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Uncertainty quantification of landslide runout 
motion considering soil interdependent  
anisotropy and fabric orientation

Abstract Natural soils often exhibit an anisotropic fabric pattern 
as a result of soil deposition, weathering, or filling. This paper aims 
to investigate the effect of soil interdependent anisotropy and fab-
ric orientation on runout motions of landslides and evaluate the 
most critical fabric orientation for the post-failure behavior. The 
shear strength properties of soil deposit (i.e., cohesion c and fric-
tion angle � ) are modeled as negatively cross correlated bivariate 
random fields. The results reveal that the spatial variability and the 
negative cross-correlation of c and � notably influence the post-
failure behavior. In addition, the rotation of soil layer orientation 
significantly affects the runout motion. Based on the analyses, the 
deposition orientation of 30

◦

 is identified to produce the highest 
mean value and standard deviation of the runout distance. The 
findings from this study highlight the importance of considering 
the orientation of soil stratification, rather than only the magni-
tude of shear strength, in assessing the post-failure behavior of a 
landslide.

Keywords Landslide runout distance · Bivariate random field · 
Fabric orientation · Material point method

Introduction
A large number of  geohazards, such as landslides, occur  
every year in mountainous areas in China, Japan, Italy, and other  
places in the world. In these hazards, hydro-mechanical character-
istics of heterogeneous natural soils exhibit considerable spatial 
variability (Nezhad et al. 2011), even within homogeneous soil lay-
ers, which can have considerable impacts on instability of slopes 
as well as their failure likelihood, mechanisms, and post-fail-
ure runout motions (Zhu and Zhang 2013; Zhu et al. 2019). Diverse 
failure consequences can be observed in a varying soil slope con-
sisting of weak materials (e.g., weak intercalation layer) because 
the failure surface tends to seek out the weakest path. In many 
occasions, due to extensive runout motions of landslides during 
the post-failure stage, substantial destruction can be observed on 
nearby structures (Yin et al. 2009, 2016), which leads to severe 
threat and significant damages to human life and properties (Ma 
et al. 2018; He et al. 2019; Wang et al. 2021). Studying the post-fail-
ure responses in heterogeneous soil slopes is rather complicated 
due to large deformations and interdependencies in spatially vary-
ing shear strengths. Therefore, it is necessary to propose a reliable 
predictive model to assess the probable post-failure consequences, 
especially the landslide runout distance which is of great concern 
and employ it for timely planning of disaster mitigation measures.

In recent years, probabilistic studies primarily aim to describe 
the slope instability or corresponding probability of failure ( Pf  ) 
using limit equilibrium method (LEM) (e.g., Griffiths and Fenton 
2004; Jiang et al. 2014) or finite element method (FEM) integrated 
with random field (RF) modeling (e.g., Nezhad et al. 2018a, 2018b, 
2019). It has been recognized that consideration of natural hetero-
geneity in soil properties has a significant effect on the analysis 
of soil deformation. However, since abovementioned modeling 
methods, for assessment of slope instability, generally stop at the 
pre-failure stage, limited research can be found on probabilistic 
analyses of landslides’ post-failure behavior. The previous studies 
only provide limited information about the consequences of land-
slides in spatially varying soils and do not quantify their possible 
secondary motions. The main reason is related to the numerical 
instability of the classical Galerkin FEM modeling algorithms due 
to mesh distortion or twisting that occur when simulating large 
deformation problems (Hardcastle et al. 2019). Recent progress in 
developing particle-based methods, such as material point method 
(MPM) (e.g., Yerro, 2015), made it possible to tackle the numerical 
instability issues associated with the mesh distortion problems. The  
MPM has been widely adopted to simulate landslides, slope failures, 
embankment collapses, and other large strain geotechnical problems  
(e.g., Andersen and Andersen 2010; Llano-Serna et al. 2016; Li et al. 
2016). However, in the previous MPM studies, the materials have 
been mainly assumed to be simply homogeneous and isotropic, 
and the geomaterials’ responses have been modeled determinis-
tically using constant values of soil parameters. Recently, in few 
studies random MPM was used to investigate the slope failure 
process, for example Liu et al. (2019) utilized the LEM and MPM 
combined with Monte-Carlo simulations (MCS) to quantify the fail-
ure probability of landslides and predicted the slope failure modes. 
However, these models only considered one shear strength param-
eter (e.g., undrained shear strength) as a random variable, and as  
such they are unable to deal with deposits with frictional 
characteristics.

In reality, interdependent cohesion and friction angle of soils 
vary significantly in space, which are the significant factors influ-
encing the deformation behavior (Wang et al. 2020a). Especially, the 
cross-correlation between the shear strength parameters on geo-
structures cannot be ignored (Wu 2015; Wang et al. 2020b), which 
has significant influence on soil deformation. Cohesion, friction 
angle, and their cross-correlation effect on post-failure behavior of 
landslides have not been previously investigated in detail. Further-
more, previous probabilistic studies of slope failures or landslides 
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mainly focused on soils with isotropic or horizontally deposited 
strata (Liu et al. 2019); whereas, in nature slopes with tilted stratifi-
cations are often observed (Ma et al. 2018; He et al. 2021). The geo-
metric relationship between a slope and underlying layers/strata 
can considerably influence the landslide behavior. Generally, from 
the perspective of soil profile, there are two main types of slopes’ 
bedding that can categorize their topographical features: (i) a dip 
slope (also termed as cataclinal slope) as shown in Fig. 1a, (ii) an 
anti-dip slope (also termed as anaclinal slope or reverse slope) as 
shown in Fig. 1b. In engineering geology, it is commonly admitted 
that the dip slope is associated with planar sliding failure, which is 
favorable geological structure to form large-scale consequent bed-
ding slides, while the anti-dip slope generally fails in the form of 
toppling. It should be noted that the failure probability and kin-
ematic likelihood of failures in these slope types also vary. It has 
been found that the reverses slopes with the dip direction of the 
strata being against the dip direction of the slope usually have bet-
ter stability or reliability compared to when the dip direction of 
the strata is the same as the dip direction of the slope. Recently, 
the effect of anisotropy and fabric orientation of soil layers on the 
probabilistic stability or reliability analysis of slope failure have 
been considered in a number of works. For example, Griffiths et al. 
(2009) found that the probability of failure is high when the dip-
ping direction of soil layers is aligned parallel to the slope surface. 
Zhu and Zhang (2013) discussed the typical patterns of spatial 
variability of geomaterials, such as isotropy, transverse anisotropy, 
rotated anisotropy, and general anisotropy. Based on the analysis 
of a drained slope with fabric orientation of different angles, they 
found that the rotated anisotropy in soil properties can significantly 
influence the probability of failure as well as the failure mechanisms 
(Zhu et al. 2019). Cheng et al. (2018) adopted the random finite dif-
ference method to estimate failure consequence of slopes with dif-
ferent rotational angles. Despite these previous works, the influence 
mechanisms of soil anisotropy and fabric orientation on landslides 
and their post-failure behavior are still unclear.

This paper proposes the modeling framework for the probabil-
istic analysis of post-failure behavior of landslides with interde-
pendent anisotropy and fabric orientation in cohesive-frictional 
soil, where the cross-correlated bivariate RFs (interdependent 
cohesion and friction angle parameters) are incorporated into the 
generalized interpolation MPM (GIMP) through an MCS algo-
rithm. The layout of the paper is as follows. The “Methodology” 
section describes the probabilistic framework in which the cross-
correlated bivariate RFs are generated for different auto-correlation 
structures via Cholesky matrix decomposition method coupled 

with Latin hypercube sampling method. Then, the “Illustrative 
example” section describes a cohesive-frictional soil slope that is 
used as the main example to demonstrate the performance and 
validity of the proposed framework. Thereafter, “Deterministic 
analysis of landslide runout motion” is discussed for the example 
landslide, and “Comparative analyses and stochastic assessment” 
are carried out for post-failure motions under different parametric 
settings. In the section on “Effect of auto-correlation structures,” 
sensitivity analyses are performed on three auto-correlation struc-
tures of soil shear strength parameters to investigate how an ani-
sotropically deposited strata influences the runout motions, and to 
identify the critical auto-correlation structure which leads to the 
most extensive runout motion behavior of heterogeneous land-
slides. The corresponding statistic characteristics of the runout dis-
tances, including their means, variance, and corresponding best-fit 
marginal distributions, are eventually obtained, and discussed.

Methodology

Generation of bivariate random fields
Auto-correlation structures

RF modeling has been commonly adopted to mathematically char-
acterize the spatial variability of shear strength in soils. In the RF, 
an important measure of the variability is the auto-correlation 
distance, which may not be constant for different directions in 
a soil mass. The spatial variability of soils’ shear strength could 
entail auto-correlation distance ranging from less than 1 m to tens 
of meters along different directions, which produces diverse auto-
correlation structures. Figure 2 shows the six typical patterns of 
spatially varying geomaterial profiles (Zhu and Zhang, 2013; Cheng 
et al. 2018; Zhu et al. 2019). Figure 2a is an isotropic case, where the 
material properties are independent of the direction. In Fig. 2b, the 
distribution of soil’s structure is directional along two orthogonal 
principal directions, and the case is defined as transverse anisot-
ropy. The longer line with an arrow represents the direction with 
less variations of soil properties (i.e., horizontal homogeneity), and 
the shorter one represents the rapid variations of structure (i.e., 
vertical heterogeneity). This type of soil structure is commonly 
found in geological horizontal depositions, fluvial processes, and 
soil compaction. Figure 2c presents the rotated anisotropy case 
caused by geological processes, in which the two principal direc-
tions are rotated by an angle � to the horizon. In Fig. 2d, the two 
principal directions form an angle � which is not orthogonal; this 

Fig. 1   Two main types of 
bedding slopes. a dip slope, b 
anti-dip slope

(a) (b)
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case is defined as a general anisotropy case. Figure 2e and f show 
the rotated general anisotropy and a combination case involving 
two of the above structures in a profile, respectively. As general 
anisotropy and general rotated anisotropy cases are less likely to 
exist in a soil mass, this work only focuses on the influence of the 
first three auto-correlation structures in landslides.

In geotechnical RFs, two theoretical expressions are commonly 
employed to describe the auto-correlation structure of soil mass 
in two dimensions: single exponential ACFs (Li et al. 2015) and 
squared exponential ACFs (Cheng et al. 2018; Masoudian et al. 
2019). According to previous studies (e.g., Cheng et al. 2018), the 
single exponential ACFs do not satisfy the requirement of trans-
verse anisotropy and rotated anisotropy structures; therefore, in 
this work the squared exponential ACFs are used. The expressions 

of the squared exponential ACFs correlation coefficient �(�x , �y) and 
auto-correlation distance �

�
 are given as.

Isotropy:

Transverse anisotropy:

(1)�

�
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�
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�
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Fig. 2   Illustration of different 
auto-correlation structures. a 
isotropy, b transverse anisot-
ropy, c rotated anisotropy, d 
general anisotropy, e general 
rotated anisotropy, f combina-
tion
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Rotated anisotropy:

where �(�) is the auto-correlation coefficients, and �x and �y are the 
relative distances between any two points in horizontal and vertical 
directions, respectively; �1 and �2 are the auto-correlation distance 
in principal directions;� is the directional angle; � is the rotated 
angle of the principal axis in the rotated anisotropy structure, when 
� = 0

◦

or180
◦

 denotes the tranverse anisotropy structure.
Once the ACF is determined, the domain Ω can be discretized into 

n elements of the RF with the centroid coordinates of the elements 
specified by (xi , yi) . The auto-correlation matrix Cn×n , representing the 
spatial variability of the properties (Nezhad, 2010), can be obtained 
with respect to the elements as

Subsequently, the Cn×n can be decomposed by Cholesky matrix 
decomposition method (Jiang et al. 2014; Liu et al. 2017) into the prod-
uct of a lower triangular matrix L and a conjugate transpose L�  as

where � is the lower triangular matrix with dimension of n × n . To 
improve the robustness and accuracy of MCS, a stratified sampling 
scheme, Latin hypercube sampling (LHS) method is applied in this 
work, which ensures that the region with prescribed standard nor-
mal distribution between 0 and 1 is uniformly divided into n non-
overlapping intervals for each random variable

where i = 1, 2, 3, ..., n , and � is a random number in the range of [0, 
1]; �i is the random number in the ith interval. In addition, the �i 
meets the following relationship

where i−1
n

 and 1
n
 are the lower bound and upper bound for the ith 

interval. Subsequently, a standard bivariate independent Gaussian 
random field X IG = [�IG

c
,�IG

�
] of c and � is derived as

where �i is a n × 2 LHS sample matrix, and i is the number of gener-
ated realizations of bivariate Gaussian RFs of c and �.
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Cross-correlation of bivariate random fields
In general, many soil properties should be involved in landslide 
failure analysis, which means that more than one RF is generated 
in a soil layer. Cohesion, c , and friction angle, � , of soils are the 
significant factors influencing slope stability, and they are found 
to be negatively cross-correlated with each other with a Pearson 
cross-correlation coefficient �c,� . The cross-correlation matrix R2×2 
between c and � is formed as

The cross-correlation matrix R2×2 is decomposed by using 
Cholesky decomposition techniques as

where �
�
 is the lower triangular matrix of the correlation matrix 

R2×2 . The cross-correlated Gaussian RFs �CG = [�CG
c
,�CG

�
] can be 

written as

Then, cross-correlated standard uniform RFs �CU  can be 
expressed as

where Φ(∙) is the standard Gaussian cumulative density function 
(CDF). The Φ(∙) can rearrange the standard Gaussian RF � into 
the uniform distribution � within (0, 1) . The cross-correlated 
standard uniform RFs of c and � , �CU = [�CU

c
,�CU

�
] , are obtained. 

Subsequently, the non-Gaussian cross-correlated bivariate RF �NG 
of desired values are obtained by isoprobabilistic transformation 
method as

where the F−1(∙) is the inverse function of its corresponding mar-
ginal cumulative distribution of the desired shear strength. If the 
shear strength parameters ( c and � ) are considered to be lognor-
mally distributed, the realization of approximate cross-correlated 
lognormal RF can be obtained by exponential function

where �lnc and �lnc are the mean and standard deviation of Gaussian 
random variable lnc , respectively; �ln� and �ln� are the mean and 
standard deviation of Gaussian random variable ln� , respectively. 
The procedure can be repeated N times to obtain N simulations of 
the bivariate RFs.

Calculation of the runout distance by GIMP

After obtaining RFs of the soil parameters, the runout distance of 
each bivariate RF sample can be calculated by MPM analysis. How-
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ever, the original MPM has grid-crossing instability, which is caused 
by the discontinuous gradient of shape functions (Bardenhagen,  
2002). A sudden change of the stress can be found when a mate-
rial point crosses to a new cell. This deficiency can be alleviated 
by using generalized interpolation material point method (GIMP) 
that introduces alternative grid shape function, SI , and particle 
characteristic function, �p(x) (Bardenhagen and Kober 2004). In 
this paper, the open-source GIMP program named MPM3D, from 
the Computational Dynamics Laboratory of Tsinghua University 
(Zhang et al. 2016), is used for the analysis. The implementation of 
computational cycle of GIMP can be found in many studies, such 
as Li et al. (2016, 2020), and is summarized in the Appendix section 
here for the sake of completeness. Meanwhile, as for the time when 
the stress is updated, the modified update stress last (MUSL) is 
adopted in this work, given its better computational stability (Nairn 
2003) compared with update stress first (Bardenhagen 2002) and 
update stress last (Sulsky et al. 1994).

Applied soil constitutive model
The soil properties were modeled as elastic-perfectly plastic mate-
rials with the Mohr–Coulomb failure criterion. It is admitted that 
the strength properties are significantly degraded in mobilized soil 
mass during the sliding. In this work, the strain-softening behavior 
induced by increasing deviatoric plastic strain is used, and the cor-
responding softening rules are defined as

where cr and cp are residual cohesion and peak cohesion, �r and �p 
are residual friction angle and peak friction angle, and � and �ep are 
shape factor and deviatoric plastic strain, respectively. Moreover, 
�pp shows the threshold strain of softening behavior. Regarding Eqs. 
(18) and (19), the cohesion and friction angle of the soil remain 
constant for 𝜀ep < 𝜀pp . Once the plastic deviatoric strain exceeds 
the threshold strain ( 𝜀ep > 𝜀pp ), the strength parameters start to 
reduce and tend to their residual values. Detailed description of 
the constitutive model in MPM can be found in Yerro et al. (2016).

Implementation and workflow

To model the probabilistic post-failure behavior of landslides that 
accounts for soil anisotropy, in this work, GIMP is coupled with 
the bivariate RF theory under MCS framework. Firstly, a RF mesh 
is generated for a sampling process. The CMD method with LHS is 
employed and a computational algorithm is written using PYTHON 
3.9 to obtain bivariate cross-correlated non-Gaussian RF samples 
of the shear strength parameters over the RF mesh. Then, the sam-
ples are mapped onto the material points in the GIMP, in which 
each particle has a unique value of soil properties ( c and � ). The 
transmission process is based on the spatial relationship between 
the material point and the RF mesh element (e.g., a position-to-
position mapping process), which is similar to the methodology 
used in the random FEM (Gironacci et al. 2018; Nezhad et al. 2018a, 
2018b; Huang et al. 2020). Therefore, the sample values of each ele-
ment in the RF mesh are assigned to the corresponding material 

(18)c = cr +
(
cp − cr

)
e−𝜂<𝜀ep−𝜀pp>

(19)𝜑 = 𝜑r +
(
𝜑p − 𝜑r

)
e−𝜂<𝜀ep−𝜀pp>

points according to their spatial coordinates. It should be noted that 
each material point carries random values based on the RF, namely, 
c and � , repectively.

Figure 3 shows the flowchart of the proposed framework. The 
details are summarized in the following steps:

1. Identify the input information for probabilistic analysis of 
post-failure behavior, including slope geometry and statistics 
of c and � (i.e., mean, COV, distribution type, auto-correlation 
structure, auto-correlation distance) and establish the GIMP 
deterministic slope model.

2. Set the total number of bivariate RFs, N; the current simulation 
starts from i = 1.

3. Discretize the domain into n elements and extract the centroid 
coordinates of each element. According to these coordinates, 
the auto-correlation matrix Cn×n can be obtained. Based on 
prescribed statistical information of the soil properties, one 
isotropic bivariate Gaussian RF with LHS X IG

i
= [X IG

c
,X IG

�
] is 

generated by Eq. (11) and subsequently it is transformed into a 
lognormal RF XLN

i

(
x, y

)
 of c and � by Eq. (17).

Fig. 3   Flowchart of the probabilistic analysis of landslides consider-
ing bivariate RFs
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4. Determine the runout distance by performing a deterministic 
GIMP analysis of a landslide with the ith RF generated in step 
3.

5. Update the simulation index, i, and repeat N times. It should 
be noted that each simulation index i would be updated and 
checked; if i > N, abort the MC simulation; otherwise continue.

6. All calculated results (e.g., runout distances) are collected and 
post-processed to estimate the corresponding best-fit marginal 
distribution and statistical characteristics. The stochastic data 
are compared with the deterministic analysis to investigate the 
effect of spatial variability.

Illustrative example
An example cohesive-frictional soil slope is considered to show 
the feasibility of the proposed probabilistic post-failure analysis 
of landslides. Figure 4 shows the geometry of the slope with 15 m 
height and a slope gradient of 45 ◦ . A mesh with four-noded square 
elements of size 0.2 m is used, where in each element there are 4 
equally spaced material points with a size of 0.1 m. The total num-
ber of material points is 10,090. The RF is generated with a cell size  
equal to material point domain (0.1 m), where the properties of a 
single cell correspond to one material point. Therefore, as RF cell is 
4 times smaller than the smallest auto-correlation distance, the spa-
tial variability is adequately captured (Nezhad et al. 2018a). The bot-
tom of the slope is a fixed boundary, both lateral sides are roller type  
symmetrical boundaries, and the top boundary is free.

As the shear strength of soil deposit is spatially distributed, the 
cohesion and friction angle parameters are considered cross-cor-
related bivariate RFs. Both point statistics of c and � are assumed 
to be lognormally distributed variables to avoid negative quantities 
in the sample values. The COV values for c and � are changed from 

0.1 to 0.5 according to the typical values summarized by Phoon and 
Kulhawy (1996) and Wu (2013). For incorporating the dependence 
relationship between c and � , a cross-correlation coefficient �c,� is 
needed. Based on the literature (Cho 2010; Wang and Akeju 2016; 
Fang et al. 2020), a negative cross-correlation coefficient that ranges 
between − 0.7 and − 0.2 is selected in this study. Meanwhile, an addi-
tional case with �c,� = 0 is also considered to reveal the effect on 
runout distance by uncorrelated variables. All statistical moments 
for the soil parameters are shown in Table 1. Typical values are 
assigned to other parameters, i.e., Young’s modulus E = 100MPa , 
Poisson’s ratio � = 0.35 , and unit weight � = 20kN∕m3 , as their con-
tributions on landslide runout distance are not significant (Cheuk 
et al. 2013). The residual cohesion is set as 10 kPa and residual fric-
tion angle is set equal to 5◦ . The initial in situ stresses are generated 
using gravitational loading. The time increment is set equal to 7.5 
×  10−4 s, and the total duration for the calculation is 10 s, when soil 
deposits become stable according to kinematic energy and unbal-
anced forces of the system (Kafaji 2013).

Deterministic analysis of landslide runout motion

In this section, the example is modeled deterministically, i.e., 
as a homogeneous slope, in order to provide the benchmark for 
the subsequent analysis of the influence of spatial variability 
of soils on post-failure behavior. In this model, all mechanical 
parameters are constant; the mean values of c and � are used 
as their peak values. Figure 5 shows the runout motions of the 
landslide computed with the deterministic model at critical 
times (colored contours represent the equivalent plastic strain 
invariant and the runout distance). At t = 3.0 s, the destruction 
of the failure block is evident; at this moment the mass slides 

Fig. 4   Geometry and material 
point model for the example 
slope

Table 1   Statistical properties of the soil parameters

Parameters Mean COV Auto-correlation 
distances

Cross-correlation coefficient Probability distribu-
tion

Cohesion,c 20 kPa 0.1, 0.2, 0.3, 0.4, 0.5 �
1
= 20 m

�
2
 = 2 m

-0.7, -0.6, -0.5,
-0.4, -0.3, -0.2, 0

Lognormal

Friction angle,� 10 ◦ 0.1, 0.2, 0.3, 0.4, 0.5 �
1
= 20 m

�
2
 = 2 m
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about 1.7 m away from the initial toe of the slope (Fig. 5a). Also, 
the failure block is fully detached from the original slope and 
the rotational rupture surface is developed from the toe of the 
slope to the topside. At t = 5 s, the maximum soil displacement 
reaches 7.55 m (Fig. 5b). Then, the sliding mass further moves 
downward along a fully connected rotational rupture surface 
and spreads onto the ground. During the post-failure process, 
a large deformation can be observed, and the landslide is com-
pletely deposited at t = 11.0 s (Fig. 5c). For a quantification of the 
failure consequence, the runout distance with 10.78 m length is 
obtained from this calculation, which elaborates how long the 
failure mass moves from the initial toe of the slope to the new-
formed deposit head.

Comparative analyses and stochastic assessment

In this section, comparative analyses are conducted in order to 
investigate the uncertainties of the post-failure behavior in the 
spatially varying cohesive-frictional deposit. The case with COVc 
= 0.1, COV

�
 = 0.1, �c,� = − 0.5 is taken as a basic case in the following 

stochastic analysis.

Figure 6a and b show typical RF samples of soils’ c and � values 
in the slope, respectively, which is randomly selected from samples. 
The blue color represents relatively weak parts with low cohesion or  
friction angle values, while the red color represents relatively strong 
sections with high cohesion or friction angle values. Given the neg-
atively correlated coefficients, the increase of one parameter value 
decreases the other parameter’s value; for instance, the soil with 
a large cohesion would have a low friction angle. By conducting 
the simulation, the runout distance of the landslide in the hetero-
geneous slope with the spatially varying properties is obtained as 
12.14 m (see Fig. 6c). Compared with the homogeneous analysis, the 
heterogeneous case resulted in a different runout distance. It should 
be noted that the results from different RF samples may differ due 
to the random distribution and combination of c and � . Therefore, 
multiple MC simulations are required to capture the range of pos-
sible post-failure deformations of the landslide. It is noteworthy 
that a particular distribution of a bivariate RF may result in stable 
slopes that do not lead to a failure/post-failure scenario. In this 
work, the analysis of these limited cases is overlooked as they are 
out of the scope of the study. Given that the main focus of the study 
is on analyzing post-failure response, only cases where a material 

(a) 

(b) 

(c) 

Fig. 5   Configurations of landslide by deterministic analysis at critical times. a time at 3 s, b time at 5 s, c time at 11 s
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points’ displacement larger than 1 m occurs are considered as slid-
ing/failure cases.

In the following MCS analysis, the basic case is used to check 
the convergence criterion at first. Figure 7a shows the variability 
results of runout distance calculation for 1000 realizations. The 
variation of the runout distance and corresponding COV are plot-
ted as functions of the number of MCS. The figure shows that 1000 
MC simulations can produce reasonably stable results and give reli-
able estimates of runout distances. Figure 7b shows the time-runout 
distance curves of landslides by MCS through 1000 samples, which 
presents the calculated runout distance of landslides at different 

times from all samples. Unlike the deterministic analysis, the het-
erogeneous cases show dramatic uncertainties of runout motions 
during the sliding time, in which the maximum runout distance is 
12.23 m and the minimum runout distance is 9.40 m. As for larger 
runout distance, this is mainly because in some cases the failure 
paths in the spatially varying soil generally go through relatively 
weak soil zones (Liu et al. 2019; Huang et al. 2020), which may lead 
to an extensive runout distance. While other cases may face strong 
soil sections through their failure paths and consequently have 
relatively smaller runout distances. Moreover, the runout distance 
of stochastic cases varies substantially at different times, and they 

Fig. 6   A typical sample of 
bivariate RF of cohesion and 
friction angle, with cross-
correlation coefficient of − 0.5. 
a variations in c , b variations in 
� , c corresponding calculated 
runout distance
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distinctly differ from that of the deterministic analysis. For the 
same time, after 1.0 s, the runout distances of different samples 
start to differ from one case to another and vary in a relatively 
wide range of about 3 m at t = 3 s. It can be seen that for some 
cases the landslide does not initiate at this moment (i.e., runout dis-
tance = 0 m), while at the same time the runout distances of other 
cases can reach up to about 3 m. Although the runout distance var-
ies from one realization to another, the landslides reach their final 
equilibrium state within a certain range of time from 6.0 to 8.0 s. 
Based on Fig. 7c, the variability of runout distance among all sam-
ples firstly increases with time up to t = 4.31 s. At this moment, the 
standard deviation of runout distance reaches to its peak value with 
0.71 m, which means the maximum variance of runout distance 
can be observed at this time (see Fig. 7c). After this, the variance of 
runout distance decreases until it meets a stable state.

In order to reasonably estimate the distribution of computed 
runout distances, three common candidate distributions includ-
ing Normal, Gumbel and Weibull distributions are examined. 
A goodness-of-fit test method is applied to identify the best-fit 
marginal distribution underlying computed data. Both the Akaike 

information criterion (AIC) and Bayesian information criterion 
(BIC) (Akaike 1974; Wang et al. 2020a) are adopted to identify the 
best-fit distributions; they can be denoted as:

where the xi ( i = 1, 2, ...,N ) is the output runout distance; N is the 
number of samples; f (xi ;p, q) is the probability density function 
(PDF) of alternative marginal distribution function, and p and q 
are the parameters of distribution; k1 is the number of distribution 
parameter in the alternative marginal distribution. For these above-
mentioned marginal distribution functions, the k1 = 2 (Burnham  
and Anderson 2004). According to Eqs. (20) and (21), the corre-
sponding AIC values for the Normal distribution, Gumbel and 
Weibull distribution are 1.52 ×103 , 1.62 ×103 , and 1.74 ×103 , respec-
tively; and their BIC values are 1.53 ×103 , 1.63 ×103 , and 1.75 ×103 , 

(20)AIC = −2
N∑
i=1

lnf
��
xi ;p, q

��
+ 2k1

(21)BIC = −2
N∑
i=1

lnf
��
xi ;p, q

��
+ k1lnN

Fig. 7   a The convergence of calculated mean value and COV of 
runout distances; b time-runout distance curves for MCS samples and 
comparison with the deterministic analysis; c standard deviation of 

runout distances from MCS samples; d probability density histogram 
for the calculated runout distance fitted by a normal distribution
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respectively. Note that the distribution associated with the smallest 
AIC and BIC values is identified to be the best-fit marginal distri-
bution to the output runout distance. To this end, both the AIC 
and BIC values indicate that the Normal distribution is the best-fit 
distribution for the output runout distance. Subsequently, the maxi-
mum likelihood method is adopted to estimate the corresponding 
mean value and standard deviation of the Normal distribution.

Figure 7d shows the probability density histogram for the cal-
culated runout distance from the basic case with 1000 samples. 
In this figure, the horizontal coordinate represents the calculated 
runout distance, the left vertical coordinate represents the PDF, 
and the right coordinate represents the CDF. The red line is the 
PDF result fitted by the Normal distribution based on the com-
puted values, and the blue line is the corresponding CDF result. It 
can be seen that the Normal distribution can relatively describe 
the predicted runout distances, with an estimated mean value of 
10.80 m and standard deviation of 0.51 m. If the deterministic result 
is considered a limit of safety, the exceedance probability (runout 
distance > 10.78 m) is about 52%. Meanwhile, the largest runout 
distance with 12.23 m obtained from the stochastic analysis nota-
bly outstrip the limit of safety. Both results show a considerable 
discrepancy in post-failure motions, in terms of runout distance, 
between the homogeneous analysis and the heterogenous analysis. 
Consequently, consideration of the spatial variability of a cohesive 
and frictional soil significantly increased the uncertainty in estima-
tion of the runout distances; that underpins the need to incorporate 
the effect of natural heterogeneity of soil in modeling of the post-
failure processes.

Parametric analysis on the statistical information of soil 
properties
In this section, a parametric analysis considering different COVs 
of c and � and their cross-correlation coefficients is performed to 
study the effect of the statistical information of soil properties on 
the results of probabilistic runout analysis. The cases with differ-
ent parametric settings or auto-correlation structures have been 
checked by the same convergence criterion, and for each case it has 
been observed that 1000 MC simulations satisfies the convergence 
criterion.

Figure 8 shows the PDFs, CDFs, mean values, and exceedance 
probability of runout distances with five different COVc ranging 
from 0.1 to 0.5. According to the results, the computed runout dis-
tance varies over a wide range from less than 8 m to over 15 m for all 
cases, which indicates that there is a large uncertainty in the land-
slide’s runout motions. It can be found that the shape of the PDFs 
is strongly affected by COVc , as the PDF curves become wider and 
have lower peaks with increasing COVc (Fig. 8a). It indicates that 
higher variability of cohesion increases the probability of extreme 
cases (i.e., landslides with excessively long runouts). The variability 
of runout distance also increases with the increasing of COVc , and 
only little increments of corresponding mean values are observed 
in these cases. Figure 8d) shows the exceedance probability ( PE ) of 
runout distance for all cases, where horizontal coordinate repre-
sents the runout distance and vertical coordinate represents the PE 
that the runout distance is larger than a given distance. It is shown 
that in all cases the values of PE decrease as the runout distances 
increase. Among the COVc cases, the influence of the COVc on PE is 
significant. For example, if the acceptable risk probability is 0.1% 

(Wang et al. 2019), the corresponding runout distance of landslides 
with COVc ranging from 0.1 to 0.5 are 12.24 m, 13.03 m, 13.5 m, 
14.24 m, and 14.78 m, respectively. Therefore, any usage of lands 
within 14.78 m from the toe of the slope should be evaluated with 
caution if considering the worst case with large cohesive anisotropy.

Comparing with the features of the COVc cases, the COV
�
 in the 

slope not only influences the shape of the PDFs but also strongly 
affects the mean values of the runout distance (as shown in Fig. 9). 
It can be observed that with the increase of COV

�
 , the associated 

PDF curves become wider, lower, and farther to the left (Fig. 9a). 
The mean value and variance of the runout distance increase nota-
bly with the increase of the COV

�
 , which is consistent with the 

recent random SPH studies conducted by Zhang et al. (2020). For a 
small COV 

�
 , the varying range of � is correspondingly narrowed, 

and consequently the distribution of the runout distances will 
become narrower. Conversely, a large COV 

�
 causes a wide range 

of values for � , and subsequently results in a wider distribution of 
runout distances. Similar to the COVc , the influence of COV

�
 on 

PE of runout distance is non-negligible. For example, if there is a 
transportation road located within a distance of 15 m away from the 
toe of the slope, the probability that it is affected by the landslide 
is 1.4% for COV

�
= 0.5 . As for other COV

�
 values, there is no pos-

sibility that the landslide would affect the road. Therefore, much 
larger runout distance is revealed by considering a large degree of 
heterogeneity in the friction angle property of the soil (i.e., a large 
value of COV

�
).

The effect of varying the cross-correlation between c and � is 
also investigated. Figure 10 compares the PDFs, CDFs, mean val-
ues, and PE corresponding to different degrees of cross-correlation 
coefficient �c,� . Overall, it is observed that the shape and evolution 
of the PDF and CDF are less sensitive to the �c,� compared with 
the COVc and COV 

�
 cases (Fig. 10a). In addition, the results illus-

trate that there are little differences among mean values. According 
to the figure, taller and narrower PDF curves are obtained when 
decreasing the �c,� from 0 to − 0.7, which implies that the variation 
of the runout distance decreases with the decreasing of cross-cor-
relation between c and � . As for negative coefficients, this could be 
partly explained by the negative correlation between c and � ; the 
low values of cohesion are associated with high values of friction 
angle and vice versa. In other words, the uncertainty of soil shear 
strength estimation lowers when taking a larger negative correla-
tion between c and � . Therefore, the variation of the total shear 
strength in soil is reduced and consequently the variance of runout 
distance is also reduced. As for cross-correlation equal to zero, the 
uncorrelated case shows biggest variance on runout distance due to 
bigger uncertainty caused by the uncorrelatedness between shear 
strength parameters. With regard to the PE (Fig. 10d), as the runout 
distance increases from 9 to 11 m, and the differences in PE curves 
related to different �c,� cases are unnoticeable; however, the differ-
ences become apparent as the runout distance further increases 
(11 m to 14 m).

Based on the above analysis, it can be concluded that the spa-
tial variability and the negative cross-correlation of c and � nota-
bly influence the post-failure behavior of landslides. A slope with 
larger COVc would have a higher uncertainty of runout motions. 
While COV 

�
 of soil in a slope have dual effect on both mean 

values and standard deviations of the runout distance. For the 
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large COV 
�
 case, it may result in longer runout motions and 

higher variance in the resulting runout distance. As for the cross-
correlation between c and � , it has negligible effect on mean 
values of runout distance, but it has notable influence on their 
standard deviations, which increases the uncertainty of post-
failure behaviors. Therefore, rational assessment of landslide 
post-failure behavior and its associated runout motions would 
need to be assisted with the appropriate parametric settings of 
the geotechnical bivariate RFs.

Effect of auto‑correlation structures

Sensitivity analyses are performed on three auto-correlation 
structures, namely, isotropy, transverse anisotropy, and rotated 

anisotropy of soil shear strength parameters to investigate how 
anisotropically deposited soils influence the runout motions of 
a landslide, and to identify the critical auto-correlation structure 
which leads to the most extensive runout motion behavior of het-
erogeneous landslides.

Figure 11 presents typical realizations of the bivariate RFs of c 
and � with different structures and their corresponding runout 
distances. For all cases, a commonly used cross-correlation coef-
ficient is considered, as �c,� = − 0.5. The auto-correlation distances 
are set to �1=20 m and �2=2 m for all anisotropic cases. Figure 11a 
and show two isotropic cases ( �1=�2 = 2 m and �1=�2 = 20 m); and 
a typical realization of transverse anisotropy can refer to Fig. 6 
in the previous section. Figure 11c-e consider rotated anisotropy, 
where the rotation angle � is considered equal to − 45◦ , 90◦ , and 45◦ , 

(a) (b) 

(c) (d) 

Fig. 8   The effect of COV
c
 on PDFs, CDFs, mean values, and exceedance probability of runout distance. a PDFs, b CDFs, c mean values, d 

exceedance probability
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respectively. Obviously, for the rotated anisotropy cases, the slope 
is separated by inclined layers with different shear strength values, 
which has particular implications for the landslide failure mecha-
nisms (Ma et al. 2018). According to Fig. 11, a considerable differ-
ence can be observed among different auto-correlation structures, 
in which the minimum runout distance is 8.99 m (Fig. 11c), while 
the maximum runout distance can reach up to 15.29 m (Fig. 11e). 
It should be noted that each realization of the generated RFs may 
be different, and therefore 1000 MC simulations for each case are 
conducted to reveal the post-failure behaviors of landslides for 
different auto-correlation structures. The mean value and vari-
ance of runout distances are obtained from the results of the MC 
simulations.

To investigate the influence of the anisotropy and fabric ori-
entation of soil shear strength parameters, 12 cases of anisotropy 

with rotated angles � ranging from −75
◦

 to 90
◦

 are considered, 
in which the � = 0

◦

 represents the transverse anisotropy case. 
According to all cases in Fig. 11, the runout distances of differ-
ent landslide models may significantly differ when comparing 
any two different stochastic cases. However, after an average of 
a thousand MC simulation, the differences are gradually dimin-
ished. Figure 12 shows the variations of mean and standard devia-
tion of runout distance of landslides as a function of the rotated 
angle � , in which two isotropic cases are plotted as a comparison. 
In this figure, the means and standard deviations of runout dis-
tance of the two isotropic cases are positively correlated to �h , 
which is consistent with Zhang et al. (2020). This is because slid-
ing mass is attracted to a pocket of weak soils and a large value of 
�h usually indicates a larger extent of a weak zone; it may result in 
larger deformation and failure behavior of landslides. Meanwhile, 

(a) (b) 

(c) (d) 

Fig. 9   The effect of COV
�

 on PDFs, CDFs, mean values, and exceedance probability of runout distance. a PDFs, b CDFs, c mean values, d 
exceedance probability
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uncertainties of the corresponding response of landslides after 
failure would increase under the condition of high value of �h , 
which is manifested as relatively high value of standard deviation. 
According to the figure, the estimated first and second moments 
of the two isotropic cases could preserve as upper bounds and 
lower bounds for rotated anisotropic cases (blue dotted lines in 
Fig. 12). Besides, the transverse anisotropy cases can serve as a 
boundary value for separating the rotated anisotropy cases.

As for the rotated anisotropy cases, the mean values of runout 
distance for 𝛽 > 60

◦

 and −75
◦

< 𝛽 < 0
◦

(equal to 60
◦

< 𝛽 < 180
◦

 ) are 
less than the value of the transverse anisotropy case (black line) 
with 10.80 m ( � = 0

◦

 ). This is the same for the standard deviations 
in these cases which are lower than the transverse anisotropy case 
with about 0.51 m. According to their estimates, these slope struc-
tures with relatively high angles for dipping layers or anti-dipping 
layers tend to form a smaller variability and short runout distance. 

When −75
◦

< 𝛽 < −30
◦

 , the mean values and standard deviations 
do not vary considerably but remain relatively constant among 
these cases. In addition, it can also be observed that the minimum 
mean value of the runout distance from the rotated anisotropy 
cases is close to 10.44 m which occurs at approximately � = −30

◦

 
and almost reaches to the result from the isotropic case ( �1=�2 = 
2 m) with 10.40 m. When the fabric orientation of soil layer is in 
the range of 0

◦

< 𝛽 < 60
◦

 , the corresponding mean values of runout 
distance are relatively higher and associated with more dangerous 
consequences of sliding, comparing with the transverse anisotropy 
case. Meanwhile, it can be concluded that the uncertainty of runout 
distance increases with the rotation angle from −30

◦

< 𝛽 < 30
◦

 . The 
maximum mean value of runout distance with 11.35 m is obtained at 
� = 30

◦

 , which is slightly lower than the isotropic case with 11.48 m 
( �1=�2=20 m).

Fig. 10   The effect of �
c,�

 on PDFs, CDFs, mean values, and exceedance probability of runout distance. a PDFs, b CDFs, c mean values, d 
exceedance probability
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According to Fig. 12, with respect to the mean and standard 
deviation values, there are two turning points at (a) � = 30

◦

 and 
(b) � = 60

◦

 . The figure shows that that the fabric orientation of 
� = 30

◦

 in slopes is a critical angle that leads to the highest mean 
and standard deviation values for the runout distance. Further-
more, the standard deviations tend to accelerate increasing when 
the rotational angle is close to 30

◦

 which makes the uncertainty of 
runout motion higher. On the other hand, the figure also shows that 
at a limiting value of � = 60

◦

 the runout distances (both in terms 
of mean and standard deviation) switch from being higher than 
those relevant to transverse anisotropy case to comparatively lower 
amounts. The mean value and standard deviation for 0

◦

< 𝛽 < 60
◦

 
are higher than those for � = 0

◦

 (which represents a transverse ani-
sotropy case, i.e., layered deposits). For 𝛽 > 60

◦

 the mean value and 
standard deviation are smaller than those for � = 0

◦

 . This finding 
is generally consistent with those from other relevant studies (e.g., 
Cheng et al. 2018; Huang et al. 2021) which estimated failure scale of 
slopes considering different rotation angles. Therefore, it becomes 

clear that fabric anisotropy is a crucial factor that can significantly 
and quantitatively influence the post-failure response of landslides.

Conclusions
In this paper, the effects of deposition anisotropy in cohesive-frictional  
soils on the potential landslide and post-failure behavior are ana-
lyzed using large strain GIMP simulation under an MCS framework 
with cross-correlated bivariate RFs for the strength parameters (i.e., 
cohesion and friction angle). Parametric analyses considering dif-
ferent COVs of c and � and their cross-correlation coefficients are 
performed to study the effect of the statistical information of soil 
properties on the probabilistic runout behavior. The influence of 
orientation of anisotropic deposition on the runout motion of land-
slides is also investigated. Based on the results, the following conclu-
sions can be drawn:

1. The spatial variability and negative cross-correlation of c and � 
notably influence the post-failure behavior of landslides. Hence, 

Fig. 11   Typical realizations of random fields of cohesion and friction angle and the corresponding runout distance. a isotropy ( �
h
=�

v
=2 m), b 

isotropy ( �
h
=�

v
=20 m), c rotated anisotropy ( � = −45

◦

 ), d rotated anisotropy ( � = 90
◦

 ), e rotated anisotropy ( � = 45
◦

)
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for a realistic assessment of landslide post-failure behavior and 
associated runout motions, appropriate consideration of cross-
correlation of c and � , needs to be taken into account.

2. Different auto-correlation structures of soil profile can result 
in different runout distances. Hence, it is essential to identify 
the appropriate auto-correlation structure of the deposition in 
assessing the large-deformation behavior of a landslide.

3. Rotation of soil deposition orientation significantly affects the 
runout motion. The deposition orientation at � = 30

◦

 in the 
analysis case is identified to produce the highest mean value 
and standard deviation of runout distance. The finding from this 
research highlights the significance of involving the orientation 
of soil stratification rather than the magnitude of shear strength 
alone in assessing the post-failure behavior of landslides.
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Appendix. GIMP computation
In GIMP, a material body within the domain of the problem is dis-
cretized into a finite number of material points. The material point 
is a domain which mass and other variables vary according to a par-
ticle characteristic function �p(x) (Bardenhagen and Kober 2004) 
satisfying the partition of unity property ( 

∑
p �p(x) = 1,∀x ). In the 

particle domain Ωp , the particle characteristic function is generally 
been assumed

The function �p(x) is used as a basis for representing particle 
data by giving a material point property fp (e.g., particle density �p , 
stress �ijp and volume Vp).

To discretize the space occupied by the grid, computational grid 
shape function SI is introduced and required to be a partition of 
unity ( 

∑
I SI (x) = 1,∀x ), which is expressed as

where NI is the grid nodal shape function, and gradients SIp,j are 
implicit functions of grid node position xI , particle position xp , 
and current particle volume Ωp . For this step, the discretization is 
analogous to FEM. After GIMP discretization, computing the total 
nodal force fiI is carried out

(22)�p(x) =

{
1 x ∈ Ωp

0 otherwise

(23)
SIp =

1

Vp
∫
Ωp∩Ω

�p(x)NIdΩ

(24)
SIp,j =

1

Vp
∫
Ωp∩Ω

�p(x)NI ,jdΩ

(25)fiI = f int
iI

+ f ext
iI

Fig. 12   Influence of the auto-correlation structure on the runout distance of landslides. a mean values, b standard deviations
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where, the f int
iI

 is the nodal internal force and f ext
iI

 is the nodal exter-
nal force at node I, respectively. Then, by integrating momentum 
equations and applying the boundary conditions, the material point 
position and velocities can be computed.
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