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Uncertainty quantification 
techniques for data‑driven space 
weather modeling: thermospheric 
density application
Richard J. Licata1,2* & Piyush M. Mehta1,2

Machine learning (ML) has been applied to space weather problems with increasing frequency in 
recent years, driven by an influx of in‑situ measurements and a desire to improve modeling and 
forecasting capabilities throughout the field. Space weather originates from solar perturbations and 
is comprised of the resulting complex variations they cause within the numerous systems between 
the Sun and Earth. These systems are often tightly coupled and not well understood. This creates a 
need for skillful models with knowledge about the confidence of their predictions. One example of 
such a dynamical system highly impacted by space weather is the thermosphere, the neutral region 
of Earth’s upper atmosphere. Our inability to forecast it has severe repercussions in the context of 
satellite drag and computation of probability of collision between two space objects in low Earth 
orbit (LEO) for decision making in space operations. Even with (assumed) perfect forecast of model 
drivers, our incomplete knowledge of the system results in often inaccurate thermospheric neutral 
mass density predictions. Continuing efforts are being made to improve model accuracy, but density 
models rarely provide estimates of confidence in predictions. In this work, we propose two techniques 
to develop nonlinear ML regression models to predict thermospheric density while providing robust 
and reliable uncertainty estimates: Monte Carlo (MC) dropout and direct prediction of the probability 
distribution, both using the negative logarithm of predictive density (NLPD) loss function. We show 
the performance capabilities for models trained on both local and global datasets. We show that 
the NLPD loss provides similar results for both techniques but the direct probability distribution 
prediction method has a much lower computational cost. For the global model regressed on the Space 
Environment Technologies High Accuracy Satellite Drag Model (HASDM) density database, we achieve 
errors of approximately 11% on independent test data with well‑calibrated uncertainty estimates. 
Using an in‑situ CHAllenging Minisatellite Payload (CHAMP) density dataset, models developed using 
both techniques provide test error on the order of 13%. The CHAMP models—on validation and test 
data—are within 2% of perfect calibration for the twenty prediction intervals tested. We show that this 
model can also be used to obtain global density predictions with uncertainties at a given epoch.

Low Earth orbit (LEO) will see the addition of tens of thousands of satellites in the coming years as private 
companies are developing mega constellations for the new space  economy1. This congestion of certain orbital 
regimes increases the likelihood of a future collision between two objects. Satellite collisions can create debris 
clouds consisting of thousands of objects large enough to pose significant threats to other space assets. The 2009 
Iridium-Cosmos collision resulted in approximately 2300 observable debris objects, 65% of which remained in 
orbit 7 years  later2. Debris objects created by collisions or weapons tests can catapult into highly elliptical orbits 
which pose a danger to satellites in multiple orbital  regimes3.

In an effort to prevent these events from occurring, objects are continuously tracked, and their trajectories 
are predicted. However, uncertainties play a large role in the prediction of future satellite positions. In LEO, 
atmospheric drag is the largest single source of uncertainty mainly due to an incomplete understanding of the 
thermosphere. Variations in the thermosphere are connected to temperature changes, as the atmosphere expands 
and contracts. Solar extreme ultraviolet (EUV) and far ultraviolet (FUV) irradiance are the primary heating 
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 sources4. This absorption of solar irradiance provides the baseline thermospheric mass  density5. The effects of 
solar emissions are well-represented by various solar indices and  proxies6.

Solar irradiance is generally a long-term variation while the solar wind drives more rapid changes in the 
thermosphere. Mass and energy from the sun—manifested as the solar wind—travel through space and interact 
with the near-Earth geospace environment. Certain events (e.g. coronal mass ejections) send massive amounts 
of energy and mass that result in significant increases in thermospheric density. Energy, and therefore density, 
enhancements first appear in the auroral zone (high latitudes) and propagate towards the equator in the form of 
traveling atmospheric  disturbances7. Geomagnetic storms are a particularly difficult phenomena to model and 
our current density models carry high uncertainty during these  periods8,9.

Satellite accelerometers have provided a unique insight into the thermosphere with high fidelity in-situ 
measurements, particularly during  storms10. Accelerations caused by non-drag sources (e.g. gravity and solar 
radiation pressure) are modeled out allowing the isolation of drag acceleration that is then used to estimate mass 
 density11–15. Drag acceleration is given as

where �adrag is the drag acceleration, ρ is local mass density, cD is the satellite drag coefficient, A is the cross-
sectional area, m is the satellite mass, and vrel is the relative velocity of the satellite with respect to the rotating 
atmosphere. With an estimate for drag acceleration, the density can be estimated, assuming adequate knowledge 
of the drag coefficient and cross-sectional area given the satellite orientation. Density estimates obtained through 
this method are considered ground truth and often used for model validation.

Accelerometer and orbit-derived densities have been used frequently in developing empirical  models16–18. 
Furthermore, they have been used in data assimilation schemes to make corrections to background models, either 
through observed orbital drag  data19 or two-line element  data20. The most prominent integration of real-time 
data for neutral density modeling is the High Accuracy Satellite Drag Model’s (HASDM) Dynamic Calibration 
of the Atmosphere (DCA). This uses observed satellite data to make corrections to a background empirical 
density  model21.

Even with these improvements, density models have high errors, and we generally use them without any 
knowledge of their confidence given the conditions. Until recently, no thermospheric density models—whether 
physics-based or empirical—provided estimates of uncertainty. Bruinsma et al. developed an uncertainty-based 
version of DTM2020 using polynomials to describe the 1 − sigma uncertainties as a function of the  inputs22. 
Licata et al. used MC dropout to obtain uncertainty estimates for a global density modeling application with 
good calibration, providing baseline  performance23. In this work, we leverage machine learning (ML) to gener-
ate predictive density models for the thermosphere that also provide robust and reliable uncertainty estimates. 
This is done for both a global and local datasets using two methods: Monte Carlo (MC) dropout and a direct 
prediction of the probability distribution (referred to primarily as direct probability).

We first outline the data and methods used for model development and analysis. Then, we use artificial data 
to demonstrate the techniques. We move to the results for modeling with the global density dataset using the 
two uncertainty techniques and perform a similar analysis for the models developed on local measurements. 
We also look at the global prediction capabilities of the model developed with in-situ data, and we compare the 
evaluation times of both uncertainty methods.

SET HASDM density database. The High Accuracy Satellite Drag Model (HASDM) is the operational 
thermospheric density framework used by the United States Space Force (USSF)21. By improving the density cor-
rection techniques presented by Marcos et al.24 and Nazerenko et al.25, HASDM modifies 13 global temperature 
coefficients to make real-time corrections to the Jacchia-Bowman 2008 Empirical Thermospheric Density Model 
(JB2008)17. Its Dynamic Calibration of the Atmosphere (DCA) algorithm ingests data from calibration satellites 
that are distributed in altitude between 190 and 900 km—most are between 300 and 600  km26. As the algorithm 
provides corrections to JB2008, HASDM provides global measurements on a 24 × 19 × 27 grid. For additional 
information on HASDM, the reader is referred to Storz et al.21.

While HASDM is highly desired due to its real-time data assimilation, it is a proprietary model that is inac-
cessible to researchers and operators. Space Environment Technologies (SET) is the contractor responsible for 
validating HASDM outputs on a weekly basis, and they recently released HASDM validation archives from 2000 
to 2020 covering close to two full solar cycles providing good statistical coverage. This data release constitutes the 
SET HASDM density  database27. With a 3-h cadence, the database contains 58,440 global HASDM outputs. Each 
output has a resolution of 15◦ longitude, 10◦ latitude, and 25 km altitude ranging from 175 to 825 km. For further 
details on the SET HASDM density database and the validation process, the reader is referred to Tobiska et al.27.

Satellite accelerometer density estimates. CHAllenging Minisatellite Payload (CHAMP) was 
launched in mid-2000 to study Earth’s gravity and magnetic  fields28. Its orbit is nearly polar with an inclination 
of 87.3◦ providing adequate global coverage, and it began at 460 km in altitude. CHAMP was in orbit until 2010 
when it stopped providing measurements at an altitude of approximately 300 km. The long mission lifetime cov-
ered nearly a solar cycle, providing measurements in solar maximum across many strong geomagnetic storms 
and through the following solar minimum. Mehta et al. used higher fidelity satellite geometry and improved 
gas-surface interaction models to scale the CHAMP density estimates of  Sutton29–32. The density dataset starts 
on January 1, 2002 and ends on February 22, 2010 with a 10-s cadence. The CHAMP dataset is prime for dem-
onstration as spatiotemporally limited in-situ datasets are common in the space weather field. This type of model 
can be built upon with the addition of density estimates from other satellites, displayed in Fig. 1.
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The addition of all satellites shown in Fig. 1 would significantly expand the altitude coverage of the in-situ 
density dataset. The CHAMP dataset used in this work has a 160 km altitude range and does not span a full solar 
cycle. Integrating the density datasets of Gravity Recovery and Climate Experiment (GRACE)33, Gravity Field and 
Steady-State Ocean Circulation Explorer (GOCE)34, and  Swarm35 would provide a thorough altitude coverage of 
approximately 220–550 km and span from 2001 to present day. The Enhanced Polar Outflow Probe (e-POP)36 
is a payload on Cascade, Smallsat and Ionospheric Polar Explorer (CASSIOPE) and its density estimates can be 
obtained through the processing of its Global Navigation Satellite System (GNSS)  receivers37,38. However, there is 
still much active research related to the proper combination of different satellite density  datasets39–41. Therefore, 
we proceed with the standalone CHAMP dataset for demonstration.

Density model drivers. JB2008 uses four solar indices/proxies as drivers for solar activity. F10—more com-
pletely referred to as F10.7—represents 10.7 cm solar radio flux and is a reliable proxy for solar EUV heating. S10 
is an index for the integrated 26–34 nm solar EUV emission. The M10 proxy is a surrogate for FUV photospheric 
160-nm Schumann-Runge Continuum emissions. Y10 is a hybrid index that measures solar coronal X-ray emis-
sions during solar maximum and Lyman-α emissions during solar minimum. The S10, M10, and Y10 indices 
and proxies are not related to the 10.7 cm wavelength, but they are converted to F10 units—solar flux units 
(sfu)—through linear regression.  JB2008 also uses the 81-day centered averages for all four solar drivers. This 
is indicated by the “81c” subscript. Additional information on these solar drivers is provided by Tobiska et al.6.

To model geomagnetic activity, JB2008 uses a combination of ap and Dst. The ap index represents global 
geomagnetic activity with a 3-h cadence. While it is widely used in density models, it is limited by the low-
latitude range of the measurements and its discrete range of 28 values. Dst is an index driven by the ring cur-
rent strength in the inner  magnetosphere42. When Dst_min is below − 75 nT, JB2008 shifts to using Dst as it 
improves storm-time  performance17. The EXTEMPLAR (EXospheric TEMperatures on a PoLyhedrAl gRid) 
model and EXTEMPLAR-ML use Poynting flux totals in the northern and southern hemispheres—SN and SS, 
 respectively43,44. Poynting flux represents electrodynamic energy flowing into the upper atmosphere. The ap and 
Dst indices have 3-h and 1-h cadences, respectively. Therefore, their use in a high-cadence model would not be 
advised. The geomagnetic index used to replace ap and Dst in the CHAMP model is SYM-H, the longitudinally 
symmetric component of the magnetic field  disturbances45,46. SYM-H is available with a 1-min cadence.

The input sets for the HASDM and CHAMP models are shown in Table 1. The transformed time inputs t1–t4 
are defined in Eq. (2), and the transformed local solar time (LST) inputs are defined in Eq. (3). These transforma-
tions are performed to make the time and location inputs continuous.
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Figure 1.  Timeline of satellites with onboard accelerometers from 2000 to 2018 with bold lines representing the 
satellites’ mean altitude. e-POP does not contain an accelerometer. The bottom panel shows the corresponding 
F10 values indicating solar activity. The authors gratefully acknowledge Dr. Eelco Doornbos for providing this 
figure.
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In Table 1, LST, LAT, and ALT are the local time, latitude, and altitude of the satellite, respectively. The “A” 
subscript for the geomagnetic indices refers to the daily average. The numerical subscripts for these indices refer 
to the value that many hours prior to prediction epoch. The combination of numbers refers to the average of that 
index over that many hours prior to epoch. The HASDM input set originates from Licata et al.23.

Methodology
Machine learning. Principal component analysis. Principal component analysis (PCA), also referred to 
as Empirical Orthogonal Function (EOF) analysis, has been widely used in thermospheric mass density appli-
cations. It has been applied to satellite accelerometer datasets (as described in “Satellite accelerometer density 
estimates”) to identify dominant modes of variability in the  thermosphere15,47,48. PCA is also used in the field for 
dimensionality reduction as part of a reduced-order model (ROM)49–51. The HASDM dataset has 12,312 model 
outputs each epoch which makes uncertainty quantification (UQ) infeasible. Therefore, we apply PCA to the 
dataset for ROM development with the goal of UQ. PCA is an eigendecomposition technique that maximizes 
variance, determining uncorrelated linear combinations of  data52,53. We first take the common logarithm (log10) 
of the density values to reduce the data’s variance then remove the spatial mean. PCA decomposes the data, 
separating the spatial and temporal variations such that

In Eq. (4), x(s, t) is the log density from HASDM, x̄ is the spatial mean, and x̃ is the variation about the mean. 
αi(t) are temporal PCA coefficients and Ui are orthogonal modes—also called basis functions. The choice order 
of truncation (r = 10) was chosen from analyses in previous work as it allows for ∼ 90% of the variance to be 
captured and only results in < 3 % truncation  error23,54. The orthogonal modes are derived through

U consists of orthogonal vectors representing the modes of variability. The � matrix contains the eigenvalues—
corresponding to the columns in U—along the diagonal, and VT is composed of the right singular vectors of X . 
The data is encoded by performing matrix multiplication with U.

Neural network modeling. In this work, we leverage neural networks (NNs) for nonlinear regression modeling 
due to their applicability as universal function approximators and flexibility in development. A neural network 
is a collection of computational cells (or neurons) connected in some form through multiplicative connections 
(or weights). Artificial neural networks (ANNs) have been used to directly predict thermospheric mass density 
using space weather indices and proxies as model drivers in order to study long-term  trends55,56. These types of 
models can also be used as an exercise in understanding the effect of the drivers on non-machine learning (ML) 
 models57. Chen et al.58 developed ANNs with different combinations of geomagnetic indices to fit to CHAMP 
and GRACE density estimates during storms, and Choury et al.59 developed an ANN to predict exospheric tem-
perature for use in the Drag Temperature Model (DTM).

Loss functions. Loss functions are used to inform the NN of the objective during the training phase, or weight 
adjustment period. Loss functions can be minimized or maximized depending on the modeling objective. In this 
work, we minimize the negative logarithm of predictive density (NLPD) given as,

where y is the observed value, µ is the predicted mean, σ is the standard deviation of the output correspond-
ing to each unique input, and n is the batch size. The batch size is the number of samples the model will pass 
through before updating the weights, averaging the loss over the batch. Losses are computed for every output 
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Table 1.  List of inputs for both models.

HASDM CHAMP

Solar Geomagnetic Temporal Solar Geomagnetic Spatial/temporal

F10 , S10, apA , ap , ap3, t1 , t2, F10 , S10, SYM-H, LST1 , LST2,

M10 , Y10, ap6 , ap9 , ap12−33, t3 , t4 M10 , Y10, SN , SS LAT, ALT,

F81c , S81c, ap36−57 , DstA , Dst, F81c , S81c, t1 , t2,

M81c , Y81c Dst3 , Dst6 , Dst9, M81c , Y81c t3 , t4
Dst12 , Dst15 , Dst18 , Dst21
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and backpropagation is how the model determines how much to change each  weight60,61. NLPD is derived from 
−ln(f (x)) where ln is the natural logarithm and f(x) is the probability density function of the normal distribution.

Hyperparameter optimization. Tools like Keras Tuner have drastically reduced model development  time62. 
You can provide ranges of hyperparameters and Keras Tuner will explore the search space. We use the Bayesian 
optimization scheme, allowing the tuner to perform a random search for the first 25 trials, or architectures, and 
using a Gaussian process (GP) model to choose the architectures for the final 75 trails to exploit the high per-
forming areas of the space. The objective of the tuner is to minimize validation loss. The model optimizer and 
number of layers are first chosen by the tuner. For each layer, the model can have a unique number of neurons, 
activation function, and dropout rate. For each model developed (two datasets and two UQ techniques), the 
architecture is selected using Keras Tuner. It is important to note that the tuner can provide multiple architec-
tures that provide similar results.

The 58,440 samples in the HASDM dataset are split into 60% training, 20% validation, and 20% test data. This 
is displayed in Fig. 2. As the number of training and validation samples is manageable, the full sets are used in 
tuning. We obtain the HASDM models directly from the tuner without a need to train further.

The CHAMP dataset is significantly larger with over 25 million total samples. Unlike the HASDM dataset, 
location is now an input. CHAMP only covers the local solar time domain once every 3 months. The dataset 
also does not span an entire solar cycle. We originally tried using a 10-month segment of 2003 for validation 
and a 10-month segment from 2005 to 2006 for testing. This resulted in poor model generalization due to the 
lack of coverage of the solar cycle in the remaining training set. Therefore, we repeated the following data split 
scheme. Eight weeks are used for training (483,840 samples), then the following week is used for validation 
(60,480 samples), and the next week is used for the test set (60,480 samples). This results in similar input and 
output distributions while keeping temporally disjoint sets as there are 2 weeks or 120,960 samples between 
the training segments. For the tuner, 1 million random samples are chosen from the training data and 500,000 
random samples are chosen from the validation data. Once the tuner is complete, the best models are retrained 
on the full training set and evaluated on the other two sets.

Figure 2.  First 10 HASDM PCA coefficients with F10 and ap. The shading represents the training, validation, 
and test sets.
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Uncertainty quantification. We use two ML techniques: MC dropout and direct probability distribution 
prediction, as UQ with machine-learned models is fairly unexplored in the space weather domain. Dropout is 
a generalization technique that applies Bernoulli distributions in each layer to change the flow of information 
through the  model63,64. Dropout is traditionally only active during training to maintain a deterministic form in 
prediction. By forcing dropout to remain active in prediction, the model becomes probabilistic. MC dropout has 
been shown to be an approximation of a  GP65. For both methods, we use the negative logarithm of predictive 
density (NLPD) loss function (Eq. 6). Licata et al. found that the mean square error loss function resulted in 
underestimated uncertainty estimates in surrogate modeling for the HASDM  dataset23.

Monte Carlo dropout implementation. The typical input and output shape is n × ninp and n × nout, respectively. 
n is the number of samples, ninp is the number of inputs, and nout is the number of outputs. In training, the mean 
and standard deviation need to be unique to each input sample, so the model has to be provided each input k 
times. k needs to be a large enough number to allow for adequate representation of the predicted distribution. 
The inputs and outputs for training are stacked about a repeated intermediary axis. The training samples are 
identical about k, but are unique about n. The new input and output shapes—necessary for proper training—are 
n × k × ninp and n × k × nout, respectively. In each training batch, the mean and standard deviation are taken with 
respect to the intermediate axis, and the NLPD loss can be computed.

Direct probability distribution prediction. Another way to represent uncertainty is to directly predict the mean 
and standard deviation. The mean square error loss function cannot be used here as there are no labels for the 
standard deviation. However, Nix and Weigend used a neural network to directly predict the mean and variance 
of a toy dataset using the NLPD loss  function66. We implement this technique for the datasets presented. To 
accomplish this, we create a custom output layer with 2nout neurons. The first nout neurons represent the mean 
prediction and have a linear activation function. The last nout neurons represent the standard deviation and use 
the softplus activation function. The softplus function and its derivative—the sigmoid function—are shown in 
Eq. (7).

The desired qualities of the standard deviation output are: (1) always positive and (2) having no upper bound. 
The initial choice was the absolute value function. However, the resulting models had erratic loss values, and it 
was difficult to obtain a good model. The softplus function is (1) always positive, (2) has no upper bound, (3) is 
monotonically increasing, and (4) is differentiable across all inputs. This resulted in stable training losses and 
better models.

Metrics. To compare the predictive capability of the models developed, we look at the mean absolute error 
across the training, validation, and test sets. The errors across different space weather conditions will be inves-
tigated as well. We also test the reliability of the uncertainty estimates both qualitatively and quantitatively. The 
calibration error score is given as

where m is the number of prediction intervals (PIs) of interest. Here the PIs range from 5 to 95% with 5% incre-
ments in addition to 99%—[0.05, 0.10, 0.15, ... , 0.90, 0.95, 0.99]. p(ẑi,j) is the observed cumulative probability 
obtained by dividing the number of true samples within the prediction interval by the total number of samples. 
Equation (8) is the miscalibration of prediction intervals averaged over each output and prediction interval 
tested. For this work, it provides the average deviation from all 20 PIs for each model output. We can visualize 
the reliability of the uncertainty estimates by plotting the calibration curve—p(ẑ) vs p(z).

Toy problems
To visualize the way the NLPD loss function influences training, we train models for two toy problems. Each 
problem is a function, y(x), with additive Gaussian noise having zero-mean and a functional form to the standard 
deviation. These functions are displayed in Table 2. The results for Problem 1 is shown in Fig. 3.

Figure 3 shows that the model is able to adequately predict the function and is able to predict the overall 
probability distribution. The interesting aspect of the figure is panel (d): the model is able to predict the standard 

(7)f (x) = ln(1+ ex) f ′(x) =
ex

1+ ex

(8)Calibration Error =
100%

m · nout

nout∑

i=1

m∑

j=1

∣∣∣p(zi,j)− p(ẑi,j)
∣∣∣

Table 2.  Functions for the two toy problems with the right column being the functional form of the Gaussian 
noise.

Function σ

Problem 1 0.3x + cos(0.5x)− 4+N (0, σ) 0.5 esin(0.2x)

1+esin(0.8x)

Problem 2 sin(2x + cos(3x))+N (0, σ) 0.05sin(0.2x)
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deviation without a label. Meanwhile, this is fairly trivial data. Figure 4 shows the predictions and calibration 
curve for the more complex Problem 2.

For the more complex data, the model is not as accurate overall x. When x < 6 , the model can accurately 
predict the mean and standard deviation. When x > 6, the standard deviation prediction no longer represents 
uncertainty in the data but the model’s uncertainty in its prediction. For this portion of panel (b), the mean pre-
diction deviates from the true mean of the data and the standard deviation in panel (d) consequently increases. 
Panel (c) shows that the model is still well-calibrated and representing both uncertainty in the data and uncer-
tainty in the model’s predictions.

The NLPD loss function does not ensure model calibration. However, we show that it can be used—if properly 
tested—in model development to represent uncertainty in the data and uncertainty in the model’s predictions. 
Note: these models were trained on the entire dataset, and this is purely for demonstration. The thermospheric 
density models are developed with separate validation and independent test sets.

HASDM model
Using the best tuner models for MC dropout and direct probability distribution prediction, we assess the error 
and calibration statistics. Table 3 shows the mean absolute error and calibration error score for both techniques 
across the training, validation, and test sets.

It is evident that the performance using both methods is very similar. Across all three sets, the mean absolute 
error and calibration error score do not deviate by more than 0.8% and 1.4% respectively. The MC dropout model 
has better performance on the independent test set in terms of calibration. This is a desired quality as the test 
data is not used for model development in any way. As the calibration error scores are composites of the scores 
for each output, the calibration curves are shown in Fig. 5 for a qualitative assessment.

Both techniques lead to slightly overestimated uncertainties on the training set for multiple outputs. Mean-
while, the remaining outputs are almost perfectly calibrated. On the validation set, each model has outputs with 
overestimated and underestimated uncertainties. Again, most of the outputs are very well-calibrated which is 
affirmed by the calibration error scores. For the test set, the direct probability prediction model tends to mar-
ginally underestimate the uncertainty while the MC dropout model provides reliable uncertainty estimates on 
virtually all model outputs. Table 4 shows the mean absolute error for both models across an array of solar and 
geomagnetic conditions. The entire dataset is used for this analysis as there are not enough samples in each bin 
using only the test set.

Figure 3.  Mean prediction with 2σ bounds plotted on data (a), clean function plotted with mean prediction (b), 
calibration curve (c), and predicted standard deviation on true standard deviation function (d) for Problem 1.
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These errors tend to reiterate the results from Table 3. The direct probability model was more accurate on all 
three sets, and Table 4 shows that it is also more accurate across all 20 conditions considered. For a majority of 
the conditions, the difference is small ( < 1%). However, the high ap conditions show that the direct probability 
model makes considerable improvements. These error reductions from MC dropout range from 1.6 to 4.1%.

To further assess the uncertainty capabilities of the models, we attempt to visualize the calibration in the 
full-state (global density grids) to identify any spatial dependence in the reliability of the uncertainty estimates. 
First, the models are evaluated on the entire test set and the density mean and standard deviations are extracted. 
Using these statistics, the observed cumulative probability with a 90% prediction interval is computed for each 
spatial location. The resulting 24× 19× 27 array is used to determine how well calibrated the model is on 
independent data as a function of location. We show seven maps for each model (200, 300, ... , 800 km) in Fig. 6. 
Even though HASDM has a lateral spatial resolution of 24 longitude and 19 latitude segments, we interpolate 
the results to the polyhedral grid used in the EXTEMPLAR model for visualization purposes. This is done in 
the remainder of the manuscript.

Figure 4.  Mean prediction with 2σ bounds plotted on data (a), clean function plotted with mean prediction (b), 
calibration curve (c), and predicted standard deviation on true standard deviation function (d) for Problem 2.

Table 3.  HASDM modeling results using MC dropout and direct probability prediction. Error refers to mean 
absolute error, and calibration is computed using Eq. (8). Bold values represent the lowest error between 
methods.

Metric Set MC dropout (%) Direct probability (%)

Error

Training 9.07 8.55

Validation 10.69 9.91

Test 10.69 10.60

Calibration

Training 3.06 1.74

Validation 2.51 2.45

Test 1.76 2.81
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For reference, perfect calibration in Fig. 6 would be uniform green maps at all altitudes. This would convey 
that with a 90% prediction interval, the model’s predictions/uncertainty estimates contain 90% of true samples 
at all locations. While this is not the case, the results are still insightful. At 200 km, both models are underesti-
mating the uncertainty by 10–15%. This could be a result of the relative variability as a function of altitude in 
the SET HASDM density database. The general trend of relative variability is that it increases with altitude, so 
the models may underpredict the standard deviation at low altitudes as a result, which indicates that the model 
has a false sense of confidence in that region. Both models have an average cumulative probability within 5% of 
the expected value at most of the altitudes shown in Fig. 6 with the best results at 600 km. At 700 and 800 km, 
both models begin to overestimate uncertainty, likely because they have the lowest confidence at those altitudes. 
An interesting outcome of this study is the lateral variability of the cumulative probability between the models. 
The MC dropout model (left) has more lateral variability, meaning the cumulative probability changes more as 
a function of longitude and latitude.

Figure 5.  The left and right columns show the MC dropout and direct probability calibration curves, 
respectively. The top, middle, and bottom rows are the calibration curves for the training, validation, and test 
sets, respectively.
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CHAMP model
After running tuners for both uncertainty techniques, we trained the best models on the entire training set. The 
models were chosen based on the lowest prediction error and best calibration scores on the validation set. Table 5 
shows the mean absolute error and calibration error scores on the three sets.

Both models are well-generalized in terms of prediction accuracy. The range in error between sets for the 
MC dropout and direct probability model is 0.54% and 0.23%, respectively. Both models have higher calibration 

Table 4.  Mean absolute error across global grid for HASDM-ML as a function of space weather conditions.

F10 ≤ 75 75 < F10 ≤ 150 150 < F10 ≤ 190 F10 > 190 All F10
MC dropout

ap ≤ 10 8.96% 9.78% 9.97% 9.14% 9.50%

10 < ap ≤ 50 9.76% 10.05% 10.87% 9.90% 10.09%

ap > 50 15.35% 12.86% 13.23% 12.55% 13.01%

All ap 9.12% 9.92% 10.36% 9.55% 9.71%

Direct probability

ap ≤ 10 8.64% 9.33% 9.35% 9.11% 9.10%

10 < ap ≤ 50 9.18% 9.51% 9.69% 9.64% 9.48%

ap > 50 11.14% 11.23% 11.34% 10.30% 11.11%

All ap 8.74% 9.42% 9.52% 9.34% 9.23%

Figure 6.  Observed cumulative probability maps for a 90% prediction interval using the MC dropout (left) 
and direct probability (right) models. The average observed cumulative probability is shown for each altitude in 
parenthesis.
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error scores on the training set but have similar scores on the validation and test sets. The two techniques provide 
similar results with the only notable difference is the 1.91% higher calibration error score for the direct probability 
model on the training set. The calibration curves for both models are shown in Fig. 7.

Both models are well-calibrated on all three sets. There is a tendency for both models to slightly overestimate 
uncertainty on the training set which is more evident for the  direct probability model. The differences between 
the calibration curves and the perfectly calibrated reference line (in black) is shown in panels (c) and (d). Panel 
(d) highlights the overestimation of uncertainty for the direct probability model on the training set. However, it 
never deviates by more than 9%. Both models tend to underestimate uncertainty on the validation and test set 
for the larger prediction intervals. Again, the deviation from perfect calibration is no more than 2% for any PI. 
Due to the intrinsic difference between the datasets that the CHAMP and HASDM models are developed from, 
the proceeding analyses will be different than those for the HASDM model.

Global modeling with local measurements. The CHAMP models were developed with in-situ meas-
urements, but we hypothesize that it should be able to learn the functional relationship of the combined inputs. 
Therefore, the model should be able to provide global outputs at any point in time. As a qualitative assessment, 

Table 5.  CHAMP modeling results using MC dropout and direct probability prediction. Error refers to mean 
absolute error, and calibration is computed using Eq. (8). Bold values represent the lowest error between 
methods.

Metric Set MC dropout (%) Direct probability (%)

Error

Training 13.13 12.59

Validation 13.67 12.82

Test 13.14 12.62

Calibration

Training 3.93 5.84

Validation 0.64 0.25

Test 0.22 0.37

Figure 7.  Calibration curves for the training, validation, and test sets using MC dropout (a) and direct 
probability prediction (b). (c) and (d) show the difference between the observed and expected cumulative 
probability using MC dropout and direct probability prediction, respectively.
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we show global maps at 400 km for the winter and summer solstices in Fig. 8 using the direct probability model. 
All proceeding global analyses will be performed using this model. For this test, the solar drivers are all set to 120 
sfu, SYM-H is set to 0 nT, both Poynting flux totals are set to 27GW, and the time is set to 00:00 UTC.

The diurnal structure is present in both panels with the peak density being in the southern hemisphere 
during the winter solstice and in the northern hemisphere during the summer solstice. This shows the model’s 
understanding on annual trends (Earth’s tilt). The general density level is higher during the winter solstice, but 
the relative variation between day and night are very similar. This is reaffirmed by the exospheric temperature dis-
tribution shown by Weimer et al.43 during the solstices. Additional global density maps at different altitudes can 
be found in Fig. S1 using baseline conditions. Furthermore, a global storm example is shown in Figs. S2 and S3.

Next, we look at the uncertainty levels for eight unique conditions of activity and time. These are all displayed 
in Table 6. Using these space weather and temporal inputs, the CHAMP model is evaluated at all 1620 polyhedral 
grid locations from 300 to 450 km in 1 km increments. The metric we use here is a normalized measure of model 
uncertainty: 100 · σ/µ , essentially providing the 1 − σ uncertainty as a percentage of the mean prediction. The 
resulting maps are averaged across each altitude to evaluate the model’s uncertainty for each condition as a func-
tion of altitude. Three aspects of model drivers are investigated: solar activity, geomagnetic activity, and temporal 
dependence. In Table 6, there are three solar activity levels, with all other drivers kept constant. There are also 
three geomagnetic cases: low and high geomagnetic activity with moderate solar activity, and high geomagnetic 
activity with high solar activity. We only look at two daily cases—00:00 and 12:00 UTC. We also look at the fall 
equinox, summer solstice, and winter solstice with moderate solar and low geomagnetic activity. The resulting 
altitude profiles are shown in Fig. 9.

Panel (a) in Fig. 9 shows that the CHAMP model has low uncertainty in its lower altitude predictions for 
solar minimum (or low solar activity) which drastically increases with altitude. The opposite can be said for solar 
maximum. The moderate solar activity case results in lowest uncertainties between 350 and 375 km and higher 
uncertainties above and below that range. This is all a result of CHAMP’s altitude from 2002 to 2010. It started 
around 460 km during solar maximum and ended at 300 km during solar minimum. Therefore, the model has 
confident predictions in the altitude range the satellite was located during the various phases of the solar cycle. 
If there was additional data from satellites at different altitudes over a longer time period, the model would likely 
be more confident over a larger altitude range.

Figure 8.  Global density map with moderate solar activity, low geomagnetic activity, the altitude fixed to 400 
km, and the time of day being 00:00 UTC for the winter solstice (a) and the summer solstice (b).

Table 6.  CHAMP model inputs to study various conditions as a function of altitude. a Solar 2 is also 
considered Geo 1, UTC 1, and doy 1.

Condition name

Solar drivers
Geomagnetic 
drivers

Temporal 
drivers

FMSY SYM-H SN =  SS UTC doy

Solar 1 75 0 27 0 262

Solar  2a 120 0 27 0 262

Solar 3 190 0 27 0 262

Geo 2 120 − 75 128 0 262

Geo 3 190 − 75 128 0 262

UTC 2 120 0 27 12 262

doy 2 120 0 27 0 172

doy 3 120 0 27 0 355
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In panel (b), we see the same general trends for Geo 1 and Geo 2, because they are evaluated using mod-
erate solar activity. However, it is evident that the increase in geomagnetic activity results in up to 5% more 
uncertainty. The Geo 3 case is similar to Solar 3 (high solar activity) but again has increased uncertainty due 
to the storm conditions it represents. Panel (c) indicates that there is a low impact from universal time on the 
model uncertainty. In Panel (d), the black line indicates the fall equinox which is similar to the winter solstice. 
The Winter solstice uncertainties deviate from the equinox uncertainties at the highest altitude range. While 
the overall shape remains consistent, there are highest uncertainties for the summer solstice at all altitudes. The 
overall takeaway form Fig. 9 is that the shape of the model uncertainty altitude profile is most strongly effected 
by the solar activity level while the day of year and geomagnetic activity tend to uniformly increase or decrease 
uncertainty. These profiles would all likely be impacted if the model was developed using additional satellite data.

Evaluation time comparison
We attempt to provide an equal comparison of the two methods in terms of computational complexity. To do so, 
each CHAMP model is evaluated on either 8640 samples (1 week) or 86,400 samples (10 weeks). For the direct 
probability prediction model, it sees each input once and provides the mean and standard deviation. These are 
used to sample a Gaussian distribution 1000 times to get probabilistic predictions for density over the given 
window.

For MC dropout, we cannot pass 1 week of inputs to the model stacked 1000 times (as is done for HASDM). 
There is not enough memory on an NVIDIA GeForce RTX 2080 Ti graphics processing unit (GPU)—11 GB—to 
perform this evaluation. Therefore, we pass the 100 repeated inputs in 10 chunks to obtain the 1000 predictions. 
When evaluating over 10 weeks, we must reduce to 10 repeated inputs in 100 chunks. In Table 7, we show the 
evaluation times on both GPU and CPU for both methods over the two durations. Note: when running MC 
dropout on CPU, we use 100 repeated inputs for both durations. The batch size for all predictions is  217 or 131,072. 
The size of the MC dropout and direct probability models are 233.3 kB and 21.9 MB, respectively.

The run times are unique to these specific models. The size of the models plays a role in run time, and the 
size of these models are a result of the tuner. The MC dropout model is approximately 100 times smaller, but the 
increase in required model prediction calls results in the significantly longer run times. The direct probability 

Figure 9.  Normalized uncertainty variations as a function of altitude for solar (a), geomagnetic (b), daily (c), 
and annual (d) cases. The drivers for each curve can be found in Table 6.
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method, for this particular problem, is anywhere from 3 to 30 times faster depending on the number of samples 
and whether the GPU or CPU is being used.

Discussion
In this work, we leverage the NLPD loss function to develop thermospheric density models using (1) MC dropout 
and (2) direct probability prediction. These two uncertainty techniques were used to create both a model based in 
the PCA coefficients of the SET HASDM density database and a model based in localized accelerometer-derived 
density estimates from CHAMP. Using two toy problems, we showed that the NLPD loss function can be used to 
create a ML model with calibrated uncertainty estimates relative to uncertainty in the model, uncertainty in the 
data, or both. For the HASDM database, the MC dropout and direct probability distribution prediction models 
had similar metrics in terms of error and calibration. Furthermore, the calibration curves for the PCA coefficients 
were nearly identical. By looking at the density calibration of both HASDM models, we found that they were well-
calibrated at mid-altitudes, and there was more lateral variability in the calibration of the MC dropout model.

The CHAMP models also had similar performance and were both well-generalized. We test the CHAMP 
model’s global prediction capabilities by generating baseline maps during the winter and summer solstices to 
ensure physical global trends are being captured by the CHAMP model. This showed that the model was able to 
emulate the effect of Earth’s tilt. We also performed global evaluations for eight unique conditions to determine 
the altitude dependence of model uncertainty. The altitude profiles showed that the minimum and maximum 
1 − σ uncertainties were 10–28% of the mean predictions, respectively. Solar activity was most influential in 
determining the profiles’ shapes while geomagnetic activity and day of year tended to provide uniform changes 
in the uncertainty. In general, the MC dropout and direct probability methods were shown to have similar per-
formance for thermospheric density modeling applications. However, there are pros and cons for both methods, 
and careful consideration is required when deciding on a UQ method for space weather models. These are 
highlighted in Table 8.

The main disadvantage for the direct probability method is the requirement to sample from a Gaussian dis-
tribution to get probabilistic density variations. The drawback to MC dropout is its higher computational cost. 
In terms of density modeling, both techniques have prompt evaluation times. Relative to one another, we show 
that the direct probability models can be evaluated much faster. The size of the training data (in both number 
of samples and dimensionality) is also important to consider. With MC dropout, GPU memory can constrain 
modeling efforts if the dataset is too large. It can also require additional steps for prediction. In this work, MC 
dropout did not inhibit model development for the smaller HASDM PCA data. However, it did add numerous 
considerations when developing and evaluating the CHAMP model. In general, the uncertainty estimation 
capabilities may be improved through modifications to the loss function to either: (a) add higher order moments 
or (b) obtain non-Gaussian estimates.

All the preceding results show that for thermospheric density applications, these two techniques can be used 
to obtain an accurate model with reliable uncertainty estimates. There are other methods that can be used in 
space weather application such as GP regression and ensemble modeling, but this is a sufficient starting point. 
Other final considerations concern orthogonality and applicability. For a multi output regression model (e.g. 
HASDM models), the outputs must be orthogonal. This is to both prevent collinearity and since the use of NLPD 
requires uncorrelated outputs. The CHAMP data only spans an altitude range of 300–460 km. Any predictions 
outside of this range may be unreliable. To combat this, density estimates from other satellites can be added to 
increase the altitude coverage and provide the model with more data to learn from, as discussed in “Satellite 
accelerometer density estimates”.

Table 7.  Run time to obtain 1000 probabilistic predictions from each model using GPU and CPU in seconds.

Method Samples GPU run time CPU run time

MC dropout
8640 2.11 13.65

86,400 18.29 127.79

Direct probability
8640 0.58 0.52

86,400 3.93 3.93

Table 8.  Pros and cons for MC dropout and direct probability distribution prediction.

Method Pros Cons

MC dropout No need to sample from a Gaussian distribution
Longer evaluation times

Not compatible with large datasets

Direct probability
Only need single evaluation Required sampling from a Gaussian distribution to obtain proba-

bilistic predictionsComputationally efficient
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Data availibility
Requests can be submitted for access to the SET HASDM density database at https:// space wx. com/ hasdm/ and 
all reasonable requests for scientific research will be accepted as explained in the rules of road document on the 
website. The historical space weather indices used in this study can also be found at https:// space wx. com/ jb2008/ 
in the SOLFSMY.TXT, SOLRESAP.TXT, and DSTFILE.TXT files for the solar indices, ap, and Dst, respectively. 
Free and one-time only registration is required to access these files. The forecasting capabilities for the solar 
drivers has been recently  benchmarked67. SYM-H data was obtained from http:// wdc. kugi. kyoto-u. ac. jp/ aeasy/ 
index. html thanks to the World Data Center for Geomagnetism in Kyoto. CHAMP density estimates from Mehta 
et al.29 can be found at http:// tinyu rl. com/ densi tysets.
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