gneiting, 2011).

Introduced by Hamill, Whitaker and Mullen (2006),
reforecasts are retrospective weather forecasts with to-
day’s NWP models applied to past initialization and
valid dates. As reforecasts are based on the model ver-
sion that is currently run operationally, the availabil-
ity of reforecast data sets results in massive enlarge-
ments of training sets for statistical postprocessing.
The ensuing gains in the predictive performance can
be substantial, as demonstrated by Hagedorn, Hamill
and Whitaker (2008), Hamill, Hagedorn and Whitaker
(2008) and Hagedorn et al. (2012), among others.

3. FROM UNIVARIATE TO MULTIVARIATE

PREDICTIVE DISTRIBUTIONS: COPULA

APPROACHES

The univariate postprocessing methods discussed
thus far yield significant improvement in the predictive
performance of raw NWP ensemble output. However,
in many applications it is critical that multivariate de-
pendencies in the forecast error, including the case of
temporal, spatial and spatio-temporal weather trajecto-
ries, are accounted for. For example, winter road main-
tenance requires joint probabilistic forecasts of temper-
ature and precipitation (Berrocal et al., 2010), air traffic
control calls for probabilistic forecasts of wind fields
(Chaloulos and Lygeros, 2007), the management of re-
newable energy resources hinges on spatio-temporal

weather trajectories (Pinson, 2013), and NWP output
is used to drive hydrologic models to address tasks
such as flood warnings, the operation of waterways and
releases from reservoirs, with Schaake et al. [(2010),
pages 61–62] noting in this context that

“relationships between physically depen-
dent variables like, for example, precipita-
tion and temperature should be respected.”

If statistical postprocessing proceeds independently for
each weather variable, location and look-ahead time,
such relationships are ignored, and it is critical that
they be restored.

Toward this end, we recall Sklar’s theorem, which is
of fundamental theoretical importance in dependence
modeling, and we review Gaussian and other paramet-
ric copulas approaches to the statistical postprocessing
of multivariate ensemble output. Then we turn to em-
pirical copulas, which permit the adoption of a rank or-
der structure from data records, as exemplified by the
Schaake shuffle technique of Clark et al. (2004).

3.1 Handling Dependencies: Sklar’s Theorem

Taking a technical perspective momentarily, suppose
that we have a postprocessed predictive cumulative
distribution function, Fl , for each univariate weather
quantity Yl , where l = 1, . . . ,L, with the multi-index
l = (i, j, k) referring to weather variable i, location j

and look-ahead time k. What we seek is a physically
realistic multivariate joint predictive cumulative distri-
bution function F with margins F1, . . . ,FL.

Recall that a copula is a multivariate cumulative dis-
tribution function with standard uniform margins (Joe,
1997; Nelsen, 2006). Copulas have been employed
successfully in a wealth of applications, such as in fi-
nance (McNeil, Frey and Embrechts, 2005), hydrology
(Genest and Favre, 2007) and climatology (Schoelzel
and Friederichs, 2008), to name but a few. Their rele-
vance stems from the following celebrated theorem of
Sklar (1959).

THEOREM 3.1 (Sklar). For any multivariate cumu-

lative distribution function F with margins F1, . . . ,FL

there exists a copula C such that

F(y1, . . . , yL) = C
(

F1(y1), . . . ,FL(yL)
)

(3.1)

for y1, . . . , yL ∈ R. Furthermore, C is unique on the

range of the margins.

In particular, Sklar’s theorem demonstrates that uni-
variate approaches to the statistical postprocessing of
ensemble output can accommodate any type of joint
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dependence structure, provided that a suitable copula
function is specified. As copula methods allow for the
modeling of the marginal distributions and of the mul-
tivariate dependence structure, as embodied by the cop-
ula, to be decoupled, they are well suited for our prob-
lem.

3.2 Gaussian and Other Parametric Copula

Approaches

If the dimension L of the output quantity is small,
or if specific structure can be exploited, such as in spa-
tial or temporal settings, parametric or semiparametric
families of copulas can be employed.

The most common parametric approaches invoke a
Gaussian copula framework, under which the multi-
variate cumulative distribution function F is of the
form

C(y1, . . . , yL|�)
(3.2)

= 	L

(

	−1(

F1(y1)
)

, . . . ,	−1(

FL(yL)
)

|�
)

,

where 	L(·|�) is the cumulative distribution func-
tion of an L-variate normal distribution with mean
zero and correlation matrix �, and 	−1 is the quan-
tile function of the univariate standard normal distribu-
tion. The use of Gaussian copulas makes for a partic-
ularly tractable approach, as only the correlation ma-
trix � needs to be modeled. In a recent paper, Möller,
Lenkoski and Thorarinsdottir (2013) propose the use of
Gaussian copulas to recover the cross-variable depen-
dence structure for multi-variable forecasts at individ-
ual locations, where the ensemble BMA methodology
is used to obtain the postprocessed marginal predic-
tive distributions. The method is straightforward except
that precipitation requires special treatment due to the
mixed discrete-continuous nature of the variable. The
recent work of Pinson (2012) and Schuhen, Thorarins-
dottir and Gneiting (2012) on bivariate wind vectors in-
vokes multivariate normal predictive distributions, cor-
responding to the special case in (3.2) in which the
margins F1, . . . ,FL are normal.

The use of Gaussian copula methods has a long and
well-established tradition in geostatistics, where the
approach is referred to as anamorphosis; see Chilès
and Delfiner (2012) and the references therein. In
the spatial setting, the correlation matrix � in (3.2)
is taken to be highly structured, satisfying assump-
tions such as spatial stationarity and/or isotropy, as
exemplified by Gel, Raftery and Gneiting (2004) and
Berrocal, Raftery and Gneiting (2007, 2008) in en-
semble BMA approaches to temperature and precipita-
tion field forecasting. Similarly, Gaussian copulas have

been employed to capture dependencies over consec-
utive lead times in postprocessed predictive distribu-
tions (Pinson et al., 2009; Schoelzel and Hense, 2011).
When the margins F1, . . . ,FL are normal, the under-
lying stochastic model is that of a Gaussian process or
Gaussian random field, and choices in the parameter-
ization of the correlation matrix � correspond to the
selection of a parametric correlation model in spatial
statistics (Stein, 1999; Cressie and Wikle, 2011).

While Gaussian copulas yield convenient, ubiqui-
tous stochastic models, parametric or semiparametric
alternatives are available, including but not limited to
the use of elliptical copulas (Demarta and McNeil,
2005), Archimedian copulas (McNeil and Nešlehová,
2009), extremal copulas (Davison, Padoan and Ribatet,
2012) and pair copulas (Aas et al., 2009).

3.3 Empirical Copulas

In the common case in which the dimension L of
the output quantity is huge and no specific structure
can be exploited, parametric methods are bound to fail.
We then need to resort to nonparametric approaches
that depend on the use of empirical copulas. Here, let
{(x1

m, . . . , xL
m) :m = 1, . . . ,M} denote a data set of size

M with values in R
L. Assuming for simplicity that

there are no ties, let rk(xl
m) denote the rank of xl

m

within xl
1, . . . , x

l
M . The corresponding empirical cop-

ula EM is defined as

EM

(

i1

M
, . . . ,

iL

M

)

(3.3)

=
1

M

M
∑

m=1

1
{

rk
(

x1
m

)

≤ i1, . . . , rk
(

xL
m

)

≤ iL
}

for integers 0 ≤ i1, . . . , iL ≤ M ; see Deheuvels (1979),
who uses the term empirical dependence function, and
Rüschendorf (2009) and the references therein.

Any empirical copula is an irreducible discrete cop-
ula in the sense described by Kolesárová et al. (2006),
with Mayor, Suñer and Torrens (2007) providing a bi-
variate version of Sklar’s theorem in this setting. As we
will illustrate below, empirical copulas can be thought
of as corresponding to Latin hypersquares. Asymp-
totic theory for the respective empirical processes has
been developed by Rüschendorf (1976, 2009), Stute
(1984), van der Vaart and Wellner (1996), Fermanian,
Radulović and Wegkamp (2004) and Segers (2012),
among other authors.

In the context of nonparametric approaches to the
statistical postprocessing of multivariate NWP ensem-
ble output, empirical copulas allow for the adoption
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of a multivariate rank order structure either from his-
torical weather observations, as in the Schaake shuffle
technique of Clark et al. (2004), or directly from the en-
semble forecast, to be discussed in detail in Section 4.

3.4 The Schaake Shuffle

Clark et al. (2004) introduced the ingenious Schaake
shuffle as a method for reconstructing physically real-
istic spatio-temporal structure in forecasted tempera-
ture and precipitation fields. Even though it has been
presented as a reordering technique in the extant litera-
ture, an empirical copula interpretation of the Schaake
shuffle is readily available.

Consider an output quantity taking values in R
L and

suppose that we have univariate postprocessed predic-
tive distributions F1, . . . ,FL for the margins. Suppose,
furthermore, that we have a set of M historical weather
field observations for the R

L-valued output quantity at
hand. From the historical record, we can construct an
empirical copula of the form (3.3), as illustrated in the
right-hand panel of Figure 7, where we merely have
L = 2 as corresponds to the components of a wind vec-
tor and M = 20.

To apply the Schaake shuffle, we take a discrete sam-
ple of size M from each of the univariate postpro-
cessed predictive distributions F1, . . . ,FL, and then we
reorder to match with the rank order structure in the
historical record, which is also of size M . This pro-
cedure corresponds to the application of the empirical
copula of the historical weather field record to the dis-
crete samples from the univariate postprocessed pre-
dictive distribution, and in this sense it is natural to
consider the Schaake shuffle as an empirical copula
technique. The thus reordered forecast inherits the mul-
tivariate rank dependence structure and the pairwise

Spearman rank correlation coefficients from the histor-
ical weather record at hand. A more technical discus-
sion can be given in close analogy to what we describe
in Section 4.2 within the related context of the ensem-
ble copula coupling approach.

The Schaake shuffle has met great success in me-
teorological and hydrologic applications, where it re-
covers observed spatial and cross-variable dependence
structures as well as temporal persistence (Clark et al.,
2004; Schaake et al., 2007; Voisin et al., 2011). Never-
theless, there is a major limitation, in that the standard
implementation fails to condition the multivariate de-
pendence structure on current or predicted atmospheric
conditions. Clark et al. [(2004), page 260] therefore de-
scribe a future extension of the Schaake shuffle, the
idea of which is as follows:

“to preferentially select dates from the his-
torical record that resemble forecasted at-
mospheric conditions and use the spatial
correlation structure from this subset of
dates to reconstruct the spatial variability
for a specific forecast.”

In what follows we pursue a related empirical copula
approach, in which the postprocessed forecast inher-
its the multivariate dependence structure from the raw
NWP ensemble, rather than from a historical record of
weather observations, thereby addressing the lack of
atmospheric flow and time dependence in the standard
Schaake shuffle.

4. ENSEMBLE COPULA COUPLING (ECC)

The ensemble copula coupling (ECC) approach
draws on the rank order information available in the

FIG. 7. The bivariate empirical distribution of the observed u and v wind components at Hamburg at 2:00 am on April 1–20, 2011. Left:
bivariate scatterplot. Middle: representation of the rank dependence structure by a Latin square. Right: empirical copula.
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FIG. 8. Scatterplot matrices for pressure at Berlin, Frankfurt and Hamburg. Left: 48-hour ahead ECMWF ensemble forecast valid 2:00 am

on April 1, 2011. Right: empirical distribution of the pressure observations at the same hour over the period March 1–31, 2011.

raw ensemble forecast, based on the implicit assump-
tions that its members are exchangeable and that the
NWP ensemble is capable of representing observed
cross-variable, spatial and temporal dependence struc-
tures. While the latter is to be expected, given that
NWP models discretize the equations that govern the
physics of the atmosphere, diagnostic checks are advis-
able, to assess empirically whether dependence struc-
tures in individual ensemble forecasts are compatible
with observational records. We give a simple illus-
tration in Figure 8, where the dependence structures
within the ensemble forecast valid April 1, 2011 and
those in the observational record over the preceding
month resemble each other strongly.

4.1 The ECC Approach

The ECC approach is a general multi-stage proce-
dure for the generation of a postprocessed ensemble
of the same size, M , as the raw ensemble. We write
xl

1, . . . , x
l
M for the univariate margins of the raw en-

semble, where the multi-index l = (i, j, k) refers to
weather variable i ∈ {1, . . . , I }, location j ∈ {1, . . . , J }

and lead time k ∈ {1, . . . ,K}, to comprise NWP output
in R

L, where the dimension is L = I ×J ×K . In order
to generate an ECC postprocessed ensemble forecast,
we proceed as follows.

Univariate postprocessing. For each margin l, ob-
tain a postprocessed predictive distribution, Fl , by ap-

plying a univariate postprocessing technique, such as
ensemble BMA or NR, to the raw ensemble output

xl
1, . . . , x

l
M .(4.1)

Quantization. Represent each univariate predictive
distribution Fl by a discrete sample of size M , say,

x̃l
1, . . . , x̃

l
M .(4.2)

The discrete sample can be generated in various ways,
to be discussed in detail in Section 4.3, where we dis-
tinguish the ECC-Q, ECC-R and ECC-T variants, de-
pending on how the quantization is performed.4

Ensemble reordering. For each margin l, the order
statistics5 of the raw ensemble values,

xl
(1) ≤ · · · ≤ xl

(M)

induce a permutation σl of the integers {1, . . . ,M}, de-
fined by σl(m) = rk(xl

m) for m = 1, . . . ,M . If there

4Note that the quantized values in (4.2) may be ordered, as in the
case of the ECC-Q approach, or may not be ordered, as in the case
of the ECC-R and ECC-T scheme, respectively.

5The kth order statistic of a sample is defined as its kth small-

est value. For each margin l, we write xl
(1)

≤ · · · ≤ xl
(M)

and

x̃l
(1)

≤ · · · ≤ x̃l
(M)

for the order statistics of the raw ensemble val-
ues in (4.1) and the quantized values in (4.2), respectively. The lat-
ter appear on the right-hand side of (4.3), where we define the ECC
postprocessed ensemble.
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are ties among the ensemble values, the corresponding
ranks can be allocated at random.6 The respective mar-
gin of the ECC postprocessed ensemble is then given
by

x̂l
1 = x̃l

(σl(1)), . . . , x̂
l
M = x̃l

(σl(M)).(4.3)

Note that, while the permutation σl is determined by
the order statistics of the raw ensemble, equation (4.3)
applies this permutation to the postprocessed and quan-
tized values.

The ECC approach is attractive computationally, in
that the modeling of the multivariate dependence struc-
ture requires only the calculation of marginal ranks. In
the recent literature, the approach has been introduced
as a reordering technique, as described colorfully by
Flowerdew (2012), page 15:

“The key to preserving spatial, temporal and
inter-variable structure is how this set of val-
ues is distributed between ensemble mem-
bers. One can always construct ensemble
members by sampling from the calibrated
PDF, but this alone would produce spatially
noisy fields lacking the correct correlations.
Instead, the values are assigned to ensem-
ble members in the same order as the values
from the raw ensemble: the member with
the locally highest rainfall remains locally
highest, but with a calibrated rainfall mag-
nitude.”

That said, it is fruitful to interpret the ECC approach
as a nonparametric copula technique, which permits us
to fuse and consolidate seemingly unrelated, recent ad-
vances within a single, structured framework.

4.2 Empirical Copula Interpretation

Elaborating on our interpretation of the Schaake
shuffle, we now demonstrate that the ECC approach
can be considered an empirical copula technique. For
convenience, we assume that there are no ties among
the raw ensemble margins. We write R1, . . . ,RL for
the corresponding marginal empirical cumulative dis-
tribution functions, which take values in the set

IM =

{

0,
1

M
, . . . ,

M − 1

M
,1

}

.

6While randomization is a natural approach in the case of ties,
other allocation methods are feasible and do not pose technical
problems. Regardless of the allocation, equation (3.3) continues to
apply.

The multivariate empirical cumulative distribution
function R :RL → IM of the raw ensemble maps
into IM , too. According to the discrete version of
Sklar’s theorem described by Mayor, Suñer and Tor-
rens (2007) in the bivariate case, there exists a uniquely
determined empirical copula EM : IL

M → IM such that

R(y1, . . . , yL) = EM

(

R1(y1), . . . ,RL(yL)
)

(4.4)

for all y1, . . . , yL ∈ R, allowing for the same type of
interpretation as illustrated in Figure 7 in the case of
the Schaake shuffle.

Analogous considerations apply to the quantized
independently postprocessed ensemble (4.2) and the
ECC postprocessed ensemble (4.3). Using obvious no-
tation, we write F̃ and F̂ for the corresponding mul-
tivariate empirical cumulative distribution functions.
Furthermore, we denote the marginal empirical cumu-
lative distribution functions of the quantized indepen-
dently postprocessed ensemble by F̃1, . . . , F̃L, respec-
tively, and we use the symbol ẼM to denote the corre-
sponding copula. Then

F̃ (y1, . . . , yL) = ẼM

(

F̃1(y1), . . . , F̃L(yL)
)

(4.5)

and

F̂ (y1, . . . , yL) = EM

(

F̃1(y1), . . . , F̃L(yL)
)

(4.6)

for all y1, . . . , yL ∈ R. As elucidated by equations
(4.4), (4.5) and (4.6), the quantized independently post-
processed ensemble and the ECC postprocessed en-
semble share the margins, whereas the raw ensemble
and the ECC postprocessed ensemble share the cop-
ula, as illustrated in Figure 5. In particular, the ECC
postprocessed ensemble honors and retains the flow-
dependent multivariate rank dependence structure and
bivariate Spearman rank correlation coefficients in the
raw NWP ensemble output.

4.3 ECC-Q, ECC-R and ECC-T

We now discuss options for the generation of the dis-
crete samples (4.2) at the quantization stage of the ECC
approach. Perhaps the most natural way of obtaining a
discrete sample of size M from the postprocessed pre-
dictive cumulative distribution function Fl is to take
equidistant Quantiles of the form

x̃l
1 = F−1

l

(

1

M + 1

)

, . . . , x̃l
M = F−1

l

(

M

M + 1

)

,

(ECC-Q)
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and we refer to this approach as ECC-Q.7 Another op-
tion is to take a simple Random sample of the form

x̃l
1 = F−1

l (u1), . . . , x̃
l
M = F−1

l (uM),(ECC-R)

where u1, . . . , uM are independent standard uniform
random variates. We refer to this latter option as
ECC-R.

Finally, we consider a quantile mapping or transfor-
mation approach that generalizes a recent proposal by
Pinson (2012) in the case of wind vectors. In this tech-
nique, we adopt the ensemble smoothing approach of
Wilks (2002) and fit a parametric, continuous cumula-
tive distribution function Sl to the raw ensemble mar-
gin Rl . We then extract the quantiles from Fl that cor-
respond to the percentiles of the raw ensemble values
in Sl , in that

x̃l
1 = F−1

l

(

Sl

(

xl
1
))

, . . . , x̃l
M = F−1

l

(

Sl

(

xl
M

))

.

(ECC-T)

We refer to this Transformation approach for contin-
uous variables as ECC-T. Frequently, as in the case
of temperature, pressure and the u and v wind vec-
tor components, Sl can be taken to be normal, with
mean equal to the ensemble mean and variance equal
to the ensemble variance. In the special situation in
which Sl and Fl belong to the same location-scale
family, such that Sl(x) = G((x − μ)/σ) and Fl(x) =

G((x − μ̃)/σ̃ ) for some continuous cumulative distri-
bution function G, μ, μ̃ ∈ R and σ, σ̃ > 0, the transfor-
mation from x to

x̃ = F−1
l

(

Sl(x)
)

= μ̃ +
σ̃

σ
(x − μ)(4.7)

becomes affine and, thus, the ECC-T postprocessed en-
semble conserves the raw ensemble’s bivariate Pearson
product moment correlation coefficients, in addition to
retaining its bivariate Spearman rank correlation coef-
ficients.

7Bröcker (2012) provides theoretical arguments in support of the
particular choice of the quantiles in (ECC-Q), which maintains the
calibration of the univariate ensemble forecasts, well in line with
the goal of maximizing the sharpness of the predictive distributions
subject to calibration (Gneiting, Balabdaoui and Raftery, 2007). An
alternative choice would be to set

x̃l
1 = F−1

l

(

1/2

M

)

, x̃l
2 = F−1

l

(

3/2

M

)

, . . . , x̃l
M = F−1

l

(

M − 1/2

M

)

,

which fails to maintain calibration in some respects, but is opti-
mal in expectation if the predictive performance is measured by the
continuous ranked probability score (Bröcker, 2012). Related opti-
mality results can be found in the literature on the quantization of
probability distributions as reviewed by Graf and Luschgy (2000).

The discussion in Bröcker (2012) provides theoret-
ical support in favor of the ECC-Q approach, and so
does our case study in Section 5.3, where we compare
the predictive performance of the ECC-Q, ECC-R and
ECC-T schemes. We therefore recommend the use of
the natural ECC-Q approach.

4.4 Relationships to Extant Work

While the broad framework and the interpretation in
terms of empirical copulas in our paper are original, the
idea of the ECC approach is not new, with its recent ap-
pearances in the literature coming in various seemingly
unrelated shades and flavors. In this context, the con-
nections to the work of Pinson (2012) and Roulin and
Vannitsem (2012) are of particular interest.

The method described in Section 2.c of Roulin and
Vannitsem (2012) in the context of areal precipitation
forecasts can be viewed as a variant of the ECC-Q
scheme, as it extracts equally spaced quantiles from the
postprocessed marginal predictive cumulative distribu-
tion functions, which are of logistic type, followed by
a reordering with respect to the raw ensemble values,
with adaptations to account for a point mass at zero.

Pinson (2012) proposes a transformation technique
for the postprocessing of ensemble forecasts of wind
vector components. In this method, each postprocessed
margin is a translated and dilated version of the original
margin, with the mapping being compatible with the
ECC-T scheme in the special case in which both Sl and
Fl are normal.

5. CASE STUDY

In this case study we exemplify the use of statis-
tical postprocessing techniques, illustrate and assess
the ECC approach, and compare the predictive perfor-
mance of the ECC-Q, ECC-R and ECC-T schemes, re-
spectively. All forecasts are based on the 50-member
global NWP ensemble managed by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF),
which operates at a horizontal resolution of approx-
imately 32 km and lead times up to ten days ahead
(Molteni et al., 1996; Leutbecher and Palmer, 2008).
The differences between the ensemble members stem
from random perturbations in initial conditions and
stochastic physics parameterizations and, thus, the en-
semble members are statistically indistinguishable and
can be considered as exchangeable.

5.1 Setting

We restrict attention to the ECMWF ensemble run
initialized at 00:00 Universal Time Coordinated (UTC)
and consider forecasts for surface temperature, sea
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level pressure, precipitation and the u wind vector
component at lead times of 24 and 48 hours, with em-
phasis on the international airports at Berlin–Tegel,
Frankfurt am Main and Hamburg in Germany, where
00:00 UTC corresponds to 2:00 am local time in sum-
mer and 1:00 am local time in winter. The locations of
the three airports are marked in the upper left panel in
Figure 1. Our test period consists of the twelve month
period ranging from May 1, 2010 through April 30,
2011. Forecasts and observations prior to May 1, 2010
are used as training data as needed.

To obtain postprocessed marginal predictive distri-
butions for each weather variable, location and lead
time individually, we apply the techniques described
in Section 2. For temperature and pressure, we employ
the ensemble BMA model (2.3) with a normal kernel,
and for precipitation the Bernoulli–Gamma ensemble
BMA model specified in (2.5), (2.6) and (2.7), respec-
tively. For the wind vector components, we use the NR
model (2.4). To fit the univariate predictive models, we
use local data from a rolling training period consisting
of the most recent available 30 days and employ the es-
timation techniques proposed by Raftery et al. (2005),
Sloughter et al. (2007) and Gneiting et al. (2005). Then
we apply the ECC-Q, ECC-R and ECC-T schemes as
described in Section 4.

5.2 Evaluation Methods

Statistical postprocessing techniques aim at gener-
ating calibrated and sharp probabilistic forecasts from
NWP ensemble output. As argued by Gneiting, Bal-
abdaoui and Raftery (2007), the goal in probabilistic
forecasting is to maximize the sharpness of the predic-
tive distributions subject to calibration. Calibration is
a multi-faceted, joint property of the forecasts and the
observations; essentially, the forecasts are calibrated if
the observations can be interpreted as random draws
from the predictive distributions. Sharpness refers to
the concentration of the predictive distributions, and
thus is a property of the forecasts only.

In univariate settings, calibration is checked via the
probability integral transform (PIT) or the verification
rank. The PIT is simply the value that the predictive
cumulative distribution function attains at the realizing
observation (Dawid, 1984; Gneiting, Balabdaoui and
Raftery, 2007), with suitable adaptations in the case
of discrete distributions (Czado, Gneiting and Held,
2009). For an ensemble forecast, the verification rank
is the rank of the realizing observation when pooled
with the ensemble values (Hamill, 2001). When a pre-
dictive distribution is calibrated, the PIT or verifica-
tion rank is uniformly distributed. Thus, calibration can

be diagnosed by compositing over forecast cases, plot-
ting a PIT or verification rank histogram, respectively,
and checking for deviations from uniformity. Verifica-
tion rank and PIT histograms are directly comparable,
with a U-shape indicating underdispersion, an inverse
U-shape indicating overdispersion, and skew pointing
at biases in the predictive distributions.

Proper scoring rules provide decision theoretically
coherent numerical measures of predictive perfor-
mance that may assess calibration and sharpness simul-
taneously. Here we use the proper continuous ranked
probability score (CRPS), defined by

crps(F, y) =

∫ ∞

−∞

(

F(z) − 1{y ≤ z}
)2 dz(5.1)

= EF |X − y| −
1

2
EF

∣

∣X − X′
∣

∣,(5.2)

where F is a predictive cumulative distribution func-
tion with finite first moment, y is the verifying obser-
vation, and X and X′ are independent random variables
with distribution F (Gneiting and Raftery, 2007). If F

corresponds to a point measure δx , the proper contin-
uous ranked probability score reduces to the absolute
error, |x − y|. If F = Fens is an ensemble forecast with
members x1, . . . , xM ∈ R, we interpret it as an empiri-
cal measure and compute the continuous ranked prob-
ability score as

crps(Fens, y) =
1

M

M
∑

m=1

|xm − y|

(5.3)

−
1

2M2

M
∑

n=1

M
∑

m=1

|xn − xm|.

We furthermore find the absolute error for the point
forecast given by the median of the predictive distri-
bution, which is the Bayes predictor under this loss
function (Gneiting, 2011). Forecasting methods then
are compared by averaging scores over the test set,
with smaller values indicating better predictive perfor-
mance.

To assess the calibration of ensemble forecasts of
a multivariate quantity, we use the multivariate ver-
sion of the rank histogram described by Gneiting et al.
(2008). We also employ the proper energy score, which
generalizes the continuous ranked probability score in
the representation (5.2), and is defined as

es(F, y) = EF ‖X − y‖ − 1
2EF

∥

∥X − X′
∥

∥,(5.4)

where ‖ · ‖ denotes the Euclidean norm, F is a predic-
tive distribution with finite first moments, X and X′ are
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TABLE 3
Mean continuous ranked probability score (CRPS) and mean absolute error (MAE) for univariate forecasts of temperature, pressure,

precipitation and the u wind component at Berlin, Frankfurt and Hamburg, at lead times of 24 and 48 hours, respectively, for a test period

ranging from May 1, 2010 through April 30, 2011

CRPS MAE

Berlin Frankfurt Hamburg Berlin Frankfurt Hamburg

Temp. 24 ECMWF 1.21 1.23 1.01 1.50 1.53 1.26
(◦C) BMA 0.90 0.88 0.79 1.27 1.23 1.10

48 ECMWF 1.25 1.26 1.06 1.62 1.62 1.39
BMA 0.99 0.97 0.92 1.41 1.33 1.31

Pressure 24 ECMWF 0.54 0.55 0.51 0.75 0.75 0.71
(hPa) BMA 0.43 0.43 0.39 0.62 0.61 0.54

48 ECMWF 0.80 0.78 0.77 1.12 1.08 1.09
BMA 0.77 0.74 0.73 1.08 1.03 1.03

Precip. 24 ECMWF 0.25 0.41 0.31 0.32 0.51 0.39
(mm) BMA 0.23 0.40 0.37 0.30 0.49 0.44

48 ECMWF 0.26 0.41 0.36 0.34 0.50 0.45
BMA 0.26 0.43 0.39 0.32 0.52 0.48

u Wind 24 ECMWF 0.83 0.96 0.89 1.06 1.19 1.11
(m/s) NR 0.70 0.60 0.68 0.97 0.81 0.96

48 ECMWF 0.82 0.89 0.88 1.09 1.15 1.18
NR 0.75 0.62 0.75 1.05 0.83 1.04

independent random vectors with distribution F , and
y is the verifying observation (Gneiting and Raftery,
2007). For ensemble forecasts the natural analogue of
the formula (5.3) applies. If the scales of the weather
variables vary, the margins should be standardized be-
fore computing the joint energy score for these vari-
ables. This can be done using the marginal means and
standard deviations of the observations in the test set.

The aforementioned techniques for the evaluation of
probabilistic forecasts of multivariate quantities have
been developed with low-dimensional quantities in
mind (Gneiting et al., 2008), and we apply them in di-
mension L ≤ 3 only. In higher dimension, these meth-
ods lose power, and there is a pronounced need for
the development of theoretically principled evaluation
techniques that are tailored to such settings (Pinson,
2013, Section 5.2).

5.3 Predictive Performance for Univariate Weather

Quantities

Table 3 compares the predictive performance of the
raw ECMWF ensemble and the postprocessed predic-
tive distributions for temperature, pressure, precipita-
tion and the u wind vector component at lead times
of 24 and 48 hours at Berlin, Frankfurt and Hamburg,

respectively. The BMA and NR postprocessing gener-
ally leads to a significant improvement in the predictive
skill, as measured by the mean CRPS and the MAE,
with exceptions in the case of precipitation.8 Not un-
expectedly, the performance generally is better at the
shorter prediction horizon of 24 hours.

Figure 9 shows verification rank and PIT histograms
for temperature, pressure, precipitation and u wind at a
lead time of 48 hours at Frankfurt. The postprocessed
forecasts show much better calibration, as evidenced
by the nearly uniform PIT histograms, except perhaps
in the case of precipitation, where a slight inverse U-
shape of the PIT histogram may indicate overdisper-
sion in the BMA postprocessed predictive distribu-
tions.

5.4 Predictive Performance for Multivariate

Weather Quantities

We now give an illustration and initial evaluation
of ECC postprocessed multivariate predictive distribu-
tions.

8The particularly good performance of the raw ensemble for
precipitation accumulations at the stations considered and poten-
tial shortcomings in the details of the postprocessing technique
(Scheuerer, 2013) may serve to explain these exceptions.
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FIG. 9. Calibration checks for 48-hour ahead forecasts of temperature, pressure, precipitation and u wind at Frankfurt, for a test period

ranging from May 1, 2010 through April 30, 2011. Top: verification rank histograms for the ECMWF ensemble. Bottom: PIT histograms for

BMA or NR postprocessed predictive distributions.

Table 4 and Figure 10 concern temperature and pres-
sure, with each of these variables being considered at
Berlin, Frankfurt and Hamburg jointly. The distance
from Frankfurt to either Berlin or Hamburg is on the or-
der of 400 kilometers, and the distance between Berlin
and Hamburg is approximately 250 kilometers. Wind
and precipitation patterns vary at considerably smaller
spatial scales and we thus do not expect ECC to make
much of a difference here. In contrast, forecast errors

TABLE 4
Mean energy score for 48-h ahead forecasts of temperature and

pressure, each considered at Berlin, Frankfurt and Hamburg

jointly, for a test period ranging from May 1, 2010 through April

30, 2011. The scores for the independent BMA and ECC-R

techniques, which involve randomization, are averaged over

100 repetitions

Temperature Pressure

(◦C) (hPa)

ECMWF 2.342 1.478
BMA 1.929 1.473
ECC-Q 1.927 1.428
ECC-R 1.945 1.454
ECC-T 1.934 1.442

for pressure can be expected to show pronounced long
range dependencies, and perhaps to some lesser extent
for temperature. The scores and multivariate rank his-
tograms confirm the strongly positive effects of ECC
in the case of pressure, where the ECC postprocessed
trivariate predictive distributions are much better cal-
ibrated than either the raw ensemble or the indepen-
dent BMA postprocessed predictive distributions. The
ECC-Q quantization scheme outperforms the ECC-R
and ECC-T approaches.

While for temperature the BMA postprocessing im-
proves strongly on the raw ensemble forecast, the ef-
fect of ECC is minor, if not negative, due to the cor-
relations in the forecast errors being negligible at the
distances considered here. That said, Figure 11 illus-
trates the strongly positive effects of ECC on tem-
perature field forecasts, where dependencies at short
and moderate distances are of critical importance. Here
we consider 33 × 37 = 1221 NWP model grid boxes
over Germany and adjacent areas, with the forecast
made a day ahead for 2:00 am on April 25, 2011, for
what promises to be a pleasant, unusually warm spring
night.

The postprocessing uses a single BMA model of the
form (2.3), which is trained on spatially pooled pairs of
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FIG. 10. Multivariate rank histograms for 48-h ahead ensemble forecasts of temperature and pressure, each considered at Berlin, Frankfurt

and Hamburg jointly, for a test period ranging from May 1, 2010 through April 30, 2011.

ensemble forecasts and corresponding nowcasts from
the previous 20 days. The nowcast9 that serves as grid-
based ground truth is the corresponding initialization

9Generally, the term nowcast is used for short-term weather fore-
casts, comprising prediction horizons from 0 to 6 hours ahead. Here
we use it for the initialization of the ECMWFs control run—a dis-

tinguished NWP run outside the 50-member core ensemble con-
sidered here—that represents the best estimate of the state of the
atmosphere at the initialization time, given recent and concurrent
observational assets. In our specific usage, the term nowcast thus
corresponds to a prediction horizon of 0 hours, and it provides a
single-valued best estimate of the state of the atmosphere, rather
than an ensemble.
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FIG. 11. 24-hour ahead ensemble forecasts for temperature over Germany valid 2:00 am on April 25, 2011, in the unit of degrees Celsius.
Top row: four randomly selected members of the raw ECMWF ensemble. Second row: independent BMA postprocessing—for each grid box,
a random number from the corresponding BMA postprocessed predictive distribution is drawn. Third row: four members of the corresponding

ECC ensemble, with rank order structures adopted from the respective raw ensemble members in the top row. Bottom row: single-valued

nowcast as described in the text, shown both at left and at right.

of the ECMWFs so-called control run (Molteni et al.,
1996). The members of the unprocessed raw ECMWF
ensemble appear to capture spatial structure fairly well,
but they show an overall negative bias, especially in
the mountainous Alps region in the south and in the
central east of the country. While the BMA postpro-
cessing addresses biases, and the use of a single BMA
model avoids inconsistencies between the univariate
postprocessed predictive distributions themselves, the
independent samples result in noisy and incoherent

spatial structure. The ECC postprocessed ensemble in-
herits the bias-corrected marginals from the indepen-
dent BMA postprocessed forecast and simultaneously
maintains the L = 1221 variate dependence structure
in the raw ensemble.

While these examples concern the spatial case only,
ECC is equally well suited to handling temporal and
cross-variable dependencies, with Figure 5 illustrating
the latter aspect. To generate physically realistic and
consistent ensemble forecasts of temporal trajectories,



636 R. SCHEFZIK, T. L. THORARINSDOTTIR AND T. GNEITING

constraints can be put on the BMA or NR parameters,
so that they vary smoothly across lead times, which
ensures the temporal consistency of the postprocessed
marginal predictive distributions. Then, the ECC ap-
proach can be used to account for dependence struc-
tures across lead times. These settings are being inves-
tigated in ongoing work, and we expect to report quan-
titative results in due time.

6. DISCUSSION

The intensified attention to the quantification of un-
certainty in the output of complex simulation models
poses major challenges in a vast range of critical ap-
plications. In this paper, we have introduced the gen-
eral uncertainty quantification framework of ensem-
ble copula coupling (ECC), which we have illustrated
on the key example of numerical weather prediction
(NWP). The approach is conceptionally very simple
and straightforward to implement in practice. Start-
ing from raw ensemble output, ECC employs standard
techniques to obtain postprocessed predictive distribu-
tions for each of the univariate margins individually.
Then we quantize the postprocessed predictive distri-
butions and adopt the rank dependence structure of
the raw ensemble, as embodied by its empirical cop-
ula.

The defining feature of the ECC approach, namely,
the adoption of the rank order structure of the raw en-
semble, also sets its limitations. The number of mem-
bers in the ECC postprocessed ensemble equals that of
the raw ensemble, which typically is small, and ECC
operates under a perfect model assumption with re-
spect to the multivariate rank dependence structure.
For state-of-the-art NWP models such an assumption
seems defensible and reasonably adequate in practice,
and it can be comfirmed by diagnostic checks, as we
have illustrated in Figure 8, where the situation might
be typical, but cannot be expected to be encountered
each and every day. Generally, it seems realistic to as-
sume that numerical models may show errors in depen-
dence structures, which one may wish to diagnose and
ameliorate to the extent possible. Future work in these
directions is strongly encouraged.

Currently, approaches of the ECC type are be-
ing investigated and tested by weather centers in-
ternationally; see, for example, the recent work of
Flowerdew (2012), Pinson (2012) and Roulin and Van-
nitsem (2012). We applaud these developments and
call for case studies and quantitative comparisons to
the Schaake shuffle (Clark et al., 2004), which also ad-
mits an empirical copula interpretation. In ECC, the

multivariate dependence structure of the forecast er-
rors derives from the ensemble forecast; in the Schaake
shuffle, it derives from a record of historical weather
observations. Judiciously designed combinations of
the ECC and the Schaake shuffle approaches address
the aforementioned problem of the statistical correc-
tion of systematic errors in dependence structures,
and thus might lead to improved predictive perfor-
mance.

If the model output under consideration is low-
dimensional or strongly structured, parametric copula
approaches become available, which may allow for
the correction of any systematic errors in the ensem-
ble’s representation of conditional dependence struc-
tures. Here, the most prominent option lies in the use of
Gaussian copulas, as in the general approach of Möller,
Lenkoski and Thorarinsdottir (2013) and in the tem-
porally or spatially structured settings of Gel, Raftery
and Gneiting (2004), Berrocal, Raftery and Gneiting
(2007, 2008) and Pinson et al. (2009). In such situa-
tions, it is to be expected that parametric techniques
outperform the ECC approach and the Schaake shuf-
fle, and comparative studies of the predictive abilities
and relative merits of the various methods are strongly
encouraged. Given its intuitive appeal and simplicity
of implementation, the ECC approach offers a natural
benchmark.

In Figure 11 we have given an example of how ECC
can be used to restore spatial consistency in weather
field forecasts directly on the model grid. The afore-
mentioned parametric Gaussian approaches of Gel,
Raftery and Gneiting (2004) and Berrocal, Raftery and
Gneiting (2007) can achieve this, too, but require elab-
orate spatial statistical models to be fitted. In contrast,
the computational and human resources necessitated
by ECC are nearly negligible, and ECC can also handle
temporal and cross-variable dependencies, for model
output of nearly any dimensionality.

While we have focused on weather forecasting in
this paper, the general framework of ECC as a multi-
stage approach to the quantification of uncertainty in
the output of complex simulation models with intricate
multivariate dependence structures is likely to be use-
ful in a vast range of applications. Essentially, ECC
can be applied whenever an ensemble of simulation
runs is available, the ensemble is capable of realisti-
cally representing multivariate dependence structures,
and training data for the statistical correction of the
univariate margins are at hand. In this general setting
of uncertainty quantification, the goals articulated by
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Gneiting, Balabdaoui and Raftery (2007) continue to
provide guidance, in that we seek to gauge our incom-
plete knowledge of current, past or future quantities
of interest by means of joint probability distributions,
which ought to be as sharp as possible, subject to them
being calibrated, in the broad sense of reality being sta-
tistically compatible with the postprocessed distribu-
tions.
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Dynamic version of Figure 5 (DOI: 10.1214/13-
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ensemble reordering step in the ECC approach is
elucidated when switching back and forth between
pages.
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