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Abstract

When dealing with timber structures, the characteristic strength and stiffness of
the material are made highly variable and uncertain by the unavoidable, yet hardly
predictable, presence of knots and other defects. In this work we apply the sparse
grids stochastic collocation method to perform uncertainty quantification for structural
engineering in the scenario described above. Sparse grids have been developed by the
mathematical community in the last decades and their theoretical background has been
rigorously and extensively studied. The document proposes a brief practice-oriented
introduction with minimal theoretical background, provides detailed instructions for
the use of the already implemented Sparse Grid Matlab kit (freely available on-line)
and discusses two numerical examples inspired from timber engineering problems that
highlight how sparse grids exhibit superior performances compared to the plain Monte
Carlo method. The Sparse Grid Matlab kit requires only a few lines of code to be
interfaced with any numerical solver for mechanical problems (in this work we used an
isogeometric collocation method) and provides outputs that can be easily interpreted
and used in the engineering practice.

Key words: Timber structures; Variable mechanical properties; Uncertainty quantifica-
tion; Stochastic collocation method; Sparse grids; Isogeometric Collocation

1 Introduction

Timber is one of the oldest building material. Used since the prehistory, wood has been
employed in all ages and by all civilizations, often with peculiar technologies [1]. Between
the Nineteenth and Twentieth centuries other materials (like cast iron, steel, alluminium,
and concrete) became largely available, deeply impacting word economic development and

1

ar
X

iv
:2

21
1.

04
73

5v
1 

 [
m

at
h.

N
A

] 
 9

 N
ov

 2
02

2



sustaining human expansion [2]. In recent years, climate change emerged as a new, urgent
problem and construction and related industries (in particular, concrete and steel ones) are
the ones with greatest environmental impact [3, 4]. In this context, timber and wood-based
structural elements are experiencing a new springtime. Indeed, wood is a renewable re-
source (if forests and production processes are properly managed) [5], it presents extremely
high strength vs weight ratio, low heat conductivity, good durability, and fire resistance
when suitable expedients are implemented [6]. Furthermore, photosynthesis traps a signifi-
cant amount of carbon dioxide (≈ 50% of dry wood is constituted by carbon) that remains
within wood for its whole life [7]. As a consequence, it represents the best candidate for
replacing materials with more significant environmental impact.

Unfortunately, natural growth and sawing of logs lead to a huge variability and un-
certainty on the mechanical properties of wood: [6] specifies that the strength of wood
specimens can change by an order of magnitude, even within the same wood species. In
particular, knots - resulting from the insertion of branches in the stem - often coincide
with the point where cracks start, representing therefore the weak point of structural ele-
ments [8]. Such a situation does not allow an economically convenient exploitation of the
material and several strategies have been developed for limiting the negative influence of
defects on the performance of the structural element. The oldest is represented by grading,
that consists in different procedures and technologies aiming at sorting sawn timber (and
boards used for the manufacturing of glued laminated timber beams and cross laminated
timber plates) in classes with assigned characteristic strength [6, Article B5]. Nowadays,
novel technologies - like laser scanners [9] and X-ray computer tomography [10] - allow
for the detection of grain direction and wood density, which have been employed for the
reconstruction of knot geometry and estimation of wood mechanical properties [11, 12].
However, the evaluation of mechanical behavior of wood is characterized by high levels of
uncertainty, despite the continuous development of analysis and manufacturing technolo-
gies: a quantitative assessment of how the uncertainty on the mechanical behavior of wood
translates to uncertainty on the structural behavior of timber construction can be done by
means of Uncertainty Quantification (UQ) techniques.

UQ techniques applied to timber structures have been object of preliminary investi-
gations in the recent engineering literature by a multitude of approaches ranging from
standard sampling methods as in [13] to more advanced methods such as the Stochas-
tic Galerkin, the method of moment equations and Gaussian Processes [14, 15, 16, 17].
However, UQ approaches as discussed in the engineering literature are usually targeted
on specific engineering problems. Furthermore, they often propose imprecise treatments
of the mathematical aspects of the problem (like, e.g., error estimates and convergence
rates), typically preventing the immediate comparison with other available methods and,
ultimately, the choice of the most performing one. On the contrary, mathematicians have
been developing the above-mentioned and several other methods as general-purpose tools,
providing also detailed theoretical results; in particular, see e.g. [18, 19] for a general in-
troductions to Stochastic Galerkin, [20, 21, 22, 23] for the method of moment equations,
and [24] for Gaussian Processes. Unfortunately, such methods are often complex to be im-
plemented and might not be available as ready-to-use software, discouraging practitioners
from their use.

The present contribution deals with the numerical discretization of the equilibrium
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equations under uncertainty for a timber-like planar body: more precisely, we assume that
its elasticity modulus depends on a set of parameters modeling the random location and
shape of knots, under the simplistic assumptions of heterogeneous and isotropic mate-
rial. As a result, the displacement vector depends on both the space variable and the
set of parameters. The equations - along the space variable - are discretized following
the isogeometric analysis (IGA) principles, specifically the IGA collocation that combines
high-performance with easy implementation, thanks to the possibility of directly using
the strong formulation of the problem. The parametric dependence is treated using the
stochastic collocation method based on Smolyak sparse grids, an efficient UQ technique
proposed and deeply analyzed by the mathematical community during the latest decades
[25, 26] and implemented in several packages like, e.g., the Sparse Grid Matlab kit [27]. The
sparse grids methdology is most effective when the problem at hand depends on a moderate
number of uncertain parameters (say up to 20/30 parameters, even though applications to
problem with hundreds of random variables are available in literature [28, 29]), and the
outputs of the model depend smoothly on the input parameters.

The main contributions of the present work are: (i) the superiority of the stochastic
collocation method with respect to the plain Monte Carlo method is demonstrated by
means of several numerical tests in the continuum mechanics framework; (ii) algorithmic
and implementation details are provided to show its ease of use and possible application
to any structural engineering problem.

The rest of the paper is organized as follows. In Section 2 we introduce the problem of
interest, namely the elasticity equation for timber-like beams, where the material variability
is encoded in a set a parameters; moreover, Section 2.2 details the numerical scheme applied
to discretize the model problem in the physical variable. Section 3 is dedicated to the UQ
methodology that we employ throughout the work. In Section 4 a forward UQ analysis
is performed on two numerical experiments, namely the expectation and the probability
density function of selected quantities of interest are computed and the global sensitivity
analysis is carried out. The conclusions are finally driven in Section 5.

2 Deterministic mechanical problem

2.1 Continuum mechanic PDEs

Let D = [0, L]× [0, H] ⊂ R2 denote a two-dimensional timber beam with length L > 0 and
height H > 0. Let CCC denote the fourth order stiffness tensor, which is assumed to depend
on the space variable (x, y) ∈ D as well as on a set of N parameters p = (p1, . . . ,pN )
randomly varying in the hyperrectangle Γ := Γ1 × · · · × ΓN ⊂ RN , with Γn = [an, bn] ⊂ R
for all n = 1, . . . , N . In particular, CCC assumes the following form:

CCC(x, y,p) =

E(x, y,p) 0 0
0 E(x, y,p) 0

0 0 E(x,y,p)
2

 , (2.1)

where the (positive) parameter-dependent elasticity modulus E(x, y,p) is modeled as

E(x, y,p) = E0 α(x, y,p). (2.2)
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Specific information on the value assumed by E0 ∈ R+ as well as the form of the function
α(x, y,p) : D → R+ will be provided in Section 4.

Given a parameter-independent external load t = (tx, ty), we look for the displacement
u = (ux, uy) : D × Γ→ R2 such that

div(CCC(x, y,p) : ∇su(x, y,p)) = 0, (x, y) ∈ D,
(CCC(x, y,p) : ∇su(x, y,p)) ·n = t(x, y), (x, y) ∈ Σt,
u(x, y,p) = 0, (x, y) ∈ Σs,

(2.3)

where {Σt,Σs} is a partition of ∂D and∇s denotes the symmetric gradient. The differential
operators in (2.3) are intended with respect to the physical variables x, y. Note that, in
the present paper, the beam material is assumed heterogeneous (since the stiffness tensor
depends on x, y) and isotropic. The latter assumption is not fulfilled in the specif case
of timber beams. Nonetheless, it simplifies the theoretical and numerical treatment of
the addressed problem. The generalization of the presented results to the anisotropic
framework is worth investigating, and will be addressed in a future contribution.

2.2 IGA discretization in the space variables

Using the notation on provided in A, we look for approximations to ux, uy of the form

ux(x, y) ≈
Ncoll∑
i=1

Mcoll∑
j=1

(ûx)i,jR
r,q
i,j (x, y)

uy(x, y) ≈
Ncoll∑
i=1

Mcoll∑
j=1

(ûy)i,jR
r,q
i,j (x, y)

where Rr,q
i,j (x, y) are bi-variate B-splines, and we require them to be strong solutions to

Equation (2.3).
The obtained equations are then collocated at the Greville abscissae (x̂i, ŷj) (i =

1, . . . , Ncoll − 1, j = 1, . . . ,Mcoll − 1), which can be computed as:

x̂i =
xi+2 + xi+3 + . . .+ xi+r

r − 1
, i = 1, . . . , Ncoll − 1,

ŷj =
yj+2 + yj+3 + . . .+ yj+q

q − 1
, j = 1, . . . ,Mcoll − 1.

(2.4)

The resulting algebraic system of equations, consisting of 2 (Ncoll − 1) (Mcoll − 1) equa-
tions in the 2NcollMcoll unknowns (i.e., Ncoll ×Mcoll unknowns for both ux and uy), has
to be finally completed by 2Ncoll + 2Mcoll − 2 suitable boundary conditions to be imposed
as additional equations, as specified in [30].

3 Sparse grids and Uncertainty Quantification

3.1 A surrogate-modeling approach to Uncertainty Quantification

As already discussed in Section 2, the beam model depends on N uncertain parameters,
collected in the vector p ∈ Γ. More precisely, we assume that each component pn is a
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uniform random variable that can take values in the range Γn (we write pn ∼ U(Γn));
we further assume that all random variables are independent, such that the probability
density function (pdf) of p is simply the constant function ρ(p) =

∏N
n=1

1
bn−an .

Let us moreover denote by f ∈ R the quantity of interest (QoI) or output of the beam
equation (which we will call hereafter Full-Order Model, FOM), e.g., the displacement or
the strain in a point of the beam. f can then be seen as a N -variate function of the
uncertain parameters, f = f(p), f : Γ → R (generalizations to vector-valued quantities of
interest, i.e., f : Γ → RP , is straightforward; one such example is when we consider the
entire displacement field as QoI).

In this setup, we are interested in “quantifying the uncertainties” of the QoI due to the
variability of p; to this end, we would like to compute statistical indices for f(p) such as
its expected value and variance

E[f ] =

∫
Γ
f(p)ρ(p)dp, (3.1)

V[f ] =

∫
Γ
(f(p)− E[f ])2ρ(p)dp = E[f2]− E[f ]2,

as well as higher order indices (such as kurtosis and skewness), and ideally its pdf. This
task is usually called UQ.

A successful approach to perform UQ is to build a so-called surrogate model for the
QoI, following an offline/online paradigm. More precisely, in a preliminary offline phase, a
number of beam problems is solved, for certain judiciously selected combinations of values
of p, and the corresponding values of f(p) stored; a so-called surrogate model is then
constructed out of these values (by e.g. interpolation or least-squares regression). During
the subsequent online phase, quantities such as those in Equation (3.1) are computed
efficiently by evaluating the surrogate model (cheap operation that essentially involves
evaluating a polynomial expression) instead of repeatedly solving the beam problem. In the
following, we construct a so-called sparse grids surrogate model, but many other methods
for building surrogate models are available in literature (e.g. Polynomial Chaos, Reduced
Basis, Gaussian Processes, Radial Basis Functions, Neural Networks, just to name a few
- we refer e.g. to [31] for an overview). In the context of timber engineering, surrogate
models have also been employed in [32].

3.2 Mathematical description of sparse grids

In this section, we quickly cover the basics of sparse grids, following closely the recent work
[27], to which we refer the reader for more details.

The sparse grid surrogate model, which in the following will be denoted by Sf (p), can
be informally described as an approximation of f(p), obtained as a linear combination of
several “small” tensor interpolants of f over Γ, denoted fm(i)(p) below, each formed by a
limited number of points. The underlying idea is the so-called sparsification principle, i.e.,
the intuition that, while none of these interpolants will be very accurate since they are all
based on few points, by carefully combining many of them one can recover an overall good
surrogate model. This comes at a much lower cost than what would be needed if one were
to build naively a tensor interpolant by covering the parameters space Γ with a tensorial
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Cartesian grid obtained by considering say M values for each parameter. Indeed, such
approach would involve a number of grid points exponential in the probabilistic dimension
of the problems (MN ), i.e., it would be affected by the so-called curse of dimensionality,
which makes the tensor product technique unfeasible, even for even moderately small N .

More precisely, the sparse grids surrogate model is expressed by means of the so-called
combination technique formula

f(p) ≈ Sf (p) =
∑
i∈I

cifm(i)(p), ci =
∑

j∈{0,1}N
i+j∈I

(−1)|j|, (3.2)

where:

• i ∈ NN is a multi-index, i.e., a vector of N integer numbers; a tensor interpolant
fm(i)(p) will be associated to each i in the set I (more on this later), and each
entry ik of i denotes the level of approximation of fm(i)(p) along each parameter
pk, k = 1, . . . N ;

• m( · ) is an increasing function (“level-to-knots function”), such asm(k) = k orm(k) =
2k;

• m(i) is the vector obtained applying m( · ) to each component of i, i.e., m(i) =
[m(i1),m(i2), . . .];

• fm(i)(p) is a tensor interpolant, built over a Cartesian grid on Γ with m(i1)×m(i2)×
· · · points; more details on the construction and evaluation of fm(i)(p) are reported
in B.

• ci are the so-called combination technique coefficients. Note that some ci might be
null, in which case fm(i)(p) is not part of the final approximation;

• I is a multi-index set, I ⊂ NN , that specifies which tensor interpolants are can-
didates to enter in the sparse grid construction. It should be chosen according to
the sparsification principle mentioned above, and in particular it should refrain from
containing indices i whose entries are all large numbers (the cost of building the
associated interpolant fm(i)(p) would be too large). Instead, whenever one entry (or
a few entries) of i are large, the others should be kept as small as possible. Moreover,
for technical reasons it is required that I is downward-closed, i.e., if i ∈ I then all is
“precedent” neighbors are also in I1.

The set of points where f(p) is evaluated (i.e., the union of all the points needed to
assemble each fm(p)(p) ) is called sparse grid, and will be denoted by G. Its cardinality
will be denoted by G.

1Upon denoting with ek the k-th versor of NN , i.e., the vector with all zeros expect the k-th component,
that is equal to 1, I is downward-closed if:

i ∈ I ⇒ i− ek ∈ I, ∀k = 1, . . . , N
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Figure 3.1: Examples of sparse grids of level w = 3 (Figure 1(a)) and level w = 5
(Figure 1(b)) in N = 2 dimensions. We have used Clenshaw-Curtis points (4.1), function
m( · ) as in (4.2) and multi-index set I as in (4.3).

Equation (3.2) becomes operative the moment we specify the three basic “ingredients”
of the sparse grid construction, namely, the set I, the function m( · ) and the knots used
to construct each tensor interpolant fm(i)(p). A lot of literature deals with criteria and
algorithms to optimally choose these three components. In Section 4 we detail the choices
we have adopted in this work. For examples of sparse grids in N = 2 dimensions we refer
to Figures 1(a) and 1(b).

3.3 Sparse grids for UQ

In this section we provide an overview on how sparse grids can be used for UQ of a quantity
of interest f . In our work, we have used the implementation of sparse grids provided in the
Sparse Grids Matlab Kit, see [27], which can be used essentially “off-the-shelf” and renders
these operations rather straightforward (this can be appreciated also by taking a look at
the Listings reported in Section 4).

Expected value. The univariate interpolation points used as basic blocks of the sparse
grid construction always come associated with quadrature weights. For example,
the weights corresponding to Clenshaw–Curtis points (used in our numerical experi-
ments, see Section 4) can be computed by Fast Fourier transform [33]. Recalling that
expected values are just weighted integrals over Γ (cf. Equation (3.1)), a sparse grid
quadrature Q[f ] can be derived (mimicking the steps that would lead to Equation
3.2), which in practice simply amounts to taking weighted sums of the evaluations of
f over the sparse grid points q ∈ G. The weights αq depend on quadrature weights
of the interpolation points and on the combination technique coefficients ci (see [27]
for details):

E[f ] =

∫
Γ
f(p)ρ(p)dp ≈

∑
q∈G

αqf(q) = Q[f ].
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See Listing 2 for software calls.

Variance and higher order indices. Simply employ the fact already recalled in Equa-
tion (3.1) that V[f ] = E[f2] − E[f ]2, and approximate both terms by sparse grids
quadrature as explained above. Similar formulas exists for higher moments such as
skewness (connected to E[f3]) and kurtosis (connected to E[f4]).

Global sensitivity analysis by Sobol indices. Sobol indices [34, 35] are quantities that
assess the contribution of each uncertain parameter to the total variance of a quantity
of interest; the underlying mathematical machinery is a decomposition of the vari-
ance of f similar to the ANOVA decomposition. In particular, the principal Sobol
index SP

i quantifies the impact of each uncertain parameter pi alone, whereas the
total Sobol index ST

i quantifies the impact of each uncertain parameter alone and in
mixed effect with any other uncertain parameter. Principal and Sobol indices can
be obtained by post-processing of the sparse grid surrogate model Sf (p), see [36] for
details. See Listing 6 for implementation details.

Probability density function. An approximation of the pdf of f can be obtained by
generating sufficiently many samples of the uncertain parameters pi according to
their pdf, evaluating f for each of them, and then resorting to binning algorithms to
generate histograms of such values, or using functions such as kernel density estimates
[37]. This process is significantly sped up by replacing the values f(pi) with their
approximate counterparts Sf (pi), [38]. To this end we remark that evaluating Sf (pi)
is essentially real-time (one only needs to evaluate a few polynomial interpolants)
whereas evaluating f(pi) requires solving a PDE (beam problem). See Listing 5 for
implementation details.

4 Numerical experiments

All the numerical tests deal with the traction problem (see Figure 4.1), namely we take the
external load t = (103kN/m, 0)T and we impose homogeneous Dirichlet boundary condi-
tions on Σs = [0, L]× {0} ∪ {0} × [0, H] and homogeneous Neumann boundary conditions
on ∂D \ Σs.

We detail now the choices adopted for the sparse grid construction illustrated in Sec-
tion 3.2.

• As knots, we use the Clenshaw–Curtis points points), which are well suited for un-
certain parameters with uniform pdf 2. A set of K points in [−1, 1] can be computed
as follows:

x
(j)
K = cos

(
(j − 1)π

K − 1

)
, 1 ≤ j ≤ K, (4.1)

and then if needed linearly transformed to any generic interval [a, b].
2Note that equispaced points are in general not a good choice, due to the well-known Runge’s phe-

nomenon.
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t

D

Figure 4.1: Traction model. The external load is t = (1kN/m, 0)T , homogeneous Neumann
boundary conditions are imposed at the right and top part of the boundary, whereas
the horizontal (vertical, respectively) displacement is imposed zero at the left (bottom,
respectively) part of the boundary.

• As function m( · ), we use the following

m(k) =

{
1, k = 1,

2k−1 + 1, k > 1,
(4.2)

which yields the doubling of the number of interpolation points, when moving from
interpolation level k to k + 1. Note that this is choice is particularly useful since it
renders tensor interpolants built with Clenshaw–Curtis points nested, i.e., the set of
points needed to build fm(j)(p) is contained in the set needed to build fm(i)(p) if the
multi-indices i = (i1, . . . , iN ) and j = (j1, . . . , jN ) fulfill jk ≤ ik for all k = 1, . . . , N .
This property is clearly beneficial if one wants to refine a sparse grid already computed
by adding further computations.

• As set I we use the classical choice

I =
{
i ∈ NN : t(i) ≤ w

}
, (4.3)

where t : NN → N is given by t(i) :=
∑N

n=1 in and w ∈ N is an integer number that
controls the accuracy of the sparse grid (the larger w, the more points in the sparse
grid). It is easy to see that it enforces a basic version of the sparsification principle;
more sophisticated choices, such as anisotropic sets or adaptive algorithms for the
selection of I are discussed e.g. in [39, 40, 41] and [42, 43], respectively.

These three choices combined generate a sparse grid, which is commonly named in the
literature as Smolyak grid.

In the following we discuss two numerical examples with load and boundary conditions
as in Figure 4.1.

• In Section 4.1 we use three uncertain parameters to model the presence of one knot
inside the unit square domain. The elasticity modulus fulfills the simplified assump-
tion of being y-independent. We consider in this example two QoI, namely (i) the
entire displacement field (ii) the horizontal displacement at the bottom-right corner
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of the domain. The outcomes are: (i) the numerical study of the approximation
error of the first QoI; (ii) the construction of the surrogate for the second QoI and
the numerical study of its accuracy; (iii) pdf and Sobol indices of the second QoI.

• In Section 4.2 we consider a rectangular domain and we use seven uncertain parame-
ters to model the presence of two knots. In contrast to Section 4.1, here the elasticity
modulus varies along both the horizontal and the vertical directions. Differently from
before, in this example we consider only one QoI, i.e., the horizontal displacement at
the bottom-right corner of the domain, and we compare two surrogates computed by
means of Smolyak sparse grids and a-posteriori adaptive sparse grids, i.e., different
strategies to compute the set I.

4.1 One-knot example

In the first numerical example we take L = H = 1m and we choose the stochastic elasticity
modulus (2.2) depending on the uncertain vector p = (p1, p2, p3) with length N = 3. More
in details, we take E0 = 104MPa and

α(x, y,p) = p1 − γ exp

(
−(x− p2)2

2p2
3

)
, (4.4)

with p1 ∼ U(0.5, 1.5), p2 ∼ U(0.25, 0.75), p3 ∼ U(0.1, 0.2) and γ = 0.4.
Note that α( · ,p) : D → R+ varies in the horizontal direction x, only, whereas it

is constant in the vertical direction y. Therefore, the displacement along the vertical
direction uy is zero. This choice of α aims at modeling the presence of one knot along the
beam. Following this interpretation, p2 represents the (variable) center of the knot and p3

represents its (variable) width; finally, p1E0 is the (variable) nominal value of the Young
modulus away from the knot. Note that the ranges of p2 and p3 are chosen so that the knot
is well-contained inside the beam. We refer to Figure 2(a), depicting a set of ten samples
of E plotted versus the horizontal variable x ∈ [0, 1], and Figure 2(c), Figure 2(e), where
two samples of E are plotted versus (x, y) ∈ D.

The IGA approximation of the corresponding solutions of problem (2.3) are shown in
Figure 2(d) and Figure 2(f). For this numerical experiment, the IGA parameters are set
as r = q = 4 and Ncoll = Mcoll = 32, leading to a negligible error in the space variables.

With the above-mentioned choices, the sparse grid of level w can be generated by
running the very simple Matlab code in Listing 1.

4.1.1 QoI 1: displacement field

The surrogate for the solution u or a QoI of u can then be computed by running the
Matlab code in Listing 2. The brevity and simplicity of these listings testify how little
extra work is needed to interface the beam solver to the UQ software, and thus how easy
it is to perform a UQ analysis.

1 % number of parameters
2 N=3;
3 % knots for p1, p2 and p3
4 knots_p1=@(n) knots_CC(n,0.5,1.5,’prob’);
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Figure 4.2: 2(a) Ten samples of E(x, ȳ,p), for fixed ȳ; 2(b) Reference solution for
E[ux] (Smolyak sparse grid surrogate of level w = 7); 2(c), 2(e) Plot of two samples of
E(x, y,p) as in (4.4) for p = (5567, 0.62277, 0.12425) and p = (14052, 0.39997, 0.11967),
respectively; 2(d), 2(f) Plot of the two corresponding solutions ux(x, y,p) (2.3) (p =
(5567, 0.62277, 0.12425) and p = (14052, 0.39997, 0.11967), respectively) computed via
IGA (Section 2.2).
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Figure 4.3: Error convergence of the expected value of the horizontal displacement field
in the L2(D)-norm. The quantities are plotted versus the number of PDE solves (the
cardinality G of the sparse grid for the Collocation method, the number of samples for the
Monte Carlo method).

5 knots_p2=@(n) knots_CC(n,0.25,0.75,’prob’);
6 knots_p3=@(n) knots_CC(n,0.1,0.2,’prob’);
7 knots = {knots_p1,knots_p2,knots_p3};
8 % functions m and t
9 [lev2knots,idxset]=define_functions_for_rule(’SM’,N)

10 % level
11 w = 1;
12 % sparse grid
13 S = smolyak_grid(N,w,knots,lev2knots,idxset,[]);
14 % creates the "uniqued" list of points
15 Sr = reduce_sparse_grid(S)

Listing 1: Matlab code to create the Smolyak sparse grid.

1 % wrap the beam IGA solver into an @−function
2 f = @(y) solve_PDE(y);
3 % or further have the solver just return the QoI
4 % f = @(y) QoI(y);
5 Eu = quadrature_on_sparse_grid(@(y)f(y),S,Sr);

Listing 2: Matlab code to compute the surrogate for the QoI.

We are interested in particular in assessing the quality of the approximation of the
expected value of the horizontal displacement field, i.e., of E[ux], which we approximately
obtained employing the Smolyak sparse grid of level w = 7 (see Figure 2(b)). Coarser
approximations to the expectation of the same quantity are then computed by Smolyak
sparse grids of lower levels w = 1, . . . , 5. Their relative error with respect to the reference
solution, measured in the L2(D)-norm, is plotted in Figure 4.3: the horizontal axis reports
the cardinality of the employed sparse grid. For the sake of comparison, three instances of
convergence of the Monte Carlo method are also depicted. When the sparse grid method is
employed we observe an algebraic decay of the error with estimated slope -1.8, as opposed to
the usual Monte Carlo decay rate −1/2 (i.e., the inverse of the square root of the number of
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(a) (b)

Figure 4.4: 4(a) Three-dimensional plot of the surrogate QoI computed on the sparse grid
with level w = 3; 4(b) Plot of the surrogate QoI versus p1, p3 and for fixed p2 = 0.25.

Monte Carlo samples). We underline the effectiveness of the sparse grid approach, which
delivers more accurate results with many less samples points as the plain Monte Carlo
method.

1 % define range of the parameters
2 aa = [0.5, 0.25, 0.1];
3 bb = [1.5, 0.75, 0.2];
4 domain = [aa; bb];
5 f_values = evaluate_on_sparse_grids(f,Sr);
6 plot_sparse_grids_interpolant(S,Sr,domain,f_values,’with_f_values’);

Listing 3: Matlab code to plot the sparse grid surrogate Sf .

4.1.2 QoI 2: horizontal displacement at the bottom-right corner

Let us consider now the real-valued QoI being the evaluation of the horizontal displacement
at the bottom-right corner of the beam, namely f(p) = ux(1, 0,p). The surrogate of the
QoI can be easily computed (see Listing 2) and plotted: see Listing 3 and Figure 4(a), where
level w = 3 is considered. In Figure 4(b) we display a section of the three-dimensional plot
in Figure 4(a) obtained for the fixed value p2 = 0.25. The plot shows that the variability
of the QoI with respect to the parameters p2 and p3 is very limited. This observation will
be confirmed later on, by means of the Sobol indices.

We now want to investigate the convergence of the sparse grid surrogate model, not
only in the computation of the expected value just like we did for the previous QoI,
but also in point-wise prediction. Hence, we generate M = 2000 new samples {p(i) =

(p
(i)
1 , p

(i)
2 , p

(i)
3 ), i = 1, . . . ,M)} of p. For each of the new sample value, we compute the

FOM solution and we compare it with the evaluations of the Smolyak sparse grid surrogate

13
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Figure 4.5: 5(a) Relative error on the expectation of the QoI f = u(1, 0, · ) plotted versus
increasing cardinality G of sparse grids. For the sake of comparison, the Monte Carlo error
is also depicted; 5(b) Maximum norm of the relative error on the QoI f = u(1, 0, · ) plotted
versus increasing cardinality G of sparse grids.
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Figure 4.6: Scatterplot of the reference QoI (x-axis) and the surrogate QoI (y-axis) of level
w = 2 (Figure 6(a)) and level w = 3 (Figure 6(b)) evaluated at the first 150 sample points
p(i). The bisector line is depicted in red.
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Figure 4.7: Approximations to the pdf of the considered f for increasing levels of sparse
grids. The reference pdf is computed starting from evaluations of the FOM.

Sf (see Listing 4). The relative error in the maximum norm is the given by∥∥∥∥Sf − ff

∥∥∥∥
∞

= max
i=1,...,M

∣∣∣∣∣Sf (p(i))− f(p(i))

f(p(i))

∣∣∣∣∣ (4.5)

and is displayed in Figure 5(b). For both the expected value and the point-wise prediction,
an algebraic decay of the error is observed (with estimated rate -2.7 and -2.5, respectively).
Figures 6(a) and 6(b) depict the scatterplot of the reference QoI (x-axis) and its surrogate
(y-axis) of level w = 2 and w = 3, respectively, evaluated at the first 150 sample points p(i)

out of the 2000 samples just computed. As the level of the sparse grid increases, the blue
dots tend to align along the bisector (red) line, reflecting better approximation properties
of the surrogate.

Figure 4.7 then graphically verifies the convergence of the pdf obtained by sampling
the sparse grid surrogates Sf , for increasing levels w = 1, 2, 3 (see Listing 5, where the
built-in Matlab code ksdensity is used). For level w = 3 we observe very good agreement
between the reference curve and the surrogate one. Note that the alternative would be
to compute the IGA solution collocated at all the M = 2000 samples {p(i)}, entailing a
considerably larger computational effort.

1 % generate new samples of parameter values
2 p1 = rand(M,1)+0.5;
3 p2 = rand(M,1)*0.5 + 0.25;
4 p3 = rand(M,1)*0.1 + 0.1;
5 p = [p1, p2, p3];
6 % point_on_grid = evaluations of QoI on the points of Sr
7 point_surr = interpolate_on_sparse_grid(S,Sr,point_on_grid,p’);

Listing 4: Matlab code to evaluate the surrogate at new parameter values.

1 % surrogate pdf for w=3 (use analogous code for w=1,2)
2 pdf = ksdensity(point_surr,’Support’,’positive’);
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Listing 5: Matlab code to compute the pdf obtained by sampling the sparse grid surrogate
of the f.

1 [Sob_princ,Sob_tot] = compute_sobol_indices_from_sparse_grid(S, Sr,f_values,
domain,’legendre’);

Listing 6: Matlab code to compute principal and total Sobol indices.

To conclude the UQ analysis, we compute the principal and total Sobol indices {SP
i , i =

1, 2, 3}, {ST
i , i = 1, 2, 3} (see Section 3.3). They are computed according to Listing 6, the

result being

SP = [0.9818, 0.0000, 0.0088],

ST = [0.9912, 0.0001, 0.0182].

They confirm that the variability of the second parameter p2 does not affect the surrogate
value, as was previously observed by means of Figure 4.4, and moreover they hint that the
third parameter plays a negligible role as well.

As a conclusion of the analysis carried out, we can state that thanks to the sparse grids
machinery, a small computational effort was enough to carry out a UQ analysis that allows
to draw these conclusions on the timeber model at hand: (i) the parameter playing the
most important role in the model is p1; (ii) small variability of the QoI is caused by p3;
(iii) p2 affects the QoI in a negligible way. These results are as expected, since p2 and p3

have local effects on the solution to the PDE (2.3), whereas the considered QoI is affected
by global quantities, only.

4.2 Two-knots example

Let us take L = 10m and H = 1m, and choose

α(x, y,p) = p1 − γ1 exp

(
−(x− x̄)2

2p2
2

)
exp

(
−(y − ȳ)2

2p2
4

)
− γ2 exp

(
−(x− x̄− p6)2

2p2
3

)
exp

(
−(y − ȳ − p7)2

2p2
5

)
, (4.6)

with parameter p = (p1, p2, p3, p4, p5, p6, p7) whose entries are p1 ∼ U(0.5, 1.5), p2, p3 ∼
U(0.3, 1), p4, p5 ∼ U(0.03, 0.1), p6 ∼ U(1, 8) and p7 ∼ U(−0.5, 0.5), and with fixed values
γ1 = γ2 = 0.4. In particular, in this second example, we aim at modeling the presence
of two knots along the timber beam: one with fixed coordinates (x̄, ȳ) and the second at
random distance from the first one with coordinates (x̄ + p6, ȳ + p7); the value of E0 is
again E0 = 104MPa. As in the first example, p1 - when multiplied by E0 - controls the
nominal value of the Young modulus away from the knot. The remaining parameters model
the width of the two knots along the horizontal (p2, p3) and vertical (p4, p5) direction.
Figure 4.8 depicts four samples of E(x, y,p) = E0α(x, y,p), with α(x, y,p) as in (4.6) (left
column) and the first component of the corresponding IGA solution (right column). We
underline that in the considered setting the second knot can be placed (i) close to the
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top/bottom boundary of the beam (first sample, showing the case of proximity to the top
boundary); (ii) well-contained in the beam and distant from the first knot (second sample);
(iii) well-contained in the beam but close to the first knot (third sample); (iv) close to the
right boundary of the beam (fourth sample).

In this second example, we are dealing with a problem with a larger number of uncertain
parameters, therefore we consider not only the classical Smolyak sparse grids used in the
previous example, but also the more effective a-posteriori adaptive sparse grids. In this
version of sparse grids, multi-indices i are added to the multi-index set I in Equation
(3.2) in an iterative way, following a simple yet powerful procedure based on an error-cost
criterion (see e.g. [42, 43] for details):

• a number of potential candidates j is added to the sparse grid to the multi-index set
I;

• for each of them a profit indicator is computed (i.e. the ratio between the change in
the prediction of E[f ] due to having added j to the sparse grid and the number of
new FOM evaluations requested by it);

• the candidate with the largest profit is selected and added to I, and the set of
candidates is updated accordingly.

This algorithm is usually very effective in quickly determining a good set I, although it
is not entirely optimal in terms of cost since the profits are evaluated only after having
performed the corresponding FOM evaluations (hence the name “a-posteriori adaptive”),
therefore some computational cost is “wasted” to detect multi-indices with small profit.

Coming back to the computational example, let us consider the same real-valued QoI as
in the first example, namely the evaluation of the horizontal displacement at the bottom-
right corner of the beam f(p) = ux(10, 0,p). The reference value E[ux(10, 0, · )] is ap-
proximated using an a-posteriori adaptive sparse grid with 30105 collocation points (see
Listing 7) and it is compared with its approximation Q[ux(10, 0, · )] computed either using
Smolyak sparse grids of increasing level w = 1, . . . , 6 (red line in Figure 4.9) or a-posteriori
adaptive sparse grids with increasing number of collocation points (magenta line in Fig-
ure 4.9).

Following the same lead as in the first example, we now want to investigate the con-
vergence of the sparse grids surrogate to the FOM. Hence, the QoI is computed by the
FOM at M = 5000 randomly generated samples of p (denoted as {p(i), i = 1, . . . ,M}. In
contrast, the a-posteriori adaptive and the Smolyak sparse grid surrogates are evaluated at
all points p(i) and the largest relative error is computed by Equation (4.5). The decay of
this approximation error as the sparse grids construction cost increases is depicted in Fig-
ure 4.10. Both Figure 4.3 and 4.10 display improved rates of convergence of the a-posteriori
adaptive sparse grids, when compared to the non-adaptive ones (i.e., the Smolyak sparse
grids).

Next, we graphically verify the convergence of the pdf obtained by sampling the a-
posteriori adaptive sparse grid surrogate, see Figure 4.11: a very good agreement between
he exact and the surrogate pdfs can be observed. Finally, the principal and total Sobol
indices are computed:

SP = [0.9914, 0.0000, 0.0040, 0.0001, 0.0001, 0.0002, 0.0002],
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ST = [0.9945, 0.0002, 0.0075, 0.0002, 0.0008, 0.0003, 0.0010].

As observed in the first example, the first parameter p1 is by far the most important one,
in the sense that it essentially affects all the variability of the selected QoI. The other
parameters play a much smaller role, and in particular the second one p2 (horizontal width
of the first knot) appears to be negligible.

1 % number of parameters
2 N=7;
3 % knots for p1, p2, p3, p4, p5, p6 and p7
4 knots_Y0=@(n) knots_CC(n,0.5,1.5,’prob’); % c
5 knots_Y1=@(n) knots_CC(n,1,8,’prob’); % r
6 knots_Y2=@(n) knots_CC(n,−0.5,0.5,’prob’); % s
7 knots_Y3=@(n) knots_CC(n,0.3,1,’prob’); % sx1
8 knots_Y4=@(n) knots_CC(n,0.3,1,’prob’); % sx2
9 knots_Y5=@(n) knots_CC(n,0.03,0.1,’prob’); % sy1

10 knots_Y6=@(n) knots_CC(n,0.03,0.1,’prob’); % sy2
11 knots = {knots_Y0,knots_Y1,knots_Y2,knots_Y3,knots_Y4,knots_Y5,knots_Y6};
12 [lev2knots,idxset]=define_functions_for_rule(’SM’,N);
13 % number of maximum collocation points
14 Max_Points = 30000;
15 % QoI (to be implemented separately)
16 f = @(y) QoI(y);
17 adapt = adapt_sparse_grid(f,N,knots,lev2knots)

Listing 7: Matlab code to compute an adaptive sparse grid approximation of the QoI.

5 Conclusions

In this paper we used the Sparse Grid Matlab kit (freely available on-line) for the UQ
of the displacements in the field of continuum linear mechanics. The considered problem
has been discretized by means of the IGA collocation (in the space variables), while the
dependence on random parameters has been treated by means of the stochastic collocation
method on both Smolyak and a-posteriori adaptive sparse grids.

The use of the Sparse Grid Matlab kit presents several advantages. First, it can be easily
interfaced with any black-box solvers for the (deterministic) mechanical problem. Second,
the numerical methods implemented in the kit outperform standard UQ techniques, like
the plain Monte Carlo method. Finally, it provides outputs that can be readily interpreted
and exploited in the engineering practice.

Future work will include the analysis of more sophisticated and possibly anysotropic
mechanical problems, where the variability of grain direction is accounted for.

6 Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.
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(a) First sample of E(x, y,p) (b) First solution ux(x, y,p)

(c) Second sample of E(x, y,p) (d) Second solution ux(x, y,p)

(e) Third sample of E(x, y,p) (f) Third solution ux(x, y,p)

(g) Fourth sample of E(x, y,p) (h) Fourth solution ux(x, y,p)

Figure 4.8: Plot of four samples of E(x, y,p) = E0α(x, y,p), with α(x, y,p) as in (4.6)
and of the corresponding horizontal displacement ux(x, y,p) computed via the IGA
method (Section 2.2) for p = (14134, 4.3976, 0.4340, 0.3323, 0.8566, 0.0414, 0.0789),
p = (11324, 6.6020, 0.1787, 0.3680, 0.4308, 0.0383, 0.0924), p =
(5.9754, 1.9932, 0.2577, 0.8764, 0.6428, 0.0649, 0.0972) and p =
(1.4649, 7.7164,−0.3288, 0.3241, 0.8283, 0.0457, 0.0480) (from top to bottom).
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Figure 4.9: Error convergence of the sparse grid surrogates. As a comparison, three
instances of Monte Carlo errors are also reported. The lines are plotted versus the number
of PDE solves (the cardinality G of the sparse grid the Collocation method, the number
of samples for the Monte Carlo method).
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Figure 4.10: Maximum norm of the relative error on the QoI f = ux(10, 0, · ) plotted
versus increasing cardinality of sparse grids.
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Figure 4.11: Approximation to the pdf of the considered f corresponding to the surrogate
obtained by means of the a-posteriori adaptive sparse grid. The reference pdf is computed
starting from evaluations of the FOM.
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A Basics on B-splines

Let us introduce two knot vectors:

X = {x1 = 0 ≤ x1 ≤ · · · ≤ xNcoll+r+1 = L}
Y = {y1 = 0 ≤ y1 ≤ · · · ≤ yMcoll+q+1 = H}

(A.1)

where r and q are the degree of the B-splines and Ncoll and Mcoll are the numbers
of basis functions. Pairs (xi, yj) ∈ X × Y correspond to coordinates of points in the 2D
domain D. In particular, we take X,Y as so-called open vectors, i.e., the first and last
knots of X (Y , respectively) have multiplicity r+1 (q+1, respectively), and - for simplicity
- we choose uniformly equispaced X and Y knots.

Given the knot vector X, the uni-variate B-spline basis functions in the x-variable are
defined recursively as follows:

• for r = 0:

N0
i (x) =

{
1, if xi ≤ x < xi+1,

0, otherwise,

• for r > 1:

N r
i (x) =


x− xi
xi+r − xi

Ni,r−1(x) +
xi+r+1 − x
xi+r+1 − xi+1

Ni+1,r−1(x),

if xi ≤ x < xi+r+1,

0, otherwise,

with the convention 0/0 = 0. Given the knot vector Y , the uni-variate B-spline basis
functions M q

j (y) are defined analogously. The tensor product construction leads to bi-
variate basis functions for the 2D domain D, given by

Rr,q
i,j (x, y) = N r

i (x)M q
j (y)

for all i = 1, . . . , Ncoll, j = 1, . . . ,Mcoll.
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B Formulas for sparse grids

In this appendix, we report some auxiliary formulas for readers who are interested in the
details of how the tensor interpolant fm(i) in Equation (3.2) is obtained. To this end, let
us recall that i is a vector of N integers, and that m( · ) is an increasing function. We then
let:

• Gn,m(in) a set of m(in) points in the range of the n-th parameter pn, (for instance,
the Clenshaw–Curtis points introduced in Equation (4.1)),

Gn,m(in) = {p1
n,m(in), p

2
n,m(in), . . . , p

m(in)
n,m(in)}

• `kn,m(in) be the Lagrange polynomial associated to the k-th node of Gn,m(in), i.e., a
polynomial that has value 1 in pkn,m(in) and 0 in every other point of Gn,m(in). The
explicit expression of `kn,m(in)(p) reads:

`kn,m(in)(p) =

m(in)∏
j=1,j 6=k

p− pjn,m(in)

pkn,m(in) − p
j
n,m(in)

.

• Gm(i) is the cartesian product of the univariate sets Gn,m(in), for n = 1, . . . , N , namely

Gm(i) =
N∏

n=1

Gn,m(in).

It contains m(i1) × m(i2) × ·m(iN ) points. Each of these points corresponds a
multi-index j, that is component-wise smaller than m(i), i.e.,

Gm(i) = {pj ∈ RN : pjn = xjnn,m(in)with jn ≤ m(in)}.

• To each pj we can associate the multi-variate Lagrange polynomial given by

`jm(i)(p) =

N∏
n=1

`jnn,m(in)(pn).

With these definitions in place, we can finally define the tensor interpolant fm(i) as

fm(i)(p) =
∑

pj∈Gm(i)

f(pj)`jm(i)(p).

The sparse grid G (i.e., the union of the points required to assemble each fm(i) in Equa-
tion (3.2)) can be obtained as

G =
⋃
i∈I
Gm(i).
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