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Abstract The reliability of the damage tolerance

approach to engineering design is affected by numer-

ous sources of uncertainty that can lead to unsafe

predictions, in turn jeopardizing the safety of struc-

tures. This work presents a robust stochastic frame-

work for fatigue crack-growth predictions applied to a

round bar under tension–compression loading condi-

tions. Multi-source uncertainties were taken into

account to derive the lifespan distribution for the bar

in such a way to cover the uncertainties typically

appearing in a structural integrity assessment. The

sensitivity of each input variable was obtained and the

influences of variables on the life predictions were

derived and ranked accordingly.

Keywords Fatigue crack-growth � Uncertainty

quantification � Material scattering � Variability �
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List of symbols

a Crack depth

a0 El-Haddad’s parameter

al Mean value for crack depth

ar Standard deviation for crack depth

C Coefficient of NASGRO formulation

Cth Curvature parameter for the R-dependent

DKth calculation

D Specimen diameter

Dl Mean value for diameter

Dr Standard deviation for diameter

da/dN Crack-growth rate

F Load amplitude

Fl Mean value for load amplitude

Fr Standard deviation for load amplitude

f Newman’s crack closure coefficient

g Coefficient in the K analytical equation

m Exponent of NASGRO formulation for

Paris-like regime

Nf Fatigue life prediction

n Prediction counter

K Stress intensity factor

Kc Critical stress intensity factor

KI Mode-I stress intensity factor

Kmax Maximum value of stress intensity factor

Kmin Minimum value of stress intensity factor

Pf Probability of failure

p Exponent of NASGRO formulation for near-

threshold regime

q Exponent of NASGRO formulation for sub-

critical regime

R Stress ratio ¼ Kmin=Kmax

smax Max stress applied

a Constraint factor

DK Range of stress intensity factor
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DKth R-dependent threshold stress intensity factor

range

DKth;0 Threshold stress intensity factor range for

R = 0

l Mean value

r Standard deviation

rnom Nominal stress value

rUTS Ultimate tensile strength

rys Yield stress

r0 Flow stress

CGR Crack-growth rate

CV Coefficient of variation

FCG Fatigue crack-growth

FEM Finite element method

LEFM Linear elastic fracture mechanics

RMS Root mean square

1 Introduction

Experimental measurements for designing fatigue-safe

mechanical components often appear to have an

inherent random nature, due to the numerous sources

of uncertainty and variability affecting the phenomena

under observation. Since the 1950s, dealing with the

spread or scatter in fatigue lives played a vital role in

ensuring acceptably low probabilities of structural

failures. The earliest approaches to tackle this ‘‘fatigue

variability’’ phenomenon were usually characterized

by the generation of large sets of test data, resulting in

very time consuming and expensive testing campaigns.

Subsequently, once comprehended that this variability

was an inherent part of the fatigue phenomenon,

enhanced mathematical models and numerical simu-

lations were developed to analyse the fatigue beha-

viour through thorough probabilistic approaches (Zhu

et al. 2017, 2018a; Armentani et al. 2020; Niu et al.

2021; Klawonn et al. 2020). Since structural integrity

of engineering components is directly affected by

several aspects, e.g. geometrical factors, material

scattering, statistical uncertainty, modelling approxi-

mations, human and judgement errors (Beretta et al.

2016a; Citarella and Apicella 2006; Sandberg et al.

2017; Endeshaw et al. 2017), quantifying and control-

ling these characteristics is essential to enhance the

competitiveness in designing fatigue-safe products,

e.g. as turbine engines, railway axles, shafts, etc.

(Citarella et al. 2016; Citarella and Perrella 2015;

Giannella 2021a).

Engineering components generally fail due to

irreversible micro-plastic deformations from which

cracks are nucleated, generally at notches or at critical

locations (Sepe et al. 2019; Romano et al. 2020;

Giannella et al. 2018a). This process is followed by

fatigue crack-growth (FCG) through the cross-section

and, eventually, by the final failure of the whole

component. Due to the limitations of modern smelting

and casting technologies, there are some unavoidably

initial defects in materials, such as air bubbles, holes or

impurities that have to be taken into account directly at

the designing stage (Zhu et al. 2018b, c; He et al.

2015). Additionally, defects and imperfections can

also be induced by the manufacturing processes, from

the more traditional (e.g. welding (Giannella et al.

2017a; Fellinger et al. 2018)) to the latest cutting-edge

processes recently entering the industry (e.g. advanced

welding procedures (Carlone et al. 2016; Rubino et al.

2020, 2021) or additive manufacturing (Caggiano

et al. 2019, 2021)). Considering the inhomogeneous

microstructure and non-uniform mechanical proper-

ties of metal materials, including crystal defects,

grains boundary, dislocations, etc., cracks may

encounter diversiform microstructures, in turn demon-

strating variable strength against FCG. There are also

further external sources of uncertainties originating

from the scattering of material properties, geometrical

dimensions and working environments that need to be

taken into account (Zhu et al. 2020). As a result, the

FCG process shows considerable variability even in

‘‘identical’’ repeated tests, thus leading to the defini-

tion of the widely accepted conception that, at least

from a macroscopic point of view, FCG has inevitably

stochastic characteristics.

In the fatigue design of components of mechanical

systems, the various sources of uncertainty and

variability have to be taken into account in order to

guarantee a safe design (Fig. 1). These input sources

can be broadly divided into two categories: aleatory

and epistemic (Chernatynskiy et al. 2013). The first

category comes from the inherent variation resulting

from the physical process under observation or from

the environmental conditions (Roy and Oberkampf

2011), with an impact on life prediction that cannot be

reduced in size but needs to be quantified. The second

category takes place where knowledge or accurate

information is lacking and/or cannot be acquired at all:
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these can be reduced after the acquirement of new

information, through a better use of the available data

and/or through more accurate modelling methods

(Fig. 1).

Several studies have explored the possibility to

choose safety factors from a probabilistic design

perspective (Sepe et al. 2019; Grell and Laz 2010;

Guida and Penta 2010; Beretta and Regazzi 2016).

Most of the available research focused primarily on

obtaining life predictions by considering slight per-

turbations on the loading conditions as well as small

variations on the Crack-Growth Rates (CGRs) (Grell

and Laz 2010; Guida and Penta 2010). The purpose of

the current work was to quantify the effects of multiple

sources of uncertainty and variability on the phe-

nomenon of FCG for a simple case study, i.e. a cracked

round bar under tension–compression loading (stress

ratio R ¼ � 1). This investigation can be considered as

an example case and the results can be used to better

drive similar calculations performed on small compo-

nents axially loaded. However, with the appropriate

adjustments, this framework can be extended to larger

and more complex industrial components in a straight-

forward manner.

A probabilistic framework is presented in this work

for a fatigue reliability assessment considering multi-

source uncertainties. These primary sources of uncer-

tainty were considered here as coming from: (i) the

inherent scattering of material properties, (ii) the

variability of the main geometrical dimensions of

components, (iii) the statistical nature of the actual

loading conditions. In this regard, although analytical

methods exist in literature (Ciavarella and Papangelo

2018), a full computational approach was adopted to

develop a probabilistic FCG assessment based on a

vast set of experimental data available in literature. By

using the NASGRO formulation, arranged in a

stochastic way, residual fatigue life predictions were

computed by taking account of the main input sources

reported above, see also Fig. 2. Hence, the sensitivity

of each basic random variable was derived and the

influences of all variables on the residual life predic-

tions were ranked accordingly.

The rest of this article is organised as follows.

Section 2 presents how variability sources were

introduced in the NASGRO equations so as to account

for of the scattering of material properties. Section 3

reports how the main geometrical dimensions and

loading conditions were considered in a probabilistic

perspective. Section 4 comprises an overall descrip-

tion of the procedure showing how all the previously

described uncertainty sources were managed. Sec-

tion 5 reports the results of the analyses providing

some guidelines of general validity to advance the

comprehension of the phenomenon. Finally, Sect. 6

concludes with the remarks of this article.

Fig. 1 Framework for fatigue crack-growth assessments under input data variability
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2 Uncertainty in material properties

FCG has an unavoidable stochastic nature that directly

affects the accuracy of the life predictions for struc-

tures in presence of defects. Material properties

variability, geometrical tolerances, pre-existing

micro-structural defects and inaccurate loading con-

ditions directly affect both crack nucleation and

propagation phases (Zhu et al. 2017; Beretta and

Regazzi 2016; Beretta and Carboni 2006; Beretta et al.

2010; Larsen et al. 2013), see Figs. 1 and 2. Through a

better use of the available data and through more

advanced modelling methods, improvements on the

lifespan predictions can be obtained (Giannella et al.

2017b, 2018b, 2019a, b).

Even though advanced probabilistic approaches

can provide the engineers with more robust informa-

tion about the safety of structures (Zhu et al.

2017, 2018a; Armentani et al. 2020; Niu et al. 2021;

Klawonn et al. 2020; Beretta et al. 2016a; Giannella

2021a; Sepe et al. 2019; Romano et al. 2020; Giannella

et al. 2018a; Grell and Laz 2010; Guida and Penta

2010; Beretta and Regazzi 2016; Beretta and Carboni

2006), as a downside, these approaches often require

vast sets of experimental data for their development to

limit the statistical uncertainty. The material under

analysis selected for this work was the 25CrMo4 steel

(known also as EA4T grade in the railway industry),

for which a vast set of FCG test data at R ¼ � 1 was

available in literature (Luke et al. 2011; Náhlı́k et al.

2017; Pokorný et al. 2016a; Beretta et al. 2016b;

Maierhofer et al. 2014; Wu et al. 2016; Varfolomeev

et al. 2010; Project MARAXIL; Hu et al. 2021), see

Fig. 3. Chemical composition of 25CrMo4 was

reported in Table 1. According to Hu et al. (2021),

the matrix is primarily comprised of bainite and

martensite, with an average grain diameter of around

7.2 lm; this very fine microstructure and small grain

size contribute to a low level of roughness-induced

crack closure (Vojtek et al. 2019; Pokorný et al. 2017).

The adoption of a large set of FCG data allowed us

to reduce the statistical uncertainty generally occur-

ring when small sample sizes are used. Data in Fig. 3

exhibit a noteworthy scatter, in part attributable to the

fact that different sizes and shapes of specimens were

used for their derivation. This scatter in terms of CGRs

can be considered as one of the primary causes of the

ample variability of the residual life estimates.

Fig. 2 Case study

schematic view, with

highlight of the most

relevant sources of

uncertainty typically

appearing in a residual life

assessment

Fig. 3 25CrMo4 CGRs obtained by tests on full-scale axles and

specimens (R ¼ � 1)
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Material data of Fig. 3 are generally aimed to

calibrate a FCG law useful to perform life estimates

for cracked components. A NASGRO FCG formula-

tion was selected in this work and implemented in a

stochastic way. The basic formulation enables the

modelling of the three basic parts of a CGR diagram

and is very popular in the scientific community at the

present time to model ‘‘long cracks’’. Namely, the

standard ‘‘damage tolerance’’ approach considered

crack sizes of sufficiently large size to be present at the

beginning of calculations, also to remove difficulties

in the treatment of ‘‘short cracks’’. When this

assumption is not applicable, the ‘‘short crack’’ regime

has to be modelled, e.g. through a generalised Paris’

law, see (Pugno et al. 2006).

The reader is referred to Newman (1984), Forman

and Mettu (1990), NASGRO� (2019), Elber (1970),

Elber and Rosenfeld (1971) and El-Haddad et al.

(1979) for dedicated information about the derivation

of the various elements of NASGRO along the years.

As a downside of its generalizability, the calibration of

a NASGRO requires up to 11 material parameters

(C; m; p; q; Cth; DKth;0; Kc; a; rYS; rUTS; a0) with

consequent large efforts from the experimental stand-

point for their derivation (Beretta and Carboni 2004;

Giannella 2021b; Giannella et al. 2021). These

parameters are required by the main NASGRO

formula (Eq. 1) and by the formulae for the calcula-

tion of the R-dependant DKth (Forman and Mettu

1990; NASGRO� 2019) (Eq. 2) and the plasticity-

induced crack closure function f (Forman and Mettu

1990; NASGRO� 2019) (Eqs. 3, 4).

da

dN
¼ C

1 � f

1 � R

� �
DK

� �m
1 � DKth=DKð Þp

1 � Kmax=Kcð Þq ; ð1Þ

DKth ¼ DKth;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a= aþ a0ð Þ

p
1�f

1�A0ð Þ 1�Rð Þ

h i1þCthR
; ð2Þ

f ¼ Kop

Kmax

¼
max R;A0 þ A1Rþ A2R

2 þ A3R
3

� �
;R� 0

A0 þ A1R;�2�R\0

8<
: ;

ð3Þ

A0 ¼ 0:825 � 0:34aþ 0:05a2ð Þ cos
p
2
Smax=r0

	 
h i1=a

A1 ¼ 0:415 � 0:071að ÞSmax=r0

A2 ¼ 1 � A0 � A1 � A3

A3 ¼ 2A0 þ A1 � 1

9>>>=
>>>;
:

ð4Þ

Thanks to the stochastic implementation of NAS-

GRO adopted here, fewer parameters need to be

directly calibrated through test data. As a matter of

fact, the calibration of a NASGRO generally implies

the calibrations of its distinct parameters separately,

representing a rather time consuming task. Moreover,

this calibration procedure can be a further source of

error since parameters are generally calibrated one at a

time, often neglecting their mutual interactions.

The stochastic NASGRO formulation presented

here reduces the human effort required by a manual

calibration, increases the calibration accuracy by

considering all the mutual interactions between

parameters, guarantees the highest correlation with

experimental test data.

This was achieved by directly inserting the

NASGRO equations (Eqs. 1–4) in the MATLAB

programming platform (MATLAB 2019). Only the

most relevant parameters were considered as variable

within the MATLAB routine, whereas those param-

eters which did not influence the life predictions in a

significant way were kept as constants (Table 2 for

their constant values). This classification in either

constant or variable parameters was already discussed

in previous research (Giannella 2021a, b, 2022). The

remaining most relevant parameters of NASGRO, i.e.

C, m, p, DKth,0, were considered as uncorrelated

random variables ranging within given ranges of

variability, these latter defined with a trial-and-error

Table 1 Chemical composition of 25CrMo4 (values in %)

C Si Mn P S Cr Mo Fe

0.22–0.29 0.40 max 0.6–0.9 0.025 max 0.035 max 0.9–1.2 0.15–0.3 Balance
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procedure in such a way to include all their potentially

acceptable values. These ranges were listed in Table 3.

Consequently, Monte Carlo simulations were per-

formed. With reference to uncertainty of material

parameters only, each simulation consisted in picking

four material parameters randomly within their ranges

so as to draw a CGR curve (through Eqs. 1–4). Then,

the quality of fitting of this CGR curve was assessed

through two Root Mean Square (RMS) errors that

were used to define the quality of fitting of each curve

for the near-threshold range and for the Paris’ regime

separately (see also (Giannella 2021a)). If both RMS

errors resulted to be lower than cut-off threshold

values (set to 3%), the curve was used to compute a

fatigue life prediction. Instead, when RMS errors

resulted to be higher than thresholds, the CGR curve

was judged as not acceptable, the corresponding set of

parameters was immediately discarded and a new

Monte Carlo simulation started.

Similar Monte Carlo simulation strategies were

already proposed in literature (Annis 2004), where the

need to take into account the mutual interactions

between parameters was highlighted. Here, the vali-

dation of each CGR curve with the experimental data

allowed them to be considered interconnected, there-

fore avoiding the issues highlighted in Annis (2004).

The current Monte Carlo strategy was already vali-

dated in Giannella (2022) against the experimental test

data available in Virkler et al. (1979), showing that it

was able to predict both mean value and standard

deviation of experimental life predictions. The reader

is referred to Giannella (2021a, b, 2022) for further

information about this procedure. Further details can

also be found in Sect. 4.

3 Uncertainty in geometrical dimensions

and loading conditions

Geometrical tolerances between actual and design

dimensions are inevitable due to the manufacturing

processes or design margins (Zhan et al. 2000; Caiazzo

et al. 2017). Their proper definition is essential in the

engineering sphere to ensure the interchangeability

and assemblability of components, to allow for power

transmission through interference coupling mecha-

nisms, to reduce costs of manufacturing, etc. Minor

changes of geometrical dimensions of components

may show critical influence on the stress–strain

responses of actual components, thus yielding to

much different fatigue performances (Hu et al. 2020).

These aspects are even more important when dealing

with FCG problems since very slight discrepancies on

measurements of component dimensions and crack

sizes can lead to orders of magnitude of discrepancies

in terms of residual fatigue life predictions (Giannella

2021a; Giannella et al. 2021).

Regarding these aspects, geometrical uncertainty

was considered here for the most relevant dimensions

of the round bar with the aim of quantifying their

influence on the residual life estimates. Namely, since

the considered loading condition was a tension–

compression load cycle with R ¼ � 1, the bar diam-

eter and the initial crack depth were the only

dimensions considered as having relevant influence,

see Fig. 2. These parameters were inputted in the

MATLAB routine as following a normal distribution

with user defined mean values and standard devia-

tions, see Table 4. The adoption of normal distribu-

tions for geometrical and loading variabilities can be

considered as a common engineering practice (Zhu

et al. 2017; Beretta et al. 2016a; Citarella and Apicella

2006; Guida and Penta 2010; Beretta and Regazzi

Table 2 AA25CrMo4 material data

rUTS [MPa] rys [MPa] Kc [MPaHm] a [–] q [–] a0 [m] m [–] Cth [–]

708 554 131.56 3 5 3.81e-5 0.32 0.115

Table 3 Ranges of variability of the following 25CrMo4

NASGRO parameters

Min value Max value

Log10(C) (C in MPa-mm1-m/2) - 12 - 6.9

m [–] 0 4

p [–] 0 4.4

DKth,0 [MPaHm] 5.8 8
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2016; Beretta and Carboni 2006). The primary con-

tribution coming from the variability of bar diameter

was expected to be the variation of the nominal stress

rnom ¼ 4Fl=pD2
l, whereas the primary contribution

given by the initial crack depth variation was expected

to be the impact on the KI calculation (James and Mills

1988) as:

KI ¼ rnom
ffiffiffiffiffiffi
pa

p
� g� 0:752 þ 2:02

a

D

	 

þ 0:37 1 � sin

pa
2D

	 
h i3
� �

g ¼ 1:84

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan

pa
2D

	 

=

pa
2D

	 
h ir
=cos

pa
2D

	 
 :

8>><
>>:

ð5Þ

Contrary to numerous applications (Zhu et al.

2018b, c; Guida and Penta 2010; Beretta and Regazzi

2016; Giannella et al. 2017b, 2018b, 2019a, b; Luke

et al. 2011; Náhlı́k et al. 2017; Pokorný et al. 2016a;

Beretta et al. 2016b; Giannella and Perrella 2019;

Shlyannikov et al. 2021; Ayhan and Demir 2021), no

numerical simulations were needed to obtain the K

values along the crack-growth thanks to the simplicity

of the case study considered here. Note from the

Linear Elastic Fracture Mechanics (LEFM) assump-

tion that slight discrepancies in terms of K values can

return much higher deviations in terms of CGRs due to

(i) the amplification through the exponent m, (ii) the

scattering of material data (Zhu et al. 2018b; Giannella

et al. 2018b, 2019a; Ayhan and Demir 2021; Citarella

et al. 2018), see Fig. 3. A nominal initial crack al was

arbitrarily defined as having a depth of 1 mm, whereas

a variation of � 0:3 mm was envisaged through a

standard deviation ar of 0.15 (assuming a l� 2r
range). The geometrical tolerance for the diameter was

approximately taken as Dr ¼ 0:015Dl of variation

from the designed nominal size Dl equal to 18 mm.

The corresponding variation was therefore set up to

18 � 0:5 mm if considering that a range of l� 2r
covers nearly 95.5% of a normal distribution.

According to Eq. 5, the accuracy used to define the

nominal stress rnom can play a significant role in the

accuracy of the K calculation, in turn affecting the

output life predictions. This means that not only the

nominal loading conditions, but also their potential

variations need to be quantified to allow for a safe life

prediction. With reference to the current investigation,

a nominal force Fl of 63.6 kN was considered,

corresponding to a nominal stress rnom of 250 MPa.

The related coefficient of variation CV was defined as

Fr=Fl ¼ 0:015, thus returning a � 3% of variability

in a � 2r range. The final distributions defined for

geometrical dimensions and loading conditions are

shown in Fig. 4 whilst the related parameters are listed

in Table 4.

4 Stochastic procedure description

Crack propagation phenomena are inherently stochas-

tic and the solutions obtained deterministically are

only limiting outcomes that do not allow for their

comprehensive description. The stochastic procedure

for the fatigue life assessment of the round bar was

performed within a user-made MATLAB (MATLAB

2019) routine implementing the logic illustrated in

Figs. 5 and 6. The routine considered as input data the

variables presented in the previous Sects. 2 and 3 and

provided as output the predictions of the residual

fatigue lives estimated for the cracked round bar.

The procedure starts by reading the required input

data, i.e. material parameters and their ranges of

variability (Table 3), experimental data (in Fig. 1), the

parameters defining variations for geometry and load

(Table 4), the requested amount of predictions to

perform (i.e. 1e5 Monte Carlo simulations). For each

n-th simulation, the four material parameters

Cn; mn; pn; DKth;0;n

� �
are randomly sampled within

their ranges so as to generate a n-th CGR curve. This

latter is compared with the test data and, if judged as

providing an acceptable fitting (see Sect. 2), an n-th

fatigue life prediction is then computed. If not, a new

Table 4 Parameters of normal distributions for geometrical dimensions and loading conditions; distributions shown in Fig. 4

Distribution Mean value l Standard deviation r

Initial crack depth a [mm] Normal 1 0.15

Diameter D [mm] Normal 18 0.27

Load F [kN] Normal 63.6 0.95
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sampling starts until an n-th curve with an accept-

able fitting is obtained. The procedure is then re-

iterated until the requested number of predictions is

reached.

As shown in Figs. 5 and 6, the random nature of

FCG phenomenon was quantified in order to achieve a

probabilistic description that would account for the

variabilities given by material parameters, actual loads

and the main geometrical dimensions. With such an

approach, the distribution of the fatigue life predic-

tions with allowance for these main sources of

uncertainty was obtained, thus leading to an improved

and more thorough control over the safety of struc-

tures. Calculations were then performed at various

levels of uncertainty for all input parameters so as to

provide a sensitivity analysis and to derive the

influence of each basic variable on the life predictions.

5 Results

The residual life prediction of mechanical components

subjected to cyclic loading is of paramount importance

for industry. In this prospect, the presented procedure

aimed to provide a robust tool capable to perform

probabilistic fatigue life predictions by taking into

account of the most typical sources of uncertainty

appearing during a structural integrity assessment

(Fig. 2). Through the input variables developed in

Sects. 2 and 3 and the framework detailed in Sect. 4, it

Fig. 4 Probability density functions for crack size uncertainty, geometrical tolerances and loading conditions

Fig. 5 Flowchart illustrating the stochastic approach imple-

mented for the residual life predictions; NASGROn represents a

n-th set of NASGRO material parameters; Dn, an, Fn are

respectively three values for diameter, initial crack depth and

force amplitude for a n-th prediction
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was possible to quantitatively evaluate the distribution

of residual fatigue lives predicted for the bar.

Even though calculations were performed with all

the data sets, some figures reported below comprised a

reduced set of data to improve their readability.

Simulated CGR curves are shown in Fig. 7, as

superimposed to the experimental data and to the best-

fit CGR curve, i.e. the simulated CGR curve that

provided the best fitting of material data (i.e. the

lowest RMS errors). It can be noticed that a very good

fitting of data was provided by simulations for both

near-threshold and Paris-like range, where a vast set of

experimental data was available. A worse correlation

was instead noticed at very high DK values: this was

expected because of the very few experimental data

available in that region. Nevertheless, negligible

impact on the predictions are expected from this poor

correlation since most of the life of a component is

generally predicted when da/dN is very low, i.e. when

DK\15 MPa
p

m (e.g. when cracks are still rather

small). Instead, this issue is more relevant only when

high DK are obtained at small crack sizes, e.g. at high

applied load levels or when cracks nucleate in highly

stressed locations.

A correlation matrix for NASGRO parameters C,

m, p, DKth,0 is reported in Fig. 8. Best-fit parameters

are also reported in red. Best-fit parameters are those

that returned the lowest RMS errors, i.e. they produced

the CGR curve with the best correlation with exper-

imental data. Generally, this is the only curve that is

considered when using a deterministic approach to

fracture and was highlighted here for a comparison.

The main diagonal shows the occurrences of the

four material parameters that clearly do not follow a

normal/lognormal distribution, as arbitrarily imposed

a priori in several works (Caggiano et al. 2021;

Chernatynskiy et al. 2013; Grell and Laz 2010; Guida

and Penta 2010; Wu et al. 2016; Elber and Rosenfeld

1971). Out of the main diagonal, it can be observed

that the material parameters are mostly uncorrelated,

Fig. 6 Block diagram illustrating the stochastic procedure for residual life assessments
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with the exception of Log10C and m that demonstrated

a clear linear relationship. This linear dependence was

well known from literature, as reported in Cortie and

Garrett (1988) and Bergner and Zouhar (2000), and

was also highlighted for different materials in Gian-

nella (2021a, b), Giannella (2022) and Annis (2004)

where Monte Carlo simulations were similarly

adopted. The reader is referred to Bergner and Zouhar

(2000) and its references for deepenings.

An example of the residual life cycles predicted for

the bar can be seen in Fig. 9. It can be noticed that the

best-fit curve provided a non-conservative prediction

(88% of predictions were lower than that), although

the prediction was computed with the ‘‘best’’ CGR

curve. If considering also the results reported in

Giannella (2021a) where another non-conservative

prediction was computed with the best-fit parameters,

the limitations of deterministic FCG calculations are

evident since they are not always able to guarantee

either the conservativeness nor the non-conservative-

ness of their predictions. The need to resort to a more

robust stochastic approach appears to be obvious for

achieving reliable FCG assessments.

Subsequently, calculations were separately per-

formed at different load levels ranging from 38.2 to

127.2 kN. This range was selected so as to produce

nominal stresses rnom ranging from 150 MPa, mostly

corresponding to a DK threshold level for the consid-

ered case study, to 500 MPa, mostly corresponding to

a stress level close to the material yield stress

(Table 2).

Figure 10 shows a Wöhler-like diagram comparing

the life predictions and probability of failures with the

corresponding stress levels. Similar results were also

shown in Fig. 11 in terms of probability density

functions. Lognormal distributions were also fitted on

the obtained frequencies showing a satisfactory cor-

relation, except for the lowest stress level due to the

near-threshold condition (Fig. 10). It can be quantita-

tively measured what is the impact of each stress level

on the estimated life when considering input data

variability. This kind of result is generally used for

designing purposes according to the damage tolerance

Fig. 7 Simulated CGR curves with highlight of the best-fit

curve

Fig. 8 Correlation matrix

for NASGRO parameters C,

m, p, DKth,0; best-fit

parameters are in red
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philosophy (Patriarca et al. 2020; MIL-STD-1530D

2016).

A high variability of lives is computed at the

highest stress levels. This has to be partially attributed

to the fact that very few experimental points were

available in the high DK region, in turn producing a

large spread of the simulated CGRs, see Fig. 7.

Therefore, a lower dispersion of the life predictions

obtained at stress levels of 400 and 500 MPa (Figs. 10,

11) should be expected with more experimental data.

More specific experimental tests are needed to better

define this region of propagation. Nonetheless, the

largest spread is obtained for the lowest stress level

where near-threshold propagations were computed,

see Fig. 10. This was expectable since very long

fatigue lives can be obtained when dealing with such

near-threshold DK values.

By taking into account multiple sources of uncer-

tainty, it was assessed that the stress level of 150 MPa

results in a probability of failure Pf of 15%. Namely,

only 15% of all predictions at 150 MPa returned a

propagating crack, whereas the remaining 85% of

simulations turned out to have an applied DK lower

than DKth;�1, hence a non-propagating crack. This

means that the probability of having crack propaga-

tion, and then a failure after a certain number of fatigue

cycles, was equal to 15% at 150 MPa. With reference

to the 200 MPa stress level, only 3% of predictions did

not propagate at all since having an initial DK lower

than DKth;�1 and, therefore, a Pf of 97% was derived.

Finally, as seen in Fig. 10, all the stress levels higher

than 200 MPa returned a Pf of 100%. It is worth

noting that, with reference to this case study, there is

the need of a noteworthy 50 MPa of gap to trigger

crack propagation with a high probability. Conversely,

there is the need of reducing the applied stress of more

than 50 MPa to have a good probability of switching

from a very likely (Pf ¼ 97%) to an unlikely

(Pf ¼ 15%) crack propagation. This gives indications

on the safety factors that should be considered when it

Fig. 9 Simulated crack

depth vs. residual life cycles

curves

Fig. 10 Stress-life diagram

at various stress levels
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is necessary to guarantee the non-propagation of

cracks. Resorting to a robust stochastic approach for

FCG assessments is mandatory to tackle these critical

safety issues.

5.1 Sensitivity analysis

A sensitivity analysis was performed to highlight the

influence of the uncertainty of each input parameter on

the residual life predictions. Namely, different levels

of ar, Dr and Fr were considered so as to quantify

their influence on the predictions, see Figs. 12, 13 and

14. The aim of this sensitivity analysis was to highlight

the influence of each contributor of uncertainty on the

life predictions, both on the mean value and the

dispersion around it. Furthermore, this sensitivity

analysis also quantified the levels of uncertainty of

input parameters that would not return any improve-

ment on the life prediction accuracy.

With reference to Fig. 12, as obvious, all predic-

tions with larger initial crack depths returned the

lowest life predictions. Assuming that life distribu-

tions can be approximated by lognormal distributions,

mean values and standard deviations calculated at

various ar can be compared to each other. It was

observed that an ar of 0.05 mm allowed us to

acceptably define the lifespan distribution and fur-

therly reducing this parameter did not significantly

reduce spread of predictions, nor influence the mean

value. In other words, knowing that the initial crack

depth measures nearly 1 mm within a range of

uncertainty of 1 � 0:1 mm (l� 2r, thus with a

covering of 95.5%) can be sufficient to accurately

predict the fatigue life, and further improvements on

Fig. 12 Fatigue life

predictions for various

uncertainty levels of crack

size

Fig. 11 Probability density functions for the residual life estimates at various stress levels
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the prediction accuracy have to be retrieved

elsewhere.

With reference to Fig. 13, the opposite trend was

observed in terms of diameter variability for the

simple reason that higher life predictions were com-

puted for the larger diameters (due to lower rnom). It

can be stated that a Dr equals to 0.27 mm allowed to

acceptably determine the lifespan and the definition of

more strict tolerances do not guarantee a significantly

reduced spread of predictions. Namely, knowing that

the diameter is 18 � 0:54 mm (l� 2r) is sufficient to

accurately define the lifespan. Contrarily to what is

expected, enhancing measurement accuracy, or

requesting for harsher tolerances, do not guarantee

that accuracy of life predictions of components

increases.

Finally, the influence of Fr on the life predictions

was quantified and reported in Fig. 14. Again, life

predictions did not vary in a significant way when

reducing the uncertainty of the actual loading condi-

tions to a Fr lower than 2 kN. In other words, knowing

that the applied loads can fluctuate within a range of

63:6 � 4 kN (l� 2r) is sufficient to accurately deter-

mine the lifespan distribution. And so, furtherly

improving the measure accuracy of loads do not

Fig. 13 Fatigue life

predictions for various

uncertainty levels of

diameter

Fig. 14 Fatigue life

predictions for various

uncertainty levels of load

amplitude

Fig. 15 Ranking of the main contributors affecting a structural

integrity assessment
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guarantee that the life predictions of this engineering

component results to be more accurate.

5.2 Discussion

The final comparison among uncertainty sources of

Fig. 15 shows that, during an optimization process, the

highest priority should be assigned to the initial crack

size distribution, in turn followed by the material

scattering and geometrical tolerances, whereas the

loading conditions seems to produce the lowest

contribution. This partially agrees with comparable

results already available in literature, as well as with

assumptions made in several works in which only

material variability was taken into account (Beretta

et al. 2016a; Giannella 2021a, b; Zhu et al. 2018b;

Beretta and Carboni 2006). However, quantifying all

contributors that can affect safety of structures is

fundamental to assess their actual impact on the life

predictions. Indeed, it was quantified here that almost

two-thirds of the fatigue life scatter resulted to come

from only two contributors, i.e. material scattering and

crack size uncertainty (Fig. 15). The former cannot be

reduced in size but needs to be quantified, whereas the

latter has to be always quantified accurately and

should be taken into account in every probabilistic life

assessment. Only through these evaluations, a higher

comprehension on our capability to guarantee the

structural safety can be achieved.

It is worth noting that the low contribution of

loading conditions was rather expectable since the

considered case study was based on a purely axially

loaded component. Much higher dependence of pre-

dictions on the geometry is expected for components

subjected to bending loads, and even higher depen-

dence is expected for cases where cracks start

propagating from notches (Niu et al. 2021; Zhu et al.

2018a). Compared with other uncertain parameters,

the uncertainty coming from geometric tolerances

plays a relevant role, even though it has to be stated

that these are more likely controllable contributions.

The initial crack size uncertainty ranked first in

influencing the overall uncertainty. However, it has to

be stated that this contribution can be up/down scaled

depending, not only on its dispersion, but also on the

mean value of defects that one has to consider. As a

matter of fact, small variations on life predictions are

expected with high DK values (e.g. with long cracks).

Contrarily, with low DK values (e.g. short cracks),

small variations in the crack sizes can lead to large

variations in the predictions, see Figs. 10 and 11.

Similar conclusions were also reported in Náhlı́k et al.

(2017) and Pokorný et al. (2016a, b).

This investigation has taken into account multi-

source uncertainties coming from the most important

parameters typically affecting a structural integrity

assessment. Ranking these contributors is mandatory

so as to drive further optimization procedures that can

eventually allow for improved and more robust life

predictions. Large dispersions of life predictions

(Figs. 10, 11, 12, 13, 14) were computed, reaching

even more than an order of magnitude of variability, as

shown in similar works related to both fatigue (Zhu

et al. 2017, 2018a, b; Niu et al. 2021) and fracture

(Giannella 2021a, b, 2022; Grell and Laz 2010;

Beretta and Carboni 2006; Annis 2004; Virkler et al.

1979). These dispersions cannot be significantly

reduced in size by improving the control on only few

parameters, but, all of them, or at least the most

important ones, need to be controlled at the same time

(Fig. 15). If looking at the structural integrity assess-

ment as a process in which many random variables

converge, it is clear that a reduction of the life

prediction dispersion can be achieved only when all

contributors’ dispersions are reduced simultaneously.

6 Conclusions

Uncertainty and variability of input parameters for

fatigue crack-growth calculations directly contribute

to reduce the reliability of predictions and to increase

the risk of unexpected structural failures. This work

presented a stochastic approach to fatigue crack-

growth predictions applied to a round bar under

tension–compression loading by considering multi-

source uncertainties.

The accuracy in measuring the initial crack sizes

turned out to be the most relevant contribution to

spread the lifespan distribution, followed by the

material scattering, by the geometrical tolerances

and by the loading conditions. Only by quantifying

all the contributors that can potentially endanger the

safety of structures, greater understanding of our

capability to predict the actual life of structures can be

reached.

Noteworthy spreads of predictions were computed,

thus highlighting the need to resort to probabilistic
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FCG procedures comprehensive of multiple uncer-

tainty sources. Being the structural integrity assess-

ment, a process in which many random variables

converge, improvements in the life prediction accu-

racy can be achieved only when all contributors’

dispersions are reduced simultaneously.
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Pokorný P, Náhlı́k L, Hutař P (2016a) Influence of variable

stress ratio during train operation on residual fatigue life-

time of railway axles. Procedia Struct Integr 2:3585–3592.

https://doi.org/10.1016/j.prostr.2016.06.447
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