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The NASA Electrified Powertrain Flight Demonstration (EPFD) program is a collabora-
tion between industry and academia to accelerate the development and implementation of
megawatt-class power systems in commercial aviation. Technology development programs are
often associated with cost, performance, and schedule risks, which can result from technical
uncertainty. To assess and offer insight to effective mitigation of risks associated with the NASA
EPFD program, an uncertainty quantification analysis for future hybrid-electric commercial
aircraft is addressed. An uncertainty analysis is presented for the electrified aircraft propulsion
systems of a 150-passenger hybrid-electric aircraft model. Uncertainty at the component-level
of the powertrain system is considered and its effect is propagated to vehicle-level metrics. The
primary focus is identifying and assessing the key uncertain technological inputs driving the
variability of the vehicle’s performance responses.

I. Introduction

As government agencies and regulatory bodies around the globe focus on emission reduction efforts to address
climate change, the aviation industry is in need of change in order to assist these efforts. Currently, the aviation industry
contributes around 2% of CO2 emissions globally [1], and with projections of rapid growth in air travel over the
upcoming decades, aviation’s CO2 contributions could grow to more than double of their current level by 2050 [2].
International initiatives have been outlined to combat the harmful environmental effects of this projected growth in air
travel. In 2019, the International Civil Aviation Organization (ICAO) set aspirational targets for emission reduction
by 2050, and achieving these targets requires improvements in engine technology and aircraft performance as well as
changes to aviation operations as a whole [3]. While growth of sustainable aviation fuel usage is expected to play a large
role in the aviation industry approaching emissions goals, the infusion of advanced technologies is still indispensable to
realizing an environmentally-sustainable aviation industry.

Advanced aircraft technologies, such as hybrid-electric propulsion (HEP), have been proposed as possible solutions
to curb harmful emissions from the already vast and fast-growing aviation industry. HEP merges the benefits of
internal combustion engines and fully-electric propulsion architectures. HEP can utilize both fuel and batteries for
energy storage, which allows for reductions in fuel burn when compared to traditional internal combustion engines
used on today’s airliners. Other potential benefits are decreased noise pollution, lower maintenance, and improved
safety [4]. The development and deployment of a viable single-aisle, hybrid-electric passenger aircraft greatly depends
on advances of electrical hardware such as batteries, motors, inverters, generators, etc. Projections of technological
advancement have inherent uncertainty, as major breakthroughs as well as extensive hiatuses between key advancements
cannot be precisely forecast. Thus, for the development of megawatt-class hybrid-electric aircraft suitable for aviation’s
stakeholders, including passengers, airlines, and regulatory agencies, uncertainty quantification (UQ) is needed to assess
risks and to inform further research & development efforts.

The aim of this paper is to disseminate the findings of the UQ analysis for the NASA EPFD program. The interest is
to understand and to quantify how uncertainty in technological parameters affects variability in vehicle performance
metrics. Therefore, the current study focuses on sensitivity analysis. Specifically, two studies are carried out. The first
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one concerns with the lack of knowledge on defining uncertain parameters; therefore, studying the robustness of the
sensitivity analysis against distribution type is of importance and is thus addressed. The other study examines how
uncertainty in technology forecasts can affect the sensitivity analysis; thus, technology projections for a few vehicle
model inputs are implemented in the study.

The current article is organized as follows. In Section II, a description of our technical process for approaching the
UQ analysis is presented. Section III provides specifics on the formulation of the methods employed as well as EPFD
performance model. Results are shown in Section IV, while conclusions are lastly provided in Section V.

II. Methodology

A. Problem Description
The current study aims to estimate the variability of EPFD vehicle-level performance metrics due to technological

parameters modeled as uncertain. The UQ process is illustrated in Figure 1. The inputs of the EPFD model are divided
in two groups: deterministic inputs and uncertain inputs. Deterministic variables can either be design variables or
operational parameters. These variables are fixed to specific values during the UQ analysis since they are not affected by
technological uncertainty. Uncertain variables represent parameters stemming from evolving technologies, which are
not precisely known; however, their impact on the EPFD vehicle performance is of interest. Accordingly, these variables
are modeled as varying randomly according to a probability density function. Propagating the values of these uncertain
inputs through the EPFD vehicle model then results in uncertain performance responses.

Fig. 1 UQ proccess on EPFD model

The total response uncertainty can be divided according to the contribution from each uncertain input. The study
of allocation of response uncertainty to these inputs is the main objective in the present study. Examination of such
uncertainty allocation is of relevance since it allows to identify the largest input contributors to response variability. In
turn, this may assist the selection of a subset of technologies that have the greatest impact on vehicle-level performance.
Accordingly, these technologies may be given particular attention as part of the development effort.

B. UQ Studies
The focus of the present UQ analysis is examining the effect of technical uncertain parameters on the variability of

the EPFD vehicle performance. The main purpose is to identify the main contributors to performance variability so that
development effort can be placed on those particular technologies. As previously stated, the UQ analysis in the current
study consists of two aspects. The first aspect focuses on examining the robustness of the sensitivity analysis against
the lack of knowledge on defining uncertain parameters, and the second aspect addresses the effects of uncertainty
forecasting of few technologies on the sensitivity analysis. Before addressing these two aspects of the current UQ study,
it is convenient to examine the variability of the EPFD performance responses due to all model inputs.
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1. Baseline sensitivity study
A preliminary analysis of the vehicle model’s variability due to all its inputs is conducted first. The intention is

to estimate the respective contributions of the two groups of inputs - deterministic and uncertain. The inputs in the
deterministic group such as design and constraint variables can mask or hide the impact of the technical uncertainty
variables, which are of primary interest. The goal is to eventually eliminate the masking effect of design and constraint
variables. Therefore, as a reference, a sensitivity study on all inputs - deterministic as well as uncertain - is carried out.
This reference study assumes minimal knowledge about the system inputs and varies all input values uniformly across
the full range of the design of experiments (DoE) used to train the surrogate models. In other words, the minimum and
maximum values of each uniform distribution matched the respective input’s minimum and maximum values from the
DoE. This initial Baseline Sensitivity Analysis study will serve as a reference point for the main UQ studies conducted
in this work.

2. Study A: Impact on sensitivity due to distribution type
The results on the sensitivity analysis critically depend on the choice of the probability density function of the

uncertain input variables. Nevertheless, complete definition of uncertainty sources - support as well as type of
distribution of the random variables - is not always possible, resulting in a lack of knowledge on the uncertain inputs.
Therefore, analyzing the impact of the type of probability density function on the sensitivity indices is a relevant question.
Consequently, the effect of using different types of input distributions on sensitivities of EPFD responses is examined.
All deterministic variables - design and constraint parameters - are fixed at predetermined optimal values based on best
fuel consumption configuration, rather than being allowed to vary over ranges. Three distribution types are utilized.
These are uniform, triangular, and truncated normal, which can reflect different levels of knowledge about the projected
values of each input.

3. Study B: Impact on sensitivity due to technology forecasting
In the previous study, the ranges used for technical uncertainty variables were set by the bounds of the DoE.

Employing information from technological projections would allow for more informed ranges for the uncertain variables
of interest, which increases the utility of the UQ study. Therefore, technological projections are used to inform ranges
for technological metrics regarding battery cells, electric machines, and power converters. Because of variance in
technological projections, which arises from the relative aggressiveness or lack thereof present in projections, three
scenarios were developed for this Study. For the specific energy of future battery cells, projected values from [5] were
implemented into this study. These projections were developed using an S-curve projection to fit historical data of
battery cell-level specific energy and to project cell-level specific energy improvement over the coming decades, and
Figure 2 shows curves representing conservative, nominal, and aggressively projections.

Fig. 2 Battery Specific Energy Projections [5]
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In a similar manner, conservative, nominal, and aggressive projections from [6] and [7] were leveraged to define
ranges for specific power of future electric machines and power converters. These projections were developed using
historical data and logistic fits with inflection points at the years 2020, 2030, and 2040, which respectively correspond
to conservative, nominal, and aggressive projections. Figures 3 & 4 show the respective curves generated in this process.
Finally, because historical data for efficiencies of future electric machines and power converters was too scattered and
haphazard for logistic fitting, projections for efficiency were generated using state-of-the-art (SoA) values as initial
points and implementing an annual reduction in losses, and the magnitude of the annual reduction in losses would
correspond to relative aggressiveness or lack thereof present in the projections [6, 7].

Fig. 3 Electric machine specific power projections using logistic fits [7]

Fig. 4 Power converter specific power projections using logistic fits [6]

The resulting projections for the years 2030, 2040, and 2050 are shown in Table 1. As can be seen, three different
projected values were obtained for each year based on conservative, nominal, and aggressive estimates respectively.
These values were used as inputs to the simulation to obtain more accurate uncertainty distribution projections. In this
case, projected values were input as triangular distributions with available conservative estimates serving as the lower
bound, nominal estimates serving as the peak values, and aggressive estimates serving as the upper bound. Design
and constraint variables were once again held constant at their optimal values. Since projections for the remaining
technical uncertainty variables was not considered at this point, the distributions for these variables remained uniformly
distributed across their entire range. This study is further divided into three cases for the years 2030, 2040, and 2050.
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Table 1 Projected parameters for battery cells, electric machines, and power converters

Battery Cell-Level Electric Machine Electric Machine Power Converter Power Converter
Time Frame Confidence Specific Energy Specific Power Efficiency Specific Power Efficiency

(Wh/kg) (kW/kg) (%) (kW/kg) (%)

2030
Conservative 359 9.2 0.963 9.6 0.982

Nominal 489 13.2 0.968 13.8 0.985
Aggressive 584 16.1 0.974 17.3 0.988

2040
Conservative 459 10.8 0.967 11.4 0.985

Nominal 638 20.4 0.975 21.1 0.989
Aggressive 795 33.0 0.983 35.1 0.994

2050
Conservative 561 11.3 0.970 12.0 0.987

Nominal 764 24.3 0.980 25.2 0.992
Aggressive 957 50.0 0.989 52.9 0.997

III. UQ Approach and Implementation

The UQ approach involves three main phases: propagation of component-level uncertainty through the vehicle model,
probabilistic evaluation of the benefit of hybrid-electric propulsion, and assessment of the variability of the EPFD model
with respect to its inputs. These phases are described in more detail next.

A. EPFD Vehicle Performance Analysis Model
The intent of the parallel hybrid electric powertrain is to supplement power generation for the propulsor in a manner

that allows for downsizing of the conventional turbofan core while satisfying aircraft thrust requirements and reducing
overall vehicle fuel consumption. The NASA EPFD project has modeled several small passenger category aircraft
ranging from 19-passenger turboprops up to 150-passenger turbofan architectures with hybrid electric powertrains [8].
The hybrid electric versions of these smaller class vehicles are envisioned as more promising to show fuel consumption
advantages over larger category aircraft given current battery technology levels and mission requirements. The models
are used to identify optimal performing architectures with respect to key performance parameters of interest. The
150-passenger hybrid-electric aircraft model was chosen in this UQ work for its maturity and availability, and thus, was
determined as the most relevant for the development of our approach.

The modeling of hybrid electric powertrains in conjunction with conventional turbofan architectures presents unique
challenges from performance and operational perspectives. From a performance view, the aircraft propulsor must be
modeled to be driven by multiple energy sources: the conventional fuel source as well as the battery-driven electric
motor. Additionally, since the thrust output of the engine is no longer controlled by a single thrust lever which controls
fuel flow, there are several new operational modes to consider in which the electrical system can provide power to the
aircraft including eTaxi, takeoff boost, climb boost, etc.

The EPFD vehicle model was developed using the Environmental Design Space (EDS) software [9], which is a
modeling and simulation environment for aircraft design, performance, and mission analysis. The EDS environment
incorporates several analysis modules including NASA codes like NPSS and WATE++. This environment is used to
model the hybrid electric architecture with a battery, power converter, and an electric machine in parallel with the
turbofan low pressure (LP) and high pressure (HP) shafts. As shown in the hybrid electric architecture schematic below
in Fig 5, the parallel hybrid electric architecture includes a common DC battery power source that supplies energy to a
power converter and an electric machine on each of the LP and HP shafts. The electric machine can operate as both a
motor or a generator depending on the operational mode of the powertrain.
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Fig. 5 Parallel Hybrid Electric Architecture Schematic

We draw the reader’s attention to the fact that the EPFD project is still underway, and so is the modeling effort. As
a result, the specifics of the vehicle model discussed in this section are subject to change in the future. Because the
outcome of the UQ studies presented in this paper directly rely on the vehicle model, they are expected to vary when the
vehicle model is updated. As such, the UQ results presented in IV, that are based on the version of the EPFD vehicle
model available in the Fall of 2022, may be deemed preliminary.

This section provided an overview of the performance model enabling the reader to better understand the UQ
analysis that will follow. Interested readers may reference [8] for further details of the performance model and how it
was created. While the performance model described above is capable of analyzing different hybrid electric architecture
designs, its runtime is too long to enable UQ studies reliant on high sampling of input random variables.

1. Surrogate Model Creation
The EPFD model is not employed directly in the current study. Instead, a surrogate version of it is employed. This

is a key enabler for the undergoing work since it allows for fast evaluation, which is essential in UQ studies where
sampling approaches are employed, thus needing very large number of model evaluations. Artificial neural networks
(ANN) models were trained using data generated using the EPFD model. The architecture of ANN surrogate models is
made up of two inner layers and the hyperbolic tangent function is used for the nodes’ activation functions. A distinct
surrogate model for each of the six responses of interest, as opposed to using a multi-output ANN. These responses are
listed in Table 2 below:

Table 2 Responses

Name Unit Description

Design OEW lbs Design Operating Empty Weight
Design TOGW lbs Design Takeoff Gross Weight

Δ Block Fuel 900 % Percentage Change in Block Fuel for a 900 nmi Mission for Hybrid Vehicle
Relative to Baseline

KPP-1 kW Key Performance Parameter for the Total Power Level of the Integrated
MW-Class Powertrain System

KPP-2 kW Key Performance Parameter for the Individual Power of Electric Machine
KPP-5 kW/kg Key Performance Parameter for the Specific Power of Electric Powertrain

The vehicle model has a total of 34 inputs. A detailed description of all these inputs along with their corresponding
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ranges is shown below. As discussed previously, inputs are grouped depending on whether they are treated as
deterministic or uncertain. The grouping process begins by separating the inputs according to their function on the
performance model as follows:

- Deterministic Design and Operational Variables : their values are usually decided upon early in the design
process or are restricted based on physical, technological, or functional requirements;

- Uncertain Technological Variables: their values are affected by technology readiness and thus remain uncertain
for most of the development process and can greatly affect the output variability.

An example of a design variable is the power shave fraction for the hybrid-electric propulsion. Its value is determined
from design requirements and trade studies, whereas an example of a constraint variable is battery cable length, which is
related to the physical constraints of the aircraft and not technological development. It is noted that these two types of
variables are treated as deterministic in studies A and B. When fixed, these deterministic variables are held to their
optimum values shown in Table 3. On the contrary, specific energy of future batteries is an example of a technical
uncertainty variable, as the state of the art for battery technology in future decades is directly related to technological
development. It is therefore treated as uncertain in studies A and B.
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Table 3 Surrogate Input Descriptions and Ranges

Variable Name Description Min Max Optimum

Deterministic Inputs:
TWR Thrust loading 0.25 0.37 0.307
WSR Wing loading 105 158 120.621

PowerShaveFrac Reduction of core size relative to baseline 0.05 0.8 0.05038
DesPowerRatio Split between HP and LP motor powers 0.1 1 0.10027

T4margin Difference in T4 between max takeoff thrust (MTO) and
max continuous thrust (MCT) -400 -150 -263.7099

FPR Fan pressure ratio 1.35 1.6 1.35015
Ext Ratio Extraction ratio 0.9 1.4 1.2380856
T4max Turbine inlet temperature 3000 3600 3541.9346
HPCPR Pressure ratio of the high pressure compressor 12 19 15.705897

OPRD TOC Overall pressure ratio at top-of-climb 45 65 48.709362

HPC_Deff High pressure compressor efficiency delta at aero design
point 0.0028 0.033 0.0028

HPC_s_Wt High pressure compressor weight scalar 0.8 1 0.9
BattFinalSOC Battery final state-of-charge 0.1 0.2 0.2

ClimbRateFloor Floor climb rate for determining when boost is necessary 500 3000 1706.2007

Matched Altitude Altitude below which vehicle must match baseline climb
rate 2000 10000 10000

eTaxi Duct15 PressureLoss Bypass duct pressure loss during the eTaxi calculations 0 0.01 0.0025
ElecVoltage Battery stack design voltage 500 1500 1008.3003

Batt Cable Length Length of battery cables 25 75 60
Cable Wire Diameter Diameter of the individual strands of wire in the cable 20 50 35.916

RAT Weight Weight of ram air turbine system 92.3 277 184.635
IDG Weight Weight of integrated drive generator system 113 337 224.85
ATS Weight Weight of air traffic service system 34.4 103 68.828

Uncertain Inputs:
Battery Specific Energy Energy capacity per unit weight of the battery 250 1000

Elec. Machine Specific Power Specific Power at Electrical Design Point 3 30
Power Converter Efficiency Power loss over the power converter 0.95 1

Bus Efficiency Efficiency of the bus 0.95 1
Electric Machine Efficiency Efficiency at Electrical Design Point 0.95 1

Power Converter Specific Power Used in weight calculation of the power converter based
on max power of the electric machine 5 50

Elec. Machine Cable Efficiency Defines maximum voltage drop across each cable 0.95 1
Battery Cable Efficiency Efficiency of the battery cable 0.95 1

Battery k6 Battery Technology factor on the battery cell capacity 1 2

Battery k7 Battery Technology factor on the battery cell zero load
voltage 1 2

Battery k8 Battery Technology factor on the battery max continuous
current 1 3

Pack Factor Factor accounting for packaging material weight of the
battery 0.4 1

2. Surrogate Model Verification
The surrogate inputs represent component and lower-level parameters and variables within the aircraft. Surrogate

model fits were assessed by calculating the coefficient of determination (𝑅2) values and by inspection of actual vs
predicted plots, residual vs predicted plots, model fit error distributions, and model representation error distributions.
The surrogate models created shown acceptable accuracy with 𝑅2 values greater than or equal to 0.9 and with actual vs.
predicted plots showing no signs of underfitting or overfitting. Furthermore, the residual vs predicted plots displayed the
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error in a random pattern centered around zero, indicating no apparent prediction bias. Finally, the model fit error and
model representation error distributions had normal distributions with means approximately equal to zero and standard
deviations smaller or equal to one, which are both ideal. A table of the inputs and their respective ranges from the
design of experiments (DoE) used for surrogate model training is included in Table 3.

While the accuracy of the surrogates employed to carry out UQ was deemed sufficient in this preliminary study,
it is important to recall that it has direct impact on all the results presented here: using a surrogate model effectively
introduces some level uncertainty in the predictions. This added uncertainty is a cost paid for enabling large-scale
UQ studies that would otherwise be highly impractical to carry out by directly evaluating the computationally costly
vehicle model. Because of their importance, approaches to improve the accuracy of these surrogates in the context of
the EPFD program are being investigated. One of the main barriers to creating accurate surrogate models is the number
of input dimensions: put simply, as the number of input variables increases, a training set of the same size effectively
covers a lesser portion of the total input space. Currently, a single set of surrogates is trained and used throughout all
studies, whose inputs are the same as the EPFD vehicle model, whether they are deterministic or uncertain. Since
deterministic inputs are fixed in studies A and B, surrogate models could alternatively be created that have a lower
input dimension, and are therefore expected to be more accurate, assuming a training set of comparable size. These
improvements, along with a better quantification of the impact of surrogate uncertainty on probabilistic projections, are
the subject of current research. In addition to the fact that the vehicle model is still being refined, this is another reason
why the results presented in section IV may be considered preliminary.

B. Evaluation Criterion
In order to examine the benefit of the hybrid-propulsion power plant, several quantities can be examined. The

mean and standard deviation of the responses respectively express the average expected values and its spread. The
probability of improvement 𝑃[𝐼] expresses the portion of the distribution on the improvement side, in other words the
benefit measured compared to a baseline value. Note that this value expresses the probability of improving over a
baseline value; however, it does not convey an indication as to the expected value of this improvement. To this end,
we use the expectation of improvement denoted 𝐸 [𝐼]. This metric provide a measure of the expected benefit (average
improvement) over a baseline value as it is defined over the benefit segment. These last two metrics are illustrated in
Fig. 6. Several criteria might be defined; however, in this study, the criterion for evaluating benefit is as follow:

Given 𝑃[𝐼] > 𝛼,

would like low value 𝐸 [𝐼] < Baseline

The above expression ensures that the success of improving - the greater the value of 𝛼, the greater level of improving.
The second condition implies that the benefit (in average) is as large as possible.

Fig. 6 Metrics for evaluation criterion

C. Variance-based Sensitivity Analysis
A variance decomposition method is employed in the current study in order to assess the variability of the EPFD

model with respect to its inputs. The uncertainty on the model outputs results from propagating uncertainties through
the model from inputs. Consequently, each input or group of inputs is responsible for a portion of the total response
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variance. Such a portion when expressed as a fraction can then be used as a metric for measuring sensitivity. This
method utilizes repeated function evaluations of the EPFD model, which is aided by surrogate models.

Consider a multivariate function, 𝑓 (𝝃) = 𝑓 (𝜉1, . . . , 𝜉𝑑), with 𝑑 mutually independent inputs modeled by random
variables, 𝜉𝑖 , each described by a marginal probability density function 𝜌𝑖 (𝜉𝑖). Note that the function is strictly
deterministic for an instance of the input 𝝃∗ ↦→ 𝑓 (𝝃∗) and thus the function does not possess any aleatoric component.
The aforementioned function can then be decomposed [10] by terms of increasing dimensionality as follow:

𝑓 (𝜉1, . . . , 𝜉𝑑) = 𝑓0 +
∑︁

1≤𝑖≤𝑑
𝑓𝑖 (𝜉𝑖) +

∑︁
1≤𝑖< 𝑗≤𝑑

𝑓𝑖 𝑗 (𝜉𝑖 , 𝜉 𝑗 ) + . . . 𝑓1 2 ... 𝑑 (𝜉1, . . . , 𝜉𝑑). (1)

The component functions on the right side of Eq. 1 are formulated for mutual orthogonality and have null expectation.
Expressions for their calculation are given according to the following:

𝑓0 = 𝐸 [ 𝑓 ]
𝑓𝑖 (𝜉𝑖) = 𝐸𝝃\𝜉𝑖 [ 𝑓 |𝜉𝑖] − 𝑓0

𝑓𝑖 𝑗 (𝜉𝑖 , 𝜉 𝑗 ) = 𝐸𝝃\𝜉𝑖 , 𝜉 𝑗
[ 𝑓 |𝜉𝑖 , 𝜉 𝑗 ] − 𝑓𝑖 − 𝑓 𝑗 − 𝑓0

...
...

Expectations, 𝐸𝝃\𝜉𝑖 , are defined over all uncertain inputs 𝝃 except 𝜉𝑖 . Due to orthogonality amongst components in
the above decomposition, the total variance of the multivariate function is then simply given by the summation of the
variance of each component function - partial variance - as follow:

𝑉𝑎𝑟 ( 𝑓 ) =
∑︁

1≤𝑖≤𝑑
𝑉𝑎𝑟 ( 𝑓𝑖) +

∑︁
1≤𝑖< 𝑗≤𝑑

𝑉𝑎𝑟 ( 𝑓𝑖 𝑗 ) + . . . + 𝑉𝑎𝑟 ( 𝑓 1 2 ... 𝑑) (2)

In the above expression, the first terms 𝑉𝑎𝑟 ( 𝑓𝑖) expresses the partial variance due to 𝜉𝑖 , solely acting on 𝑓 - portion
of the total variance. The second group of terms 𝑉𝑎𝑟 ( 𝑓𝑖 𝑗 ) expressed the portion of the total variance explained by
bi-variate contributions from 𝜉𝑖 & 𝜉 𝑗 , and so on for higher-order terms.

By employing the partial variances, Sobol’ indices [10] provide a measure of the sensitivity of the multivariate
function 𝑓 to any combination of the individual inputs. For the univariate contribution, 𝜉𝑖 , the indices are as follow:

𝑆𝑖 =
𝑉𝑎𝑟 ( 𝑓𝑖)
𝑉𝑎𝑟 ( 𝑓 ) (3)

The above expression is known as the first-order Sobol’ index and expresses the ratio of the variance purely due to 𝜉𝑖 to
the total variance, thus 𝑆𝑖 ∈ [0, 1]. Note that large values of 𝑆𝑖 indicate the importance of 𝜉𝑖 on the variability of the
multivariate function, 𝑓 (𝝃). Examining these values is then the focus of a global sensitivity analysis. Moreover, it
follows from Eq. 2 that the sum over all Sobol indices results in unity:∑︁

1≤𝑖≤𝑑
𝑆𝑖 +

∑︁
1≤𝑖< 𝑗≤𝑑

𝑆𝑖 𝑗 + . . . + 𝑆 1 2 ... 𝑑 = 1 (4)

The above sensitivity indices are given by conditional expectations and thus are computationally intensive to
calculate. In the current study, the estimators developed in [11] are employed for their calculations.

IV. Results

Results for the UQ studies previously described are presented here. The variance-based sensitivity approach described
in the previous section was employed and all the sensitivity indices, 𝑆𝑖 , were calculated via the Monte-Carlo (MC)
approach with large sample sizes.

A. Baseline Sensitivity Analysis
The Baseline Sensitivity Analysis (BSA) was performed to quantify the uncertainty of the entire input variable

space with all input variables characterized uniformly and independently. This provides a useful reference case for
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comparison and clearer understanding of which input variables are most responsible for the variability of the output
responses. The BSA places uniform distributions on all input variables, including deterministic design variables and
uncertain technological variables. The range of values for each input distribution corresponds to the ranges used in the
DoE used to generate the surrogate’s training data. By using uniform distributions on all the input variables, the BSA
represents a “maximum uncertainty” case, in which little information is known about the inputs so all input distribution
values throughout the range are equally likely. These input distributions are sampled and propagated in Monte-Carlo
simulations to generate probability density function (PDF) distributions on the output responses displayed in Figures 7,
8, & 9 .

(a) PDF: OEW (b) PDF: TOGW

Fig. 7 PDF response for Baseline Sensitivity Analysis: OEW and TOGW

(a) PDF: Δ Block Fuel 900 (b) PDF: KPP1 Total Power

Fig. 8 PDF response for Baseline Sensitivity Analysis: Δ Block Fuel 900 nm mission and KPP1 Total Power
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(a) PDF: KPP2 Motor Rated Pow. (b) PDF: KPP5 Specific Power

Fig. 9 PDF response for Baseline Sensitivity Analysis: KPP2 Motor Rated Power and KPP5 Specific Power

While it is possible to examine the sensitivity of a given response to each individual input variable, it can be
more informative to categorize the sensitivities into groupings of 1) deterministic variables, 2) uncertain technological
variables, and 3) interactions/higher-order effects. These groupings can help understand which category is driving the
variability of each response metrics. Fig. 10 indicates that the deterministic variables are most responsible for the
variability of the responses, which is expected. In order to better understand the variability in the responses caused by
the uncertain technological variables, Study A and Study B will hold fixed the deterministic inputs at their optimum
values while sampling only the uncertain technological variables. These results will be presented in the next sections.

(a) Sobol Index Comparison of Deterministic and Uncertain Variables for Baseline Sensitivity Analysis

Fig. 10 Assessment of Input Contributions in Baseline Sensitivity Analysis

B. Study A: Impact on sensitivity due to distribution type
Probability density functions of all responses with different types of input probability density functions - uniform,

triangular and truncated normal - are shown in Figures 11, 12, & 13. In the case of the OEW, TOGW, Δ Block Fuel 900
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and KPP2 (Motor Rated Power), the resulting distributions exhibit a noticeable degree of asymmetry with positive
skewness, having long tails towards upper values. Conversely, the KPP1 (Total Power) and KPP5 (Specific Power)
resulting response distributions are fairly symmetrical for any type of the considered input distribution shape. It is
also observed that changing the type of distribution from uniform to triangular and finally to truncated normal results
in distributions that are thinner, implying more informative behavior. This behavior is quantified by the value of the
variance in bar plot shown below every output distribution.

(a) PDF: OEW (b) PDF: TOGW

Fig. 11 PDF response for study A: OEW and TOGW

(a) PDF: Δ Block Fuel 900 (b) PDF: KPP1 Total Power

Fig. 12 PDF response for study A: Δ Block Fuel 900 nm mission and KPP1 Total Power
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(a) PDF: KPP2 Motor Rated Pow. (b) PDF: KPP5 Specific Power

Fig. 13 PDF response for study A: KPP2 Motor Rated Power and KPP5 Specific Power

Sensitivity results for all responses in study A are shown in Fig. 14. The value of the first-order sensitivity index 𝑆𝑖
(in percentage) - input contribution to the total response variance - is given by the bars. Influential inputs are identified
with values of sensitivity index, 𝑆𝑖 , above of 4 %. Common influential inputs are consistently battery specific energy,
battery k8, electric machine efficiency , electric machine specific power and power converter efficiency. Nevertheless,
battery specific energy stands out as the most influential parameters regardless of the input distribution type, with
contribution of at least 20% of contribution to the total variance of the responses. The sensitivity study exhibits
robustness against changes in the type of probability density function, describing the uncertain inputs. This can be
inferred from the results shown in Fig. 14. This figure shows that while the exact amount of variability for each input
changes with distribution type, the overall set of inputs driving most of the variability are the same regardless of the
employed distribution - uniform, triangular or normal.
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(a) Sobol Indices for Study A: Uniform
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(b) Sobol Indices for Study A: Triangular

16



(c) Sobol Indices for Study A: Truncated Normal

Fig. 14 Sensitivity on EPFD responses with different distribution inputs

Moreover, when examining the response distributions for Study A and the results in Fig. 14, it is evident that
characterizing inputs with triangular and truncated normal distributions produces similar results. With literature from
[12, 13] supporting that triangular distributions are more easily interpreted by subject matter experts, it can be concluded
that triangular distributions are a suitable choice for characterization of technological inputs in our UQ study.

C. Study B: Impact on sensitivity due to technology forecasting
With all deterministic design variables held at their respective optimized values, technological projections from

Table 1 are integrated into the UQ study. It is important to clarify that technological projections were only utilized for
the five inputs included on Table 1, while remaining uncertain inputs are characterized with uniform distributions over
their respective DoE ranges. From an assessment of Figures 15, 16 & 17, it can be observed that the standard deviation
decreases with time (year) for all responses except KPP5 (Specific Power). This reduction in response standard deviation
is related to the nonlinear relationship between battery specific energy and these respective responses. On the other
hand, battery specific energy and KPP5 have a relationship that is mostly linear, which is why the standard deviation for
KPP5 follows the trend of the input variables’ standard deviations. Additionally, in reference to the baseline and success
metrics shown on the plots in Figures 16 & 17, more technological development in electrical components allows for
a higher probability of improvement or success, which is expected. A more noteworthy observation is technological
progress that aligns with the projections in Table 1 specifically yields a 150-passenger class hybrid-electric aircraft that
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not only reduces fuel usage relative to a traditional ICE aircraft in 2030 but rather, even when considering technological
uncertainty, meets the fuel usage reduction target set by NASA.

Moreover, the expected value of this fuel usage reduction or any other response can be determined from an analysis
of the successful region of the response’s PDF. The Δ Block Fuel 900 response shows output distributions in each time
frame that indicate the expected improvement over the 2030 Advanced Technology Aircraft (ATA), instead of today’s
current technology. Therefore the expected improvement is not indicating the reduction in fuel consumption between a
given time frame’s EAP vehicle and current aircraft, but rather the difference between a 2030 ATA powertrain and its
hybrid EAP vehicle counterpart.

(a) PDF: OEW (b) PDF: TOGW

Fig. 15 Study B, PDF responses: OEW and TOGW

(a) PDF: Δ Block Fuel 900 (b) PDF: KPP1 Total Power

Fig. 16 Study B, PDF responses: Δ Block Fuel 900 nm mission and KPP1 Total Power
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(a) PDF: KPP2 Motor Rated Pow. (b) PDF: KPP5 Specific Power

Fig. 17 Study B, PDF responses: KPP2 Motor Rated Power and KPP5 Specific Power

Examining Fig. 18, it can be observed that battery k6, battery k8, and battery specific energy have a high contribution
to variability of all responses, regardless of projection year. Thus, technological advancement in these battery parameters
is vital to successful development of viable hybrid-electric transport aircraft. This intuitively makes sense as well since
the ratio between battery k8 (technology parameter scaling battery max continuous current) and battery k6 (technology
parameter scaling battery cell capacity) specifies the charge rate of the battery and the battery specific energy directly
affects battery weight for a given power requirement. These parameters directly impact battery sizing, vehicle weight,
and performance.

Also, it is evident that efficiency and specific power projections have a low contribution to overall variability, except
for KPP1 (Total Power). Specifically, electrical machine efficiency emerges as a major contributor to overall variability
of KPP1 as time moves forward. Thus, research and development aimed to increase KPP1 for hybrid-electric powertrains
should be focused on improving the efficiency of electrical machines (motors or generators). The results in Fig. 18 are
helpful because they inform future work by assisting in identification of critical inputs.
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(a) Sobol Indices for Study B: 2030
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(b) Sobol Indices for Study B: 2040
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(c) Sobol Indices for Study B: 2050

Fig. 18 Sensitivity on EPFD responses with with different electrical parameter projections

V. Conclusion

There will always be uncertainty and risk associated with future technology development programs. Understanding
the magnitude of that uncertainty allows to properly manage this risk. The methodology proposed in this work provides
decision-makers with an initial framework to quantify risk brought on by technical sources of uncertainty. The authors
will extend this framework to increase accuracy and improve upon the methodological formulation in this rapidly
evolving area of study. The UQ analysis carried out on the EAP vehicle in this work provides an assessment of the most
relevant technology uncertainty parameters to vehicle performance and quantifies uncertainty caused by those various
factors. Results of the sensitivity study on the vehicle performance metrics due to technical uncertainties showed that
responses were primarily driven by five technical uncertain inputs; however, most of the variability was shown to be
driven by the battery specific energy parameter across the examined responses. This work provides a framework for
assessing uncertainty on a 150-passenger vehicle in the EPFD problem context. The results indicate that improvements
over the baseline vehicle are possible and become more significant in future time frames as battery specific energy and
other uncertain electrical component parameters mature over time.
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