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Propositions

Belonging to the PhD thesis of Luca Gilli

Uncertainty quantification in reactor physics using adjoint/perturbation

techniques and adaptive spectral methods

1. The application of higher order adjoint perturbation techniques is not convenient for
high-dimensional nonlinear stochastic problems.

2. Adaptive non-intrusive spectral techniques represent the best way to tackle the “curse of
dimensionality” associated with spectral methods.

3. For large-scale stochastic problems characterized by a moderate number of input parame-
ters, the adaptive non-intrusive spectral projection method is a faster and more accurate
alternative to standard sampling.

4. Sampling based (Monte Carlo) uncertainty quantification techniques will always be the
most convenient choice for commercial and large-scale applications due to their ease
of implementation. For the same reason, any deterministic approach associated with
extensive implementation efforts will be a fancy mathematical exercise rather than an
effective tool.

5. Using a realistic risk aversion factor based on the current public perception of radiation
effects would make any risk related to nuclear energy unacceptable no matter how low the
probability of a radionuclide release.

6. The name Automatic Differentiation is misleading regarding the actual ease of application
of the method to large-scale problems

7. Applying the adjective sustainable is an effective way to promote unsustainable practices.

8. The fundamental role that the availability of an affordable energy source has on society
in terms of civil rights, family structure, and emancipation is usually ignored by energy
saving campaigners.

9. The benefits of the World Wide Web on science are partially counter-balanced by the
influence that the same medium has on fake-science.

10. The vehicle-to-vehicle interaction in Indian traffic could be modeled as a Coulomb-like
scattering process where instead of the electric charge the honking intensity should be
used.

These propositions are considered opposable and defendable and as such have been approved
by the promotor, Prof. dr. ir . T.H.J.J. van der Hagen.



Stellingen

Behorende bij het proefschrift van Luca Gilli

Uncertainty quantification in reactor physics using adjoint/perturbation

techniques and adaptive spectral methods

1. Het toepassen van hogere orde adjoint verstoringstechnieken is ongeschikt voor hoog-
dimensionale niet-lineaire stochastische problemen.

2. Adaptieve niet-intrusieve spectrale technieken zijn de beste methode om de “curse of
dimensionality” van spectrale methoden aan te pakken.

3. De adaptieve niet-intrusieve spectrale projectie methode is een sneller en nauwkeuriger al-
ternatief voor standard sampling voor grootschalige stochastische problemen gekenmerkt
door een beperkt aantal input parameters.

4. Sampling gebaseerde (Monte Carlo) onzekerheidskwantificeringstechnieken zullen - van-
wege hun eenvoud van implementatie - altijd de gunstigste keuze zijn voor commerciële
en grootschalige toepassingen. Om dezelfde reden zal elke deterministische aanpak
die gepaard gaat met uitgebreide implementatie-inspanningen een fancy wiskundige
oefening zijn, in plaats van een effectief instrument.

5. Het toepassen van een realistische risico-aversie factor gebaseerd op de huidige publieke
perceptie van de effecten van straling zou elk risico verbonden aan kernenergie onaan-
vaardbaar maken, ongeacht hoe laag de kans op de uitstoot van een radionuclide ook
is.

6. De naam Automatic Differentiation is misleidend met betrekking tot het werkelijke gemak
van de toepassing van de methode voor grootschalige problemen.

7. Het toepassen van het adjectief duurzaam is een effectieve manier om niet-duurzame
praktijken te bevorderen.

8. De fundamentele functie die de beschikbaarheid van een betaalbare energiebron voor de
samenleving vervult op het gebied van burgerrechten, gezinsstructuur en emancipatie
wordt meestal genegeerd door campagnevoerders voor energiebesparing.

9. De voordelen van het World Wide Web voor de wetenschap worden gedeeltelijk teni-
etgedaan door de invloed die dit medium heeft op nep-wetenschap.

10. De voertuig-tot-voertuig interactie in het Indiase verkeer kan worden gemodelleerd als
een Coulomb-achtig verstrooiingsproces waarin de elektrische lading wordt vervangen
door de intensiteit van het getoeter.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgekeurd
door de promotor, Prof. dr. ir . T.H.J.J. van der Hagen.
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Chapter 1

Introduction

1.1 Introduction

In this chapter we present a general introduction about the definition of
uncertainty propagation and its importance within the reactor physics domain.
First, we shortly discuss the meaning of uncertainty and its relevance for the
simulation context. Then, a brief overview of two families of methodologies that
can be employed to propagate uncertainties is presented. Finally, a summary
of the work comprising the thesis is discussed.

1.2 Uncertainty analysis within the simulation

framework

Dealing with a complex physical system, like a nuclear reactor, implies the
need for the development of proper simulation tools in order to evaluate, for
example, new designs and safety properties. These simulations need to be
used to ensure a reliable prediction of the behaviour of such a system. For this
purpose, a simplified mathematical model is usually derived to describe the
system of interest, aiming to reproduce it in its most important features.
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1. Introduction

Simulation model

Input = Nuclear data, Material properties, Geometry,
Initial conditions

Figure 1.1: Illustrative simulation scheme for a nuclear reactor.

Several physical phenomena are involved while modeling the physics of
nuclear reactors. A typical simulation scheme of a nuclear reactor calculation is
shown in Figure 1.1. A nuclear reactor is a multi scale system in which different
mechanisms determine its final behavior, each mechanism being coupled with
each other. These mechanisms range, for example, from neutronics to thermal-
hydraulics and mechanics, therefore several physical scales (both in space and
in time) are present. As a result, this type of simulation is usually labelled
as multi-physics. The development of simulation tools suitable to represent a
multi-physics systems is associated with several challenges. The most important
question is whether the outcome of these simulations is reliable and to which
level of confidence we should trust it. This aspect plays a crucial role in the
design and safety analysis of nuclear systems. Performing uncertainty analysis
therefore corresponds to estimating the reliability of a simulation model.

Within the nuclear reactor phyiscs field, its role is becoming increasingly

2



1.2. Uncertainty analysis within the simulation framework

important and challenging as the physical realism of simulations is constantly
increasing. Moreover, regulations used in reactor licensing have begun to
allow the ”best estimate plus uncertainty” simulation approach, increasing the
need for reliable and precise uncertainty analysis methodologies (NEA, 2008)
(D Auria et al., 2012) (Wilson, 2012).

The role of simulation and the consequent need of uncertainty analysis is
crucial for any kind of reactor design, however its application is even more
important for innovative ones. For example, the designof a numerical problems
included within the Generation IV framework (Generation IV International
Forum, 2002) require reliable numerical analysis which is going to be used
during the design phase of the first prototypes. Many of these systems include
characteristics which are intrinsicly different from the current nuclear reactors.
Fast reactors, for example, require the application of nuclear libraries of isotopes
(especially actinides) whose data are associated with large uncertainties. Since
many of these uncertainties are epistemic, performing uncertainty analysis
will also indicate the libraries that need further experimental work in order to
reduce their associated errors.

1.2.1 Sources of uncertainty

The uncertainty associated to a simulation can be influenced by many aspects
which can be divided into the following categories

• Uncertainty due to the simplified mathematical model, caused by assump-
tions and approximations introduced to represent the physical system.
The estimation of the validity of a mathematical model is also known as
validation.

• Uncertainty caused by numerical approximations, like discretization and
truncation errors. Determining whether the model is solved properly is
called verification.

• Uncertainty introduced by the set of system inputs whose values are
possible to determine in theory, but in pratice associated to an error,
usually because of the lack of proper experiments or data. This type of
uncertainty is usually known as epistemic, and in reactor physics it is
usually associated with cross sections (see Figure 1.2 for an example).

3



1. Introduction

Figure 1.2: Example of uncertainty associated with a nuclear cross-section
(from (Chadwick et al., 2006)). Figure contains values corresponding to several
data libraries and measurements.

• Uncertainty caused by the set of system parameters whose exact values are
practically impossible to determine because of their intrinsic stochasticity.
For example, manufacturing errors or the impossibility to represent exact
values (impossibility to represent reality). This type of uncertainty is
known as aleatoric.

These kinds of uncertainties can be further grouped into two main types: the
uncertainty generated while modeling the problem and the one associated to
the input data used by the simulation. The study of the former requires the
analysis of the numerical model itself while the estimation of the latter means
that uncertainties entering in the system must be propagated to the simulation
outputs of interest.

In this thesis we focus our attention on the propagation of the epistemic
uncertainties associated with the input parameters of simulations. The main

4



1.3. Introduction to standard uncertainty quantification methodologies

objective of this work is the development and the application of methods
suitable to tackle this particular problem. Performing uncertainty propagation
requires the definition and the application of several statistical concepts, such as
probability distributions, standard deviations, etc. In Appendix A an overview
of the main statistical indicators used in this thesis is presented.

In the following section some of the standard methodologies used to determine
the propagation of uncertainties existing within the input data of a simulation
are presented. In general, it must be kept in mind that though this thesis
focuses on the application to problems related to innovative nuclear reactors,
the uncertainty methodologies that we are going to explore in the next chapters
are completely general and can be applied to a wide range of problems.

1.3 Introduction to standard uncertainty
quantification methodologies

As we discussed in the previous section, there are different types of uncer-
tainties we have to deal with, however one of the most important challenges
in Uncertainty Analysis (UA) is to handle the uncertainty associated with
the input data of the problem (like the material properties or the geometric
description of a system).

This corresponds to estimating how the lack of knowledge in the input data
influences the simulation outputs used during the design and safety analysis.
Many techniques have been implemented and used in the field so far, the main
methods being statistical and deterministic. The main distinction between the
two is that statistical methods are exact and require a large computational effort
while deterministic methods usually rely on model approximations which make
the technique faster compared to the first approach. In the following sections a
more complete overview of these two different approaches is introduced. Before
that, it is useful to define a generic mathematical problem which can be used
as a reference system within the present chapter.

5



1. Introduction

1.3.1 Definition of a reference mathematical problem

Before discussing uncertainty quantification approaches, it is useful to formulate
a generic mathematical problem that can be used as a reference system within
the following sections. We will assume in this chapter that we are interested
in the application of UA techniques to a specific type of simulation, which
is the solution of time-dependent multi-physics problems. We assume that
all the spatial operators have been discretized by means of specific numerical
techniques (i.e. Finite Element or Finite Volume), in this way we can model
our differential system as a set of coupled Ordinary Differential Equations

du(t,θ)

dt
= L[α(θ),u(t,θ)]

u(0) = U0(θ) (1.1)

where L is a generic nonlinear operator, u the unknown solution of the problem,
U0 the initial conditions, and α the set of input parameters. We introduced
the dependency of the input parameters and unknowns on the variable θ

which represents the random space characterizing the uncertainty problem.
α(θ), according to this notation, is used to denote all the possible outcomes
of the input set α. It must be stressed that we are using this system just for
illustrative purposes, the application of the UQ techniques we are going to
introduce in this chapter can be extended to other types of problems, such as
steady-state or eigenvalue calculations.

In general, one may not only be interested in the solution of the previous
system but also in a response R(α,u,θ) which can be described as a functional
of the solution and the input parameter set. In principle, this response R can
be used to model any of the output quantities of interest during the uncertainty
quantification phase. According to the notation just introduced performing
UQ corresponds to estimating how the uncertainty present within the input
parameter set α(θ) influences the outputs of interest, generically defined by
the operator R(θ).

1.4 Statistical methods

Statistical methods, usually known as Monte Carlo (MC) or sampling ap-
proaches (Ronen, 1988), can be used to evaluate the statistical moments of

6



1.4. Statistical methods

interest by performing a set of simulations of the problem defined by Eq. 1.1.
The main concept behind statistical approaches is quite straightforward: the
random input data set α(θ) is sampled M times according to their random
distributions until the statistical moments of the simulation output have con-
verged sufficiently. Assuming that the number M is large enough to have a
statistically meaningful collections of realizations for the response R(θ), the
unbiased definition for its mean is

E(R) ≡
1

M

M
∑

i=1

R(θi)

where θi is a single realization of the random input set. The unbiased variance
is expressed by the equation

σ2(R) =
1

M − 1

M
∑

i=1

(

R(θi)− E(R)
)2

the statistical error associated with these moments is proportional to (1/M)1/2,
which means that it will slowly reduce when increasing the number of realiza-
tions M . The advantage of MC methods is that they are extremely easy to
implement, since their only requirement is to run the simulation for which we
want to perform UQ for different values of the input data set. This means that
this procedure does not require any substantial modification of the original
code used to calculate the output quantities. In theory sampling techniques
can be coupled to regression approaches in order to quantify the dependency
of the stochastic outputs with respect to the stochastic inputs, however these
regression approaches are usually characterized by poorly conditioned operators
(Lockwood and Anitescu, 2012).

In general, using the original mathematical model for the evaluation of the
statistical moments allows taking into account physical phenomena that would
be neglected using approximated methods. The outcome of these approaches
will therefore, provided that the number of realizations M is large enough, be
close to exact, the only limit being the final statistical error. An example of
this aspect can be found in the works of Rochman et al. (2009) and Koning
and Rochman (2008) where the authors show that using a sampling technique
for UQ of criticality problems is important to include phenomena, such as
highly skewed distributions, that would be otherwise neglected.

7



1. Introduction

We mentioned that the main issue associated to sampling methods is given
by the poor convergence properties of the statistical estimators. This slow
convergence is intrinsic to sampling techniques, however it is not strongly
affected by the number of input parameters one is dealing with. For this
reason, sampling techniques often represent the only feasible approach to
perform UQ when dealing with highly dimensional random problems. The
convergence of sampling approaches can be improved by introducing biasing
techniques such as the stratified sampling or the Latin Hypercube Sampling
(Helton and Davis, 2002) (Wyss and Jorgensen, 1998). These techniques are
based on the generation of artificial realization sets which better cover the
random domain, therefore improving the convergence rate of the statistical
estimators. These realization sets can be built, for example, by assuming
the realizations to be uniformly distributed along the stochastic domain or
by collecting realizations which are rare from a probability point of view but
important in terms of effects on the stochastic outputs.

1.5 Deterministic methods

Deterministic methods are usually based on the assumption that the stochastic
quantities of interest can be represented by using a suitable approximation.
This approximation is used to simplify the original stochastic problem and
to reduce the computational requirements associated to uncertainty propaga-
tion. This approximation involves in many cases, unlike sampling approaches,
the definition of a new mathematical problem and introduces therefore new
computational challenges.

In this thesis we will focus our attention on two types of deterministic meth-
ods: perturbation methods and spectral methods. Perturbation methods are
based on the representation of random outputs in terms of a lower order Taylor
expansion while spectral methods use Fourier like expansions to approximate
the same quantities. In the following two sections a more general overview of
the two methods is presented.

8



1.5. Deterministic methods

1.5.1 Perturbation techniques

Perturbation techniques are based on the representation of a generic stochastic
quantity by means of a Taylor expansion with respect to the input parameter
set around a reference solution

δR =
K
∑

i=1

(

∂R

∂αi

)

α0

δαi +
1

2

K
∑

i=1

K
∑

j=1

(

∂2R

∂αi∂αj

)

α0

δαiδαj+ (1.2)

+
1

3!

K
∑

i=1

K
∑

j=1

K
∑

k=1

(

∂3R

∂αi∂αj∂αk

)

α0

δαiδαjδαk +O(δα4)

where α0 is a reference value of the input data set (for example, its mean) and
δα a variation around this value. Assuming the series has converged, knowing
its coefficients corresponds to being able to determine any variation of the
output δR with respect to any possible variation of the input parameters. We
mentioned before that perturbation techniques rely on a model approximation,
this approximation is usually obtained by truncating the Taylor series to a
lower order. The most common perturbation techniques are first order which
means taking into account only the first order derivatives on the right hand
side of the equation. This reduction in information about our stochastic output
will be of course associated to a reduction in computational cost needed to
obtain it, on the other hand this operation could possibly introduce large
errors in our predictions. A comprehensive comparison of the consequences of
using perturbation techniques instead of sampling approaches was presented
by (Rochman et al., 2011).

In general, obtaining derivative information of simulation outputs can be
achieved in very different ways. The most straightforward method is the
Finite Difference technique (Ronen, 1988) which consists of the evaluation of
output derivatives by using the Finite Difference discretization technique. An
alternative approach is represented by the concept of Automatic Differentiation
(Griewank, 1992) which involves the definition of a new simulation which can be
used to directly evaluate the derivatives of the problem. This new simulation
is defined by “translating” the source code of the original problem using the
concept of chain derivative, unfortunately it presents several challenges from
the implementation point of view (Alexe et al., 2010).

9



1. Introduction

Another possibility is the definition of a new mathematical model obtained
by linearizing the reference problem defined in Eq. 1.1. This operation, also
known as Forward Sensitivity Analysis (Cacuci, 2003), defines a new linear
system which can be solved for each input perturbation to evaluate the first
order perturbation of the unknowns. One can further reduce the computational
requirements of this approach, if interested in a limited set of responses, by
introducing an additional problem based on the definition of the adjoint
operator (Williams, 1986). This additional adjoint problem, usually known as
Adjoint Sensitivity Analysis Procedure, allows evaluating all the possible first
order variations of a response with respect to any input perturbation by means
of a single additional calculation. This family of methods, known as adjoint
perturbation techniques, has been widely used in the field of reactor physics to
perform sensitivity analysis and uncertainty propagation in simulations. Their
main applications can be found in criticality calculations where such techniques
can be used to calculate the perturbation of the fundamental eigenvalue (or
any functional of the flux) following a perturbation in the input cross-sections
(Williams, 1986),(Gandini, 1967). More recently this kind of techniques has
been applied to perform uncertainty propagation for innovative reactor designs
(Aliberti et al., 2006) or to perform sensitivity analysis of time-dependent
thermal-hydraulics problems (Ionescu-bujor and Cacuci, 2004).

More recently, a new approach for the application of perturbation techniques
has been presented by Abdel-Khalik et al. (2008). This method is based on
the definition of a reduced subspace able to catch most of the perturbation
information of the problem. How to perform the reduced subspace construction
has been addressed in several works together with applications to standard
reactor physics problems (Bang and Abdel-Khalik, 2012) (Bang et al., 2012).
Though these techniques potentially represent an interesting alternative to
perturbation approaches, their robustness has not been completely proven yet.

1.5.2 Spectral methods

Spectral techniques represent an alternative deterministic method for uncer-
tainty propagation. They are based on a spectral representation of stochastic
input and output quantities by means of a spectral, usually Fourier-like, ex-
pansion. The idea of representing a stochastic quantity by means of a spectral
expansion was presented by Wiener (1938), who introduced for the first time the

10



1.6. Aim of the thesis and overview

concept of Polynomial Chaos Expansion (PCE). This idea has been extended
successively and applied to uncertainty propagation problems by Ghanem
and Spanos (1991). Since then, spectral techniques have been applied to
different scientific fields, ranging from Computational Fluid Dynamics (Najm,
2009),(Mathelin et al., 2005),(Le Maitre et al., 2002) to structural mechanics
(Ghanem and Spanos, 1997).

Two main PCE approaches, categorized as intrusive and non-intrusive, can
be used to implement these spectral techniques. As the name suggests the
main difference between the approaches is that with the former it is possible to
use the original code as a ”black box” while the latter involves the definition
of a newly coupled problem which needs to be coded and solved. An extensive
overview of practical applications of several intrusive and non-intrusive spectral
techniques has been presented by Witteveen (2009),(Witteveen and Bijl, 2006).

Within the reactor physics field the application of an intrusive PCE approach
was first presented for a neutron diffusion problem by Williams (2007) and
later applied to the transport equation in two studies ((Williams, 2006),(Eaton
and Williams, 2010)) for fixed source and eigenvalue problems. This concept
has been also extended to spatially random problems and to non intrusive
methods by Fichtl (2009) and Fichtl and Prinja (2011) while Roderick et al.
(2010) presented the application of a PCE based regression technique to a
coupled steady-state problem. Regarding time-dependent problems the only
application in the nuclear field was proposed by Hagues et al. (2010) where an
intrusive stochastic method is applied to a radionuclide dispersion model.

1.6 Aim of the thesis and overview

This thesis focuses on the development and the implementation of an uncer-
tainty propagation algorithm based on the concept of spectral expansion. The
motivation behind this development is that spectral techniques can potentially
achieve the exactness of sampling approaches in a deterministic fashion. The
main objective of this work is therefore to develop a method which would in-
clude the advantages in terms of accuracy and computational cost, of both the
approaches. This would make such a method highly beneficial while performing
uncertainty quantification of multi-physics simulations.

As mentioned in the previous section, there are several ways which can be

11



1. Introduction

used to implement spectral techniques. Consequently, the definition of a new
algorithm requires an extensive overview of all the possible approaches which
can be employed to implement the method. Furthermore, the knowledge of the
most important aspects characterizing uncertainty quantification problems is
also needed. Therefore, the first part of the thesis is dedicated to the analysis
of the main aspects characterizing uncertainty quantification of multi-physics
problems, and to the discussion of the main differences between spectral
approaches.

We first show that a convenient way to study uncertainty propatation prob-
lems is by implementing perturbation techniques. In Chapter 2, an overview
of adjoint techniques for the application of sensitivity analysis is presented.
This overview includes a discussion about employing adjoint methods for the
evaluation of higher-order perturbation components together with an analysis
of the method from the numerical point of view.

Chapter 3 focuses on spectral methods. A general overview of their math-
ematical background is presented together with a general description of the
different techniques that can be used to apply them. Two examples that
illustrate the application of spectral techniques to reactor physics problems are
also included. In this chapter we show that non-intrusive spectral techniques
represent a very convenient way to apply the method, especially while dealing
with multi-phyiscs problems.

After this overview, we present a new algorithm for the application of a
non-intrusive technique to large scale multi-physics problems. Chapter 4
presents the initial derivation of the new algorithm which can be used to apply
non-intrusive spectral techniques in an adaptive fashion. This algorithm is
applied to a reference problem and its robustness is tested by comparing it
to the outcome of another method found in literature (Gerstner and Griebel,
2003). In Chapter 5 two techniques used to further reduce the computational
cost associated to the algorithm are also discussed. The uncertainty propa-
gation algorithm is then applied to two reference reactor physics problems:
a criticality calculation and a source-detector system modeled by using a
transport formulation.

Chapter 6 is about the application of the adaptive non-intrusive algorithm
to time-dependent multi-physics simulations. A multi-physics model, based
on a fast reactor design, is introduced together with a reference uncertainty
quantification problem which is solved by means of the adaptive spectral
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1.6. Aim of the thesis and overview

algorithm.

Finally, the concluding chapter contains an overview and a discussion about
the application of the adaptive spectral method derived within this thesis.
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Chapter 2

Adjoint sensitivity analysis

methodologies

2.1 Introduction

This chapter focuses on the application of adjoint techniques to time-dependent
multi-physics problems. First we will introduce the main aspects regarding
the application of the first order Adjoint Sensitivity Analysis Procedure to the
generic problem defined in Eq. 1.1, then we will discuss its extension to higher
order perturbation components. These techniques are applied to a reference
nonlinear problem represented by a coupled point-kinetic/lumped parameters
system. A general overview of the method and a discussion about its main
numerical aspects is finally presented.
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2. Adjoint sensitivity analysis methodologies

2.2 Adjoint Sensitivity Analysis applied to
multi-physics problems

Let us start by redefining the problem introduced in Eq. 1.1 by eliminating
the dependency with respect to the random variable θ

du

dt
= L(α,u)

u(0) = uin(α) (2.1)

where the same notation as in Eq. 1.1 is used. As we mentioned before, we
are often interested not in the solution itself but in a response which depends
on it. This is the case for example when dealing with integral parameters
or minimum or maximum points such as averaged or peak temperatures. A
general way to express these responses is by using the following functional

R = 〈f(α, t),u(t)〉 (2.2)

where we use the following Bra-ket notation to write the time integral

〈a,b〉 =

tf
∫

0

a · bdt

We assume for the sake of simplicity the response functional to be linear with
respect to the solution and we introduce a weight function f used to define the
response of interest. We also assume that f is linear with respect to the input
parameters.

The first order variation of the response corresponding to a variation of
any of the input parameters can be calculated using the Adjoint Sensitivity
Analysis Procedure (ASAP). First step to implement the procedure is the
introduction of the following perturbation notation

u = u0 + δu

α = α0 + δα

where the subscript 0 refers to the reference value of the quantity (which
is usually considered to be the mean value of the input parameters and
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2.2. Adjoint Sensitivity Analysis applied to multi-physics problems

corresponding solution). According to the theory the first order variation of
the functional R can be defined, using the Bra-ket notation, as

δR ≈

〈

∂f

∂α
δα,u0

〉

+

〈

u∗,
∂L

∂α
(α0,u0)δα

〉

+ u∗(0) · δuin (2.3)

The first term on the right-hand side, known as the direct component, defines
the variation caused by a perturbation of the weight function f while the second
term defines the contribution caused by the perturbation of the nonlinear
operator. This depends on the operator ∂L

∂α which is the Gateaux Derivative
(GD) of the nonlinear operator L taken in the direction of the parameters
perturbation, and on u∗ which is an adjoint function solving the following
problem

−
du∗

dt
=

(

∂L

∂u
(α0,u0)

)∗

u∗ +∇uR (2.4)

u∗(tf ) = 0

Once this adjoint problem is solved for the specific response R (which defines
the inhomogeneous term) one can calculate its variation by evaluating a
simple time integral. The third term of the Equation 2.3 (known as the bilinear
concomitant) includes the effects of a change in the initial boundary value of the
time problem on the response: for linear systems and parameter independent
initial conditions, this term is exact and defines a duality between the local
value (at t = 0) of the adjoint solution and the response. One of the main
issues associated to adjoint methods is the fact that a new adjoint solution
is required for any additional response R. When the method is applied to
time-dependent problems any additional response in time would introduce a
new calculation, their choice should therefore be weighted carefully.

In general, the first order adjoint theory is derived by perturbing the reference
problem and neglecting any term higher than first order, which means that
there is a range of validity for the prediction of the variation of the response
determined by the magnitude of the input perturbation. In the next part, a
method to estimate the second order terms of the expansion using an equivalent
adjoint approach used for the first order contribution is introduced.
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2. Adjoint sensitivity analysis methodologies

2.2.1 Second order Adjoint theory

The aim of the second order adjoint theory is to define a way to obtain the
second order perturbation components for the response of interest using the
adjoint properties already introduced during the definition of the first order
propagation technique. The first step is to express each of the second order
mixed derivatives of the expansion as

∂2R

∂αi∂αj
=

∂

∂αi

[

∂R

∂αj

]

The first order adjoint theory allows to represent first order derivatives as
functionals. It is therefore possible to write the second order information as a
first order variation of these functionals (Greenspan et al., 1979). If we consider
the adjoint formulation of the first order variation of the response with respect
to the parameter αi and we perturb this quantity in the direction δαj by using
the definition of GD, we are able to determine the derivative information we
need. This corresponds to estimating the following variation

∂

∂αi

[

∂R

∂αj
δαj

]

δαi =

=
∂

∂αi

[〈

∂f

∂αj
δαj ,u0

〉

+

〈

u∗,
∂L

∂αj
(α0,u0)

〉

+

+u∗ ·
∂uin

∂αj

]

δαjδαi

where we used Equation 2.3 to express the first order variation of R with
respect to αj . Taking into account that we are assuming the weight function
f to be linear with respect to the input parameters, the GD of the previous
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2.2. Adjoint Sensitivity Analysis applied to multi-physics problems

expression in the direction αi can be written as

∂2R

∂αi∂αj
δαjδαi =

〈

u∗,
∂

∂αi

(

∂L

∂αj
(α0,u0)

)〉

δαjδαi+ (2.5)

+

〈

δu∗(δαi),
∂L

∂αj
(α0,u0)

〉

δαj+

+

〈

u∗,
∂

∂u

(

∂L

∂αj
(α0,u0)

)

δu(δαi)

〉

δαj+

+δu∗(δαi, t = 0) ·
∂uin

∂αj
δαj

The unknown quantities in this expression, denoted by δu(δαi) and by δu∗(δαi),
are, respectively, the first order variation of the forward and the adjoint solution
caused by the variation δαi. Once these quantities are known (together with the
Hessian of the linear operator with respect to the input parameters) the second
order information can be calculated by performing the usual inner products.
These first order variations can be evaluated by linearizing the forward and
the adjoint problem and solving it with respect to the perturbation considered.
If we consider, for example, the nonlinear forward problem, this linearization
procedure leads to the following system

dδu(δαi)

dt
=

(

∂L

∂u
(α0,u0)

)

δu(δαi) +

(

∂L

∂αi
(α0,u0)

)

δαi (2.6)

δu(0) =
∂uin

∂αi
δαi

which is defined by the partial GD of the original operator and by a source term
and a set of initial conditions which depend on the perturbation considered. Due
to its linearity and the time constant nature of the perturbations, this system
needs to be solved once for each of the perturbed parameters independently
of the perturbation magnitude. The solution of this problem is then used to
evaluate the third term of Eq. 2.5. The same linearization has to be applied
to the adjoint system; applying the GD to the system described in Eq. 2.4
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with respect to αi leads to

−
dδu∗(δαi)

dt
=

(

∂L

∂u
(α0,u0)

)∗

δu∗(δαi)+ (2.7)

+
∂

∂αi

[(

∂L

∂u
(α0,u0)

)∗

u∗

]

δαi+ (2.8)

+
∂

∂u

[(

∂L

∂u
(α0,u0)

)∗

u∗

]

δu(δαi)

δu∗(tf ) = 0

where we have introduced the GD of the first order adjoint problem. This
operation defines a new system of ODEs used to estimate the variation of the
adjoint solution with respect to any of the input perturbations. The main
operator of this system is the same as the original adjoint problem 2.4, the
only difference is the presence of two inhomogeneous terms arising from the
application of the GD. Both terms depend on the adjoint solution while the
second one introduces a dependency on the first order variation of the forward
problem. The term is caused by the perturbation of the part of the adjoint
operator which depends on the forward solution, this means that we can solve
the system for each of the input perturbations only after having obtained the
corresponding solution of problem 2.6.

After that problems 2.6 and 2.7 are solved for all the perturbed parameters,
corresponding to a total of 2N additional calculations, we can substitute the
solutions obtained in Eq. 2.5 to reconstruct the Hessian matrix containing
the second order derivatives of the response. It is to be noted that, since the
Hessian is a symmetric matrix, changing the indexes in Eq. 2.5 would not
affect the value of the second order derivative. This expression is in principle
equivalent to the one derived in other works (Gandini, 1978; Ozyurt and Barton,
2005) where the Hessian matrix for a time-dependent functional is obtained
by performing 2N calculations. In the next section it will be shown that in
presence of linear systems it is possible to obtain the Hessian matrix with N
calculations, as has been previously proven for different linear applications
(Greenspan and Gilai, 1978).
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2.2.2 Application of the second order adjoint theory to linear
time-dependent problems

In this section the second order adjoint theory presented in the previous Section
is applied to linear systems by assuming that the operator L in Eq. 2.1 is
linear. We start by rewriting Eq. 2.5, which in the presence of linear operators
becomes

∂2R

∂αi∂αj
δαjδαi =

〈

u∗,
∂

∂αi

(

∂L

∂αj
(α0)

)

u0

〉

δαjδαi+ (2.9)

+

〈

δu∗(δαi),

(

∂L

∂αj
(α0)

)

u0

〉

δαj+

+

〈

u∗,

(

∂L

∂αj
(α0)

)

δu(δαi)

〉

δαj+

+
∂u∗

∂αi
δαi ·

∂uin

∂αj
δαj

where the only difference with respect to the original expression is that the
operators are now independent of the reference solution. In a similar manner
we can rewrite the system describing the perturbation of the adjoint solution
as

−
dδu∗(δαi)

dt
= L

∗δu∗(δαi) +

(

∂L

∂αi
(α0)

)∗

u∗δαi

δu∗(tf ) = 0

In this case, due to the linearity of the forward problem, the adjoint operator
does not depend on the reference solution u0 and the third term on the RHS
of Eq. 2.7 disappears. If we define the first order adjoint perturbation as

δu∗(δαi) =

(

∂u∗

∂αi

)

δαi = ûiδαi

where we denoted with ûi the partial derivative of the adjoint solution with
respect to αi, we can rewrite the previous system using the linearity property
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as

−
dûi

dt
= L

∗ûi +

(

∂L

∂αi
(α0)

)∗

u∗ (2.10)

ûi(tf ) = 0

Moreover, the third term of Eq. 2.9 can be also reformulated when dealing
with linear problems. Firstly, we rewrite the term containing the first order
perturbation of the forward solution as

〈

u∗,

(

∂L

∂αj

)

δu(δαi)

〉

δαj =

〈(

∂L

∂αj

)∗

u∗, δu(δαi)

〉

δαj

where we used the definition of the adjoint operator to restructure the integral.
In this form we can look at the inner product as if it were a first order response
variation whose weight function depends on the adjoint solution. This means
that we can reconstruct the expression using the adjoint formulation of Eq.
2.3 as

〈(

∂L

∂αj

)∗

u∗, δu(δαi)

〉

δαj =

〈

ûj ,

(

∂L

∂αi

)

u0

〉

δαjδαi + ûjδαj ·
∂uin

∂αi
δαi

where ûj solves Equation 2.10 considering a variation with respect to αj . If we
substitute this inner product in Equation 2.9 we obtain the following expression
for the second order perturbation components

∂2R

∂αi∂αj
δαiδαj = (2.11)

[〈

u∗,
∂

∂αi

(

∂L

∂αj
(α0)

)

u0

〉

+

+

〈

ûi,

(

∂L

∂αj
(α0)

)

u0

〉

+

〈

ûj ,

(

∂L

∂αi
(α0)

)

u0

〉

+

+ ûj ·
∂uin

∂αi
+ ûi ·

∂uin

∂αj

]

δαiδαj
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The combination of inner products, derived using the linearity of the problem,
builds a symmetric Hessian matrix, which is fully determined once the solution
of the problem 2.10 is known for every perturbed parameter. The evaluation
of this expression requires N adjoint calculations instead of the 2N needed in
Equation 2.5.

It must be pointed out that it is possible to extend this procedure to obtain
higher order sensitivity information in a similar fashion. For example, in order
to obtain third order sensitivity coefficients we would need to apply the GD to
equation 2.11 and use the properties of the adjoint problem in a similar way.
This can be easily done in the presence of a single perturbed parameter, in
which case it would be possible to obtain higher order components by applying
Eq. 2.11 iteratively (for example using the second order adjoint solution as a
source for the third order adjoint problem).

2.2.3 Application to a simplified coupled time-dependent
problem

We now present the application of the techniques introduced so far to a
coupled time-dependent problem. This example is used to illustrate the
application of the method from a mathematical and numerical point of view.
The problem considered consists of a system of coupled Ordinary Differential
Equations (ODE) modeling the time-dependent behavior of a simplified reactor
system. The model is derived by using a point-kinetic approximation for
the neutron population (Duderstadt and Hamilton, 1976) together with a
lumped parameter description of the reactor temperatures. These assumptions
allow the elimination of the spatial dependencies and therefore to focus on the
time-dependent part. The point-kinetic equations are

dP

dt
=
ρ(Tf , Tc, t)− β

Λ
P +

6
∑

k=1

λkCk

dCk

dt
= −λkCk +

βk
Λ
P (2.12)

where P is the reactor power, Λ the mean generation time, Ck the concentration
of the kth precursor group (in power terms), βk and λk the delayed neutrons
fraction and the decay constant for the kth precursor group and β the total
delayed neutron fraction. The thermo-kinetics/thermal-hydraulics equations,
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needed to describe the removal of the heat by the coolant, are approximated
using a lumped parameter model, i.e. averaging the unknown values over the
whole domain. Assuming the reactor to be divided into a fuel (f) and a coolant
(c) region, their (time-dependent) average temperatures are described by the
equations

Mfcpf
dTf
dt

= P +Ah(Tc − Tf )

Mccpc

[

dTc
dt

+ v
Tc − Tin

L

]

= Ah(Tf − Tc)

where Mf and Mc are the fuel and coolant mass respectively, h the heat
transfer coefficient, A the heat transfer area, v the coolant flow velocity, L
the channel length and Tin the inlet temperature of the coolant. The coupling
between these two equations is given by the presence of the power production
term P and by the time-dependent reactivity ρ(t, Tf , Tc) in the point kinetic
equation, defined as the contribution of three different terms

ρ(t, Tf , Tc) = ρext + αD [Tf − Tf (0)] + αc [Tc − Tc(0)]

where ρext represents an external reactivity insertion, αD and αc are the
Doppler and the coolant reactivity coefficients respectively, and Tf (0) and
Tc(0) are the initial system temperatures. We assume that the system starts
from the following (initial) steady-state conditions

P (0) = P0

Ck(0) =
βk
λkΛ

P0

Tf (0) = Tc(0) +
P0

Ah

Tc(0) = Tin +
P0L

Mccpcv

The input data needed by the simplified model (collected in Table 2.1) were
obtained using the ERANOS suite (Rimpault et al., 2002) for the neutronics
parameters and using (Waltar and Reynolds, 1981) as a reference for the heat
removal parameters.
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P (MW) 1800 Λ (s) 4× 10−7

Mf (kg) 9675 Mc (kg) 1168
cpf (J/kgK) 500 cpc (J/kgK) 1200
Ah (kW/K) 2.5× 106 v (m/s) 7.5
αd (pcm/K) -0.687 αc (pcm/K) 0.123
αc (pcm/K) 0.123

Table 2.1: Parameter values used in the coupled model.
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Figure 2.1: Reference transient describing the response of the system to a
step reactivity insertion. The value of the step reactivity is ρext = 0.5$ for
0 < t ≤ 0.5s and ρext = −1$ for t > 0.5s.

Starting from these initial conditions, we consider a transient triggered by a
positive reactivity insertion. This external reactivity is described by a step
function which is positive (0.5$) between the initial time and t = 0.5 and
a negative (−1$) for (t > 0.5s). This reference problem has been solved by
using a built-in ODE solver in Matlab. As it can be seen in the solution
illustrated in Fig. 2.1, the power starts to increase after the reactivity insertion
until the Doppler reactivity feedback is sufficiently strong to compensate the
external amount. The introduction of the negative step (after 0.5s) then brings
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the system to a power level lower than the initial value. Regarding the fuel
temperature, this negative insertion represents the point when it reaches its
maximum (with the coolant temperature following with a small delay).

This maximum temperature has been chosen as the response considered for
the following perturbation analysis. We limited this analysis to five parameters:
the two reactivity coefficients, the total heat transfer coefficient Ah, the inlet
temperature Tin and the magnitude of the positive reactivity insertion ρext.

The first order perturbation with respect to this set of parameters can be
calculated by solving the following adjoint system

−
dP ∗

dt
=
ρext − β

Λ
P ∗ +

αd

Λ
[Tf − Tf (0)]P

∗+

+
αc

Λ
[Tc − Tc(0)]P

∗ +
6
∑

k=1

βk
Λ
C∗
k

−
dC∗

k

dt
= −λkC

∗
k + λkP

∗

−
dT ∗

f

dt
=
αd

Λ
PP ∗ +

P ∗

Mfcpf
+H

(

T ∗
c

Mccpc
−

T ∗
f

Mfcpf

)

−
dT ∗

c

dt
+ v

T ∗
c

L
=
αc

Λ
PP ∗ +H

(

T ∗
f

Mfcpf
−

T ∗
c

Mccpc

)

This adjoint system is subjected to the final conditions introduced in Eq. 2.4.
As it has been explained earlier, the linear operator of the adjoint problem
depends on the reference nonlinear solution. This means that, since the time
integration of the adjoint problem is performed backwards in time (Williams,
1986), one would need to store this reference solution for every time step
used during the adjoint integration procedure. When dealing with large scale
problems the storage needed to build the adjoint operator would eventually
become too large, therefore several techniques are usually employed in order
to overcome this issue (van Rooijen and Lathouwers, 2008; Gilli et al., 2011).
The left part of Figure 2.2 contains the first order sensitivity coefficients for
this set of parameters calculated by means of the first order adjoint theory.
The interpretation of these coefficients is quite straightforward and does not
need an extensive discussion: increasing the heat transfer coefficient reduces
the maximum fuel temperature during the transient while increasing the inlet
temperature or the magnitude of the reactivity step would have the opposite
effect. At the same time a stronger Doppler coefficient reduces the maximum
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Figure 2.2: First (left) and second (right) order sensitivity coefficients for the
fuel temperature at (t = 0.5s). The coefficients are expressed in terms of
relative variation of the output corresponding to a relative variation of the
inputs.

power reached during the transient (and therefore the temperature), while the
contribution of the coolant coefficient is negligible.

For the calculation of the Hessian matrix of the response with respect to
these 5 parameters, 10 further calculations are required (5 perturbed forward
problems and 5 perturbed adjoint calculations). The second order adjoint
calculations are performed, according to Eq. 2.7, by solving a set of new adjoint
systems obtained by adding different source terms to the first order adjoint
operator. For example, the second order adjoint solution with respect to the
Doppler coefficient is determined by solving the second order adjoint system
characterized by the following source term

SP̂ =
αd

Λ
δTfP

∗ +
αc

Λ
δTcP

∗ +
δαd

Λ
[Tf − Tf (0)]P

∗ (2.13)

SĈk
= 0

ST̂f
=
δαd

Λ
PP ∗ +

αd

Λ
δPP ∗

ST̂c
=
αc

Λ
δPP ∗
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which depends both on the first order adjoint solution (P ∗) and on the linearized
one (δTf and δTc). As a consequence, the computational requirements of the
method further increase since these solutions need to be stored with an adequate
time resolution. In presence of large scale systems the required storage space
would therefore become too large and, as for the first order adjoint solution,
the implementation of special numerical techniques would be necessary in order
to solve this issue.

The right part of Figure 2.2 shows the Hessian matrix calculated by substi-
tuting these solutions into Eq. 2.5. If a numerical approximation (like Finite
Difference) was used instead of the adjoint method to calculate the coefficients
of the Taylor expansion one would need N2+2N+1 runs of the full model (Ro-
nen, 1988) in order to estimate the first and second order sensitivity coefficients.
This is in sharp contrast with the 2N + 2 calculations needed by the adjoint
theory while dealing with a response localized in time. However, for large
perturbation sets the computational requirement would become eventually too
expensive considering that each response analyzed would need a set of new
calculations.

The matrix in Figure 2.2 defines the second order correction to the response
variation given any input perturbation. The diagonal elements of the matrix
correspond to the second order perturbation components caused by single input
variations while the off-diagonal ones represent the cross-correlation between
the different parameters. For example, the effect of perturbing the Doppler
coefficient will be higher if the heat transfer coefficient is perturbed at the
same time. This example shows that higher order perturbation components
can be dominated by a limited set of input parameters, or in other words, that
the evaluation of the full Hessian matrix would involve calculating many terms
which are close to zero. This is in principle the concept behind the definition
of reduced subspace modeling techniques, as the one presented by Bang and
Abdel-Khalik (2012).

The problem when applying higher order perturbation theory would be
determining ”a priori” whose elements (and therefore calculations) can be
discarded. Unfortunately, the comparison between the Hessian and the first
order coefficients shows that in some cases the magnitude of second order
perturbation components is not determined by the magnitude of the first order
derivatives. For example in Figure 2.2 it can be seen that the second order
sensitivity with respect to the inlet temperature is much larger than the one
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with respect to the initial external reactivity, despite the fact that the first
order sensitivities of the response with respect to these two input parameters
are roughly the same. This can be explained considering the mathematical
form of the second order adjoint problem: in presence of nonlinear systems
the second order source term contains both the first order adjoint solution
and a forward perturbation, as in Eq. 2.13. This means that the second
order solution is not uniquely defined by the first order adjoint solution but it
also depends on the outcome of a forward perturbation theory. A consistent
ranking criterion would be therefore more difficult to implement. This, together
with the computational issues associated to the adjoint solution for nonlinear
problems, makes the application of second order adjoint techniques to large
scale problems very challenging.

2.3 Conclusion

In this chapter we presented a general overview about adjoint methods. We also
introduced the derivation of a useful implementation of a second order adjoint
based perturbation technique for multi-physics time-dependent problems. The
mathematical definition of this perturbation technique, based on the Adjoint
Sensitivity Analysis Procedure, is very similar to the first order counterpart, the
main difference being the increased computational cost required to reconstruct
the Hessian matrix of a response. Applying second order adjoint perturbation
techniques to nonlinear systems requires the solution of 2N additional problems
(where N is the number of input parameters). We demonstrated from a
mathematical point of view that, this requirement can be further reduced
in the presence of linear time-dependent problems for which it is possible to
obtain the second order information with N additional adjoint calculations.
This result is consistent with other applications of second order adjoint theories
performed in the past for different types of linear systems.

With the application of the technique to a reference problem we have
shown the basic mathematical aspects associated with adjoint methods. The
computational challenges linked to adjoint formulations are quite considerable,
however the derivation can be useful for a better understanding, from a
mathematical point of view, of uncertainty propagation problems.

In the next chapter, we are going to discuss about another family of deter-
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ministic methods for uncertainty quantitications. These methods, known as
spectral techniques, are based on the spectral representation of the stochastic
quantities involved within our problem. The overview presented in the next
chapter, will be followed by the derivation of a new spectral technique.
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Chapter 3

Spectral Techniques for

Uncertainty Quantification

3.1 Introduction

In this chapter we introduce and discuss the main concepts associated to spec-
tral techniques for Uncertainty Quantification. These include the mathematical
background of the methods together with some approaches that can be used
for its application. These approaches can be divided into two main categories
depending on their formulation. Intrusive techniques involve the definition of
a new differential problem that has to be solved to apply the spectral theory,
while non-intrusive methods can be used to collect spectral information by
sampling the original stochastic problem.

Both methods and the underlying spectral theory will be introduced within
the next section. This is followed by two illustrative applications. First both
methods are applied to a non-linear time-dependent problem and their outcome
compared to standard Uncertainty Quantification techniques. Then, a non-
intrusive spectral approach is applied to a criticality benchmark characterized
by the presence of a large number of random inputs.
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3. Spectral Techniques for Uncertainty Quantification

3.2 Basic aspects of spectral techniques for
uncertainty quantification

Spectral techniques are based on the idea of representing a generic stochastic
process by means of a spectral expansion in random space. This spectral
representation can be used to reproduce any of the processes involved in
a mathematical model defining a physical problem of interest. There are
many ways to implement this expansion depending on the type of basis used,
one of the most known is the Polynomial Chaos Expansion (PCE) defined
using multidimensional orthogonal polynomials. The basis for this spectral
representation was first introduced by Wiener (1938) (as the Homogeneous
Chaos) in order to reproduce Gaussian processes in a spectral fashion. Xiu
and Karniadakis (2002) later presented a family of orthogonal polynomials,
known as the Wiener-Askey scheme, that can be used to extend the theory to
different families of stochastic processes.

The first step to implement the spectral expansion from a mathematical point
of view is the introduction of a group of independent and identically distributed
random variables ξ = [ξ1(θ), ..., ξN (θ)] (where θ is the domain of the stochastic
problem) that can be used as a support for the construction of the spectral
basis. The size of this variable set, N , is defined as the minimum number of
independent random variables needed to describe the random input data set of
the problem, which corresponds in most cases to the number of random input
parameters. The distribution of these random variables is arbitrary and in
principle one should choose it such that an optimal representation of the input
data set is achieved (for example by using the same distribution family of the
random inputs).

Assuming that these variables have been defined, it is possible, according
to the Polynomial Chaos theory, to approximate any stochastic quantity (if
characterized by a finite standard deviation) using a truncated expansion. For
example, a generic stochastic quantity R(θ) can be expanded as

R(θ) =
P
∑

i=0

riΨi(ξ(θ))

where a set of multidimensional polynomials Ψi (which are functionals since
they depend on ξ) belonging to the Wiener-Askey scheme is used, and P is the
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3.2. Basic aspects of spectral techniques for uncertainty quantification

number of terms in the expansion. This number depends on the highest poly-
nomial degree used in the spectral representation. If we define the maximum
polynomial order as p, the number of terms present in the spectral expansion
is (Le Maitre and Knio, 2010)

P + 1 =
(N + p)!

N !p!

It must be stressed that the maximum polynomial order p is the only approxi-
mation introduced by the PCE, in fact, choosing a hypothetical infinite order
would generate an infinite expansion capable of representing any stochastic
process of interest (provided that the process itself is characterized by a finite
mean and standard deviation).

The most important characteristic for a polynomial basis Ψi to be usable in
spectral techniques is its orthogonality property with respect to the following
definition of the inner product

< Ψn,Ψm >≡

∫

Θ

Ψm(ξ)Ψn(ξ)w(ξ)dξ = h2nδmn (3.1)

where w is a weight function (measure) which depends on the polynomial
expansion used, hn a normalization constant, and Θ is the support of the
stochastic domain. In (Xiu and Karniadakis, 2002), it is shown that some of
the polynomials belonging to the Wiener-Askey scheme are more suitable than
others when representing particular random distributions: Hermite polynomials,
for example, are the best way to represent Gaussian random variables while
Legendre polynomials are more suitable for uniform distributions. This implies
that, if the proper polynomial basis is chosen, the representation of the random
input data of the problem can be obtained by using the least number of terms
in the spectral expansion.

When dealing with multi-dimensional random problems, the orthogonal basis
is constructed by performing a tensorization of one dimensional polynomials.
After introducing the multi-index γ = (γ1, ..., γN ) it is possible to define the
following set

λ(k) =

{

γ :

N
∑

i=1

γi = k

}

(3.2)
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3. Spectral Techniques for Uncertainty Quantification

which can be used to formulate the kth order polynomial expansion as

Ψk =







⋃

γ∈λ(k)

γN
∏

γ1

ψγi(ξi)







It must be pointed out that, since the multi-dimensional polynomial is obtained
as a tensorization of one-dimensional functions, it is possible to adopt different
polynomial families along different directions of the random problem without
compromising the orthogonality condition (3.1).

Following the definition of PCE, we can represent any of the stochastic
quantities involved in the Uncertainty Quantification problem, for example
unknowns and responses, by using their spectral representations. Applying
spectral techniques means determining the coefficients of the spectral expansion
for the output quantities of interest once the spectral representations of the
inputs are known. For any of these parameters it is possible to evaluate some
of the statical moments of interest by using the following expression (Le Maitre
and Knio, 2010)

E[R] = r0

for the mean and

σ[R] =

√

√

√

√

P
∑

i=1

< Ψi,Ψi > r2i (3.3)

for the standard deviation. The expression for the skewness is relatively more
complicated. If we perform a similar manipulation to the one used to derive
the standard deviation we can obtain the following expression

γ[R] =
1

σ3

P
∑

i,j,k=1

< Ψi,Ψj ,Ψk > rirjrk (3.4)

which involves a triple summation over the PCE terms. This means that in
presence of multi-dimensional problems an expression for the skewness would
be non-trivial to implement. The probability density function of R(θ) can also
be obtained quite easily by sampling the spectral expansion itself, or, in other
words, by sampling the independent random variables ξ which characterize
the spectral expansion.
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3.2. Basic aspects of spectral techniques for uncertainty quantification

Different methodologies have been developed and applied so far for the
evaluation of the output spectral coefficients, the main distinction being be-
tween intrusive and non-intrusive approaches (Le Maitre and Knio, 2010). The
application of intrusive approaches requires the definition of a new mathemat-
ical problem whose solution is the set of spectral coefficients of the system
unknowns. This new mathematical system is significantly larger than the
original one and it is usually solved by using a separate solver. On the other
hand, non-intrusive techniques are applied by collecting a set of realizations
of the original system, using the original model as a “black box”. In the next
section more details about the intrusive and the non-intrusive approaches are
introduced.

3.2.1 Stochastic Galerkin Approach

Known as the Stochastic Galerkin approach, the following method provides
a way to evaluate the coefficients of the spectral expansion based on a direct
projection of the mathematical model defining the physical problem of interest.
We consider, as an illustrative example, the time-dependent model introduced
in Eq. 1.1. Firstly, we replace all the random quantities of the system (inputs
and unknowns) with their spectral representations

d

(

P
∑

i=0
uiΨi(ξ)

)

dt
= L

(

P
∑

i=0

αiΨi(ξ),

P
∑

i=0

uiΨi(ξ)

)

(3.5)

Taking the inner product of this system with respect to each of the multi-
dimensional polynomials defined by Eq. 3.2, leads to the definition of a new
system of ODEs for each of the unknown coefficients

〈Ψj ,Ψj〉
duj
dt

=

〈

L

(

P
∑

i=0

αiΨi,
P
∑

i=0

uiΨi

)

,Ψj

〉

(3.6)

The system of coupled ODEs generated by this operation corresponds to a
system which is P + 1 times larger than the original one, obtained as the
coupling between P + 1 subsystems. Each of the subsystems is associated to
the j′th coefficient of the spectral expansion of the unknowns.

As mentioned before, this dimension depends both on the number of random
variables introduced and on the order of the polynomial approximation, hence
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3. Spectral Techniques for Uncertainty Quantification

the solution may be problematic in presence of a multi-dimensional input data
set. Furthermore, a large effort is also required from the implementation point
of view since a new differential problem is introduced. In general, the system
defined in Eq. 3.6 is rather complex because it involves operations between
stochastic expansions. If, for example, we were dealing with a linear problem,
the model defined by Eq. 3.6 would involve products between the expansions
used to approximate the random parameters and the ones representing the
stochastic unknowns. This would correspond to the following double summation

α(ξ)u(ξ) =

P
∑

i=0

P
∑

j=0

αiujΨi(ξ)Ψj(ξ) = f(ξ)

The projection of this expression onto the k′th polynomial can be reformulated
as

fk =

P
∑

i=0

P
∑

j=0

αiujCijk (3.7)

where Cijk is a three dimensional tensor defined as

Cijk =
〈ΨiΨjΨk〉

〈ΨkΨk〉

This tensor represents the coupling which is present within the model 3.6
between different coefficients of the spectral expansion of the solution. Moreover,
when dealing with nonlinear problems more complicated forms could arise.
For example, in presence of first order nonlinearities the introduction of the
spectral expansions would generate for each nonlinear term a triple product
between a stochastic input quantity and two stochastic unknowns. This triple
product can be rewritten, in a fashion similar to the one adopted for linear
terms, as

[α(ξ)u1(ξ)u2(ξ)]m =

P
∑

j,k,l=0

Tjklmαju1ku2l (3.8)

where the four dimensional tensor

Tjklm =
〈ΨjΨkΨlΨm〉

〈ΨmΨm〉

is used. This kind of operation has to be repeated for each term of the original
system defined in Eq. 1.1. Although using these tensor forms facilitates the
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3.2. Basic aspects of spectral techniques for uncertainty quantification

projection process, one can easily understand how in presence of complex sys-
tems the definition of the Stochastic Galerkin system would become extremely
complicated. For this reason, alternative ways which can be used to evaluate
the coefficients of the spectral expansion without defining a new mathematical
problem have been studied. These approaches are known as non-intrusive since
their application does not involve any modification of the original mathematical
problem. In the next section an overview of these approaches is presented.

3.2.2 Non-Intrusive Spectral Projection

Non-intrusive approaches rely on the orthogonality property of the PCE. Using
this property it is possible to express the ith coefficient of the PC expansion
(as the one presented in Eq. 3.1) by projecting the stochastic quantity of
interest onto the respective polynomial. For example, the ith coefficient of the
generic stochastic quantity R can be determined by performing the following
projection

ri =
< R,Ψi >

< Ψi,Ψi >
(3.9)

If R was, for example, an unknown or a response of the mathematical model,
solving the projection integral would require the knowledge of its integrand
along the integration domain. Knowing the behavior of the integrand corre-
sponds to determining the solution of the output R at different points of the
Θ space. This operation can be in principle performed from the numerical
point of view by solving the problem for a finite set of realizations of the input
parameters. In this way the computer code which solves the mathematical
problem could be used as a ”black box” to determine the coefficients of the
PCE. Problems arise when increasing the dimension of the integral. In this
case the number of realizations required in order to have a meaningful estimate
for the integral eventually becomes too large.

For high dimensional integrals, one may approximate the numerator of
Equation 3.9 by using a Monte Carlo integration technique, randomly sampling
the model inputs until statistical convergence for the integral is reached. Using
an unbiased Monte Carlo integration technique the estimate for the projection
integral would be

ri ≈
1

Ntot

∑Ntot

j=1 R(ξj)Ψi(ξj)

< Ψi,Ψi >
(3.10)
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where Ntot is the number of realizations collected and ξj their stochastic co-
ordinates. The advantage of a Monte Carlo integration is that it is simple
to implement even in presence of high-dimensionality problems but the dis-
advantage is given by the slow convergence rate which, in case of unbiased
sampling, (reference to previous chapter)is proportional to N−0.5. Furthermore,
the presence of a polynomial of order i within the projection integral will also
affect the convergence rate since it depends on the smoothness of the integrand.
This implies that the truncation order p of the polynomial expansion will
heavily affect the number of samples required to achieve statistical convergence
for the PCE.

The deterministic alternative for the evaluation of the previous integral is
the introduction of numerical integration techniques as quadrature formulae.
In the case of a one dimensional random problem, the numerator of Equation
3.9 can be approximated using the following sum

∫

R(ξ1)w1(ξ1)dξ1 =

nq
∑

i=1

wi
1R(ξ

i
1) = Q1

lev R

where ξi1 and wi
1 are respectively the quadrature points and weights associated

with the one dimensional quadrature formula employed, and nq is the number of
points. This number determines the accuracy of the quadrature formula which
corresponds to a level index lev. The definition of these levels is arbitrary since
its main purpose is to distinguish formulae with different orders of accuracy,
see for example Figure 3.1 where different accuracy levels for a Gauss-Hermite
rule are shown. In this case, increasing the accuracy level corresponds to using
two more points within the quadrature rule. In the present work we limit our
analysis to Gaussian quadrature rules (Abramowitz and Stegun, 1964) which
can integrate with great accuracy many of the polynomial families defined
by the Wiener-Askey scheme, however, a complete overview of univariate
quadrature formulae is provided in reference (Le Maitre and Knio, 2010). The
main characteristic of Gaussian quadrature formulae is that they can integrate
exactly the corresponding polynomials up to order 2nq − 1. In case of a
multi-dimensional random input set, quadrature rules can be easily extended
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Figure 3.1: Quadrature points for different levels using a Gauss-Hermite rule.

by using a tensor product

Q(N)R = (Q1
lev ⊗ ...⊗QN

lev)R = (3.11)
ni1
∑

i1=1

...

niN
∑

iN=1

R(ξi11 , ..., ξ
iN
N )wi1

l1
...wiN

lN
(3.12)

where it is assumed, for sake of simplicity, that the same quadrature formula
Qlev is used in each direction. The multivariate quadrature rule obtained by
this direct tensorization has, along each direction, the same accuracy of the
univariate formula used to construct it. This means that the multivariate
formula will be exact for products of 1D polynomials for which univariate
quadratures are exact. For example, a 2 dimensional quadrature rule obtained
by tensorizing a univariate formula exact up to order 2 will be exact for
multidimensional polynomials up to order 4, as long as these multidimensional
polynomials are obtained as the tensorization of two order 2 polynomials.
Also, the same quadrature formulae will not have the same accuracy for 2D
polynomials of order 4 if they are obtained by using 1D polynomials of order
greater than 2.

For tensor product formulae the number of nodes required to build the
quadrature grid is equal to (nq)N where nq is the number of quadrature points
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in each direction and N the dimension of the random space. It is clear that
for high dimensional problems the method would have a computational cost
comparable or even larger than a standard Monte Carlo technique, making the
approach less appealing. These requirements can be explained as a consequence
of the fact that quadrature tensorization formulae are, as mentioned before, also
accurate for a limited set of higher order polynomials. Since this information is
not used within the determination of the spectral coefficients it is in principle
possible to reduce the number of points of tensorization formulae by discarding
this higher order accuracy from the quadrature set. This concept led to the
definition of sparse tensorization techniques for the construction of multivariate
quadrature rules, known as sparse grid techniques, first introduced by the
Russian mathematician Smolyak (1963) who defined an algorithm for sparse
tensor product constructions which will be introduced in the following chapter.

3.2.3 Comparison between the different approaches

The spectral techniques introduced so far can be regarded as a way to achieve
the exactness of Monte Carlo sampling in a deterministic fashion. Unfortunately,
the computational cost required for the application of such methods increases
with the dimension of the random problem, this drawback is usually known
as the ”curse of dimensionality” (Le Maitre and Knio, 2010). For example,
it has already been mentioned that when using tensor product quadrature
formulae the number of points for highly dimensional problem would increase
exponentially, however various techniques can be adopted in order to tackle
this problem. Furthermore the approach is relatively easy to apply from a
numerical point of view, since it involves the collection of realization points
obtained by solving the original problem as if it were a “black box“. On
the contrary the Stochastic Galerkin problem involves the definition of a new
system which is P + 1 times larger than the original one, where P directly
depends on the dimension and on the polynomial order used. This means, for
example, that in the presence of 10 independent random variables a fourth
order Stochastic Galerkin would involve the definition and the solution of a
problem 1000 times larger than the original one. In Figure 3.2 it is shown the
behavior of the number of spectral coefficients P with respect to the stochastic
dimension and the truncation order. The figure is useful to visualize the fact
that when dealing with large scale systems the application of the Stochastic
Galerkin approach would become extremely unpractical.
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Figure 3.2: Size of the spectral expansion P with respect to the polynomial
truncation order p and the dimension of the stochastic problem N .

Within the next two sections the spectral techniques introduced so far will
be applied to two illustrative examples. Firstly, the Non-intrusive Spectral
Projection and the Stochastic Galerkin approaches are going to be employed
to perform Uncertainty Quantification of a nonlinear time-dependent problem.
Secondly, a highly dimensional stochastic problem is introduced and the
feasibility of a Non-intrusive approach is analyzed.

3.3 Application to an illustrative time-dependent
problem

We now present the application of the techniques introduced so far to an
illustrative problem. This example is used to show the differences between the
two main spectral approaches and to compare them to standard UQ techniques.
The problem considered is the same system of ODEs introduced in Section
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2.2.3, used to model the time-dependent behavior of a simplified reactor system.

We considered, for the present example, the application of spectral and
traditional uncertainty quantification techniques to a reference transient. This
transient is the response of the system to a step reactivity insertion of 1$.
The uncertainty problem around this reference solution has been introduced
considering the inserted reactivity ρext and the Doppler coefficient αD to be
stochastic quantities (normally distributed with 5% and 10% relative standard
deviation respectively). The data from Table 2.1 was used for their mean
values.

In both cases the random inputs are assumed to be independent. This
kind of distribution has been chosen in order to compare the results with
the outcome of the first order uncertainty propagation despite the fact that
the infinite realization support of the distribution could in theory lead to the
generation of ”undesired” transients (corresponding to a change of sign of
the external reactivity or feedback coefficients). However, due to the small
standard deviation of the input quantities, all the realizations needed to build
the quadrature formulae for the NISP and the coupling tensors for the SG
were within the desired limits.

The two main spectral approaches defined in the previous section have
been implemented in order to solve this stochastic problem. In addition, the
uncertainty problem has been solved by using a standard unbiased Monte Carlo
sampling method and by implementing an adjoint based sensitivity technique
based on Equation 2.3. The outcomes of these two additional methods will be
compared with the results obtained by using spectral techniques.

The solution of the reference transient and the application of the UQ tech-
niques have been performed using MATLAB and its built-in solvers. In order
to implement the NISP and the Stochastic Galerkin methods we used a PCE
expansion based on 2-dimensional Hermite polynomials. This expansion is
the best choice in case of Gaussian processes since it can fully describe them
within the first two terms. A fifth order polynomial expansion was used for
both spectral techniques, this truncation order has been chosen in order to
verify the convergence of the spectral expansion. The non-intrusive projection
was obtained using the tensor product quadrature formula introduced in Eq.
3.12; the Galerkin problem derived for the intrusive approach is described in
the following section.
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3.3. Application to an illustrative time-dependent problem

3.3.1 Stochastic Galerkin formulation of the nonlinear
point-kinetic model

In the previous section we explained that a new differential problem needs to
be defined when applying the Stochastic Galerkin approach. We start this
derivation by approximating the stochastic input quantities using the following
spectral expansions

ρext =
1
∑

i=0

ρext
iΨi(ξ)

αD =
1
∑

i=0

αi
DΨi(ξ)

αc =

1
∑

i=0

αi
cΨi(ξ)

where the sum is truncated after the first order term assuming that the
quantities are Gaussian and that we are using Hermite polynomials. The same
is done for the stochastic unknowns

Q =

P
∑

i=0

QiΨi(ξ)

Ck =

P
∑

i=0

Ck,iΨi(ξ)

Tf =
P
∑

i=0

Tf,iΨi(ξ)

Tc =
P
∑

i=0

Tc,iΨi(ξ)

The implementation of the Stochastic Galerkin formulation is done by substi-
tuting these expansions into equation 2.12 and projecting the resulting system
on the p′th polynomial of the basis. The first complication arises from the
product between the stochastic external reactivity and the power

ρextQ =

1
∑

i=0

P
∑

j=0

ρiextQjΨi(ξ)Ψj(ξ)
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the projection on the p′th polynomial of this expression is, using equation 3.7,

(ρextQ)p =
P
∑

i=1

P
∑

j=0

ρiextQjCijp

where we used the three dimensional tensor Cjlp introduced before. Similarly
we can project the nonlinear reactivity feedback term using the four dimensional
tensor Tjlkp as

(αdTfQ)p =
1
∑

j=0

P
∑

k,l=0

Tjklpα
j
DTfkQl

the tensors Cjlp and Tjlkp define the coupling between each of the coefficients
of the spectral expansion. After some small manipulations, the final stochastic
system can be written as

dQp

dt
=

1
∑

j=0

P
∑

l=0

Cjlp

[

ρjext − αj
DTf (0)− αj

cTc(0)

Λ

]

Qp +

+

6
∑

k=1

[

β

Λ
Qp + λkCk,p

]

+

+

1
∑

j=0

P
∑

l=0

P
∑

k=0

Tjlkp

[

αj
D

Λ
Tf,lQk +

αj
c

Λ
Tc,lQk

]

dCk,p

dt
=

[

βk
Λ
Qp − λkCk,p

]

Mfcpf
dTf,p
dt

= Qp +Ah(Tc,p − Tf,p)

Mccpc

[

dTc,p
dt

+ v
Tc − Tin

L

]

= Ah(Tf,p − Tc,p)

If we assume the initial conditions to be deterministic we will have the same
initial value as 2.12 for p = 0 and zero initial amplitude for the rest of the
coefficients. In case of stochastic initial conditions the initial value for each
coefficient p needs to be evaluated by performing the usual projection. The
system just defined has been solved by using the same MATLAB solver used
for the reference solution.
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3.3.2 Results and Discussion

The results of the application of the different techniques introduced so far are
presented in this section. The analysis was done for the transient and the
associated stochastic problem described before. First, the mean value and
the standard deviation of the reference solution, generated by considering the
Doppler coefficient and the external reactivity to be stochastic quantities, have
been calculated by using the Stochastic Galerkin formulation and the Non-
intrusive Spectral Projection for a time ranging from 0 to 10 seconds. Figure 3.3
shows the time-dependent mean values and the associated uncertainty bands
(given by adding and subtracting the standard deviation) of the reactor power
and the system temperatures obtained by using the non-intrusive spectral
projection approach. The figure shows that the large magnitude of the standard
deviation causes a large uncertainty band around the power peak. The same
solution calculated by using the Stochastic Galerkin approach did not present
any substantial difference, only a small discrepancy due to the considerable
difference between the two approaches was found. The first important thing to
point out is that, since the probability density function of the output quantities
can be non-symmetric, the mean value does not correspond to the solution
obtained using the expectation values of the input data, as we would assume
while performing a first order uncertainty propagation. A second remark is
that obtaining these solutions with an adjoint sensitivity technique would
require the evaluation of the adjoint problem at many points in time during
the transient, thus increasing the computational cost. On the contrary, this is
much easier with Monte Carlo and PCE techniques since the evolution of the
time-dependent behavior of the uncertainty is a direct outcome of the method.
While adjoint methods should be applied to estimate the uncertainties for few
time-localized responses, spectral methods can be used to determine the most
sensitive points during a transient.

The choice of using a fifth order truncated spectral expansion has been made
in order to perform a convergence analysis of the solution with respect to the
polynomial approximation used. Figure 3.4 shows the time dependent standard
deviation of the power for the stochastic problem obtained using different
expansion orders. A fourth order expansion was required to accurately calculate
the statistical moments in every point of the time domain. However such a
higher order expansion is necessary only to calculate the standard deviation
for the time-region located around the maximum power peak, afterwards the
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Figure 3.3: Mean value and uncertainty bands caused by the uncertainty on
the reactivity insertion ρext and on the Doppler coefficient αd. Power plotted
in a semi-logarithmic scale.

solution relaxes due to the feedback mechanisms and the discrepancy with
respect to the first order approximation reduces considerably.

The computational requirements of both spectral methods are directly related
to the PCE order employed, however it would be in principle possible, while
applying a Non-intrusive Spectral Approach, to use different PCE truncation
orders at different instants of the transient, whereas the size of the Stochastic
Galerkin problem would be determined by the maximum order needed during
the transient. In general, it is known that spectral representations of time-
dependent stochastic processes may be affected by convergence issues (Wan
and Karniadakis, 2006) requiring an increasing number of polynomial terms for
their accurate representation during the time-evolution. Different techniques to
overcome this problem have been proposed and they generally require a more
complicated implementation (Geritsma et al., 2010) (Wan and Karniadakis,
2005). In this particular example, the presence of feedback mechanisms causes
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Figure 3.4: Time-dependent standard deviation of the power for the stochastic
problem calculated with different PCE truncation orders

the solution to grow relatively slowly during the time interval following the
power peak. For time-dependent problems reaching a steady state, PCE
techniques have been proved to converge even for long transient behaviors
(Hagues et al., 2010). In this case the feedback nature of the problem and
the relatively short time interval make the PCE to converge to an accurate
solution. Tables 3.1 and 3.2 contain the mean value and the uncertainty
associated with the power and the fuel temperature at two different instants:
in the proximity of the power peak (t = 0.0034s) and at t = 1s, when the
standard deviation of the fuel and the coolant temperatures starts to increase.
The table also includes the results obtained with the two PCE techniques
(NISP and SG) together with the values calculated using a standard Monte
Carlo sampling and the ASAP method. The NISP technique has been applied
using two different quadrature grids (7× 7 and 15× 15). The right column
contains the number of calculations needed to apply the method, the letter l
means that the calculation is linear (2 linear calculations are needed to apply
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resp. = Q/Q0(−)
t = 0.0034s t=1s

E σ E σ N. Calc. time [s]
NISP(7) 35.6535 29.5391 1.8603 0.1477 49 29
NISP(15) 35.6529 29.5293 1.8603 0.1477 225 133
ASAP 26.4778 18.0783 1.8405 0.1357 1+2l 10
SG 35.6531 29.5395 1.8603 0.1477 1∗ 180
MC 35.6571 29.5212 1.8603 0.1477 10000 5400

± 0.004 ± 0.01 ± 5e-5 ± 4e-5

Table 3.1: Mean and standard deviations (obtained with different techniques)
of the power at 2 different instants (t = 0.0034s and t = 1s). The columns
on the right contain the number of calculations and the computational time
needed to apply the method, the letter l means that the calculation is linear
while the star (∗) means that a system 20 times larger than the original one
has been solved in order to apply the SG approach.

resp. = Tf (C)
t = 0.0034s t=1s

E σ E σ N. Calc. time [s]
NISP(7) 1290.6895 12.5270 1789.0554 78.6719 49 29
NISP(15) 1290.6895 12.5276 1789.0554 78.6731 225 133
ASAP 1287.2495 8.4011 1779.5634 72.7214 1+2l 10
SG 1290.6895 12.5271 1789.0553 78.6735 1∗ 180
MC 1290.6895 12.5276 1789.0501 78.6811 10000 5400

± 9e-2 ± 0.0025 ± 0.018 ± 0.015

Table 3.2: Mean and standard deviations (obtained with different techniques)
of the fuel temperature at 2 different instants (t = 0.0034s and t = 1s).

the ASAP technique, 1 for each of the responses considered) while the star (∗)
indicates that a system 20 times larger than the original one has been solved
in order to apply the SG approach. The calculation of the standard deviation
at t = 1s needed approximately 10 seconds using the ASAP technique, 29s
using the 7 × 7 NISP approach, 180s using the SG and 1.5 hours using the
unbiased Monte Carlo sampling.

As the results show, implementing the NISP using a 7 points quadrature in-
stead of a 15 points leads to a very small error in the prediction of the statistical
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Figure 3.5: Probability density function of the peak power. Comparison
between between PCE (continuous) and Monte Carlo (dashed).

moments. This proves the good convergence of the Gaussian quadrature rule,
which is able to successfully solve the projection integral with a relatively small
number of points, even in the presence of a higher order stochastic problem.

The values obtained with both spectral techniques compare very well to
the Monte Carlo estimators, the first methods being much faster due to the
small number of random parameters. This agreement can be also verified
for the probability density functions of the problem, for example Figure 3.5
shows the pdf associated to the power at t = 0.0034s, obtained with the PCE
approach and with a standard Monte Carlo sampling. It is apparent to see how
the shape of this pdf is far from the Gaussian distribution (in other words it
requires more terms for its spectral representation) which is the shape assumed
by first order propagation techniques. The Tables show how, in fact, the first
order approximation gives a considerable error in the prediction of many of the
responses considered. The main reason for this is the large input uncertainty
which places the problem in the region where the linear assumption ceases to be
valid. The adjoint method largely fails to predict the uncertainty of the peak
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with a PCE expansion (continuous line) and with a first order adjoint technique
(dashed line).

power. This discrepancy is shown in Figure 3.6 where the probability density
functions obtained using the NISP approach are compared with the Gaussian
prediction resulting from the adjoint method. This example clearly shows
how, in some cases, the first order approximation introduced by perturbation
techniques is not suitable to perform UA. On the contrary PCE techniques are
able to capture higher order stochastic information in a deterministic way. This
type of probability density profile could have important consequences from
a probabilistic risk assessment point of view. In our example the probability
density function for the fuel temperature has a tail toward higher temperature
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3.4. NISP for a large scale problem using MC

values, which means that the probability of it being higher than a safety limit
we may be interested in (for example, the melting temperature) is larger than
the one calculated using a Gaussian distribution.

In general, we have shown with this example how spectral techniques can
be employed to perform Uncertainty Quantification for problems associated
with large nonlinearities. The application of the intrusive approach required
the definition of a relatively complicated system despite the fact that the
original model was fairly simple. Moreover, for time-dependent problems, its
computational requirement directly depends on the maximum PCE truncation
order needed during the transient but, as we have seen for this example, this
higher order truncation is sometimes required only during a small part of
the time-domain. On the contrary non-intrusive approaches are relatively
easy when applying spectral methods to large scale problems since they can
be regarded as an extension of standard sampling techniques. Furthermore
their definition allows using different PCE orders at different instants of the
transient, possibly reducing the computational cost of the method.

3.4 NISP for a large scale problem using MC

The aim of this second example is to show how spectral techniques can be
used when dealing with highly dimensional stochastic problems. We have seen
in the previous sections that both the quadrature based Non-intrusive Spectral
Projection and the Stochastic Galerkin formulation have a maximum number
of stochastic input parameters corresponding to which their application would
become computationally too expensive. This number also depends on the
spectral convergence of the random quantities of interest, nevertheless there
will always be a computational threshold represented by the size of the random
problem. When this threshold is reached, the only feasible way to perform
uncertainty analysis would be to use a standard Monte Carlo approach, as
discussed in Chapter 1.

By definition, using an unbiased Monte Carlo sampling technique for un-
certainty quantification corresponds to the evaluation of a set of integrals
associated to the statistical moments of interest. As we discussed before, calcu-
lating the estimator for the ith coefficient of the spectral expansion introduced
in Eq. 3.10 does not differ from a mathematical point of view. The only
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3. Spectral Techniques for Uncertainty Quantification

difference is that the integrand is now multiplied by one of the polynomials
of the PCE. For example, the numerical solution of the projection problem
associated to the first term of the expansion (obtained by using the constant
polynomial Ψ0 = 1 in Eq. 3.10) is equivalent to the classical unbiased statistical
estimator of the mean. If we are already using a Monte Carlo approach to
perform uncertainty quantification we could therefore use the same realizations
to evaluate the integrals characterizing the spectral expansion.

In theory, the evaluation of these PCE coefficients would not require any
modification of standard sampling approaches, a part from the reformulation
of the integrand. In general, because we are using a Monte Carlo integration
approach for the evaluation of the spectral coefficients, the technique will be
characterized by a slow convergence rate. Moreover, this rate will decrease
when dealing with higher order coefficients because of the higher differentiability
of the polynomial included within the integrand.

Assuming that the standard unbiased sampling approach has converged
to a meaningful estimate, it might be of interest to quantify the amount of
spectral information that is possible to evaluate by using the set of realizations
already collected. For this purpose, we defined an illustrative example based
on a criticality problem. A benchmark, taken from the handbook of criticality
calculations (NEA, 2010), was selected to perform uncertainty propagation.
This criticality benchmark, known as Jezebel (PU-MET-FAST-001), can be
described as a highly enriched bare Plutonium sphere. The problem is charac-
terized by a fast neutrom spectra and its multiplication factor was calculated
using the MCNP5.1 code (3000 neutron histories were used to evaluate the
eigenvalue, corresponding to a statistical error of around 20pcm).

As an uncertainty propagation problem, we considered the average number
of neutrons generated per fission (ν̄(E)) to be a random quantity affected by a
5% error. The objective of the analysis was to determine the influence of the
introduction of this stochastic component on the fundamental eigenvalue of the
system. The average number of neutrons per fission is an energy dependent
quantity, each energy entry of ACE file used by MCNP has been assumed to
be normally distributed and independent. This generated a stochastic problem
defined by 2366 random inputs (corresponding to the number of discretized
energy levels in the ACE file) which is, as discussed before, certainly too large
for the application of the quadrature based non-intrusive spectral projection or
the Stochastic Galerkin formulation. A standard unbiased sampling was first
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Figure 3.7: Convergence of the standard deviation evaluated using a standard
sampling technique (continuous line) and a first order PCE (dashed line).

performed by collecting 3000 realizations of the multiplication factor. Then,
a second order PCE (built by using Hermite polynomials) was introduced
in order to spectrally represent this stochastic quantity. The coefficients of
the PCE have been calculated by using Eq. 3.10 together with the 3000
realizations of the output already collected for the standard sampling. Figure
3.7 shows the convergence of the standard deviation obtained by using the
standard sampling approach compared to the outcome obtained by using the
spectral representation. It is clear from the figure that the estimate of the
spectral method has not converged, unlike the one evaluated with the unbiased
sampling. This can be easily explained since the error due to the Monte
Carlo integration present in each of the spectral coefficients is added up in the
final value of the standard deviation. This means that when the size of the
stochastic problem is large, using a Monte Carlo approach for the evaluation of
the spectral coefficients will eventually fail to predict the value of the statistical
moments of interest within reasonable error.
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3. Spectral Techniques for Uncertainty Quantification

However the figure does not tell much about the error which is present in the
prediction of each of the PCE coefficients. Figure 3.8 shows the complete set of
first order coefficients (corresponding to the whole energy range) for different
sizes of the sample set used to evaluate the integrals. The peak present around
higher energy ranges is expected since the system is characterized by a fast
neutron spectrum, changing the number of neutrons produced by fission at the
thermal energy range has therefore negligible influence on the fundamental
eigenvalue. In the bottom right frame the outcome of the non-intrusive spectral
projection is compared to a standard multilinear regression approach. In the
latter case the error is much smaller, however a minimum of 2381 realizations
(corresponding to one sample more than the number of random inputs) were
required to evaluate the regression coefficients. Although the error present in
the PCE coefficients is considerable, we can still obtain a meaningful prediction
of their final value even with relatively small sample sets (as we can see, this
peak is already noticeable with 500 samples).

Figure 3.9 shows a single PCE coefficient taken from the first order set
(corresponding to ν̄(E = 200MeV ), in the proximity of the peak) together
with its associated statistical error. In this case the value of the coefficient
has already converged to a reasonable estimate after 500 realizations of the
output. This means that for the example considered it is possible to obtain
first order derivative information for the most sensitive parameters of the
problem with a reasonable amount of samples (a number comparable with
the one required for the unbiased sampling method to converge). Since its
application is cost free (assuming we are already applying a standard sampling
approach), the non-intrusive spectral approach would represent a good way to
obtain additional information of stochastic quantities of interest for large scale
random problems.

3.5 Conclusions

In this chapter we presented an introduction to the most common approaches
that can be used to apply spectral techniques for Uncertainty Quantification.
Through illustrative examples, we have seen that the intrusive approach, known
as the Stochastic Galerkin formulation, presents some challenges in terms of
formulation and computational requirements that would be hard to tackle when
dealing with large scale problems. On the contrary, non-intrusive approaches
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Figure 3.9: Convergence of the first order PCE coefficient corresponding to
E = 200MeV . Thin lines represent the statistical error associated to the
estimator.

are intrinsically easier to apply since they can be regarded as a way to perform
an ”ordinate” sampling of the stochastic quantities of interest.

We have shown with the second example how the Monte Carlo formulation
could also represent a useful tool when dealing with large scale problems,
providing an alternative way to estimate sensitivity coefficients. Moreover the
method can be easily integrated with standard random sampling approaches.

Regarding the quadrature based Non-intrusive Spectral Projection, though
the definition and the implementation are simpler than the intrusive counter-
part, we discussed how they are heavily affected by the ”curse of dimensionality”
which makes non-intrusive methods defined by the tensorization of univariate
formulae not applicable for most of the stochastic problems. Fortunately, it is
possible to use more convenient quadrature formulae based on the definition of
sparse grids. In the following chapter, we will focus on this type of quadrature
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rule and on its optimization performed by developing an adaptive algorithm.
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Chapter 4

A new adaptive algorithm

for the application of NISP

techniques

4.1 Introduction

In the previous chapter we have seen how Non-Intrusive Spectral Projection
approaches can potentially represent an optimal way to apply spectral tech-
niques due to their simplicity and ease of formulation. However, standard
tensorized quadrature techniques are affected by the ”curse of dimensional-
ity” which makes the technique often inapplicable when increasing the size
of the stochastic problem. The requirements of tensor product formulae are
caused by the fact that quadrature tensorization formulae are also accurate
for a limited set of higher order polynomials which are not used within the
projection process. It is therefore in principle possible to reduce the number of
points of tensorization formulae by discarding this higher order accuracy from
the quadrature set. This concept led to the definition of algorithms for the
construction of multivariate quadrature rules, known as sparse grid techniques,
first introduced by the Russian mathematician Smolyak (1963).
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4. A new adaptive algorithm for the application of NISP techniques

In this chapter we use this concept to develop an adaptive algorithm which
can be used to build a sparse grid quadrature rule. In this case the adaptivity
can be employed to achieve a further reduction of the computational require-
ments associated with sparse grid formulae. The main concepts behind the
development of this adaptive algorithm are presented after a general introduc-
tion about sparse grids. This algorithm is derived taking into account the fact
that a complex system is usually dominated by main effects and low-order
interactions. From an uncertainty propagation point of view, this means, as we
discussed in Chapter 2, that a response will be largely influenced by a limited
set of input parameters and by lower order perturbation components.

The derivation of the algorithm is then followed by an illustrative application
to a reference mathematical problem. In this example, the outcomes of the
adaptive algorithm are compared to the results obtained with standard sparse
grid rules.

4.2 Introduction to sparse grids

In this section we present a brief introduction to the concept of sparse grids,
needed to define the adaptive algorithm further on. The first step for the
definition of a sparse tensorization algorithm is the introduction of the following
difference formula

∆
(1)
levf ≡

(

Q
(1)
lev −Q

(1)
lev−1

)

f

Q
(1)
0 f ≡ 0

where ∆
(1)
l f is a univariate quadrature formula defined as the difference

between two consecutive quadrature levels lev. The set of abscissae of the
difference formula presented in the previous equation is defined by the union
of the abscissae of the two different quadrature formulae while the weights are
obtained as their difference. Because of this definition, the difference formula
corresponding to the lev + 1 level contains all the points defined within the
previous level lev.

After the introduction of the difference formula, the second step to implement
the sparse tensorization algorithm is the introduction of the multi-index set
l = (l1, ..., lN ), ∈ NN which is a vector as large as the number of stochastic
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4.2. Introduction to sparse grids

directions, whose indexes li are used to associate an accuracy level to each
direction. Furthermore, we define the norm of this multi-index as

|l| ≡
N
∑

i=1

li

Using these definitions it is possible to write the sparse grid construction
algorithm using the following summation notation (Le Maitre and Knio, 2010)

Q
(N)
lev f ≡

∑

|l|≤lev+N−1

(

∆
(1)
l1

⊗ ...⊗∆
(1)
lN

)

f (4.1)

according to which the final quadrature rule is built by adding a set of sub-grids,
whose dimension d depends on the accuracy level used along each direction.

Each sub-grid
(

∆
(1)
l1

⊗ ...⊗∆
(1)
lN

)

corresponds to a tensorization of a set of

difference formulae whose levels are defined by the value of the multi-index
l. The set of multi-indexes having norm |l| ≤ lev + N − 1 (where lev is
the accuracy level one wants to achieve for the multi-dimensional integral) is
therefore used to generate the sub-grids used in the final rule. An important
consequence of this norm constraint is that the maximum dimension for an
admissible sub-grid is lev − 1 which is relatively low even when considering
high dimensional problems. This is the main aspect determining the numerical
convenience of a sparse grid with respect to a tensorized one.

The use of this sparse algorithm can reduce drastically the amount of
quadrature points required, especially when dealing with high-dimensionality
problems. Unfortunately, despite the drastic reduction of quadrature points
associated with sparse quadrature rules, for high-dimensional problems the
set of points (or, in other words, realizations) required to perform an accurate
integration could still become larger, for the same accuracy, than the one
required by standard Monte Carlo approaches. The number of quadrature
points generated by the sparse tensorization depends directly on the univariate
formula used to build it, however as it is explained in (Le Maitre and Knio,
2010) in presence of irregular integrands and highly dimensional problems the
size of the grid would eventually become too large.

Several approaches, usually based on adaptive algorithms, have been pre-
sented in literature in order to overcome this issue. For example, adaptive
techniques have been implemented by using multi-wavelet based approaches
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4. A new adaptive algorithm for the application of NISP techniques

(Le Maitre et al., 2004) or stochastic Finite Elements (Bieri and Schwab, 2009)
(Witteveen et al., 2009). In these cases, the possibility of using adaptive and
goal-oriented methods was successfully demonstrated, however their complexity
makes their application difficult for problems characterized by large numbers of
random inputs. Usually, dimension reduction techniques such as the ANalysis
Of VAriance (Yang et al., 2012) are employed in order to transform large
dimensional problems in a set of lower dimensional models which can be solved
by using the adaptive techniques just mentioned (Foo et al., 2008).

An adaptive approach based on sparse grid quadrature was presented by
Gerstner and Griebel (1998) who demonstrated that it is possible to adaptively
build cubature rules in order to solve high dimensional integrals like the ones
associated with spectral methods. These sparse grids can be also used to
determine a set of collocation points which need to be evaluated in order
to determine the stochastic outputs of interest (Ganapathysubramanian and
Zabaras, 2007).

4.2.1 Adaptive Sparse Grid construction algorithms

The main idea behind the definition of an adaptive sparse grid algorithm is that
the constraint acting on the set of multi-indexes used to build the sub-grids
in Eq. 4.1 can be relaxed, therefore reducing the number of points used to
generate the final quadrature formula. One of the first examples of an adaptive
algorithm can be found in reference (Gerstner and Griebel, 1998) where the
authors define a sequential way to construct the multi-index set by using the
reduction of the integration error as a target. Some of the sub-grids included
by a standard sparse grid algorithm might introduce a negligible contribution
to the final quadrature formula, depending on the stochastic direction and the
quantity which is being integrated.

The reduction of the multi-index set can be performed keeping in mind
that Eq. 4.1 represents a sum of difference formulae which implies that a
sub-grid can be introduced into the final rule only if all the previous levels
of the difference formula have already been included. This translates to the
following mathematical condition

l− ej ∈ I, for 1 ≤ j ≤ N, lj > 1, (4.2)

where I is the set of sub-grids already included in the sparse grid, the multi-
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index l corresponds to the sub-grid with respect to which the admissibility is
checked and ej is the unity vector. According to this constraint, it is possible
to build the quadrature rule starting from the sub-grid defined by the first
multi-index (l1 = (1, ..., 1)) and enriching it by progressively increasing the
level of the multi-index along the directions which give the largest contribution
to the integral.

Figure 4.1 depicts, as an illustrative example, a passage during the con-
struction of a two dimensional sparse grid. The grid shown in the top part of
the figure is enriched by including the subgrids corresponding to the indexes
li = (1, 3), (2, 2) (the subgrids G1 and G2 represented in the central part). The
resulting grid is shown in the bottom of the figure. The idea is to find, when
dealing with high-dimensionality problem, “optimal” quadrature formulae
which include only the set of multi-indexes li giving a sensitive contribution
to the final integral. This can be done while using a progressive multi-index
approach by limiting the multi-index “enrichment” in the directions for which
the sub-grid contribution to the final quantities of interest is larger than a
specified tolerance. This firstly requires the definition of a marching algorithm
to be used while sweeping throughout the set on multi-indexes, and secondly
an indicator used to determine when the contribution of a set of subgrids is
below the specified tolerance.

In references (Gerstner and Griebel, 1998) and (Gerstner and Griebel, 2003)
an adaptive quadrature algorithm is proposed such that the new multi-indexes
to be included within the final rule are taken from the neighborhoods of
the indexes which have been already included and which cause the largest
contribution to the integral. The same algorithm has been applied successfully
by Ganapathysubramanian and Zabaras (2007) to propagate uncertainties in
fluid mechanics problems.

In the following section we present an alternative algorithm that can be used
to implement an adaptive sparse grid when applying non-intrusive spectral
techniques for uncertainty quantification. This algorithm is based on the
progressive addition of the sub-grids according to their size d. This allows
projecting the information already obtained about lower dimensional sub-grids
onto higher dimensional ones that still need to be analyzed. Moreover, the
algorithm can be used to build a reduced spectral expansion based on the
one-dimensional sub-grids, thereby reducing the computational cost associated
to the quadrature process.
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Figure 4.1: Example of a two dimensional adaptive sparse grid construction
built by using a Gauss-Hermite univariate rule. The top grid is enriched by
including the subgrids G1 and G2 corresponding to the indexes li = (1, 3), (2, 2)
(represented in the central part). The resulting grid is showed in the bottom
of the figure.
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4.3. Definition of a new adaptive algorithm

4.3 Definition of a new adaptive algorithm

In this section the adaptive algorithm developed for the application of the non-
intrusive spectral projection is presented. The aim of the adaptive algorithm
is to successively add admissible sub-grids until a desired integration tolerance
is achieved. For this purpose, an indicator needs to be defined in order to
determine if the contribution of an admissible sub-grid is small enough for the
grid to be discarded. Once this condition is met and the sub-grid is dropped,
the multi-index set can be updated by removing all the multi-indeces that do
not satisfy the admissibility criterion. This procedure is repeated until all the
sub-grids of the initial set have been either included or discarded from the final
rule.

In order to implement the adaptive algorithm we first define the following
estimator ǫi for the response R, associated to the i′th subgrid

ǫi ≡ max

[∣

∣

∣

∣

(

δEi(R)

E(R)

)∣

∣

∣

∣

,

∣

∣

∣

∣

(

δσi(R)

σ(R)

)∣

∣

∣

∣

]

(4.3)

where δEi and δσi are, respectively, the variation in the mean value and in the
standard deviation of the spectral expansion of R due to the i′th subgrid. If
we keep in mind that each of the subgrids defined by the expansion 4.1 has
an associated contribution ǫi, the aim of an adaptive algorithm would be to
include in the final quadrature rule only the set of subgrids whose associated
contribution is larger than a specified tolerance.

The algorithm we introduce is derived by taking into account the fact that a
complex system is usually dominated by low-order interactions. This is known
as the “sparsity of effects principle” (Wu and Hamada, 2000) and implies
that in presence of large sets of input parameters the main influence on the
stochastic response is caused by lower order propagation components. Since a
sparse grid is defined as the sum of lower dimensional sub-grids (where the
maximum dimension is determined by the accuracy level lev) the idea of a
propagation dominated by lower order interactions is equivalent to stating that
most of the contribution to the final integral will be given by lower dimensional
subgrids (ex. 1, 2, or 3 dimensional grids).

An adaptive algorithm for the construction of a sparse grid formula has
been developed taking these aspects into account. The main idea behind the
algorithm is to add subgrids to the sparse grid by starting from one dimensional
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grids and by progressively increasing their resolution and their size d. When
the contribution ǫi associated with the N-dimensional grid i is smaller than
a specified tolerance the refinement process is stopped and all the subgrids
obtainable as a refinement of i are discarded from the admissible index set. In
this context, the integration tolerance tol is the only parameter that needs to
be specified.

Given the problem dimension N and a sufficiently large accuracy level
(which can be increased if needed), the set of multi-indexes I characterizing
the complete sparse grid (defined in Eq. 4.1) is generated. The aim of the
algorithm is to select and evaluate from this starting set the sub-grids which
cause the largest contribution to the final integral. As we explained before,
the sub-grids present in this initial set I can be divided according to their
dimension. For each sub-grid this dimension, denoted as d, depends on the
univariate quadrature level used in each direction and ranges from 0 to lev− 1.

An important aspect to address before continuing with the description of the
algorithm regards the truncation of the spectral expansion used to implement
the spectral projection, or in other words, the number of terms employed in the
PCE. The convergence of the stochastic response R should be verified while
applying the adaptive algorithm in order to have a meaningful solution. One
could in principle apply the adaptive algorithm by starting from a low order
expansion and increasing the order till convergence is reached. In presence of
highly anisotropic stochastic problems this procedure would be non-optimal
since it would require the evaluation of a PCE whose truncation depends only
on the most irregular stochastic direction. A possible way to overcome this
problem is the definition of an anisotropic PCE whose higher order terms are
included only for a limited set of stochastic directions.

In order to cover this aspect, the adaptive algorithm is initialized as follows.
First the algorithm divides all the subgrids present in I according to their
dimension d. The only zero-dimensional sub-grids, which corresponds to origin
of the stochastic domain defined by the multi-index l = (1, ..., 1), is then
evaluated. After the subgrids are divided according to their dimension d the
algorithm is applied in two separate steps.

Firstly, the adaptive sparse grid formula is enriched by adding exclusively
one-dimensional grids and by using a one-dimensional PCE for each of the
stochastic dimensions. This allows having an initial estimate of the convergence
of the PCE along each direction which can be used to define the order of the
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final spectral expansion. Secondly the algorithm is continued by adding higher
dimensional subgrids, using the PCE truncation determined within the previous
steps. In the next section these two steps are described in more detail.

4.3.1 First step: Integration over 1D sub-grids and definition
of a reduced Polynomial Chaos Expansion

During the first part of the adaptive sparse grid generation, the construction of
the grid is performed by including quadrature points exclusively along the main
axes of the stochastic domain. This is done by introducing a one-dimensional
random problem for each of the stochastic random directions and by separately
determining the convergence of the corresponding one-dimensional numerical
quadrature.

The scope of this convergence analysis is to determine in each direction both
the number of quadrature points needed to evaluate the stochastic integral,
and the truncation order required for the 1 dimensional PCE to converge.

This corresponds to the following process repeated for each of the stochastic
directions. Starting from the initial point associated to the first multi-index l =
(1, ..., 1) the grid is refined by adding the smallest one-dimensional subgrid taken
from the admissible multi-index set (corresponding for example to l = (2, ..., 1)
when dealing with the first stochastic direction). The indicator introduced
in Eq. 4.3 is then evaluated for this grid using a first and a second order
PCE. If, after the evaluation of this initial grid, the difference in the standard
deviation obtained by using the first and the second order PCE is smaller
than the specified tolerance the refinement is stopped and the PCE is assumed
to be first order along the direction. If, on the contrary, the contribution of
the second order term is not negligible the grid is refined after increasing the
PCE truncation order by adding the subsequent subgrids (corresponding for
example to l = (3, ..., 1), l = (4, ..., 1), etc) until the indicator is smaller than
the specified tolerance. A convergence test for the one-dimensional PCE is then
performed, and, if the spectral expansion has not converged, the previous step is
repeated after the truncation order has been increased. The reference flow-chart
for this algorithm is presented in Figure 4.2. The outcome of this first phase is
an initial collection of subgrids located along the main axes of the stochastic
domain (see for example Fig. 4.3) which can be used as a starting basis for
the construction of the final quadrature rule. Furthermore, the truncation
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Figure 4.2: Description of the first part of the adaptive algorithm. The index
i refers to the stochastic direction while o(i) and lev(i) are, respectively, the
corresponding PCE order and grid resolution.

orders required to achieve convergence of the one-dimensional PCEs along each
direction are also known after completing this first part. We define a vector
p = (p1, ..., pN ) where each entry pi represents the maximum order needed to
represent the stochastic output when considering the corresponding variable to
be the only stochastic quantity of the problem. Using this information about
the convergence of the spectral expansion along each of the stochastic directions
it is possible to define a reduced multi-dimensional PCE by modifying the
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Figure 4.3: Final set of points of the quadrature formula along the main axes
for a 2 dimensional case.

constraint on the polynomial basis introduced in Eq. 3.2. We introduce a new
definition for the multi-index set λ (originally defined in Eq. 3.2)

λ(k) =

{

γ :

(

N
∑

i=1

γi = k

)

∧ (γi ≤ pi, for 1 ≤ i ≤ N)

}

(4.4)

The definition of the new multi-index set is similar to the one presented in Eq.
3.2, the only difference being the constraint on the maximum polynomial order
along the i′th direction. This order is now determined by the value pi, obtained
while adding the one-dimensional subgrids to the quadrature formula. We
assume that the multi-dimensional PCE obtained by using this new constraint
is converged and that can be used in the following steps for the construction
of the adaptive quadrature algorithm.
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4.3.2 Second step: integration over the higher dimensional
sub-grids

As we explained when we first discussed the mathematical definition of sparse
grid, each of the lower dimensional sub-grids used to build the final rule can
be divided according to its size d and norm |l|. When the algorithm described
within the previous section is completed, all the one-dimensional sub-grids
(characterized by different norms) have been either included or discarded
from the final quadrature rule. We can therefore continue the algorithm by
considering higher dimensional sub-grids. According to our algorithm, the
order these sub-grids are evaluated is firtly determined by their size d and,
then, by their norm |l|.

Figure 4.4 shows a scheme representing the order according to which the
sub-grids are evaluated. Each block in this figure represents a set of sub-grids
characterized by the same size and norm. The blocks in the left column repre-
sent the union of all the possible one-dimensional sub-grids (which have been
already evaluated within the first part of the algorithm), moving horizontally
corresponds to increasing the size of the sub-grids while moving vertically
increases their norm (which correspond to a higher “resolution”). After eval-
uating the set of one-dimensional sub-grids (first column of the scheme) we
proceed by analyzing the sub-grids defined by the bottom block of the second
column. Once the contribution of each of these two-dimensional sub-grids has
been calculated we then continue by moving vertically on the scheme, therefore
analyzing the two-dimensional grids associated with a higher norm. After
reaching the top block of the column we move to the third column, starting
from its bottom block. This procedure is repeated until the top right block
has been evaluated.

The adaptivity within this process is implemented by enforcing, each time
that a sub-grid is evaluated, the condition defined in Eq. 4.2. This means that
if the indicator 4.3 associated with the current sub-grid is below the specified
tolerance all the sub-grids that require it for their existence are discarded from
the final quadrature rule. This operation introduces another condition for the
algorithm to end, which is when every higher dimensional sub-grid have been
discarded from the quadrature rule.

It must be kept in mind that each time that a higher-dimensional sub-grid
is discarded from the final quadrature rule the polynomials associated with
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Figure 4.4: Order according to which the different sets of sub-grids are evaluated.
Each set contains the sub-grids characterized by size d and norm |l|. N is the
number of random inputs characterizing the stochastic problem.

the same multi-index must be also taken out from the PCE. This is because
the grids required to evaluate the corresponding coefficients are left out from
the final quadrature rule.

4.3.3 Overview of the method

In the previous sections we introduced an algorithm which can be used to
evaluate the projection coefficients of the spectral expansion in an adaptive
fashion. The algorithm is based on the concept of sparse grids and is structured
in two main parts: firstly the sparse quadrature points are collected along the
main axes of the stochastic domain and a reduced PCE is built, secondly the
integration is extended to higher dimensional grids until a convergence for the
stochastic quantities of interest is reached.

The convergence rate of this adaptive algorithm depends mainly on how many
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grids are discarded from the admissible multi-index set at the initial stages, or,
in other words, on the smoothness of the response surface of the problem. If,
for example, we deal with a completely linear problem the evaluation of two
dimensional grids would already exclude most of the multi-index set from the
final quadrature rule. On the contrary an extremely irregular output could in
principle require the addition of every single grid defined by the initial set I.

The minimum requirements of the algorithm in terms of quadrature points
largely depend on the number of two-dimensional subgrids added during the
second phase. Assuming every single input parameter has an influence on the
stochastic output of interest, this number can be expressed in the following
combinatorial fashion

n2D =

(

N

2

)

(4.5)

Although the adaptive script can be used to drastically reduce the requirements
associated to sparse grid integration, increasing the number of input parameters
N will eventually make the method inapplicable because of the starting set
of 2 dimensional grids that needs to be evaluated. This number could be in
principle used as a rough criterion to estimate whether the application of the
adaptive algorithm is feasible (depending on the number of random inputs N).

Depending on the differentiability of the response surface, 15-20 parame-
ters would therefore represent the number above which the method would
be computationally more expensive than standard random sampling. This
upper constraint could in theory be relaxed by finding a way to discard two-
dimensional sub-grids based on the evaluation of the one-dimensional ones.

In theory, the computational cost associated with spectral techniques could
be further reduced by exploiting the gradient of the stochastic response of
interest with respect to the input parameters. This gradient information
could be obtained by using perturbative approaches or, when dealing with
functional responses, by implementing adjoint techniques such as the Adjoint
Sensitivity Analysis Procedure (Cacuci, 2003). For example, Alekseev et al.
(2011) presented a way to use the information associated with the gradient of
a functional when dealing with non-intrusive PCE methods.
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Figure 4.5: Geometric used for the neutron diffusion problem.

4.4 Illustrative example

We now present the application of the adaptive sparse grid algorithm defined in
the previous section. We consider a simple one dimensional neutron diffusion
problem in a non-multiplying medium, modeled by the following equation

(−∇ ·D∇+Σa)φ(x) = S

where D is the diffusion coefficient of the medium, Σa the absorption cross-
section and S the source term. The geometry analyzed, represented in Figure
4.5, is a semi-infinite one dimensional slab divided into two different regions
whose properties are listed in Table 4.1. The boundary between the two regions
is located at x1 = 20cm while at x = 0cm a plane source S0 introduces 106

neutrons per second in the system. We also assume that a 1 cm thick neutron
detector present in the second region at xd = 25cm whose cross-section is
Σd = 0.01cm−1. Finally, we consider the reaction rate of this detector to be
the response of our mathematical problem.

R =

∫

Vd

Σdφ(r)dr (4.6)
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where Vd is the volume of the detector.

Region 1 Region 2
Σa [cm] 2 · 10−2 3 · 10−5 S0 [n/s] 106 Σd [cm−1] 0.01
D [cm−1] 2 · 10−2 3 · 10−5 x1 [cm] 20 xd [cm] 25

Table 4.1: Parameter values used in the diffusion model

We decided to use such a simple model because it is possible to derive an
analytical solution which can be used to better evaluate the performance of the
spectral method. After solving the diffusion equation, the flux in the second
region can be written as (Duderstadt and Hamilton, 1976)

φ2(x) = A exp(−
x

L2
)

where we introduce the diffusion length Li ≡
√

Di/Σai. The constant A is
equal to

A =
S0L1

2D1

D1L2 cosh(
x1

2L1
) +D2L1 sinh(

x1

2L1
)

D2L1 cosh(
x1

2L1
) +D1L2 sinh(

x1

2L1
)

This solution can be used in the integral 4.6 to evaluate our response of interest.

We now introduce a stochastic component to the problem by considering the
absorption cross-sections, the diffusion coefficients, the detector cross-section,
and the source term to be random quantities. These quantities are assumed
to be normally distributed with 10% relative standard deviations. As we
explained in Chapter 3 it is possible to represent these quantities by using the
following expansions

S0(ξ) = µ(S0) + ξ1σ(S0)

D1(ξ) = µ(D1) + ξ2σ(D1)

D2(ξ) = µ(D2) + ξ3σ(D2)

Σa1(ξ) = µ(Σa1) + ξ4σ(Σa1)

Σa1(ξ) = µ(Σa1) + ξ5σ(Σa1)

Σd(ξ) = µ(Σd) + ξ6σ(Σd)
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Figure 4.6: Probability density function of the response obtained by using a
standard sampling approach (based on 105 samples).

where µ(×) and σ(×) define, respectively, the mean and the standard deviation
of the stochastic quantity and ξ = (ξ1, ..., ξ6) are 6 independent normally
distributed (having zero mean and unity standard deviation) variables. Once
the random input quantities are defined it is possible to represent any stochastic
quantity by using a spectral expansion, in this case obtained by adopting 6-
dimensional Hermite polynomials (chosen because of the distribution of the
random inputs). In order to have a reference solution for the stochastic problem,
the probability density function of the response (shown in Figure 4.6) and its
statistical moments were first obtained by using a standard unbiased sampling
technique. The adaptive algorithm defined in the first part of this chapter
was then applied to this stochastic problem. Applying the adaptive algorithm
requires the definition of a relative tolerance ǫ that needs to be used in two
separate stages of the process. Firstly this tolerance is used when evaluating the
convergence of the PCE, secondly while adding subgrids to the final quadrature
formula.

The algorithm (ASG) was first compared with the outcomes of using full
sparse grid rules (SG) and standard sampling techniques (MC). Furthermore,
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the results obtained by applying the adaptive algorithm presented by Gerstner
and Griebel (1998) were also included. A fixed order PCE was employed in
all cases, in order to have a fair comparison between the different algorithms.
The outcome of this analysis is collected in Table 4.2.

E σ N order
MC 150.8071 ± 0.270 84.4135 ± 2.54 100000 -

SG(lev=4) 150.3001 83.5329 533 4
SG(lev=5) 150.3001 83.5322 2381 4

Gerstner et al. (ǫ = 10−2) 150.3001 83.5324 319 4
Gerstner et al. (ǫ = 10−3) 150.3001 83.5313 399 4
Gerstner et al. (ǫ = 10−4) 150.3001 83.5316 601 4

ASG(ǫ = 10−2) 150.3002 83.5087 257 4
ASG(ǫ = 10−3) 150.3001 83.5313 399 4
ASG(ǫ = 10−4) 150.3001 83.5320 605 4

Table 4.2: Statistical moments of the response obtained using a standard
Monte Carlo sampling approach, different sparse grid quadratures, and the
adaptive algorithm with different tolerances. Right column contains the PCE
order used to construct the spectral expansion.

The table shows that both adaptive techniques converge to the values obtained
by using full sparse grid rules and by randomly sampling the model. In all
cases the number of points employed by the two different adaptive algorithms
is comparable, although the algorithm introduced in this chapter presents a
considerable reduction. For the ǫ = 10−2 case this reduction is associated with
an increase in the integration error, however this final error is well within the
specified tolerance. At this point it must be stressed that all these comparisons
were performed by using a fixed PCE order, therefore excluding from the
algorithm the benefits of using the reduced PCE introduced in Eq. 4.4.

Table 4.3 contains the results of the application of the algorithm together
with the reduced PCE. The last column of the table contains the PCE order p
(along each direction) obtained after the first phase of the algorithm according
to the definition introduced in Eq. 4.4.
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E σ N p
SG(lev=4) 150.3001 83.5329 533 4
SG(lev=5) 150.3001 83.5322 2381 4

ASG(ǫ = 10−2) 150.3002 83.0095 97 121211
ASG(ǫ = 10−3) 150.3001 83.4510 127 121211
ASG(ǫ = 10−4) 150.3001 83.5310 333 121421
ASG(ǫ = 10−5) 150.3001 83.5318 429 121421
ASG(ǫ = 10−6) 150.3001 83.5322 847 133431

Table 4.3: Statistical moments of the response obtained using different adaptive
algorithm tolerances. Right column contains the PCE expansion order along
each direction.

The results collected in the table show how the number of points needed for the
convergence of the algorithm are considerably reduced if compared to Table 4.2.
This is of course expected since a lower order spectral expansion is employed
within the projection problem. If one compares the outcome of the algorithm
corresponding to ǫ = 10−3 and to ǫ = 10−6 it is possible to notice how,
though the prediction in the first case is within reasonable error, the number
of points is considerably lower. This means that the adaptive component
of the algorithm could potentially represent a considerable improvement, in
terms of number of quadrature points needed for convergence, if we sacrifice
some precision (accuracy which would be however still higher than the one
associated to sampling techniques). One should take into account the fact
that when performing uncertainty propagation we are usually not interested in
determining the statistical moments of interest within a many digits precision,
in many cases a 1% error would be more than acceptable.

Overall, these results clearly show how the adaptive algorithm is able to
reconstruct the statistical moments of interest, within the specified tolerance,
with a considerable lower number of points compared to standard sparse grids.
Furthermore the reduced PCE allows neglecting a subset of polynomials whose
evaluation would increase the number of quadrature points required. For the
present example this reduced expansion captures the fact that the response is
linear with respect to the source term (first random variable) and the detector
cross-section (last random variable) and therefore higher order PCE terms
along these two directions are discarded.
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Figure 4.7: Final quadrature points over 2 planes of the stochastic domain
obtained by using a ǫ = 10−3 tolerance. Left plane contains the ξ1 and ξ4
directions while the right one ξ2 and ξ4.

Figure 4.7 shows the quadrature points obtained by using the adaptive
technique and a relative tolerance ǫ = 10−3. The quadrature points shown in
this figure are much coarser compared to the other directions, along the first
one (corresponding to the source terms) because of the linearity with respect to
that particular parameter. Finally, Figure 4.8 compares the probability density
functions obtained with the adaptive algorithm, using different tolerances,
with the one obtained using the standard sampling technique. The probability
density function corresponding to the lowest accuracy of the adaptive algorithm
is in very good agreement with the one calculated with Monte Carlo. This
means that the error introduced by the adaptive script does not affect the
evaluated PCE, on the other hand the number of evaluations needed to build
this probability density function is considerably smaller (corresponding about
one third of the points).
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Figure 4.8: Comparison of the probability density function obtained with a
standard sampling technique with the one obtained by using the adaptive
script with different tolerances.

4.5 Conclusions

In this chapter we introduced a new algorithm for the implementation of an
adaptive quadrature rule, based on the notion of a sparse grid. The technique
is based on the sequential construction of a sparse grid by the addition of lower
dimensional subgrids which are progressively increased in resolution and size.
The construction process is divided into two main steps. First, the algorithm
adds quadrature points exclusively along the main axes of the stochastic
domain. During this phase the convergence of the PCE is assessed and a
reduced multi-dimensional PCE is defined. This reduced PCE is then used
within the second part of the algorithm which focuses on the addition of higher
dimensional sub-grids to the final quadrature rule. The main approximation
introduced by this algorithm is that higher dimensional grids are not included
in the final rule if obtained as the tensorization of lower dimensional grids
associated to a negligible contribution.
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The adaptive sparse grid algorithm has been tested for a reference stochastic
case defined using a simple source-detector problem. A comparison was also
performed between the new algorithm and another one already present in
literature. The results obtained by applying the new algorithm show that
by acting on the integration tolerance it is possible to strongly reduce the
number of quadrature points preserving the stochastic information of the
system. When using very small tolerances the final quadrature set built by
the adaptive algorithm converges to a standard sparse grid rule, however by
relaxing this constraint it is possible to achieve a considerable reduction of
the quadrature points preserving the statistical moments and the probability
density function of the outputs of interest.

The problem analyzed within the present chapter was relatively simple,
however the application of the method to larger scale problems is relatively
straightforward because it does not involve any modification of its mathematical
models. In the next two chapters this application is performed for more complex
systems: in Chapter 5 the algorithm is going to be applied to criticality and
source-detector problems, while in Chapter 6 the same is done for coupled
time-dependent models.
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Chapter 5

Cost reduction techniques

and application to

neutronics problems

5.1 Introduction

In the previous chapter, a new algorithm to implement non-intrusive spectral
techniques has been introduced and applied to a problem with a known ana-
lytical solution. In this chapter, we present the application of the algorithm to
more complex models characterized by more random inputs. Before presenting
these applications we discuss two cost reduction techniques which can be used
to further reduce the computational cost associated with the method. These
techniques are applied to two typical reactor physics problems: a criticality
calculation, solved by using the diffusion approximation, and a source-detector
problem modeled using transport theory.
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5.2 Cost reduction techniques for adaptive sparse
grid quadrature algorithms

The adaptive sparse grid algorithm introduced in the previous chapter can be
employed to reduce the amount of realizations needed to evaluate the PCE
expansion representing a stochastic quantity of interest. Unfortunately, the
presence of a large number of input parameters or highly irregular stochastic
outputs results in a drastic increase of points needed for the method to converge.
Ultimately the application of the method will become more expensive than
performing a standard random sampling approach. In order to tackle this
issue, we propose in this section two ways to further reduce the computational
requirements of the adaptive algorithm. These techniques are based on the
particular implementation of the adaptive algorithm we presented in the
previous chapter.

5.2.1 First cost reduction technique: neglecting part of the
cross-correlations between input parameters

In the previous chapter we explained that one of the main constraints associated
to the method is given by the number of two-dimensional sub-grids included
within the final quadrature rule. This number, determined by the binomial
coefficient introduced in Eq. 4.5, directly depends on the number of input
quantities that have an effect on the stochastic outputs of the model. These
two-dimensional sub-grids are evaluated to determine the cross-correlation
between all possible pairs of input parameters. The cross-correlation between
two inputs can be used to estimate how the first order derivative of a stochastic
output with respect to the first input is influenced by a change in the second
input.

When analyzing the spectral expansion of a stochastic output, this cross-

correlation is given by the coefficients for which ∂2Ψk

∂ξα1
∂ξα2

6= 0 (where α1 and

α2 are two arbitrary inputs). According to the algorithm defined in the
previous chapter, if the partial derivative of a random output with respect
to any input parameter is non-zero, we automatically assume the presence
of a cross-correlation between this parameter and the rest of the input set.
This naturally corresponds to more quadrature points needed to evaluate the
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Figure 5.1: Example of uncorrelated and cross-correlated parameters (respec-
tively left and right part of the figure)

spectral expansion.

Figure 5.1 can be used to better understand the meaning of cross-correlation
between inputs. If two input quantities are not correlated, the response surface
with respect to these quantities is a flat plane, which can be built by using their
first order derivatives. In general, as we have also seen in Chapter 2, cross-
correlation between parameters is not always present. During the derivation of
an adjoint-based expression for the Hessian matrix of a stochastic response, we
have seen that in many cases its off-diagonal terms are zero, especially if the
diagonal elements of the matrix are already small (i.e., when the dependency
of the output with respect to those directions is linear). We could therefore
think of using this aspect to reduce the number of quadrature points needed
to build the spectral expansion.

As a further step within the algorithm defined in the previous chapter, we
can take advantage of the fact that after the evaluation of the one-dimensional
sub-grids is completed, we know how the stochastic outputs behave along each
of the stochastic directions. This knowledge is represented by the vector p
which is used to generate the reduced PCE presented in Eq. 4.4.

Before evaluating each of the two dimensional sub-grids (represented by the
second column in Figure 4.4) we can exclude from its starting set (and from
the final multi-index set I) all the sub-grids for which pi = 1 along both the
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defining directions. This operation is equivalent to neglecting the effect on the
stochastic outputs given by the cross-correlation between parameters which
have a linear influence.

Discarding a set of two-dimensional sub-grids from the multi-index set I,
according to the information gathered while evaluating the one-dimensional
sub-grids, could potentially correspond to a considerable reduction in terms
of quadrature points, especially when dealing with problems characterized by
sparse Hessian matrices (as the one discussed in Chapter 2). This approxima-
tion is used when dealing with the examples presented in the final part of this
chapter.

5.2.2 Second cost reduction technique: Sub-grid ranking

Another help for the reduction of the computational cost associated to the
algorithm comes from the particular order which is used to include the sub-grids
within the final quadrature rule. Since these sub-grids are added according
to their size and resolution, we can use the information we obtained from the
sub-grids already included to have a better estimate of the indicator presented
in Eq. 4.3 and associated to the grids that still need to be included. The idea
is to take advantage, when evaluating a subset of grids having a certain size
and norm, of the information we already know about the lower-dimensional
and lower-norm grids.

As we have shown in the previous chapter (Figure 4.4), the sub-grids consti-
tuting the multi-index set I are added according to their norm |l| and size d.
Each time we start evaluating a new set of sub-grids we can take advantage of
the information obtained while evaluating the set of sub-grids characterized by
a lower norm or a lower size by implementing the following algorithm:

• If |l| = N + d (which means that the sub-grids belonging to the set are
built by using level 1 rules) then associate to each of the sub-grids a score
given by the maximum indicator among the lower dimensional sub-grids
contained in it. For example, the score given to the sub-grid represented
in Figure 5.2 is determined as the largest indicator among the three
two-dimensional grids highlighted in gray. Otherwise if |l| > N + d each
sub-grid is assigned with a score determined by the indicator associated
with the sub-grid defined on the same directions having norm |l| − 1.
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Figure 5.2: Example of three-dimensional grid. The grey planes lie on the
two-dimensional grids already evaluated.

• Once this process is finished, group the sub-grids according to their score.
Start evaluating the sub-grids contained in the group associated with
the highest score.

• If the indicator associated with the group currently being evaluated is
smaller than the algorithm tolerance multiplied by the number of sub-
grids left, finish evaluating the sub-grids belonging to the current group
and discard the remaining grids. Otherwise proceed to the next group
until all the sub-grids having the same norm and size are evaluated.

This algorithm is based on the assumption that the ranking of the sub-grids,
performed during the second step, is accurate. If this is true, the sub-grids
that still need to be evaluated will be characterized by an indicator which is
smaller than or equal to the last indicator calculated. Discarding sub-grids
based on this assumption will considerably reduce the number of points needed
to reach convergence. This is because every time a sub-grid is discarded, the
admissibility criterion is enforced on the higher dimensional grids, therefore
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5. Cost reduction techniques and application to neutronics problems

excluding a considerable amount of points from the final quadrature rule. In
the next two sections the adaptive algorithm is be applied to two reactor
physics problems. The effect of using the two optimization techniques just
introduced is also discussed.

5.3 Application to a criticality problem

We first present the application of the adaptive algorithm and the optimization
techniques just introduced to a criticality problem. This problem is modeled
by using a 2 group diffusion model (Duderstadt and Hamilton, 1976) defined
by the following set of equations

(−∇ ·Dg∇+Σrg)φg(r)−
∑

g′ 6=g

Σs(g
′ → g)φg′(r) =

=
χg

keff

∑

g′

νΣfg′(r)φg′(r)

g = 1, 2

This model is implemented for a 240 cm thick heterogeneous slab reactor
(similar to the one introduced in (Favorite and Stacey, 1995)) constituted by a
120 cm central part (region 1) surrounded by a 60 cm outer zone (region 2) on
each side. The cross-sections and the transversal bucklings B2

t of the problem
are provided in Table 5.1. This problem was solved, within the MATLAB
environment, by using a Finite Volume approximation for the diffusion operator
while the power method (Duderstadt and Hamilton, 1976) was employed for
the calculation of the fundamental eigenvalue keff . Regarding the uncertainty
propagation problem, we considered the macroscopic fission and capture cross-
sections of the system to be normally distributed stochastic quantities. We
assumed the cross-sections in the two regions to be independent, in this case a
total of 8 uncorrelated random quantities can be used to model the stochastic
problem. In terms of PCE, these quantities are represented in the following
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5.3. Application to a criticality problem

Table 5.1: Mean values for the 2 group diffusion problem.

D1(cm) 1.695497
D2(cm) 0.4097145

Σs(1 → 2)(cm−1) 0.01641351
Σc1(cm

−1) 0.01375321
Σc2(cm

−1) 0.2613659
νΣf1(cm

−1) 0.01949058
νΣf2(cm

−1) 0.497857
B2

t (region 1)(cm−2) 0.01090
B2

t (region 2)(cm−2) 0.01200

way

Σf1(region1) = E(Σf1) + std(Σf1)ξ1

Σc1(region1) = E(Σc1) + std(Σc1)ξ2

Σf2(region1) = E(Σf2) + std(Σf2)ξ3

Σc2(region1) = E(Σc2) + std(Σc2)ξ4

Σf1(region2) = E(Σf1) + std(Σf1)ξ5

Σc1(region2) = E(Σc1) + std(Σc1)ξ6

Σf2(region2) = E(Σf2) + std(Σf2)ξ7

Σc2(region2) = E(Σc2) + std(Σc2)ξ8

where ξi is a vector constituted by a set of normally distributed (zero mean
and unity variance) independent variables. Once these quantities are defined
the uncertainty propagation is performed by evaluating the coefficients of the
following expansion

keff =

P
∑

0

kkΨk(ξ)

where Ψk is the set of Hermite polynomials (chosen since the input processes
are Gaussian) which can be used to represent the behavior of the fundamental
eigenvalue in the stochastic space.
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5. Cost reduction techniques and application to neutronics problems

Table 5.2: Statistical moments (expressed in pcm) of the fundamental eigen-
value obtained by using a standard sparse grid algorithm (SG) and the adaptive
one (ASG). 1% relative standard deviation case. Comparison with Monte
Carlo (MC) sampling included.

Input std 1%

E(keff ) σ(keff ) N Trunc. order p

MC -27.96 ± 2.2 704.17 ± 1.4 105 -
SG (l=3) -26.33 706.90 161 22222222
SG (l=4) -25.88 705.24 1105 22222222
SG (l=5) -25.86 705.41 6097 22222222

ASG (tol = 1%) -26.33 706.90 161 21211121
ASG (tol = 0.1%) -26.33 706.90 161 22222222
ASG (tol = 0.01%) -25.99 705.84 448 22222222
ASG (tol = 0.001%) -25.91 705.55 1368 22222222

The adaptive sparse grid algorithm has been applied to evaluate the coeffi-
cients of the previous spectral expansion. Two reference cases were initially
considered: a first case obtained by considering all the microscopic cross-
sections to have 1% relative standard deviation and a second case for which all
these standard deviations have been increased to 5%. These two configurations
have been analyzed in order to better understand the convergence properties
of the adaptive sparse grid algorithm. Tables 5.2 and 5.3 list the values of
the statistical moments obtained by using this adaptive algorithm, compared
to the values obtained by using a standard sparse grid quadrature and a
Monte Carlo statistical sampling (Table 5.2 contains the results for the 1%
input uncertainty case, while Table 5.3 refers to the 5% one). The adaptive
algorithm (ASG) has been applied in both cases without using the reduction
cost techniques introduced at the beginning of the chapter. A second order
PCE was required to reach convergence for most of the adaptive cases, the
same order was thus used to evaluate the moments using the complete sparse
grids (SG). The convergence of the PCE can be seen in Figure 5.3 where
a comparison between the probability density function of the fundamental
eigenvalue obtained by sampling the second order PCE with the one obtained
by collecting 105 random realizations of the model is shown. In Tables 5.2
and 5.3 the results obtained using different tolerances (tol = 1%, tol = 0.1%
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5.3. Application to a criticality problem

Table 5.3: Statistical moments (expressed in pcm) of the fundamental eigen-
value obtained by using a standard sparse grid algorithm (SG) and the adaptive
one (ASG). 5% relative standard deviation case. Comparison with Monte
Carlo (MC) sampling included.

Input std 5%

E(keff ) σ(keff ) N Trunc. order p

MC 1237.30 ± 11.1 3742.97 ± 7.0 105 -
SG (l=3) 956.88 4086.95 161 22222222
SG (l=4) 1347.80 3666.39 1105 22222222
SG (l=5) 1240.87 3746.57 6097 22222222

ASG (tol = 1%) 1320.80 3689.46 617 22222222
ASG (tol = 0.1%) 1245.60 3745.46 3541 22222222
ASG (tol = 0.01%) 1241.13 3746.54 5729 23222223
ASG (tol = 0.001%) 1240.71 3746.66 6097 23222223

and tol = 0.01%), and the corresponding number of evaluations required for
convergence, are compared to the values obtained by using the standard sparse
grid approach with different accuracy levels lev (3,4,5). It should be pointed
out that, when using a standard sparse grid quadrature, it is not possible
to determine the convergence of the quadrature formula without evaluating
one accuracy level higher than the one actually required for convergence. On
the contrary, the sequential construction of the adaptive algorithm makes the
convergence analysis possible within the sparse grid construction procedure. Of
course, an increase in the specified tolerance corresponds to a reduction of the
number of quadrature points needed for the convergence of the algorithm, one
can therefore define an optimal tolerance, depending on the problem considered,
giving a good compromise between the final error and the computational cost.

The comparison between the results obtained for the 1% and 5% standard
deviation cases shows an important aspect of the sparse grid quadrature
approach. In each line the values of the mean and standard deviation are
accompanied by the number of realizations N required to reach convergence
and, when applicable, by the truncation order p needed to spectrally represent
the eigenvalue.
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Figure 5.3: Comparison between probability density functions obtained by a
direct sampling of the model and by using the PCE.

As seen in Table 5.3 the number of points required to converge increases
considerably when increasing the standard deviation of the stochastic input
quantities. This can be expected since the accuracy level required by the
sparse grid formula directly depends on the differentiability of the function
(Le Maitre and Knio, 2010). In Figure 5.4 it can be seen how increasing the
standard deviation of the inputs corresponds to moving to regions where the
differentiability of the responce surfaces increases. This aspect represents a
drawback of non-intrusive spectral methods since it poses a limit, in terms of
number of realizations required, on the maximum number of parameters with
respect to which the output can present an irregular behavior.

As we discussed at the beginning of the chapter, we can further reduce
the computational requirements associated to the method by using two cost
reduction techniques: first, the neglection of cross-correlation when in presence
of linear responses, and second the sub-grids ranking performed when applying
the adaptive algorithm. Table 5.4 collects the outcome of using these two cost
reduction techniques for the very same problem introduced in Tables 5.2 and
5.3. It is immediate to see how in both cases the numbers of realizations needed
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Figure 5.4: Variation of the fundamental eigenvalue with respect to the capture
and the fission cross-sections of region 1.

Table 5.4: Statistical moments (expressed in pcm) for a second order spectral
expansion of the fundamental eigenvalue obtained by using the adaptive
algorithm together with the two cost reduction techniques defined in this
chapter.

Input std 1% 5%

E(keff ) σ(keff ) N E(keff ) σ(keff ) N

ASG (tol = 1%) -25.71 701.27 137 1243.63 3750.52 401
ASG (tol = 0.1%) -26.33 706.90 161 1213.83 3762.24 2053
ASG (tol = 0.01%) -26.10 706.18 289 1241.13 3746.54 5729

for convergence are considerably lower than the ones presented in Tables 5.2
and 5.3. For the 5% input uncertainty case, using these techniques proved
to be very effective since up to two thirds of the original realizations were
required for convergence.

The effectiveness of this application can be explained analyzing the validity
of the sub-grid ranking approach. Figure 5.5 can be used to show how this
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Figure 5.5: Ranking (left to right) of the three-dimensional level 1 sub-grids
performed by using the method introduced in the first section and actual
contribution to the final standard deviation corresponding to each of these
grids.

ranking has been correctly performed. Here, the contribution on the standard
deviation of each of the level 1 three-dimensional sub-grids is plotted. These
sub-grids are ordered along the abscissa axis according to the order (from
left to right) they have been evaluated while applying the adaptive algorithm.
The Figure shows how the ranking performed before the evaluation is fairly
accurate, with the grids causing the largest contribution being evaluated first.
This ranking allows the script to discard part of these grids thus reducing the
required number of realizations considerably.

Although a considerable reduction can be achieved by using optimization
techniques, the final number of realizations needed to have an accurate result
is still relatively large. Because of the reason mentioned before, there are cases
for which spectral techniques will present slow convergence properties, even in
their adaptive form. It must be pointed out that each of the input parameters
of the example considered has a large influence on the stochastic eigenvalue
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5.4. Application to a transport problem

due to the simplified form of the problem. In general one could expect, for
more complex systems, the dependency of the stochastic outputs with respect
to the input parameters to be less strong.

5.4 Application to a transport problem

The second example is the application of the method to a neutron transport
problem. In this example the uncertainty propagation is performed for a non-
multiplying system modeled by the steady-state Boltzmann equation (Prinja
and Larsen, 2010)

Ω · ∇ψ(x,Ω, E) + σt(x, E)ψ(x,Ω, E) =

=

∫ ∞

0

∫

4π
σs(x,Ω

′ ·Ω, E′ → E)ψ(x,Ω′, E′)dΩ′dE′ + S(x,Ω, E)

where ψ is the angular flux, Ω · ∇ is the streaming operator, σt and σs are
respectively the total and the scattering macroscopic cross-sections, and S the
source term of our problem. This is an integro-differential equation whose
unknown is defined in space (x), angle (Ω), and energy (E). There are several
techniques to solve such equation, for this work we used an inhouse code whose
details have first been presented by Kophazi and Lathouwers (2012). This code
uses a Discontinuous Galerkin formulation to deal with the spatial operator
and the Discrete Ordinate method for the angular domain. A multi-group
formulation was used to solve the energy problem.

The Boltzmann equation was used to model a two-dimensional source-
detector problem whose geometry is presented in Figure 5.6. The energy
domain was divided into 2 groups, the capture cross-sections and the scattering
matrices for each different material are included in Table 5.5.

The source in the system is isotropic, introducing 1 neutron per second in
the first energy group. The two following responses were introduced

R1 =
1

Vd

∫

Vd

∫

4π
ψ1(x,Ω)dΩdx

R2 =
1

Vd

∫

Vd

∫

4π
ψ2(x,Ω)dΩdx
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Figure 5.6: Geometry used for the source-detector problem.

where Vd is the area of the detector. These expressions represent the scalar
flux, for the two energy groups, averaged over the detector region. The
numerical solution of this problem was calculated using an S4 approximation
(corresponding to 12 angular directions) and a mesh containing 6742 elements.

Regarding the uncertainty propagation problem, we considered all cross-
sections included in Table 5.5 to be stochastic quantities. These cross-sections
are assumed to be normally distributed with a 5% relative standard deviation,
for a total of 15 random inputs. The influence of these random inputs on
the two responses defined above is the final aim of the current uncertainty
propagation application.

First, the uncertainty quantification problem was tackled by using a standard
Monte Carlo sampling technique. 5000 realizations of the random inputs
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5.4. Application to a transport problem

Table 5.5: Cross-sections for each different material used in the transport
model

Material 1 Material 2 Material 3
σc1 [cm] 0.05 0.2 0.04
σc2 [cm] 0.01 0.9 0.1

σs1→1 [cm2] 0.34 0.1 0.3
σs1→2 [cm2] 0.01 0.1 0.01
σs2→2 [cm2] 0.99 0.1 0.9

Figure 5.7: Comparison between probability density functions obtained with
the adaptive algorithm using different tolerances.

were collected to reconstruct the probability density functions of the two
responses. Then, the adaptive algorithm was applied by including the two
approximation techniques introduced at the beginning of the chapter. Figure
5.7 shows the comparison of the probability density functions of the two
responses obtained with the sampling approach (MC) and with the adaptive
algorithm (ASG) applied using a 0.001% tolerance. The comparison shows a
very good agreement between the spectral technique and the sampling approach.
Furthermore, a considerable positive skewness is present in the probability
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Table 5.6: Statistical moments of the first detector response (in neutrons/cm2s).

E σ N

MC 0.007792 ± 7.5× 10−6 5.324× 10−4 ± 4.5× 10−6 5000
ASG (tol = 0.01%) 0.031054 0.0039778 159
ASG (tol = 0.1%) 0.031054 0.0039648 67
ASG (tol = 1%) 0.031054 0.0039474 55

Table 5.7: Statistical moments of the second detector response (in
neutrons/cm2s).

E σ N

MC 0.007878 ± 1.5× 10−5 0.0010905± 3.5× 10−5 5000
ASG (tol = 0.01%) 0.007884 0.0010880 307
ASG (tol = 0.1%) 0.007884 0.0010887 215
ASG (tol = 1%) 0.007884 0.0010840 119

density functions. Tables 5.6 and 5.7 include the values of the first two
statistical moments (of the two responses) obtained by running the algorithm
with different tolerances and approximations. The number of realizations
needed to build the final quadrature rule is relatively low for both responses,
even when using small tolerances. In this case, evaluating the full sparse grid
provided to be computationally unfeasable due to the large number of input
parameters. Even with a 1% tolerance (corresponding to a considerably small
number of realization) the statistical moments were accurately predicted.

In order to understand if this was the case for higher order statistical
moments, the probability density functions of the two responses have also been
evaluated. In Figure 5.8 a comparison between these functions obtained by
using different tolerances (1% and 0.1%) is shown. The distributions built by
using a 0.1% tolerance are basically overlapping the ones obtained by using
the smaller tolerance. A small discrepancy is present for the distribution of
the first response when using a 1% tolerance, however this difference is within
the specified error. The important thing is that in both cases the skewness
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Figure 5.8: Comparison between probability density functions obtained by
including and excluding the approximations from the algorithm.

of each of the density functions is correctly represented even when using the
1% tolerance. As we discussed above, this corresponds to a remarkably low
number of realizations needed to recontruct the stochastic responses.
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5.5 Conclusions

In this chapter we discussed the application of optimization techniques which
can be used to further reduce the computational cost associated with non-
intrusive spectral methods. These techniques, whose application involves
specific approximations, take advantage of the sequential sparse grid construc-
tion presented in the previous chapter.

Two illustrative uncertainty propagation examples have been considered.
First a multigroup diffusion problem has been introduced using the microscopic
cross-sections of the system as a stochastic input set. Then, a fixed-source
transport problem has been defined for which a set of cross-sections have
been assumed to be randomly distributed. For both problems the adaptive
sparse grid algorithm proved to be an effective way to reduce the number of
realizations required to evaluate the spectral expansion. It has been shown,
with the first example, that the convergence rate of the adaptive quadrature
algorithm directly depends on the differentiability of the response surface.

In both cases the use of the two techniques introduced in this chapter
represents a considerable reduction in terms of the number of realizations
required for convergence.

In general the adaptive spectral technique could represent a suitable uncer-
tainty propagation technique, even in the presence of complex models.
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Chapter 6

Application to

time-dependent

multi-physics problems

6.1 Introduction

In this chapter we present the application of the algorithm introduced in the
previous two chapters to a multi-physics problem. The model characterizing
this type of problem is first described from the mathematical and numerical
point of view. Then, we define an uncertainty propagation case and we solve it
by means of the adaptive spectral technique. The outcome of this application
is finally discussed in the last section.

6.2 Definition of a reference multi-physics problem

This section describes a nonlinear time-dependent problem to be used as
benchmark for the adaptive spectral technique. This type of problems is
commonly encountered in the reactor physics field when performing safety
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analysis. In general, the uncertainty associated with such simulations is
quantified by using traditional sampling techniques (D Auria et al., 2012), it
is therefore interesting to compare this approach with the adaptive spectral
method defined in this thesis.

6.2.1 Description of the model

TThe problem considered for the application of the adaptive algorithm defined
in Chapter 4 is a coupled system which can be used to model the time-dependent
behavior of a sodium fast reactor. The reference configuration used within the
present analysis is the BN800, a sodium cooled fast breeder reactor (IAEA,
1994), with main characteristics summarized in Table 6.1. The neutronics
part of the model is described using a point-kinetic model (Duderstadt and
Hamilton, 1976)

dQ

dt
=
ρ(t, Tf , Tc)− β

Λ
Q+

K
∑

k=1

λkCk

dCk

dt
= −λkCk +

βk
Λ
Q

where Q is the reactor power, Λ the mean generation time, Ck the concentration
of the kth precursor group (in power terms), βk and λk the delayed neutrons
fraction and the decay constant for the kth precursor group respectively, and
β the total delayed neutrons fraction. The reactivity ρ is considered as the
sum of three different contributions

ρ(t, Tf , Tc) = ρext(t) + δρD(Tf ) + δρC(Tc)

the external reactivity is provided to the model while the Doppler (D) and
coolant (C) reactivities represent the temperature dependent feedback mecha-
nisms. These reactivities are determined by spatially averaging the temperature
field

δρD = αD
1

Vf

∫ ∫

drdz2πr [ϕD(r, z) (Tf (r, z)− Trf )]

δρC = αC
1

H

∫

dz [ϕC(r, z) (Tc(r, z)− Trc)]

ϕD and ϕC are the spatial weighing functions used to evaluate the integral and
αD and αC the first order reactivity coefficients, modeled around a reference
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temperature Trf,c. The kinetic parameters used in the point-kinetic model
and the reactivity coefficients have been obtained using the ERANOS2.2 code
(Rimpault et al., 2002) employing the heterogeneous 3D model described in
(IAEA, 1994).

In order to calculate the temperature fields required for the feedbacks, the
reactor domain is represented by an equivalent pin geometry. In this pin the
volumetric heat produced by the fission processes is transferred across the
cylindrical fuel and cladding to the sodium coolant, which is supposed to
have a fixed inlet temperature. Axial conduction along the pin is neglected
which means the heat transfer process is modeled by using a set of radial
energy conservation equations. In Figure 6.1 the reference geometry for the
thermo-kinetic problem is shown. We use the following equation for the heat
transfer within the fuel

ρfcp,f
∂T z

f

∂t
=

1

r

∂

∂r

(

rkf
(

T z
f

) ∂T z
f

∂r

)

+ f z(Q)

where the superscript z refers to the position along the vertical axis and f z(Q) is
an axial shape function used to describe the distribution of the volumetric power.
This function is supposed to be distributed as the fundamental neutronics
solution of an equivalent homogeneous cylindric core. Similarly, for the cladding
we have

ρclcp,cl
∂T z

cl

∂t
=

1

r

∂

∂r

(

rkcl (T
z
cl)
∂T z

cl

∂r

)

The thermodynamic and heat transport properties of the fuel and the cladding
have been characterized using the correlations present in (Waltar and Reynolds,
1981). The boundary conditions used for the thermo-kinetic problem are

∂T z
f

∂r

∣

∣

∣

∣

r=0

= 0

kf (T
z
f )
∂T z

f

∂r

∣

∣

∣

∣

Rf

= hg(T
z
cl|Rf+δg

− T z
f

∣

∣

Rf
)

Rf kf (T
z
f )
∂T z

f

∂r

∣

∣

∣

∣

Rf

= (Rf + δg) kcl(T
z
cl)
∂T z

cl

∂r

∣

∣

∣

∣

Rf+δg

kcl(T
z
cl)
∂T z

cl

∂r

∣

∣

∣

∣

Rs

= hc(Tc(z))(Tc(z)− T z
cl|Rs)
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where Rs is the pin radius, Rf the radius of the fuel pellet, δg the size of
the fuel-cladding gap, hg the heat transfer coefficient across the gap and hc
the heat transfer coefficient of the coolant (obtained using the correlation
for liquid metals introduced in (Waltar and Reynolds, 1981)). The coolant
temperature is determined by the following energy conservation equation, used
for the equivalent channel

Acρcpc

[

∂Tc
∂t

+ vin
∂Tc
∂z

]

− 2πRsnphc(Tc)(Tcl(Rs, z)− Tc) = 0

where Ac is the equivalent flow area and np the total number of fuel pins in
the reactor. A fixed coolant velocity is considered and the boundary condition
is given by a fixed coolant inlet temperature. All the parameters defined in
the model are summarized in Table 6.1.
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Figure 6.1: Reference geometry for the thermo-kinetic problem.

6.2.2 Numerical solution of the model

The numerical code used to solve the coupled problem employs the CVODE
time-integration modules included within the SUNDIALS suite (Hindmarsh
et al., 2005). These modules make use of a Backward Differential Formula,
which is adaptive both in terms of time stepping and order used during the
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Table 6.1: Main parameters used for the coupled model

Λ (s) 4×10−7 Mean generation time of the reactor
Rf (cm) 0.293 Fuel pellet radius

αd (pcm/K) -0.68747 Doppler reactivity coefficient
αc (pcm/K) 0.12251 Coolant reactivity coefficient
δclad (cm) 0.055 Clad thickness
vin (m/s) 10 Coolant inlet velocity
H(m) 0.91 Coolant channel height

Q0(MW) 2100 Reactor thermal power
δg(cm) 10−6 Fuel-cladding gap width

hg (W/m2 K) 104 Fuel-Cladding gap heat transfer coefficient
Tin(K) 628.15 Coolant inlet temperature
λ1 (1/s) 0.0124 Decay constant of precursor 1
λ2 (1/s) 0.0124 Decay constant of precursor 2
λ3 (1/s) 0.111 Decay constant of precursor 3
λ4 (1/s) 0.301 Decay constant of precursor 4
λ5 (1/s) 1.14 Decay constant of precursor 5
λ6 (1/s) 3.01 Decay constant of precursor 6
β1 (-) 0.00009 Delayed neutron fraction for nuclide 1
β2 (-) 0.000853 Delayed neutron fraction for nuclide 2
β3 (-) 0.0007 Delayed neutron fraction for nuclide 3
β4 (-) 0.0014 Delayed neutron fraction for nuclide 4
β5 (-) 0.0006 Delayed neutron fraction for nuclide 5
β6 (-) 0.00055 Delayed neutron fraction for nuclide 6

time integration. The spatial discretization of the model has been performed
by implementing a Finite Volume scheme, a linear interpolation was used to
determine the surface values between volumes.

Since the conduction along the axial direction was considered to be negligible,
the heat transfer problem was formulated by dividing the fuel pin into 30 axial
regions. In each of these regions a one-dimensional radial heat conduction
problem was defined and numerically solved by uniformly dividing the radial
domain into 50 volumes. The boundary condition of each of these problems,
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given by the heat transfered between the clad and the coolant, determined
the coupling between the heat transfer equations and the energy convervation
equation along the coolant channel. This equation was finally solved by dividing
the channel into 150 axial volumes.

In order to reduce the numerical error associated with the time integration
process, the relative error used by the CVODE module has been set to 10−7.

6.2.3 Definition of an uncertainty quantification problem

Based on this coupled model, we introduce a reference UQ problem whose
solution can be obtained by using the adaptive spectral algorithm introduced
in the previous chapters. This reference problem is the transient caused
by the insertion of an external reactivity term ρext. Two different types of
insertion have been modeled. Firstly, a 1$ step insertion and secondly a ramp
characterized by a slope of .75$/s. In both cases the external reactivity term
lasts until ts = 1s and is zero afterwards. Furthermore, we consider the system
to be at a steady state condition when the external reactivity is introduced at
t = 0.

In order to introduce the reference uncertainty problem, some of the input
parameters of the coupled model have been considered to be stochastic. A
total of 10 parameters were assumed to be normally distributed, their list
and the associated uncertainties are presented in Table 6.2. These were the
total heat transfer coefficient hg of the gap between the fuel pellet and the
cladding, the radius of the pin Rs, the thickness of the cladding δclad, the inlet
velocity and temperature vin and Tin, the magnitude of the external reactivity
insertion ρext (the slope for the ramp insertion) and the time at which the
external reactivity is removed ts.

The fact that these parameters are normally distributed could in theory lead
to non-physical realizations of the input quantities, however due to the relatively
small uncertainties no such realization occurred while applying spectral and
sampling approaches.

The UQ problem arising from the presence of these stochastic input param-
eters has first been solved by using a standard unbiased random sampling
approach using 10000 realizations and then by applying the adaptive spectral
approach. Because all the input parameters were normally distributed, Hermite
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6.2. Definition of a reference multi-physics problem

Table 6.2: Input parameter (relative) uncertainties used for the definition of
the reference problem. A 5% relative standard deviation of ρext was considered
for the step insertion case while a 1% relative standard deviation was used for
the ramp.

Param Rs δclad hg ρext αd αc ts vin Tin Λ

σ 1% 1% 10% 5%/1% 5% 5% 1% 5% 2% 1%

polynomials were used to build a 10 dimensional PCE suitable to represent
the stochastic quantities of the problem. Using this set of polynomials it is
possible to spectrally represent the stochastic solution by using the following
expansions

Q(t, ξ) =

P
∑

i=0

Qi(t)Ψ(ξ)

Tf (x, t, ξ) =
P
∑

i=0

Tf,i(x, t)Ψ(ξ)

Tcl(x, t, ξ) =
P
∑

i=0

Tcl,i(x, t)Ψ(ξ)

Tc(x, t, ξ) =

P
∑

i=0

Tc,i(x, t)Ψ(ξ)

Where ξ is a vector containing the 10 independent normal variables that are
used to define the stochastic parameters of Table 6.2.

The algorithm used to implement the non-intrusive spectral method was
implemented as a MATLAB script which was used to adaptively generate
the stochastic realizations corresponding to the quadrature points, run the
solver, and collect the outputs of interest. In the next section the outcomes
are presented and discussed.
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6. Application to time-dependent multi-physics problems

6.3 Results: transient caused by a step reactivity
insertion

In this section we analyze the response of the coupled system to a step
reactivity insertion. This test problem was chosen because of the characteristic
probability density functions associated to the presence of a large uncertainty
in the magnitude of the inserted reactivity. As shown in Chapter 3, this type of
transient can lead to highly skewed, non-gaussian probability density functions
of the system outputs, especially considering the maximum power reached
during the transient. For this reason, the magnitude of the external reactivity
was assumed to have a 5% relative standard deviation. The values included
in Table 6.2 were used for the rest of the parameters. We considered the
maximum power reached during the transient as the response of interest for
this stochastic problem.

Figure 6.2 shows the probability density function of this response obtained
by using a standard unbiased sampling technique (MC), by applying the
adaptive approach (ASG) using three different tolerances (ǫ = 1%, ǫ = 0.1%
and ǫ = 0.0001%) together with the cost reduction techniques presented
in Chapter 5. Table 6.3 collects the mean and standard deviation of the
response corresponding these different cases. The number of realizations
needed for the algorithm to converge is also included, together with the final
PCE order employed to represent the stochastic response, as defined in Eq.
4.4. The comparison between the probability density functions in Figure 6.2
shows that reducing the algorithm tolerance corresponds to a convergence
to the distribution obtained by using a sampling approach. The skewness of
these probability density functions is quite large, this means that standard
perturbative approaches would have failed in the prediction of the statistical
moments of interest.

The distribution built by using the largest tolerance (ǫ = 1%) is considerably
different from the Monte Carlo one, which is a consequence of the fact that the
algorithm convergence is verified only for the mean and standard deviation of
the output: the values in Table 6.3 show how these values are in good agreement
with the Monte Carlo prediction even when using the largest tolerance. In
theory one could improve this aspect by introducing higher statistical moments
within the indicator defined in Eq. 4.3. Unfortunately it is not possible to
evaluate higher order statistical moments by using a simple expression like
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6.4. Results: transient caused by a ramp reactivity insertion

Table 6.3: Mean and Standard deviation of the maximum power reached
during the transient. Comparison between the application of the adaptive
script applied with different tolerances and Monte Carlo sampling. The #
column contains the number of realizations needed to reach convergence while
the p column refers to the truncation order used along each direction of the
PCE. The order of the parameters represented by p is the same as the one
presented in Table 6.2.

Mean[-] Std[-] # p

ASG (tol=1%) 21.4145 17.4934 63 1131111111
ASG (tol=.1%) 21.4163 17.5460 83 2141111112

ASG (tol=.0001%) 21.4185 17.5528 4577 5151231145
MC 21.30 ± 0.17 17.43 ± 0.13 10000 -

the one presented in Eq. 3.3 for the standard deviation. When applying
the algorithm without any of the optimizations introduced in Chapter 5, it
emerges (see Table 6.3) that there is clearly a value of the algorithm tolerance
(ǫ = 0.1%) which represents the best compromise between the number of
realizations needed and the statistical moments. When reducing this tolerance
the number of points needed to converge increases considerably despite the
fact that the additional stochastic information obtained is negligible.

The column including the values of p shows the convenience of using a
truncated PCE, as defined in Eq. 4.4. This originates from the fact that many
directions can be reasonably represented by using a first order expansion. This
implies that the algorithm will converge faster since the projection integrals
become easier to solve along a subset of directions. This specific example shows
that the adaptive technique introduced so far is very well suited for problems
where most of the output perturbation is caused by a small number of input
parameters.

6.4 Results: transient caused by a ramp reactivity
insertion

The adaptive sparse grid algorithm was then applied to the transient triggered
by the ramp insertion. We first analyzed a limited set of stochastic outputs.
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6. Application to time-dependent multi-physics problems

Figure 6.2: Probability density function of the maximum power reached
during the transient obtained by using standard Monte Carlo sampling and the
adaptive algorithm with three different tolerances. These density functions were
built by directly sampling the Polynomial Chaos Expansion of the response.

These were the maximum power, the maximum temperature of the fuel,
cladding, and coolant reached during the transient and the values of the same
quantities at t = 10s. This set of responses was used to check the convergence
of the adaptive sparse grid quadrature with several tolerances used for this
purpose.

Tables 6.4 and 6.5 collect the outcome, in terms of standard deviation of
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6.4. Results: transient caused by a ramp reactivity insertion

Table 6.4: Standard deviation of the maximum values reached during the
transient for 4 stochastic quantities of interest. Comparison between the
application of the adaptive script applied with different tolerances and Monte
Carlo sampling. N is the number of realizations needed to evaluate the
statistical moments.

ǫ = 10−2 ǫ = 10−3 ǫ = 10−4 Sparse Grid MC
N = 21 N = 203 N = 777 N = 12981 N = 10000

σ(max[Tf ])[K] 12.8376 12.8544 12.8632 12.8667 12.82 ± 0.08

σ(Tcl)[K] 9.7369 9.7593 9.7597 9.7597 9.83 ± 0.06

σ(Toutlet)[K] 12.8178 12.8165 12.8170 12.8083 12.88 ± 0.08

σ(P/P0) 0.07578 0.07598 0.07592 0.07597 0.077 ± 0.001

the responses, of the application of the adaptive spectral technique (ASG line
in the Tables). Three different tolerances have been used (ǫ = 1%, ǫ = 0.1%
and ǫ = .01%), which correspond to different amounts of realizations needed
to reach convergence. A reference calculation obtained by using a complete
sparse grid (built according to the definition introduced in Eq. 4.1) was also
performed. Table 6.4 includes the standard deviation corresponding to the
maximum value of the responses during the transient, while Table 6.5 presents
the value of the standard deviations at t = 10s. Both tables also contain the
output of a standard Monte Carlo sampling approach for UQ. All the values
obtained with the spectral technique are in agreement with their corresponding
statistical estimators.

It is immediately noticeable how the use of different tolerances corresponds to
very different numbers of realizations needed for the algorithm to converge. In
every case, the difference between the final predictions obtained is relatively
small, especially considering the additional amount of computations required
when using smaller tolerances. The tables show that a (ǫ = 0.1%) tolerance
leads to reasonable results despite the fact that the number of realizations is
considerably lower compared to the other cases.
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6. Application to time-dependent multi-physics problems

Table 6.5: Standard deviation of 4 stochastic quantities of interest at t = 10s.
Comparison between the application of the adaptive script applied with different
tolerances and Monte Carlo sampling. N is the number of realizations needed
to evaluate the statistical moments.

ǫ = 10−2 ǫ = 10−3 ǫ = 10−4 Sparse Grid MC
N = 49 N = 189 N = 937 N = 12981 N = 10000

σ(max[Tf ])[K] 15.6292 15.6551 15.6840 15.6850 15.60 ± 0.1

σ(Tcl)[K] 8.1824 8.1955 8.1955 8.1943 8.27 ± 0.06

σ(Toutlet)[K] 11.3042 11.3248 11.3257 11.3231 11.41 ± 0.08

σ(P/P0) 0.029871 0.029956 0.029945 0.029938 0.0302 ± 0.0004

This important aspect can be explained by keeping in mind that the specified
tolerance not only acts on the building process of the final sparse grid, but
also on the definition of the reduced PCE expansion introduced in Eq. 4.4.
Using a small tolerance for the convergence check of the PCE corresponds
to introducing an additional set of higher order polynomials within the final
expansion. As a consequence, the projections onto this new set of polynomials
will require additional quadrature points for the integration procedure to
convergence. Higher order polynomials that are contributing only marginally
to the final spectral expansion will cause an increase in quadrature points
which is not compensated in terms of final accuracy of our estimators. Table
6.6 presents the order p (as defined in Eq. 4.4) of the final PCE expansions
used to represent the outputs at t = 10s for different tolerances used within
the adaptive script. Though the exact convergence of the PCE requires higher
order polynomials (third column), it is possible to accurately represent our
stochastic outputs by using a PCE built with first and second order polynomials
(first column). This naturally translates to a reduced number of quadrature
points, as discussed in the previous paragraph.

As Table 6.6 shows, the outputs with respect to many of the input variables
have a first order dependency. According to the approximation we defined
in Chapter 5, this corresponds to eliminating a considerable amount of two-
dimensional sub-grids from the quadrature formula.

The fact that it is possible to represent these stochastic responses with a low
polynomial order also suggests that the error associated with using first order
perturbation techniques would be relatively low. If a forward perturbation
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6.4. Results: transient caused by a ramp reactivity insertion

Table 6.6: Final PCE order p at t = 10s corresponding to using different
tolerances within the adaptive algorithm.

Variable PCE order

ǫ = 10−2 ǫ = 10−4 ǫ = 10−6

Rs 1 2 2
δclad 1 1 1
ρext 1 1 2
ts 1 1 1
Λ 1 1 1
αd 2 2 2
αc 2 2 2
Tin 1 1 2
hg 1 3 3
vin 1 2 2

approach was used (since we are dealing with many responses localized at
different times and a relatively low number of parameters) we would be able to
evaluate the first order perturbation of the solution by running one nonlinear
calculation and ten (corresponding to the number of input parameters) linerized
ones. However, the implementation of such an approach would present two
main difficulties. Firstly, the solution of the linearized problems would need the
implementation of a separate mathematical model and a dedicated numerical
solver. Secondly, some of the perturbations introduced for this UQ problem
correspond to geometric (Rs) and time-dependent (ts) parameters: their
modeling, though possible in theory, is not straighforward and would introduce
additional errors as explained in (Favorite and Bledsoe, 2010).

A second test was performed on the same problem. This time every unknown
of the coupled system was consired to be a stochastic response whose PCE
needed to be evaluated. Figures 6.3 and 6.4 show the standard deviation of
the temperature field of the system at t = 1s and t = 10s obtained in both
cases by using a 0.1% tolerance within the adaptive algorithm. In both cases
the number of realizations needed for the convergence of the complete solution
was the same required for the convergence of the small subset of responses
included in Table 6.4. This can be explained since this subset, being a set of
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6. Application to time-dependent multi-physics problems

local maxima, represents the most demanding outputs from the convergence
point of view. In both figures a very large standard deviation is visible close
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Figure 6.3: Standard deviation of the system temperature field at t = 1s,
obtained by using ǫ = 0.1%. 329 realizations were needed to reach convergence.

to the fuel-cladding gap, this is expected since its heat transfer coefficient
presents a large uncertainty (10%). While at the beginning of the transient the
uncertainty profile is rather symmetrical with respect to the axial direction,
after 10 seconds the uncertainty tends to be larger along the axial direction
probably due to the uncertainties associated with the coolant inlet temperature
and velocity.

Finally, a remarkable feature of spectral methods is that, once the spectral
solution is known, it is possible to have a break down of the stochastic effects
arising from each of the stochastic inputs. This is because our solution is now
expressed as a function of the input parameters, which makes it easy to perform
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Figure 6.4: Standard deviation of the system temperature field at t = 10s,
obtained by using ǫ = 0.1%. 269 realizations were needed to reach convergence.

a sensitivity analysis. Evaluating the coefficients of the PCE presented in Eq.
3.1 corresponds to determining the dependency of the stochastic outputs of
interest with respect to the input random variables ξ used to model the random
inputs. Once these coefficients are known we can estimate the effects of any
single input parameter by considering the corresponding random variable ξi as
the only non-zero term within the expansion 3.1.

For example, Figure 6.5 shows the influence on the solution at t = 10s of the
uncertainty introduced by the heat transfer coefficient of the gap. In the Figure
the presence of a peak in the proximity of the gap is seen, which is responsible
for the large standard deviation shown in Figure 6.4. At the same manner, it
is possible to reconstruct first and higher order sensitivity coefficients from the
spectral expansion, therefore allowing the possibility to perform a sensitivity
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analysis when applying spectral techniques.
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Figure 6.5: Standard deviation of the temperature field at t = 10s obtained
by considering the heat transfer coefficient of the gap as the only stochastic
variable of the PCE.

6.5 Conclusions

In this chapter we presented the application of the adaptive sparse grid algo-
rithm to a time-dependent multi-physics problem. This problem was formulated
in order to reproduce a system that arises when performing safety analysis of
nuclear reactors. In this context, the algorithm has been applied to propagate
uncertainties for two reference transients simulating an accident scenario.
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6.5. Conclusions

Althought the stochastic input set was relatively large (10 random variables),
in both cases it was possible to evaluate the spectral expansion with a number
of realizations which is considerably lower than the one required by sampling
approaches. This was because the most important contributions on the stochas-
tic outputs were caused by a limited set of input parameters, thus enabling
the adaptive algorithm to reproduce the stochastic information by collecting a
limited amount of points in the right directions. The statistical moments of
interest can also be recontructed quite accurately with this reduced number of
realizations. Furthermore the information associated with the final outputs
allows to perform sensitivity analysis of the problem.

The optimization techniques introduced in Chapter 5 have been successfully
used as well. This corresponds to an accurate reconstruction of the stochastic
outputs, associated with a further reduction in the computational cost of the
method. These results finally suggest that the adaptive sparse grid algorithm
developed in this thesis could be applied to more complex cases, including
larger sets of input quantities.
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Chapter 7

Conclusions and

Recommendations

Conclusions

The main idea of this thesis is the development of a cost effective yet accurate
uncertainty quantification technique suitable for reactor physics applications
and multi-physics problems.

The role of uncertainty quantification is becoming increasingly important
within the reactor physics field, especially when using “Best Estimate” models.
Unfortunately, due to the complexity of reactor physics simulations, performing
uncertainty propagation is either associated with large computational require-
ments or with the development of additional large scale adjoint problems.
Finding a way to perform this task in an accurate and computationally cheap
way is therefore a challenge.

The key contributions presented with this thesis can be summarized as
follows:

• It is demonstrated that the extension of the adjoint formalism to higher
order perturbation components corresponds to a considerable increase
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in terms of computational requirements especially when dealing with
nonlinear problems. This is because of the fact that, unlike for linear
problems, it is not possible to perform a reliable parameter ranking
of the Hessian matrix components. However, this preliminary analysis
concludes that adjoint techniques can be useful tools to demonstrate how
uncertainty propagation is dominated by low-order interactions and by
dominant effects.

• From the preliminary analysis of spectral techniques performed in the
third chapter we conclude that non-intrusive methods represent, due
to their mathematical formulation, the most flexible way to implement
this type of techniques for multi-physics problems. This is because non-
intrusive implementations allow to adapt the spectral expansion according
to the type of response one is evaluating. We show that for coupled time-
dependent problems higher order expansions are usually needed only for
short intervals while the rest of the stochastic solution can be represented
by using a lower order truncation. These convergence properties are
demonstrated for a coupled point-kinetic/thermal-hydraulics problem
which also implies that for this type of transient the convergence of
the spectral expansion is assured, which is not the case for every time-
dependent problem.

• We demonstrate that the adaptive algorithm developed within the the-
sis can represent, in many situations, a cheap and accurate alternative
to standard sampling approaches. It is shown how the particular con-
struction of the spectral basis, based on a convergence check performed
considering each random direction to be independent, can further reduce
the number of realizations needed to build the spectral outputs.

• Two optimization techniques have also been presented in this thesis.
These techniques are based on the particular way the sparse grid is
built and can be used to reduce the computational requirement of the
algorithm when in presence of parameters characterized by a linear
dependency with respect to the stochastic outputs. Neglecting the cross-
correlation between these type of parameters can be used to exclude a
priori a considerable set of realizations from the final quadrature rule.
The most important aspect, when using these techniques, is that the
adaptive spectral method can be computationally more convenient than
traditional sampling even when dealing with moderately large sets of
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input parameters. Unfortunately, this convenience is strongly dependent
on the regularity of the response surface of the problem.

• The adaptive method developed in this thesis can also represent a com-
putationally convenient tool to perform uncertainty propagation of time-
dependent problems which may be encountered while performing safety
analysis. Since this type of problem is usually associated with a moderate
number (10-20) of random input parameters, we presented the applica-
tion of the adaptive spectral method to an illustrative case characterized
by a comparable number of stochastic inputs. The results show that
for this type of problem spectral techniques can provide a deterministic
stochastic solution with a fraction of the realizations needed to reach
convergence with Monte Carlo sampling.

In theory, though the algorithm is generally proven to be effective for multi-
physics applications, it still presents possible ways of improvement. An overview
of this topic is presented in the next section.

Recommendations

The main disadvantage of the adaptive spectral method developed in this
thesis is that its computational cost directly depends on the regularity of
the output response surface. This means that, depending on properties of
the surface associated with a stochastic response, the method could become
computationally more expensive than random sampling even when dealing
with a relatively low number of inputs. One could already determine whether
a standard sampling approach is computationally more convenient during the
first part of the algorithm, after the solution of the one-dimensional random
problems has been obtained. An additional check could be introduced after
this step to eventually stop the sparse grid construction and start a sampling
procedure.

For all the tests presented in this thesis, the indicator used to evaluate the
sub-grids constituting the final sparse grid was based on the evaluation of the
mean and the standard deviation of the response. In some cases this led to
results which were accurate in terms of the first two statistical moments, but
inaccurate when reproducing the probability density function of the response.
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In theory, one could introduce the evaluation of the skewness as an additional
check. However, as explained in Chapter 3, this implementation is not trivial
since the analytical expression of the skewness involves the evaluation of a very
large set of triple products.

Furthermore, the algorithm convergence could be also improved by using
the derivative information associated with the response of interest. Assuming
this information is available, for example, by means of adjoint codes, one could
find a way of exploiting it within the adaptive algorithm.

The computational cost associated with the method could also be reduced
by implementing an adaptive polynomial basis construction. The algorithm
developed within this thesis is based on the definition of a reduced polynomial
expansion whose truncation is determined during the first part of the procedure.
This means that the rest of the projection process is performed using a fixed
basis which contains higher order multi-dimensional polynomials. However,
as many of the higher polynomials characterizing this basis give a negligible
contribution to the stochastic outputs, it would be advantageous to find a way
to avoid evaluating their projections. This could be done, for example, by
defining a method to adaptively build the polynomial expansion within the
spectral algorithm.

In general, the work done in this thesis represents a solid basis for future
developments of adaptive spectral techniques. Our conclusions and recom-
mendations suggest that there is a limit in the number of random inputs
below which the method proposed in this thesis will be more accurate and
computationally more convenient than standard sampling approaches. The
recommendations hitherto discussed are an example of how to increase this
limit for future applications.
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Appendix

Appendix: elements of probability theory

In this appendix we provide a brief overview about the main concepts of
probability theory used within this thesis. We will first introduce the notion
of probability density function and its mathematical definition. Then, we will
discuss about the statistical moments associated with a stochastic variable.

Elements of probability theory: the probability
density function of a random variable

Given a random variable R defined over the stochastic support θ, its probability
density function is a distribution used to quantify the likelihood for this random
variable to assume a certain value θi. This distribution is defined such that
the probability for the stochastic variable to fall within a particular region is
given by the integral of the probability density function over this region

PR[a ≤ θ ≤ b] =

∫ b

a
pR(θ)dθ

129



A. Appendix

Where PR[a < θ < b] is the probability for R to be characterized by a value
between a and b and pR is the probability density function associated with
the random variable R. This probability distribution is characterized by two
important mathematical aspects: firstly, it must be nonnegative all over the
realization space, and secondly the outcome of integrating this function over
the whole stochastic support must be equal to one.

If a random variable admits a probability density function the knowledge of
this distribution will give us a complete insight on how this random variable
behaves over the stochastic domain on which it is defined. Usually, quantitative
measures based on the definition of probability density function are introduced
in order to better describe the features of a random variable. This measures
are usually known as statistical moments, in the next section a brief description
of these moments is presented.

Statistical moments of a random variable

If we are dealing with a random variable R which admits a probability den-
sity function, its statistical moments are quantitative measures based on the
behavior of the probability density function, used to better characterize the
random variable. For example, we can measure the tendency for the random
variable to assume a certain value by introducing its mean (or expected) value
µ in the following manner

µ = E[R] =

∫ +∞

−∞
θpR(θ)dθ

This measure is also known as the first statistical moment of the random
process and defines the stochastic realization which is bounded to happen more
often in case the random process was repeated for an infinite amount of times.
When in presence of an integral which does not have an analytical solution we
can evaluate the mean of a random variable by using the statistical estimator
defined in Section 1.4 within the first chapter of this thesis.

The second statical moment of a random variable is used to measure how its
realizations are “spread” over the stochastic domain. Within the framework of
this thesis the measure of this spread defines the uncertainty associated with
a random variable characterized by the mean value µ and it is therefore of
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fundamental importance. This statistical moment is defined as follows

V ar = E[(R− µ)2]

Alternatively, the measure of the variance of a variable is often substituted by
its standard deviation σ2 = V ar. The fact that the moment is also defined
as the expected value of a functional which depends on the random variable
means that it can also be evaluated by using the statistical estimator defined in
Section 1.4 once the mean value of the random variable is known. Intuitively,
the realization of a variable associated with a low standard deviation will be
more likely to be close to its mean value.

Finally, we introduce another statistical moment, known as the skewness.
This moment can be introduced by using a definition similar to the one used
to define the variance.

γ = E[(
R− µ

σ
)3]

The skewness of a random variable defines how “skewed” its probability
density function is. A positive skewness corresponds to saying that it is more
likely for a realization of the variable to be larger than the mean. Within
the uncertainty quantification framework this aspect can have important
implications considering that we might be interested in the probability of the
variable being above a certain value rather that in the mean and standard
deviation.
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Summary

This thesis presents the development and the implementation of an uncertainty
propagation algorithm based on the concept of spectral expansion. The first
part of the thesis is dedicated to the study of uncertainty propagation method-
ologies and to the analysis of spectral techniques. The concepts introduced
within this preliminary analysis are successively used for the derivation of the
spectral algorithm.

In Chapter 2 we discuss the application of higher order adjoint perturbation
theory for coupled problems. This method is relatively easy to implement
once the first order adjoint problem is defined, however it is computationally
expensive. It is shown, for example, that the number of additional adjoint
calculations needed to build the Hessian matrix of a response corresponds,
for nonlinear problems, to two times the number of input parameters. It is
also shown that for linear problems this number can be halved. It is also
discussed that for linear problems it is possible to perform a ranking of the
higher order perturbation components, while for nonlinear ones this is not the
case. In general, higher order adjoint perturbation theory can be a useful tool
to understand uncertainty propagation phenomena.

In Chapter 3 an overview of spectral techniques for uncertainty quantification
is presented. The mathematical backgrounds of two approaches, defined as
intrusive and non-intrusive, are discussed. These approaches are applied to
perform uncertainty quantification of a simplified coupled time-dependent
problem. The illustrative example shows how non-intrusive approaches are
relatively easy to apply while intrusive approaches are quite challenging from
the implementation point of view. The curse of dimensionality affecting
spectral techniques is also discussed. The example also demonstrates that for
time-dependent problems, the convergence of spectral expansions required to
represent stochastic outputs varies considerably during the transient. From this
point of view, non-intrusive approaches allow the usage of different expansion
orders at different times, thereby reducing the computational requirements.
Using these initial conclusions as a starting point, an algorithm based on the
definition of Polynomial Chaos Expansion is developed. Chapter 4 introduces
this new algorithm for the application of quadrature based spectral techniques.
This algorithm is based on the notion of sparse grid and its application is
divided into two main steps. Firstly, the algorithm adds quadrature points
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exclusively along the main axes of the stochastic domain. During this phase
the convergence of the PCE is assessed and a reduced multi-dimensional PCE
is defined. Secondly, this reduced PCE is then used within the second part
of the algorithm which focuses on the addition of higher dimensional sub-
grids to the final quadrature rule. The adaptive sparse grid algorithm is
tested for a reference stochastic case defined by using a simple source detector
problem. The algorithm is first validated by comparing it to another sparse
grid integration approach found in literature. It is successively shown how the
particular construction of the spectral basis, based on a convergence check
performed considering each random direction to be independent, can further
reduce the number of realizations needed to build the spectral outputs.

In Chapter 5 two cost reduction techniques which take advantage of the
peculiar definition of the algorithm are presented. These techniques are proven
to be effective in the reduction of quadrature points needed to reach convergence.
Two uncertainty propagation examples are also considered. The method has
been proven to be particularly effective for reactor physics applications, mainly
because of the fact that higher order propagation phenomena are usually
dominated by a limited set of input parameters. It is also shown, with the
first example, that the convergence rate of the adaptive quadrature algorithm
directly depends on the differentiability of the response surface.

Chapter 6 shows another application of the adaptive sparse grid algorithm,
this time to a time-dependent multi-physics problem. This problem is formu-
lated in order to reproduce the type of system that arises when performing
safety analysis. Two reference transients simulating an accident scenario of
fast reactors are considered. Even in this case the adaptive algorithm proves
to be very effective, being capable of reproducing all the stochastic outputs of
interest with a relatively low number of realizations.

In conclusion, adaptive spectral methods represent a computationally efficient
uncertainty quantification technique when in presence of a moderately large
set of random input parameters. However, this number strongly depends on
the regularity of the response surface. Several strategies could be adopted
in order to increase this number and make the method more appealing for a
larger set of problems. An overview of these possibilities is presented in the
final recommendation section of the thesis.
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Samenvatting

Dit proefschrift bespreekt de ontwikkeling en de implementatie van een onzek-
erheidspropagatie algoritme, gebaseerd op het concept van spectrale expansie.
Het eerste deel van het proefschrift is gewijd aan de bestudering van diverse
onzekerheidspropagatie methoden en aan de analyse van spectrale technieken.
De begrippen gëıntroduceerd binnen deze eerste analyse worden achtereenvol-
gens gebruikt voor de afleiding van het spectrale algoritme.

In Hoofdstuk 2 wordt de toepassing van hogere orde adjoint verstoringstech-
nieken besproken voor gekoppelde problemen. Deze methode is relatief een-
voudig te implementeren zodra de eerste orde adjoint probleem is gedefinieerd,
maar vereist veel rekenkracht. Analyse laat zien dat het aantal extra adjoint
berekeningen nodig voor het opzetten van een Hessian matrix, in geval van
niet-lineaire problemen, overeenkomt met tweemaal het aantal input param-
eters. We tonen ook aan datvoor lineaire problemen dit aantal kan worden
gehalveerd. Ook wordt besproken hoe het voor lineaire problemen in principe
mogelijk is om een rangorde van de hogere orde verstoring onderdelen aan
te brengen terwijl het voor niet-lineaire problemen niet het geval is. In het
algemeen kunnen hogere orde adjoint perturbatietheorie een nuttig instrument
zijn om onzekerheidspropagatie te begrijpen.

In Hoofdstuk 3 wordt een overzicht van spectrale technieken voor onzek-
erheidskwantificering gepresenteerd. De wiskundige achtergrond van twee
benaderingen genaamd intrusief en niet-intrusief, worden besproken. Deze
twee aanpakken worden toegepast om de onzekerheid kwantificering van een
vereenvoudigd gekoppeld tijdsafhankelijk probleem uit te voeren. Een illus-
tratief voorbeeld laat zien hoe de niet-intrusieve aanpak relatief eenvoudig uit
te voeren zijn, terwijl intrusieve methoden zeer uitdagend zijn vanuit het imple-
mentatie oogpunt. De invloed van de dimensionaliteit op spectrale technieken
wordt hier ook besproken. Het voorbeeld toont ook aan dat voor tijdsafhanke-
lijke problemen, de convergentie van spectrale uitbreidingen vereist voor het
representeren van stochastische uitgangssignalen aanzienlijk varieert tijdens
de tijdsafhankelijke simulatie. Vanuit dit standpunt, maken niet-intrusieve be-
naderingen het mogelijk om gebruik te maken van verschillende expansie orden
op verschillende tijden, waardoor de benodigde rekenkracht vermindert. Met
deze eerste conclusie als uitgangspunt, iseen algoritme op basis van Polynomial
Chaos Expansion ontwikkeld.
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In Hoofdstuk 4 wordt dit nieuwe algoritme voor de toepassing van de
kwadratuur gebaseerde spectrale technieken gentroduceerd. Dit algoritme
is gebaseerd op het principe van sparse grid en de toepassing daarvan is
onderverdeeld in twee stappen. Gedurende de eerste staop voegt het algoritme
uitsluitend kwadratuur punten toe langs de hoofdassen van de stochastische
domein. Tijdens deze fase wordt de convergentie van de PCE beoordeeld en een
gereduceerde multidimensionale PCE wordt gedefinieerd. Deze gereduceerde
PCE wordt dan gebruikt in de tweede stap van het algoritme dat zich richt
op de toevoeging van hoger- dimensionale sub-roosters aan de uiteindelijke
kwadratuurformule. Het resulterende adaptieve algoritme is getest op een
referentie stochastisch geval gedefinieerd met behulp van een eenvoudig bron
detector probleem. Het algoritme is eerst gevalideerd door het te vergelijken
met een andere sparse grid integratie benadering, aanwezig in de literatuur.
Volgens wordt aangetoond hoe de specifieke constructie van de spectrale basis,
gebaseerd op een convergentie controle die uitgevoerd is met als beschouwing
dat elke willekeurige richting onafhankelijk is, tot een verdere verlaging van het
aantal benodigde realisaties voor het bouwen van spectrale outputs kan leiden.

In Hoofdstuk 5 worden twee kostreductie technieken voorgesteld die prof-
iteren van de specifieke definitie van het algoritme. Deze technieken hebben hun
effectiviteit bewezen in het verminderen van het aantal benodigde kwadratuur
punten voor convergentie. Twee onzekerheidspropagatie voorbeelden worden
gepresenteerd. De methode blijkt bijzonder effectief voor toepassingen op
reactor fysica, vooral vanwege het feit dat hogere orde propagatie verschijnse-
len meestal gedomineerd worden door een beperkt aantal invoerparameters.
Het is ook aangetoond, d.m.v. het eerste voorbeeld, dat de convergentie
snelheid van de adaptieve kwadratuur algoritme direct afhankelijk is van de
differentieerbaarheid van de respons oppervlak.

Hoofdstuk 6 toont een andere toepassing van het adaptieve sparse grid
algoritme, ditmaal een tijdsafhankelijke multi-fysica probleem. Dit probleem
lijkt wat betreft structuur op op het type systeem dat ontstaat bij het uitvoeren
van een veiligheidsanalyse. Twee referentie tijdsafhankelijke simulaties die een
ongeval scenario van snelle reactoren simuleren worden beschouwd. Zelfs in
dit geval blijkt het adaptieve algoritme zeer effectief te zijn. Het is in staat
alle belangrijke uitkomsten met een relatief klein aantal realisaties te kunnen
reproduceren.

Concluderend zijn adaptieve spectrale methoden een rekenkundig efficiënte
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onzekerheidskwantificering techniek voor gebruik met een matig grote set van
willekeurige invoerparameters. Dit aantal is sterk afhankelijk van de regel-
matigheid van het respons-oppervlak. Verschillende strategien kunnen worden
aangenomen om dit aantal verder te vergroten en de werkwijze aantrekke-
lijker te maken voor problemen van bredere aard. Een overzicht van deze
mogelijkheden wordt gepresenteerd in het uiteindelijke aanbevelingenen van
dit proefschrift.

(Dutch translation provided by Mr. Pierre Willem Lenoir)
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