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ABSTRACT: 

  

BACKGROUND: Radiogenomics uses machine-learning (ML) to directly connect the morphologic 

and physiological appearance of tumors on clinical imaging with underlying genomic features. 

Despite extensive growth in the area of radiogenomics across many cancers, and its potential 

role in advancing clinical decision making, no published studies have directly addressed 

uncertainty in these model predictions. 

  

METHODS: We developed a radiogenomics ML model to quantify uncertainty using transductive 

Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially 

matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions 

for regional EGFR amplification status (a common and important target in GBM) to resolve the 

intratumoral genetic heterogeneity across each individual tumor - a key factor for future 

personalized therapeutic paradigms. The model used probability distributions for each sample 

prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. 

We compared predictive accuracy and uncertainty of the transductive learning GP model against 

a standard GP model using leave-one-patient-out cross validation. 

  

RESULTS: Predictive uncertainty informed the likelihood of achieving an accurate sample 

prediction. When stratifying predictions based on uncertainty, we observed substantially higher 

performance in the group cohort (75% accuracy, n=95) and amongst sample predictions with the 

lowest uncertainty (83% accuracy, n=72) compared to predictions with higher uncertainty (48% 

accuracy, n=23), due largely to data interpolation (rather than extrapolation).  

  

CONCLUSION:  We present a novel approach to quantify radiogenomics uncertainty to enhance 

model performance and clinical interpretability. This should help integrate more reliable 

radiogenomics models for improved medical decision-making.  
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INTRODUCTION: 

 

The field of machine-learning (ML) has exploded in recent years, thanks to advances in 

computing power and the increasing availability of digital data. Some of the most exciting 

developments in ML have centered on computer vision and image recognition, with broad 

applications ranging from e-commerce to self-driving cars.  But these advances have also 

naturally dovetailed with applications in healthcare, and in particular, the study of medical 

images.1 The ability for computer algorithms to discriminate subtle imaging patterns has led to 

myriad ML tools aimed at improving diagnostic accuracy and clinical efficiency.2  But arguably, 

the most transformative application relates to the development of radiogenomics modeling, and 

its integration with the evolving paradigm of individualized oncology.1–3 

Radiogenomics integrates non-invasive imaging (typically Magnetic Resonance Imaging, 

or MRI) with genetic profiles as data inputs to train ML algorithms.  These algorithms identify the 

correlations within the training data to predict genetic aberrations on new unseen cases, using 

the MRI images alone.  In the context of individualized oncology, radiogenomics non-invasively 

diagnoses the unique genetic drug sensitivities for each patient’s tumor, which can inform 

personalized targeted treatment decisions that potentially improve clinical outcome. Foundational 

work in radiogenomics coincided with the first Cancer Genome Atlas (TCGA) initiative over a 

decade ago,4 which focused on patients with Glioblastoma (GBM) - the most common and 

aggressive primary brain tumor.  Since then, radiogenomics has extended to all major tumor types 

throughout the body,5–8 underscoring the broad scope and potential impact on cancer care in 

general. 

But as clinicians begin to assimilate radiogenomics predictions into clinical decision-

making, it will become increasingly important to consider the uncertainty associated with each of 

those predictions.  In the context of radiogenomics, predictive uncertainty stems largely from 

sparsity of training data, which is true of all clinical models that rely on typically limited sources of 

patient data. This sparsity becomes an even greater challenge when evaluating heterogeneous 

tumors like GBM, which necessitate image-localized biopsies and spatially matched MRI 

measurements to resolve the regional genetic subpopulations that comprise each tumor.   And 

as with any data driven approach, the scope of training data establishes the upper and lower 

bounds of the model domain, which guides the predictions for all new unseen test cases (i.e., new 

prospective patients).  In the ideal scenario, the new test data will fall within the distribution of the 

training domain, which allows for interpolation of model predictions, and the lowest degree of 

predictive uncertainty.  If the test data fall outside of the training domain, then the model must 

extrapolate predictions, at the cost of greater model uncertainty. Unfortunately, without knowledge 

of this uncertainty, it is difficult to ascertain the degree to which the new prospective patient case 

falls within the training scope of the model.  This could limit user confidence in potentially valuable 

model outputs. 

While predictive accuracy remains the most important measure of model performance, 

many non-medical ML-based applications (e.g.,weather forecasting, hydrologic forecasting) also 

estimate predictive uncertainty - usually through probabilistic approaches - to enhance the 

credibility of model outputs and to facilitate subsequent decision-making.9 In this respect, research 

in radiogenomics has lagged.  Past studies have focused on accuracy (e.g., sensitivity/specificity) 

and covariance (e.g., standard error, 95% confidence intervals) in group analyses, but have not 

yet addressed the uncertainty for individual predictions.10 Again, such individual predictions (e.g. 

a new prospective patient) represent the “real world” scenarios for applying previously trained 

radiogenomics models. Quantifying these uncertainties will help to understand the conditions of 
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optimal model performance, which will in turn help define how to effectively integrate 

radiogenomics models into effective clinical practice. 

To address this critical gap, we present a probabilistic method to quantify the uncertainty 

in radiogenomics modeling, based on Gaussian Process (GP) and transductive learning.11,9,12,13 

The GP method can quantify predictive uncertainty through probability distributions of regional 

genetic aberrations in each patient’s tumor.  As a case study, we develop our model in the setting 

of GBM, which presents particular challenges for individualized oncology due to its profound 

intratumoral heterogeneity and likelihood for tissue sampling errors. We address the confounds 

of intratumoral heterogeneity by utilizing a unique and carefully annotated dataset of image-

localized biopsies with spatially matched MRI measurements from a cohort of untreated GBM 

patients.  As proof of concept, we focus on predictions of EGFR amplification status, as this serves 

as a common therapeutic target for many clinically available drugs. We demonstrate a 

progression of optimization steps that not only quantify, but also minimize predictive uncertainty, 

and we investigate how this relates to confidence and accuracy of model predictions.  Our 

overarching goal is to provide a pathway to clinically integrating reliable radiogenomics predictions 

as part of decision support within the paradigm of individualized oncology.      

  

RESULTS: 

 

Radiogenomics can resolve the regional heterogeneity of EGFR amplification 

status in GBM:  We collected a dataset of 95 image-localized biopsies from a cohort of 25 primary 

GBM patients.  We quantified and compared the EGFR amplification status for each biopsy 

sample with spatially matched image features from corresponding multi-parametric MRI, which 

included conventional and advanced (diffusion, tensor, perfusion) MRI techniques.  We used 

these spatially matched datasets to construct a transductive learning GP model to classify EGFR 

amplification status. This model quantified predictive uncertainty for each sample, by measuring 

predictive variance and the distribution mean for each predicted sample, relative to the training 

model domain.  We used these features to test the hypothesis that the sample belongs to the 

class predicted by the distribution mean (H1) versus not (H0), based on a standard one-sided z 

test. This generated a p-value for each sample, which reflected the uncertainty of the prediction, 

such that smaller p-values corresponded with lower predictive uncertainty (i.e., higher certainty). 

We integrated these uncertainty estimates using transductive learning to optimize model training 

and predictive performance.  In leave-one-patient-out cross validation, the model achieved an 

overall accuracy of 75% (77% sensitivity, 74% specificity) across the entire pooled cohort (n=95), 

without stratifying based on the certainty of the predictions. Figure 1 illustrates how the spatially 

resolved predictive maps correspond with stereotactic biopsies from the regionally distinct genetic 

subpopulations that can co-exist within a single patient’s GBM tumor. 
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Figure 1:  Radiogenomics maps resolve the regional intratumoral heterogeneity of EGFR 

amplification status in GBM.  Shown are two different image-localized biopsies (Biopsy #1, 

Biopsy #2) from the same GBM tumor in a single patient.  For each biopsy, T1+C images (left)  

demonstrate the enhancing tumor segment (dark green outline, T1W+Contrast) and the 

peripheral non-enhancing tumor segment (light green outline, T2W lesion).  Radiogenomics color 

maps for each biopsy (right) also show regions of predicted EGFR amplification (amp, red) and 

EGFR wildtype (wt, blue) status overlaid on the T1+C images.  For biopsy #1 (green square), the 

radiogenomics map correctly predicted low EGFR copy number variant (CNV) and wildtype status 

with high predictive certainty (p<0.05).  Conversely for biopsy #2 (green circle), the maps correctly 

predicted high EGFR CNV and amplification status, also with high predictive certainty (p<0.05).   

Note that both biopsies originated from the non-enhancing tumor segment, suggesting the 

feasibility for quantifying EGFR drug target status for residual subpopulations that are typically 

left unresected followed gross total resection. 

 

Interpolation corresponds with lower predictive uncertainty and higher model 

performance:  For data-driven approaches like ML, predictions can be either interpolated 

between known observations (i.e., training data) within the model domain, or extrapolated by 

extending model trends beyond the known observations. Generally speaking, extrapolation 

carries greater risk of uncertainty, while interpolation is considered more reliable.  Our data 

suggest that prioritizing interpolation (over extrapolation) during model training can reduce the 

uncertainty of radiogenomics predictions while improving overall model performance. 

As a baseline representation of current methodology, we trained a standard GP model without 

the transductive learning capability to prioritize maximal predictive accuracy for distinguishing 

EGFR amplification status, irrespective of the type of prediction (e.g., interpolation vs 

extrapolation).  We applied this standard model to quantify which sample predictions in our cohort 

(n=95) were interpolated (p<0.05) versus extrapolated (p>0.05, standard deviation >0.4). When 

comparing with the standard GP model as the representative baseline, the transductive learning 
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GP model shifted the type of prediction from extrapolation to interpolation in 11.6% (11/95) of 

biopsy cases.  Amongst these sample predictions, classification accuracy increased from  63.6% 

with extrapolation (7/11 correctly classified) to 100% with interpolation (11/11 correctly classified). 

The transductive learning GP model also reduced the number of sample predictions that 

suffered from uncertainty due to inherent imperfections of model classification.  This specifically 

applied to those predictions with distributions that fell in close proximity to the classification 

threshold (so called border uncertainty), which associated with large p values (p>0.05) and low 

standard deviation (<0.40) (Figure 2).  When comparing with the standard GP model as the 

representative baseline, the transductive learning GP model shifted the type of prediction, from 

border uncertainty to interpolation, in 15.8% (15/95) of biopsy cases.  Amongst these sample 

predictions, classification accuracy dramatically increased from 40% in the setting of border 

uncertainty (6/15 correctly classified) to 93.3% with interpolation (14/15 correctly classified). 

Figure 3 shows the overall shift in sample predictions when comparing the standard GP and 

transductive learning GP models, including the increase in interpolated predictions. 

 

  
 

Figure 2: Transductive Learning GP increases the number of interpolated sample 

predictions compared to standard GP.  Shown are scatter plots of standard deviation (S.D.) 

(y-axis) versus log-transform of p-value (x-axis) for all 95 sample predictions by the (A) Standard 

GP and (B) Transductive Learning GP models.  The blue region demarcates those samples with 

p<0.05 (log transform < -3) corresponding to interpolated predictions.  The red region demarcates 

extrapolated predictions (p>0.05, S.D. >0.40), while the green region demarcates predictions with 

border uncertainty (p>0.05, S.D. <0.40).  The green circles denote those samples that shifted 

from border uncertainty to interpolated predictions with transductive learning.  Similarly, the red 

circles denote those samples that shifted from extrapolated to interpolated predictions with 

transductive learning.  Transductive GP produced 72/95 interpolated sample predictions, 
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compared with 58/95 for Standard GP.  Note the substantial decrease in extrapolated predictions 

with the transductive learning GP model. 

 

 
Figure 3: Model performance increases with lower predictive uncertainty.  Shown are the 

Area-under-the-curve (AUC) measures for Receiver Operator Characteristics (ROC) analysis of 

sample predictions stratified by predictive uncertainty.  The sample predictions with lowest 

uncertainty (p<0.05) (blue curve, n=72) achieved the highest performance (AUC=0.86) compared 

to the entire grouped cohort irrespective of uncertainty (AUC=0.83) (black curve, n=95).  

Meanwhile, the sample predictions with greatest uncertainty (i.e., least certain predictions) 

showed the lowest classification accuracy (AUC=0.5) (red curve, n=23). 

 

We observed substantially different sizes in feature sets and overall model complexity 

when comparing the standard GP and transductive GP models, as summarized in Table 1.  While 

the standard GP model selected 17 image features (across 5 different MRI contrasts), the 

transductive GP model selected only 4 features (across 2 MRI contrasts).  The lower complexity 

of the transductive GP model likely stemmed from a key difference in model training: the 

transductive learning GP model first prioritized feature selection that minimized average predictive 

uncertainty (i.e., lowest sum of p-values), which helped to narrow candidate features to a relevant 

and focussed subset. Only then did the model prioritize predictive accuracy, within this smaller 

feature subset.  Meanwhile, the standard GP model selected from the entire original feature set 

to maximize predictive accuracy, without constraints on predictive uncertainty. Although the 

accuracy was optimized on training data, the standard GP model could not achieve the same 
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level of cross validated model performance (60% accuracy, 31% sensitivity, 71% specificity) 

compared to the transductive learning GP model, due largely to lack of control of extrapolation 

risks. 

 

TABLE 1:  Differences in Image features and model complexity when comparing standard 

GP and transductive learning GP models. The transductive learning model, which prioritized 

model uncertainty during the training process, comprised fewer image features and lower 

complexity compared with the standard GP model. 

  

  Transductive Learning GP model Standard GP model 

Select

ed 

image 

textur

e 

featur

es 

1. T2.Information.Measure.of.Correl

ation.2_Avg_1 

2. T2.Angular.Second.Moment_Avg

_1 

3. T2.Kurtosis 

4. rCBV.Contrast_Avg_1 

1. T2.Difference.Entropy_Avg_3 

2. T2.Contrast_Avg_1 

3. T2.Entropy_Avg_1 

4. SPGRC.Sum.Variance_Avg_3 

5. SPGRC.Gabor_Std_0.4_0.1 

6. rCBV.Angular.Second.Moment_A

vg_1 

7. rCBV.Difference.Variance_Avg_1 

8. rCBV.Kurtosis 

9. EPI.Gabor_Mean_0.4_0.1 

10. EPI.Angular.Second.Moment_Av

g_1 

11. FA.Angular.Second.Moment_Avg

_1 

12. FA.Skewness 

13. FA.Difference.Variance_Avg_3 

14. FA.Entropy_Avg_1 

15. FA.Sum.Variance_Avg_1 

16. FA.Information.Measure.of.Correl

ation.1_Avg_1 

17. FA.Range" 

  

  Predictive uncertainty can inform the likelihood of achieving an accurate sample 

prediction, which enhances clinical interpretability:  Existing published studies have used 

predictive accuracy to report model performance, but have not yet addressed model uncertainty.  

Our data suggest that leveraging both accuracy and uncertainty can further optimize model 

performance and applicability.  When stratifying transductive learning GP sample predictions 

based on predictive uncertainty, we observed a striking difference in model performance. The 

subgroup of sample predictions with the lowest uncertainty (i.e., the most certain predictions) 

(p<0.05) (n=72) achieved the highest predictive performance (83% accuracy, 83% sensitivity, 

83% specificity) compared to the entire cohort as a whole (75% accuracy, n=95).  This could be 

explained by the substantially lower performance (48% accuracy, 63% sensitivity, 40% specificity) 

observed amongst the subgroup of highly uncertain sample predictions (p>0.05) (n=23).  Figure 

3 shows the differences in model performance on ROC analysis when comparing sample 

predictions based on uncertainty.  These discrepancies in model performance persisted even 
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when stratifying with less stringent uncertainty thresholds (e.g., p<0.10, p<0.15), which we 

summarize in Table 2.  Together, these results suggest that predictive uncertainty can inform the 

likelihood of achieving an accurate sample prediction, which can help discriminate radiogenomics 

outputs, not only across patients, but at the regional level within the same patient tumor (Figure 

4).      

 

 

TABLE 2:  Differences in predictive accuracy related to certain versus uncertain sample 

predictions.  Shown are the differences in predictive performance of the transductive learning 

GP model for the entire pooled cohort and also when stratifying the sample predictions with high 

certainty (low p-values) versus low certainty (high p-values) at various p-value thresholds. 

  

Uncertainty threshold Number of samples 

(n) 

Overall accuracy Sensitivity/Specificity 

(%/%) 

Entire pooled cohort 95 75% 77/74 

        

p<0.05 (certain) 72 83% 83/83 

p>0.05 (uncertain) 23 48% 63/40 

        

p<0.10 (certain) 78 79% 83/78 

p>0.10 (uncertain) 17 53% 63/44 

        

p<0.15 (certain) 81 79% 84/77 

p>0.15 (uncertain) 14 50% 57/43 
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Figure 4: Model uncertainty can inform the likelihood of achieving an accurate 

radiogenomics prediction for EGFR amplification status.  We obtained two separate biopsies 

(#1 and #2) from the same tumor in a 44 year-old male patient with primary GBM.  The (A) T2W 

and (B) T1+C images demonstrate the enhancing (dark green outline, T1W+Contrast) and 

peripheral non-enhancing tumor segments (light green outline, T2W lesion).  The (C) 

radiogenomics color map shows regions of predicted EGFR amplification (amp, red) and EGFR 

wildtype (wt, blue) status overlaid on the T1+C images.  For biopsy #1 (green circle), the 

radiogenomics model predicted EGFR wildtype status (blue) with high certainty, which was 

concordant with biopsy results (green box).  For biopsy #2 (yellow circle), the radiogenomics 

model showed poor certainty (i.e., high uncertainty), with resulting discordance between predicted 

(red) and actual EGFR status (yellow box). 

  

DISCUSSION: 

The era of genomic profiling has ushered new strategies for improving cancer care and 

patient outcomes through more personalized therapeutic approaches.14 In particular, the 

paradigm of individualized oncology can optimize targeted treatments to match the genetic 

aberrations and drug sensitivities for each tumor.15  This holds particular relevance for many 

aggressive tumors that may not be amenable to complete surgical resection, such as GBM or 

pancreatic adenocarcinoma, or other cancers that have widely metastasized.  In these cases, the 

targeted drug therapies represent the primary lines of defense in combating the residual, 

unresected tumor populations that inevitably recur and lead to patient demise. Yet, a fundamental 

challenge for individualized oncology lies in our inability to resolve the internal genetic 

heterogeneity of these tumors.  Taking GBM as an example, each patient tumor actually 

comprises multiple genetically distinct subpopulations, such that the genetic drug targets from 

one biopsy location may not accurately reflect those from other parts of the same tumor.16 Tissue 

sampling errors are magnified by the fact that surgical targeting favors MRI enhancing tumor 
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components but leaves behind the residual subpopulations within the non-enhancing tumor 

segment.17–19  Ironically, while these uncharacterized residual subpopulations represent the 

primary targets of adjuvant therapy, their genetic drug targets remain “unknown”, even after gross 

total resection.20,21 

With recent advances in the field of radiogenomics, image-based modeling offers a 

promising and clinically feasible solution to bridge the challenges of intratumoral heterogeneity. 

The past decade has seen a growing number of published studies comparing MRI with genetic 

profiles in GBM, typically in a non-localizing fashion.21–29 But for the first-time - based on work 

using machine-learning (ML) and image-localized biopsies - spatially resolved radiogenomics 

maps can now quantify the regional intratumoral variations of key GBM driver genes, at the image 

voxel level, throughout different regions of the same tumor.18  This includes highly relevant drug 

targets such as Epidermal Growth Factor Receptor (EGFR), which amplifies in as many as 30-

45% of GBM tumors, and serves as the target for many clinically tested and commercially 

available inhibitors.  Importantly, these radiogenomics maps of intratumoral heterogeneity offer a 

clinically viable solution for diagnosing the potentially unique drug targets within the residual 

unresected tumor segment, which otherwise represent a major barrier to individualized oncology. 

As the data available to train machine learning models is never fully representative of the 

predictive cases, model predictions always have some inherent uncertainty in their predictions. 

To translate these models into clinical practice, the radiogenomics predictions need to not only 

be accurate, but must also inform the clinician of the confidence or certainty of each individual 

prediction.  This underscores the importance of quantifying predictive uncertainty, but also 

highlights the major gaps that currently exist in this field. To date, no published studies have 

addressed predictive uncertainty in the context of radiogenomics.  And yet, uncertainty represents 

a fundamental aspect of these data-driven approaches.  In large part, this uncertainty stems from 

the inherent sparsity of training data, which limits the scope of the model domain. As such, there 

exists a certain degree of probability that any new unseen case may fall outside of the model 

domain, which would require the model to generalize or extrapolate beyond the domain to arrive 

at a prediction.  We must recognize that all clinical models suffer from this sparsity of data, 

particularly when relying on spatially resolved biopsy specimens in the setting of intratumoral 

heterogeneity.  But knowledge of which predicted cases fall within or outside of the model domain 

will help clinicians make informed decisions on whether to rely upon or disregard these model 

predictions on an individualized patient-by-patient basis. 

The transductive learning GP model presented here addresses the challenges of 

predictive uncertainty at various levels.  First, the model training incorporates the minimization of 

uncertainty as part of feature selection, which inherently optimizes the model domain to prioritize 

interpolation rather than extrapolation.  Our data show that interpolated predictions generally 

correspond with higher predictive accuracy compared with extrapolated ones.  Thus, by shifting 

the model domain towards interpolation, model performance rises.  Second, along these same 

lines, the GP model can inform the likelihood of achieving an accurate prediction, by quantifying 

the level of uncertainty for each sample prediction.  We observed a dramatic increase in 

classification accuracy among those sample predictions with low uncertainty (p<0.05), which 

corresponded with interpolated predictions.  This allows the clinician to accept the reality that not 

all model predictions are correct.  But by qualifying each sample prediction, the model can inform 

of which patient cases should be trusted over others.  Third, the transductive learning process 

also appeared to impact the sample predictions suffering from border uncertainty, where the 

predicted distribution fell in close proximity to the classification threshold.  Compared to the 

standard GP baseline model, the transductive learning model shifted the domain, such that most 
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of these sample predictions could be interpolated, which further improved model performance.  

Finally, we noted that the incorporation of uncertainty in the training of the transductive learning 

model resulted in a substantial reduction in selected features and model complexity, compared 

with the standard GP approach to model training.  While lower model complexity would suggest 

greater generalizability, further studies are likely needed to confirm this assertion. 

We recognize various limitations to our study.  First, our relatively small sample size 

precluded the separation of our cohort into training and validation sets.  We employed leave-one-

patient-out cross validation as a means to test our predictive models, but future studies are likely 

needed as we expand our patient cohort.  We also acknowledge that there are various types of 

uncertainty that contribute to model performance that were not directly tested in this study.  We 

focused on the most recognized source of uncertainty that impacts data-driven approaches like 

radiogenomics, which is data sparsity and the limitations of the model domain.  But at the same 

time, we also designed patient recruitment, MRI scanning acquisition and post-processing 

methodology, surgical biopsy collection, and tissue treatment to minimize potential noise of data 

inputs.  With that said, we understand that future work is needed to evaluate these potential 

sources of model uncertainty. Further, while neurosurgeons tried to minimize effects of brain shift 

by using small craniotomy sizes and by visually validating stereotactic biopsy locations, brain shift 

could have led to possible misregistration errors. Rigid-body coregistration of stereotactic imaging 

with the advanced MR-imaging was employed to also try to reduce possible geometric distortions. 
30,31 However, our previous experience suggests that these potential contributions to 

misregistration results in about 1-2 mm of error, which is similar to previous studies using 

stereotactic needle biopsies.32 But as a potential source of uncertainty, future work can study 

these factors in a directed manner. 

  

CONCLUSION:  In this study, we highlight the challenges of predictive uncertainty in 

radiogenomics and present a novel approach that not only quantifies model uncertainty, but also 

leverages it to enhance model performance and interpretability.   This work offers a pathway to 

clinically integrating reliable radiogenomics predictions as part of decision support within the 

paradigm of individualized oncology. 

METHODS: 

Acquisition and Processing of Clinical MRI and Histologic Data: 

Patient recruitment and Surgical biopsies:  We recruited patients with clinically suspected GBM 

undergoing preoperative stereotactic MRI for surgical resection as previously described.18  we 

confirmed histologic diagnosis of GBM in all cases.  Patients were recruited to this study, 

“Improving diagnostic Accuracy in Brain Patients Using Perfusion MRI,” under the protocol 

procedures approved by the Barrow Neurological Institute (BNI) institutional review board. 

Informed consent from each subject was obtained prior to enrollment.  All data collection and 

protocol procedures were carried out following the approved guidelines and regulations outlined 

in the BNI IRB. Neurosurgeons used pre-operative conventional MRI, including T1-Weighted 

contrast-enhanced (T1+C) and T2-Weighted sequences (T2W), to guide multiple stereotactic 

biopsies as previously described.18,33 In short, each neurosurgeon collected an average of 3-4 

tissue specimens from each tumor using stereotactic surgical localization, following the smallest 

possible diameter craniotomies to minimize brain shift.  Neurosurgeons selected targets 

separated by at least 1 cm from both enhancing core (ENH) and non-enhancing T2/FLAIR 

abnormality in pseudorandom fashion, and recorded biopsy locations via screen capture to allow 

subsequent coregistration with multiparametric MRI datasets. 
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Histologic analysis and tissue treatment:  Tissue specimens (target volume of 125mg) were flash 

frozen in liquid nitrogen within 1-2 min from collection in the operating suite and stored in -80oC 

freezer until subsequent processing. Tissue was retrieved from the freezer and embedded frozen 

in optimal cutting temperature (OCT) compound.  Tissue was cut at 4 um sections in a  -20 degree 

C cryostat (Microm-HM-550) utilizing microtome blade.18,33
 Tissue sections were stained with 

hematoxylin and eosin (H&E) for neuropathology review to ensure adequate tumor content 

(≥50%).    

Whole Exome Sequencing and Alignment and Variant Calling: We performed DNA isolation 

and determined copy number variant (CNV) for all tissue samples using array comparative 

genomic hybridization (aCGH) and exome sequencing as previously published.18,34–36 This 

included application of previously described CNV detection to whole genome long insert 

sequencing data and exome sequencing.18,34–36  Briefly, tumor-normal whole exome sequencing 

was performed as previously described.37 DNA from fresh frozen tumor tissue and whole blood 

(for constitutional DNA analysis) samples were extracted and QC using DNAeasy Blood and 

Tissue Kit (Qiagen#69504). Tumor-normal whole exome sequencing was performed with the 

Agilent Library Prep Kit RNA libraries. Sequencing was performed using the Illumina HiSeq 4000 

with 100bp paired-end reads. Fastq files were aligned with BWA 0.6.2 to GRCh37.62 and the 

SAM output were converted to a sorted BAM file using SAMtools 0.1.18. Lane level samples 

BAMs were then merged with Picard 1.65 if they were sequence across multiple lanes. 

Comparative variant calling for exome data was conducted with Seurat. For copy number 

detection was applied to the whole exome sequence as described (PMID 27932423). Briefly, copy 

number detection was based on a log2 comparison of normalized physical coverage (or clonal 

coverage) across tumor and normal whole exome sequencing data. Normal and tumor physical 

coverage was then normalized, smoothed and filtered for highly repetitive regions prior to 

calculating the log2 comparison. To quantify the copy number aberrations, CNV score was 

calculated based on the intensity of copy number change (log ratio). 

  

MRI protocol, parametric maps, and image coregistration:   Conventional MRI and general 

acquisition conditions:  We performed all imaging at 3 Tesla  field strength (Sigma HDx; GE-

Healthcare Waukesha Milwaukee; Ingenia, Philips Healthcare, Best, Netherlands; Magnetome 

Skyra; Siemens Healthcare, Erlangen Germany) within 1 day prior to stereotactic surgery.  

Conventional MRI included standard pre- and post-contrast T1-Weighted (T1-C, T1+C, 

respectively) and pre-contrast T2-Weighted (T2W) sequences.  T1W images were acquired using 

spoiled gradient recalled-echo inversion-recovery prepped (SPGR-IR prepped) 

(TI/TR/TE=300/6.8/2.8ms; matrix=320×224; FOV=26cm; thickness=2mm).  T2W images were 

acquired using fast-spin-echo (FSE) (TR/TE=5133/78ms; matrix=320x192; FOV=26cm; 

thickness=2mm).  T1+C images were acquired after completion of Dynamic Susceptibility-

weighted Contrast-enhanced (DSC) Perfusion MRI (pMRI) following total Gd-DTPA (gadobenate 

dimeglumine) dosage of 0.15 mmol/kg as described below.18,33,38 Diffusion Tensor (DTI): DTI 

imaging was performed using Spin-Echo Echo-planar imaging (EPI) [TR/TE 10000/85.2ms, 

matrix 256x256; FOV 30cm, 3mm slice, 30 directions, ASSET, B=0,1000].  The original DTI image 

DICOM files were converted to a FSL recognized NIfTI file format, using MRIConvert 

(http://lcni.uoregon.edu/downloads/mriconvert), before processing in FSL from semi-automated 

script. DTI parametric maps were calculated using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), to 

generate whole-brain maps of mean diffusivity (MD) and fractional anisotrophy (FA) based on 

previously published methods.20  DSC-pMRI: Prior to DSC acquisition, preload dose (PLD) of 0.1 

mmol/kg was administered to minimize T1W leakage errors.  After PLD, we employed Gradient-
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echo (GE) EPI [TR/TE/flip angle=1500ms/20ms/60o, matrix 128x128, thickness 5mm] for 3 

minutes.  At 45 sec after the start of the DSC sequence, we administered another 0.05 mmol/kg 

i.v. bolus Gd-DTPA.18,33,38 The initial source volume of images from the GE-EPI scan contained 

negative contrast enhancement (i.e., susceptibility effects from the PLD administration) and 

provided the MRI contrast labeled EPI+C.  At approximately 6 minutes after the time of contrast 

injection, the T2*W signal loss on EPI+C provides information about tissue cell density from 

contrast distribution within the extravascular, extracellular space.33,39 We performed leakage 

correction and calculated relative cerebral blood (rCBV) based on the entire DSC acquisition 

using IB Neuro (Imaging Biometrics, LLC) as referenced.40,41 We also normalized rCBV values to 

contralateral normal appearing white matter as previously described.33,38  Image coregistration:  

For image coregistration, we employed tools from ITK (www.itk.org) and IB Suite (Imaging 

Biometrics, LLC) as previously described.18,33,38  All datasets were coregistered to the relatively 

high quality DTI B0 anatomical image volume.  This offered the additional advantage of minimizing 

potential distortion errors (from data resampling) that could preferentially impact the 

mathematically sensitive DTI metrics.  Ultimately, the coregistered data exhibited in plane voxel 

resolution of ~1.17 mm (256x256 matrix) and slice thickness of 3mm. 

ROI segmentation, Image feature extraction and Texture Analysis Pipeline: We generated regions 

of interest (ROIs) measuring 8×8×1 voxels (9.6×9.6×3mm) for each corresponding biopsy 

location. A board-certified neuroradiologist (L.S.H.) visually inspected all ROIs to ensure 

accuracy.18,33 From each ROI, we employed our in-house texture analysis pipeline to extract a 

total of 336 texture features from each sliding window. This pipeline, based on previous 

iterations18,33, included measurements of first-order statistics from raw image signals (18 

features): mean (M) and standard deviation (SD) of gray-level intensities, Energy, Total Energy, 

Entropy, Minimum, 10th percentile, 90th percentile, Maximum, Median,  Interquartile Range, 

Range, Mean Absolute Deviation (MAD), Robust Mean Absolute Deviation (rMAD), Root Mean 

Squared (RMS), Skewness, Kurtosis,  Uniformity.42 We mapped intensity values within each 

window onto the range of 0–255. This step helped standardize intensities and reduced effects of 

intensity nonuniformity on features extracted during subsequent texture analysis. Texture analysis 

consisted of two separate but complementary texture algorithms:  gray level co-occurrence matrix 

(GLCM),43,44 and Gabor Filters (GF)45, based on previous work showing high relevance to regional 

molecular and histologic characteristics.18,33 The output from the pipeline comprised a feature 

vector from each sliding window, composed of 56 features across each of the 6 MRI contrasts, 

for a total of 336 (6*56) features. 

  

Radiogenomics modeling and quantification of predictive uncertainty: 

  

Gaussian Process (GP) model (Standard) 

  

A GP model was chosen to predict EGFR status using MRI features. A GP model offers the 

flexibility of identifying nonlinear relationships between input and output variables.9,11–13 More 

importantly, it generates a probability distribution for each prediction, which quantifies the 

uncertainty of the prediction. This capability is important for using the prediction result to guide 

clinical decision making.  We applied this GP framework to our spatially matched MRI and image-

localized genetic data to build a predictive model for the probability distributions of EGFR 

amplification for each biopsy specimen. Because the GP model generates probability distributions 

(rather than point estimates), this allows for direct quantification of both predictive uncertainty and 

predictive accuracy by using the predictive variance or standard deviation of the distribution and 
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the predictive mean in comparison with the true EGFR status, respectively.  The standard GP 

model measures but does not explicitly incorporate predictive uncertainties for model optimization 

during the training phase of development (as detailed below with Transductive Learning).  In other 

words, the standard GP model can measure but is built without considering the predictive 

uncertainty. 

 

Next we illustrate how GP works. Let {𝐱#, … , 𝐱&} be the input variables (i.e., texture features) 

corresponding to 𝑁 samples. GP assumes a set of random functions corresponding to these 

samples, {𝑓(𝐱#), … , 𝑓(𝐱&)}. This is called a Gaussian Process because any subset of {𝑓(𝐱#), … , 𝑓(𝐱&)} follows a joint Gaussian distribution with zero mean and the covariance between 

two samples 𝐱, and 𝐱- computed by a kernel function 𝐾/𝐱, , 𝐱-0. The input variables are linked with 

the output (i.e., the transformed CNV) by 𝑦, = 𝑓(𝐱,) + 𝜖,, where 𝜖,~𝑁(0, 𝜎8 ) is a Gaussian noise.  

Given a training dataset {𝐗, 𝐘} where 𝐗 is a matrix containing the input variables of all training 

samples and 𝐘 is a vector containing the output variables of these samples, the predictive 

distribution for a new test sample 𝐱∗ is 

𝑓(𝐱∗)~𝑁/𝜇∗, 𝜎∗80,                  
where 

 𝜇∗ = 𝐾(𝐱∗, 𝐗)/𝐾(𝐗, 𝐗) + 𝜎8 𝐈0>#𝐘,                     

𝜎∗8 = 𝐾(𝐱∗, 𝐱∗) − 𝐾(𝐱∗, 𝐗)/𝐾(𝐗, 𝐗) + 𝜎8 𝐈0>#𝐾(𝐱∗, 𝐗)@.     

   

Uncertainty quantification: While the predictive mean can be used as a point estimate of the 

prediction, the variance  provides additional information about the uncertainty of the prediction. 

Furthermore, using this predictive distribution, one can test the hypothesis that a prediction is 

greater or less than a cutoff of interest. For example, in our case, we are interested in knowing if 

the prediction of the CNV of a sample is greater than 3.5 (considered as amplification). A small p 

value (e.g., <0.05) of the hypothesis testing implies prediction with certainty. 

Feature selection: When the input variables are high-dimensional, including all of them in training 

a GP model has the risk of overfitting. Therefore, feature selection is needed. We used forward 

stepwise selection46, which started with an empty feature set and added one feature at each step 

that maximally improves a pre-defined criterion until no more improvement can be achieved. To 

avoid overfitting, a commonly used criterion is the accuracy computed on a validation set; when 

the sample size is limited, cross-validation accuracy can be adopted. In our case, we adopt leave-

one-patient-out cross validation accuracy to be consistent with the natural grouping of samples. 

The accuracy is computed by comparing the true and predicted CNVs; a match is counted when 

both are on the same side of 3.5 (i.e., both being amplified or non-amplified). 

Transductive Learning GP model 

We sought to develop a radiogenomics model that would not only maximize predictive accuracy 

but also minimize the predictive uncertainty.  To this end, we added a Transductive Learning 

component to the standard GP model (described above), which quantifies predictive uncertainty, 

and uses that information during the model training process to minimize uncertainty on 

subsequent predictions.  Briefly, this model employs Transductive Learning to perform feature 

selection in an iterative, stepwise fashion to prioritize the minimization of average predictive 
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uncertainty during model training.  We applied this GP model with Transductive Learning to our 

spatially matched MRI and image-localized genetic data to predict the probability distribution of 

EGFR amplification for each biopsy specimen. 

  

Although a typical supervised learning model is trained using labeled samples, i.e., samples with 

both input and output variables available, some machine learning algorithms have been 

developed to additionally incorporate unlabeled samples, i.e., samples with only input variables 

available. These algorithms belong to a machine learning subfield called transductive learning or 

semi-supervised learning.47 Transductive learning is beneficial when sample labeling is costly or 

labor-intensive, which results in a limited sample size. This is the case for our problem. 

While the standard GP model described in the previous section can only utilize labeled samples, 

a transductive GP model was developed by Wang et al.48 Specifically, let {𝐗A , 𝐘A} and {𝐗B} be the 

sets of labeled and unlabeled samples used in training, respectively. A transductive GP first 

generates predictions for the unlabeled samples by applying the standard GP to the labeled 

samples, 𝐘CB. Here 𝐘CB contains the means of the predictive distributions. Then, a combined 

dataset {𝐗A , 𝐘A} ∪ E𝐗B , 𝐘CBF was used as the training dataset to generate a predictive distribution 

for each new test sample 𝐱∗, i.e.,  

𝑓GHIJ(𝐱∗)~𝑁/𝜇GHIJ∗ , 	𝜎GHIJ∗ 80, with                

𝜇GHIJ∗ = 𝐾GHIJ/𝐾(𝐗A , 𝐗A) + 𝜎8 𝐈0>#𝐘A,                     
	𝜎GHIJ∗ 8 = 𝐾(𝐱∗, 𝐱∗) − L		𝐾(𝐱∗, 𝐗A)𝐾(𝐱∗, 𝐗B) M

@ N𝐾(𝐗A , 𝐗A) + 𝜎8 𝐈															𝐾(𝐗A , 𝐗B)𝐾(𝐗A , 𝐗B)@					𝐾(𝐗B , 𝐗B) + 𝜎8 𝐈 O
>#
L		𝐾(𝐱∗, 𝐗A)𝐾(𝐱∗, 𝐗B) M, 

where       

𝐾GHIJ = 𝐾(𝐱∗, 𝐗A) + 𝐾(𝐱∗, 𝐗B)/𝐾(𝐗B , 𝐗B) + 𝜎8 𝐈0>#𝐾(𝐗B , 𝐗A). 
  

To decide which unlabeled samples to include in transductive GP, Wang et al.48 points out the 

importance of “self-similarity”, meaning the similarity between the unlabeled and test samples. 

Based on this consideration, we included the eight neighbors of the test sample on the image as 

the unlabeled samples. The labeled samples are those from other patients (i.e., other than the 

patient where the test sample is from), which are the same as the samples used in GP. 

Uncertainty quantification: Because transductive GP also generates a predictive distribution, the 

same approach as that described for GP can be used to quantify the uncertainty of the prediction. 

Feature selection: The same forward stepwise selection procedure as GP was adopted to select 

features for transductive GP. Because transductive GP significantly reduces the prediction 

variance, we found that feature selection could benefit from minimizing leave-one-patient-out 

cross validation uncertainty as the criterion instead of maximizing the accuracy. Specifically, we 

computed the p value for each prediction that reflects the uncertainty (the smaller the p, the more 

certain of the prediction) and selected features to minimize the leave-one-patient-out cross 

validation p value. 

Model comparison by theoretical analysis 
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The original paper that proposed transductive GP showed empirical evidence that it outperformed 

GP but not theoretical justification. In this paper, we derived several theorems to reveal the 

underlying reasons. The proofs are skipped but available upon request.  

Theorem 1: When applying both GP and transdudtive GP to predict a test sample 𝐱∗, the 

predictive variance of transductive GP is no greater than GP, i.e., 	𝜎GHIJ∗ 8 < 𝜎∗8.  
Theorem 2: Consider a test sample 𝐱∗. Let {𝐗A , 𝐘A} be the set of labeled samples used in training 

by GP. Let {𝐗B} be the set of unlabeled samples used in training by transductive GP in addition 

to the labeled set. If 𝐾(𝐗B , 𝐗A) → 𝟎 and (𝐗B , 𝐱∗)→ 𝟎, i.e., the distances of the unlabeled samples 

with respect to the labeled and test samples go to zero, then the predictive distribution for 𝐱∗ by 

transductive GP, 𝑓GHIJ(𝐱∗), converges to that by GP, 𝑓(𝐱∗), with respect to Kullback–Leibler 

divergence , i.e., 𝑓GHIJ S→ 𝑓. 

  

Model comparison on prediction accuracy and uncertainty 

Using the selected features from each model (GP and transductive GP), we computed the 

prediction accuracy and uncertainty under leave-one-patient-out cross validation (LopoCV). The 

output from each GP model comprised a predictive distribution including a predictive mean and a 

predictive variance. We used the predictive mean as the point estimator for the CNV on the 

transformed scale, and used this to classify each biopsy sample as either EGFR amplified 

(CNV>3.5) or EGFR non-amplified (CNV<3.5). This process was iterated until every patient 

served as the test case (all other patients as training).  Note that LopoCV in theory provides 

greater rigor compared to k-fold cross validation or leave-one-out cross validation (LOOCV), 

which leaves out a single biopsy sample as the test case.  LopoCV would likely better simulate 

clinical practice (i.e., the model is used on a per-patient basis, rather than on a per-sample basis). 

In addition to predictive mean, each GP model output also includes predictive variance for each 

sample, which allows for quantification of predictive uncertainty. Specifically, for each prediction 

on each biopsy, we tested the hypothesis that the sample belongs to the class predicted by the 

mean (H1) versus not (H0), using a standard one-sided z test. The p-value of this test reflects the 

certainty of the prediction, such that smaller p values correspond with lower predictive uncertainty 

(i.e., greater certainty) for each sample classified by the model. 

Classification of EGFR status and CNV data transformation: We employed the CNV threshold of 

3.5 to classify each biopsy sample as EGFR normal (CNV<3.5) vs EGFR amplified (CNV>3.5) as 

a statistically conservative approach to differentiating amplified samples from diploidy and triploidy 

samples.49   As shown in prior work, the log-scale CNV data for EGFR status can also exhibit 

heavily skewed distributions across a population of biopsy samples, which can manifest as a long 

tail with extremely large values (up to  22-fold log scale increase) in a relative minority of EGFR 

amplified samples.50  Such skewed distributions can present challenges for ML training, which we 

addressed using data transformation.51,52 This transformation maintained identical biopsy sample 

ordering between transformed and original scales, but condensed the spacing between samples 

with extreme values on the transformed scale, such that the distribution width of samples with 

CNV>3.5 approximated that of the samples with CNV< 3.5.          

  

Leave-one-patient-out-Cross-Validation (LopoCV) and quantification of Predictive Uncertainty: To 

determine predictive accuracies for each GP model (without vs with Transductive Learning), we 

employed LopoCV.  In this scheme, one randomly selected patient (and all of their respective 

biopsy samples) served as the test case, while the other remaining patients (and their biopsy 
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data) served to train the model.  Training consisted of fitting a GP regression to the entire training 

data set, and then using the trained GP regression model to predict all of the samples from the 

test patient case. The output from each GP model comprised a predictive distribution on each 

biopsy sample of the test patient, including a predictive mean and a predictive variance. We used 

the predictive mean as the point estimator for the CNV on the transformed scale, and used this 

to classify each biopsy sample as either EGFR amplified (CNV>3.5) or EGFR non-amplified 

(CNV<3.5). This process was iterated until every patient served as the test case.  Note that 

LopoCV in theory provides greater rigor compared to k-fold cross validation or leave-one-out 

cross validation (LOOCV), which leaves out a single biopsy sample as the test case.  LopoCV 

would likely better simulate clinical practice (i.e., the model is used on a per-patient basis, rather 

than on a per-sample basis). In addition to predictive mean, each GP model output also includes 

predictive variance for each sample, which allows for quantification of predictive uncertainty. 

Specifically, for each prediction on each biopsy, we tested the hypothesis that the sample belongs 

to the class predicted by the mean (H1) versus not (H0), using a standard one-sided z test. The 

p-value of this test reflects the certainty of the prediction, such that smaller p values correspond 

with lower predictive uncertainty (i.e., greater certainty) for each sample classified by the model. 

We prioritized the lowest predictive uncertainty as those predictions with the lowest range of p-

values (p<0.05).  We also evaluated incremental ranges of p-values (e.g., <0.10; <0.15, etc) as 

gradations of progressively decreasing predictive uncertainty. 

Subject Population, Clinical Data, and Genomic Analysis:  We recruited a total of 25 untreated 

GBM patients and collected 95 image-localized biopsy samples for analysis. Patient 

demographics and clinical data are summarized in Table 3. The number of biopsies ranged from 

1 to 6 per patient.   Measured log-scale CNV status of EGFR amplification ranged from 1.876 to 

82.43 across all 95 biopsy samples. 

 

 

  

  

 

  

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.20110288doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110288


 20 

REFERENCES: 

1. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial 

intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018). 

2. Pàmies, P. Auspicious machine learning. Nat. Biomed. Eng 1, 0036 (2017). 

3. Dreyer, K. J. & Raymond Geis, J. When Machines Think: Radiology’s Next Frontier. 

Radiology vol. 285 713–718 (2017). 

4. Cancer Genome Atlas Research Network. Comprehensive genomic characterization 

defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008). 

5. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian 

carcinoma. Nature 474, 609–615 (2011). 

6. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of 

squamous cell lung cancers. Nature 489, 519–525 (2012). 

7. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon 

and rectal cancer. Nature 487, 330–337 (2012). 

8. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast 

tumours. Nature 490, 61–70 (2012). 

9. Shrestha, D. L. & Solomatine, D. P. Machine learning approaches for estimation of 

prediction interval for the model output. Neural Netw. 19, 225–235 (2006). 

10. Briggs, A. H. et al. Model Parameter Estimation and Uncertainty Analysis: A Report of the 

ISPOR-SMDM Modeling Good Research Practices Task Force Working Group–6. Med. 

Decis. Making 32, 722–732 (2012). 

11. Quiñonero-Candela, J., Rasmussen, C. E., Sinz, F., Bousquet, O. & Schölkopf, B. 

Evaluating Predictive Uncertainty Challenge. in Machine Learning Challenges. Evaluating 

Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment 1–

27 (Springer Berlin Heidelberg, 2006). 

12. Beck, D., Specia, L. & Cohn, T. Exploring Prediction Uncertainty in Machine Translation 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.20110288doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110288


 21 

Quality Estimation. arXiv [cs.CL] (2016). 

13. Solomatine, D. P. & Shrestha, D. L. A novel method to estimate model uncertainty using 

machine learning techniques. Water Resour. Res. 45, (2009). 

14. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 

(2013). 

15. Bai, R.-Y., Staedtke, V. & Riggins, G. J. Molecular targeting of glioblastoma: Drug discovery 

and therapies. Trends Mol. Med. 17, 301–312 (2011). 

16. Ene, C. I. & Fine, H. A. Many tumors in one: a daunting therapeutic prospect. Cancer cell 

vol. 20 695–697 (2011). 

17. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for 

cancer? Nat. Rev. Cancer 12, 323–334 (2012). 

18. Hu, L. S. et al. Radiogenomics to characterize regional genetic heterogeneity in 

glioblastoma. Neuro. Oncol. 19, 128–137 (2017). 

19. Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer 

evolutionary dynamics. Proc. Natl. Acad. Sci. U. S. A. 110, 4009–4014 (2013). 

20. Price, S. J. et al. Improved delineation of glioma margins and regions of infiltration with the 

use of diffusion tensor imaging: an image-guided biopsy study. AJNR Am. J. Neuroradiol. 

27, 1969–1974 (2006). 

21. Barajas, R. F., Jr et al. Glioblastoma multiforme regional genetic and cellular expression 

patterns: influence on anatomic and physiologic MR imaging. Radiology 254, 564–576 

(2010). 

22. Gutman, D. A. et al. MR imaging predictors of molecular profile and survival: multi-

institutional study of the TCGA glioblastoma data set. Radiology 267, 560–569 (2013). 

23. Jain, R. et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, 

and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 

272, 484–493 (2014). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.20110288doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110288


 22 

24. Itakura, H. et al. Magnetic resonance image features identify glioblastoma phenotypic 

subtypes with distinct molecular pathway activities. Sci. Transl. Med. 7, 303ra138 (2015). 

25. Tykocinski, E. S. et al. Use of magnetic perfusion-weighted imaging to determine epidermal 

growth factor receptor variant III expression in glioblastoma. Neuro. Oncol. 14, 613–623 

(2012). 

26. Pope, W. B. et al. Relationship between gene expression and enhancement in glioblastoma 

multiforme: exploratory DNA microarray analysis. Radiology 249, 268–277 (2008). 

27. Gupta, A. et al. Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in 

Glioblastoma: Prediction of EGFR Gene Amplification. Clin. Neuroradiol. 25, 143–150 

(2015). 

28. Ryoo, I. et al. Cerebral blood volume calculated by dynamic susceptibility contrast-

enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic 

profiles. PLoS One 8, e71704 (2013). 

29. Aghi, M. et al. Magnetic resonance imaging characteristics predict epidermal growth factor 

receptor amplification status in glioblastoma. Clin. Cancer Res. 11, 8600–8605 (2005). 

30. Barajas, R. F., Jr et al. Regional variation in histopathologic features of tumor specimens 

from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. 

Neuro. Oncol. 14, 942–954 (2012). 

31. Hu, L. S. et al. Correlations between perfusion MR imaging cerebral blood volume, 

microvessel quantification, and clinical outcome using stereotactic analysis in recurrent 

high-grade glioma. AJNR Am. J. Neuroradiol. 33, 69–76 (2012). 

32. Stadlbauer, A. et al. Gliomas: histopathologic evaluation of changes in directionality and 

magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 240, 803–810 

(2006). 

33. Hu, L. S. et al. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic 

Heterogeneity and Tumor Extent in Glioblastoma. PLoS One 10, e0141506 (2015). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.20110288doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110288


 23 

34. Borad, M. J. et al. Integrated Genomic Characterization Reveals Novel, Therapeutically 

Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic 

Cholangiocarcinoma. PLoS Genetics vol. 10 e1004135 (2014). 

35. Craig, D. W. et al. Genome and transcriptome sequencing in prospective metastatic triple-

negative breast cancer uncovers therapeutic vulnerabilities. Mol. Cancer Ther. 12, 104–116 

(2013). 

36. Lipson, D., Aumann, Y., Ben-Dor, A., Linial, N. & Yakhini, Z. Efficient Calculation of Interval 

Scores for DNA Copy Number Data Analysis. Journal of Computational Biology vol. 13 

215–228 (2006). 

37. Peng, S. et al. Integrated genomic analysis of survival outliers in glioblastoma. Neuro. 

Oncol. 19, 833–844 (2017). 

38. Hu, L. S. et al. Reevaluating the imaging definition of tumor progression: perfusion MRI 

quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis 

to predict survival. Neuro. Oncol. 14, 919–930 (2012). 

39. Semmineh, N. B. et al. Assessing tumor cytoarchitecture using multiecho DSC-MRI derived 

measures of the transverse relaxivity at tracer equilibrium (TRATE). Magn. Reson. Med. 74, 

772–784 (2015). 

40. Hu, L. S. et al. Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma. 

AJNR Am. J. Neuroradiol. 36, 2242–2249 (2015). 

41. Boxerman, J. L., Schmainda, K. M. & Weisskoff, R. M. Relative cerebral blood volume 

maps corrected for contrast agent extravasation significantly correlate with glioma tumor 

grade, whereas uncorrected maps do not. AJNR Am. J. Neuroradiol. 27, 859–867 (2006). 

42. Zwanenburg, A., Leger, S., Vallières, M. & Löck, S. Image biomarker standardisation 

initiative. arXiv [cs.CV] (2016). 

43. Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural Features for Image Classification. 

IEEE Trans. Syst. Man Cybern. SMC-3, 610–621 (1973). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.20110288doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110288


 24 

44. Ojala, T., Pietikainen, M. & Maenpaa, T. Multiresolution gray-scale and rotation invariant 

texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 

971–987 (2002). 

45. Ramakrishnan, A. G., Kumar Raja, S. & Raghu Ram, H. V. Neural network-based 

segmentation of textures using Gabor features. in Proceedings of the 12th IEEE Workshop 

on Neural Networks for Signal Processing 365–374 (2002). 

46. Montgomery, D. C., Peck, E. A. & Geoffrey Vining, G. Introduction to Linear Regression 

Analysis. (John Wiley & Sons, 2012). 

47. Jothi Prakash, V. & Nithya, L. M. A Survey on Semi-Supervised Learning Techniques. arXiv 

[cs.LG] (2014). 

48. Shenlong Wang, Zhang, L. & Urtasun, R. Transductive Gaussian processes for image 

denoising. in 2014 IEEE International Conference on Computational Photography (ICCP) 

1–8 (2014). 

49. Wineinger, N. E. et al. Statistical issues in the analysis of DNA Copy Number Variations. 

Int. J. Comput. Biol. Drug Des. 1, 368–395 (2008). 

50. Furgason, J. M. et al. Whole genome sequencing of glioblastoma multiforme identifies 

multiple structural variations involved in EGFR activation. Mutagenesis 29, 341–350 (2014). 

51. Kutner, M., Nachtsheim, C. J. & Neter, J. Li W. Applied Linear Statistical Models (2005). 

52. Yeo, I. & Johnson, R. A. A new family of power transformations to improve normality or 

symmetry. Biometrika 87, 954–959 (2000). 

  

  

  

  

  

 

  

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.20110288doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110288


 25 

Table 3: Patient demographics for the 25 untreated glioblastoma (GBM) tumors.  Patients 

labeled A through Y.  M=male, F=female.  Patient L on histology was diagnosed as Grade III 

Anaplastic Astrocytoma, although molecular features were consistent with Glioblastoma (e.g., 

EGFR amplification).  NA = not available.  Wt = wild type.  aCGH = array comparative genomic 

hybridization; WES = whole exome sequencing 

 

Patient Sex 

Age 

(yrs) Type Pathology IDH.status Sequenced 

A M 62 glioblastoma primary NA aCGH 

B M 66 glioblastoma primary NA aCGH 

C M 23 glioblastoma primary NA aCGH 

D M 47 glioblastoma primary NA aCGH 

E F 78 glioblastoma primary NA aCGH 

F M 80 glioblastoma primary NA aCGH 

G F 78 glioblastoma primary NA aCGH 

H M 71 glioblastoma primary NA aCGH 

I M 77 glioblastoma primary NA aCGH 

J M 31 glioblastoma primary NA aCGH 

K F 85 glioblastoma primary NA aCGH 

L M 65 Anaplastic Astrocytoma primary NA aCGH 

M F 40 glioblastoma primary NA aCGH 

N F 51 glioblastoma primary wt WES 
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O M 76 glioblastoma primary wt WES 

P M 61 glioblastoma primary wt WES 

Q M 67 glioblastoma primary V178I/G105G WES 

R M 44 glioblastoma primary wt WES 

S F 53 glioblastoma primary R132H WES 

T F 62 glioblastoma primary wt WES 

U F 61 glioblastoma primary NA aCGH 

V F 78 glioblastoma primary wt WES 

W F 75 glioblastoma primary wt WES 

X F 52 glioblastoma primary V178I WES 

Y F 69 glioblastoma primary wt WES 
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