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Abstract. The Semantic Web has attracted much attention, both from academia
and industry. An important role in research towards the Semantic Web is played
by formalisms and technologies for handling uncertainty and/or vagueness. In this
paper, I first provide some motivating examples for handling uncertainty and/or
vagueness in the Semantic Web. I then give an overview of some own formalisms
for handling uncertainty and/or vagueness in the Semantic Web.

1 Introduction

The Semantic Web [1,2,3,4] aims at an extension of the current Web by standards and
technologies that help machines to understand the information on the Web so that they
can support richer discovery, data integration, navigation, and automation of tasks. The
main ideas behind it are to add a machine-understandable “meaning” to Web pages,
to use ontologies for a precise definition of shared terms in Web resources, to use
KR technology for automated reasoning from Web resources, and to apply coopera-
tive agent technology for processing the information of the Web.

The Semantic Web is divided into several hierarchical layers (see Fig. 1), which
include in particular the Ontology, Rules, Logic, and Proof layers. In detail, the On-
tology layer, in the form of the OWL Web Ontology Language [5], consists of three
increasingly expressive sublanguages, namely, OWL Lite, OWL DL, and OWL Full.
OWL Lite and OWL DL are essentially very expressive description logics (DLs) with
an RDF syntax. As shown in [6], ontology entailment in OWL Lite (resp., OWL DL)
reduces to knowledge base (un)satisfiability in the description logic SHIF(D) (resp.,
SHOIN (D)). The DL SROIQ [7] is one of the most expressive DLs, which is under-
lying OWL 2 [8], a new version of OWL. Reasoning in SROIQ is computationally ex-
pensive, and several more tractable languages have been proposed in the Semantic Web
community. Among such languages, there are the DL-Lite family [9,10], EL++ [11],
and DLP [12], which are underlying the OWL 2 profiles QL, EL, and RL [13], respec-
tively. Beside and on top of the Ontology layer, there are sophisticated representation
and reasoning capabilities for the Rules, Logic, and Proof layers of the Semantic Web.

A key requirement of the layered architecture of the Semantic Web is in particular
to integrate the Rules and the Ontology layer. Here, it is crucial to allow for building
rules on top of ontologies, i.e., for rule-based systems that use vocabulary from onto-
logical knowledge bases. Another type of combination is to build ontologies on top of
rules, where ontological definitions are supplemented by rules or imported from rules.
Both types of integration have been realized in recent hybrid integrations of rules and
ontologies, called description logic programs (or dl-programs), which are of the form
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Fig. 1. Layered architecture of the Semantic Web.

KB =(L,P ), where L is a description logic knowledge base, and P is a finite set of
rules involving either queries to L in a loose integration (see, e.g., [14,15]) or concepts
and roles from L as unary resp. binary predicates in a tight integration (see, e.g., [16]).

However, classical ontology languages and description logics as well as formalisms
integrating rules and ontologies are less suitable in all those domains where the informa-
tion to be represented comes along with (quantitative) uncertainty and/or vagueness (or
imprecision). For this reason, during the recent years, handling uncertainty and vague-
ness has started to play an important role in research towards the Semantic Web. A re-
cent forum for approaches to uncertainty reasoning in the Semantic Web is the annual
International Workshop on Uncertainty Reasoning for the Semantic Web (URSW) at the
International Semantic Web Conference (ISWC). There has also been a W3C Incubator
Group on Uncertainty Reasoning for the World Wide Web. The research focuses espe-
cially on probabilistic and fuzzy extensions of description logics, ontology languages,
and formalisms integrating rules and ontologies. Note that probabilistic formalisms al-
low to encode ambiguous information, such as “John is a student with the probability
0.7 and a teacher with the probability 0.3” (roughly, John is either a teacher or a student,
but more likely a student), while fuzzy approaches allow to encode vague or imprecise
information, such as “John is tall with the degree of truth 0.7” (roughly, John is quite
tall). Formalisms for dealing with uncertainty and vagueness are especially applied in
ontology mapping, data integration, information retrieval, and database querying. For
example, some of the most prominent technologies for dealing with uncertainty are
probably the ranking algorithms standing behind Web search engines. Other impor-
tant applications are belief fusion and opinion pooling, recommendation systems, user
preference modeling, trust and reputation modeling, and shopping agents. Vagueness
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and imprecision also abound in multimedia information processing and retrieval, and
are an important aspect of natural language interfaces to the Web.

In this paper, I give an overview of some own recent extensions of description
logics and description logic programs by probabilistic uncertainty and fuzzy vague-
ness. The rest of this paper is organized as follows. Section 2 provides some mo-
tivating examples. In Section 3, I describe an approach to probabilistic description
logics for the Semantic Web. Sections 4 and 5 focus on approaches to probabilistic
and fuzzy description logic programs for the Semantic Web, respectively, while Sec-
tion 6 describes an approach to description logic programs for handling both uncer-
tainty and vagueness in a uniform framework for the Semantic Web. For a more detailed
overview of extensions of description logics for handling uncertainty and vagueness in
the Semantic Web, I also refer the reader to the survey [17].

2 Motivating Examples

We now provide some examples for the use of probabilistic ontologies and of proba-
bilistic and vague extensions of formalisms integrating rules and ontologies.

In order to illustrate probabilistic ontologies, consider some medical knowledge
about patients. In such knowledge, we often encounter terminological probabilistic and
terminological default knowledge about classes of individuals, as well as assertional
probabilistic knowledge about individuals. It is often advantageous to share such med-
ical knowledge between hospitals and/or medical centers, for example, to follow up
patients, to track medical history, for case studies research, and to get information on
rare diseases and/or rare cures to diseases. The need for sharing medical knowledge is
also at the core of the W3C Semantic Web Health Care and Life Sciences Interest Group,
who state that the “key to the success of Life Science Research and Health Care is the
implementation of new informatics models that will unite many forms of biological and
medical information across all institutions” (see http://www.w3.org/2001/sw/hcls/).

Example 2.1 (Medical Example [18]). Consider patient records related to cardiologi-
cal illnesses. We distinguish between heart patients (who have any kind of cardiological
illness), pacemaker patients, male pacemaker patients, and female pacemaker patients,
who all are associated with illnesses, illness statuses, symptoms of illnesses, and health
insurances. Furthermore, we have the patients Tom, John, and Mary, where Tom is a
heart patient, while John and Mary are male and female pacemaker patients, respec-
tively, and John has the symptoms arrhythmia (abnormal heart beat), chest pain, and
breathing difficulties, and the illness status advanced.

Then, terminological default knowledge is of the form “generally (or typically / in
nearly all cases), heart patients suffer from high blood pressure” and “generally, pace-
maker patients do not suffer from high blood pressure”, while terminological proba-
bilistic knowledge has the form “generally, pacemaker patients are male with a proba-
bility of at least 0.4” (i.e., “generally, a randomly chosen pacemaker patient is male
with a probability of at least 0.4”), “generally, heart patients have a private insur-
ance with a probability of at least 0.9”, and “generally, pacemaker patients have the
symptoms arrhythmia, chest pain, and breathing difficulties with probabilities of at



4 T. Lukasiewicz

least 0.98, 0.9, and 0.6, respectively”. Finally, assertional probabilistic knowledge is
of the form “Tom is a pacemaker patient with a probability of at least 0.8”, “Mary has
the symptom breathing difficulties with a probability of at least 0.6”, “Mary has the
symptom chest pain with a probability of at least 0.9”, and “Mary’s illness status is
final with a probability between 0.2 and 0.8”.

Uncertain medical knowledge may also be collected by a medical company from
own databases and public sources (e.g., client data, web pages, web inquiries, blogs,
and mailing lists) and be used in an advertising campaign for a new product.

Example 2.2 (Medical Example cont’d [18]). Suppose that a medical company wants
to carry out a targeted advertising campaign about a new pacemaker product. The com-
pany may then first collect all potential addressees of such a campaign (e.g., pharmacies,
hospitals, doctors, and heart patients) by probabilistic data integration from different
data and web sources (e.g., own databases with data of clients and their shopping his-
tories; and web listings of pharmacies, hospitals, and doctors along with their product
portfolio resp. fields of expertise). The result of this process is a collection of individu-
als with probabilistic memberships to a collection of concepts in a medical ontology as
the one above. The terminological probabilistic and terminological default knowledge
of this ontology can then be used to derive probabilistic concept memberships that are
relevant for a potential addressee of the advertising campaign. For example, for per-
sons that are known to be heart patients with certain probabilities, we may derive the
probabilities with which they are also pacemaker patients.

The next example illustrates the use of probabilistic ontologies in information re-
trieval for an increased recall (which has especially been explored in [19,20]).

Example 2.3 (Literature Search [18]). Suppose that we want to obtain a list of research
papers in the area of “logic programming”. Then, we should not only collect those pa-
pers that are classified as “logic programming” papers, but we should also search for
papers in closely related areas, such as “rule-based systems” or “deductive databases”,
as well as in more general areas, such as “knowledge representation and reasoning” or
“artificial intelligence” (since a paper may very well belong to the area of “logic pro-
gramming”, but is classified only with a closely related or a more general area). This
expansion of the search can be done automatically using a probabilistic ontology, which
has the papers as individuals, the areas as concepts, and the explicit paper classifications
as concept memberships. The probabilistic degrees of overlap between the concepts in
such a probabilistic ontology then provide a means of deriving a probabilistic member-
ship to the concept “logic programming” and so a probabilistic estimation for the rele-
vance to our search query.

We finally describe a shopping agent example, where we encounter both probabilis-
tic uncertainty (in resource selection, ontology mapping / query transformation, and data
integration) and fuzzy vagueness (in query matching with vague concepts).

Example 2.4 (Shopping Agent [44,45]). Suppose a person would like to buy “a sports
car that costs at most about 22 000 C and that has a power of around 150 HP”.
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In todays Web, the buyer has to manually (i) search for car selling sites, e.g., using
Google, (ii) select the most promising sites (e.g., http://www.autos.com), (iii) browse
through them, query them to see the cars that they sell, and match the cars with our
requirements, (iv) select the offers in each web site that match our requirements, and
(v) eventually merge all the best offers from each site and select the best ones.

It is obvious that the whole process is rather tedious and time consuming, since, e.g.,
(i) the buyer has to visit many sites, (ii) the browsing in each site is very time consuming,
(iii) finding the right information in a site (which has to match the requirements) is not
simple, and (iv) the way of browsing and querying may differ from site to site.

A shopping agent may now support us as follows, automatizing the whole selection
process once it receives the request / query q from the buyer:

– Probabilistic Resource Selection. The agent selects some sites / resources S that it
considers as promising for the buyer’s request. The agent has to select a subset of
some relevant resources, since it is not reasonable to assume that it will access and
query all the resources known to him. The relevance of a resource S to a query is
usually (automatically) estimated as the probability Pr(q|S) (the probability that
the information need represented by the query q is satisfied by the searching re-
source S; see, e.g., [21,22]). It is not difficult to see that such probabilities can be
represented by probabilistic rules.

– Probabilistic Ontology Mapping / Query Reformulation. For the top-k selected
sites, the agent has to reformulate the buyer’s query using the terminology / onto-
logy of the specific car selling site. For this task, the agent relies on so-called trans-
formation rules, which say how to translate a concept or property of the agent’s
ontology into the ontology of the information resource (which is called ontology
mapping in the Semantic Web). To relate a concept B of the buyer’s ontology to
a concept S of the seller’s ontology, one often automatically estimates the proba-
bility P (B|S) that an instance of S is also an instance of B, which can then be
represented as a probabilistic rule [23,24].

– Vague Query Matching. Once the agent has translated the buyer’s request for the
specific site’s terminology, the agent submits the query. But the buyer’s request
often contains many so-called vague / fuzzy concepts such as “the price is around
22 000 C or less”, rather than strict conditions, and thus a car may match the buyer’s
condition to a degree. As a consequence, a site / resource / web service may return
a ranked list of cars, where the ranks depend on the degrees to which the sold items
match the buyer’s requests q.

– Probabilistic Data Integration. Eventually, the agent has to combine the ranked lists
by considering the involved matching (or truth) degrees (vagueness) and probability
degrees (uncertainty) and show the top-n items to the buyer.

3 Probabilistic Description Logics

In this section, we briefly describe the probabilistic description logic P-SHOIN (D),
which is a probabilistic generalization of the description logic SHOIN (D) (behind
OWL DL), directed towards sophisticated formalisms for reasoning under probabilistic
uncertainty in the Semantic Web [18]. Closely related probabilistic generalizations of
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the DL-Lite family of tractable description logics (which lies between the Semantic Web
languages RDFS and OWL Lite) and the description logics SHIF(D) and SHOQ(D)
(which stand behind OWL Lite and DAML+OIL, respectively) have been introduced
in [18,25]. A closely related paper [26] combines DL-Lite with Bayesian networks.

Probabilistic description logics allow for representing probabilistic ontologies and
for reasoning about them. There is a plethora of applications with an urgent need for
handling probabilistic knowledge in ontologies, especially in areas like medicine, biol-
ogy, defense, and astronomy. Moreover, probabilistic ontologies allow for quantifying
the degrees of overlap between the ontological concepts in the Semantic Web, reason-
ing about them, and using them in Semantic Web applications and systems, such as
information retrieval, personalization tasks, and recommender systems. Furthermore,
probabilistic ontologies can be used to align the concepts of different ontologies (called
ontology mapping) and for handling inconsistencies in Semantic Web data.

The syntax of P-SHOIN (D) uses the notion of a conditional constraint from
[27] to express probabilistic knowledge in addition to the axioms of SHOIN (D).
Its semantics is based on the notion of lexicographic entailment in probabilistic de-
fault reasoning [28,29], which is a probabilistic generalization of the sophisticated no-
tion of lexicographic entailment by Lehmann [30] in default reasoning from conditional
knowledge bases. Due to this semantics, P-SHOIN (D) allows for expressing both
terminological probabilistic knowledge about concepts and roles, and also assertional
probabilistic knowledge about instances of concepts and roles. It naturally interprets
terminological and assertional probabilistic knowledge as statistical knowledge about
concepts and roles, and as degrees of belief about instances of concepts and roles, re-
spectively, and allows for deriving both statistical knowledge and degrees of belief. As
an important additional feature, it also allows for expressing default knowledge about
concepts (as a special case of terminological probabilistic knowledge), which is seman-
tically interpreted as in Lehmann’s lexicographic default entailment [30].

Example 3.1. Suppose a classical description logic knowledge base T is used to en-
code knowledge about cars and their properties (e.g., that sports cars and roadsters are
cars). A probabilistic knowledge base KB =(T, P, (Po)o∈IP ) in P-SHOIN (D) then
extends T by terminological default and terminological probabilistic knowledge in P
as well as by assertional probabilistic knowledge in Po for certain objects o ∈ IP . For
example, the terminological default knowledge (1) “generally, cars do not have a red
color” and (2) “generally, sports cars have a red color”, and the terminological proba-
bilistic knowledge (3) “cars have four wheels with a probability of at least 0.9”, can be
expressed by the following conditional constraints in P :

(1) (¬∃HasColor.{red} |Car)[1, 1],
(2) (∃HasColor.{red} | SportsCar)[1, 1],
(3) (HasFourWheels |Car)[0.9, 1] .

Suppose we want to encode some probabilistic information about John’s car (which
we have not seen so far). Then, the set of probabilistic individuals IP contains the
individual John’s car, and the assertional probabilistic knowledge (4) “John’s car is a
sports car with a probability of at least 0.8” (we know that John likes sports cars) can
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be expressed by the following conditional constraint in PJohn’s car:

(4) (SportsCar | >)[0.8, 1] .

Then, the following are some (terminological default and terminological probabilistic)
tight lexicographic consequences of PT =(T, P ):

(¬∃HasColor.{red} |Car)[1, 1],
(∃HasColor.{red} | SportsCar)[1, 1],
(HasFourWheels |Car)[0.9, 1],
(¬∃HasColor.{red} |Roadster)[1, 1],
(HasFourWheels | SportsCar)[0.9, 1],
(HasFourWheels |Roadster)[0.9, 1] .

Hence, in addition to the sentences (1) to (3) directly encoded in P , we also conclude
“generally, roadsters do not have a red color”, “sports cars have four wheels with a
probability of at least 0.9”, and “roadsters have four wheels with a probability of at
least 0.9”. Observe here that the default property of not having a red color and the
probabilistic property of having four wheels with a probability of at least 0.9 are in-
herited from cars down to roadsters. Roughly, the tight lexicographic consequences
of PT =(T, P ) are given by all those conditional constraints that (a) are either in P ,
or (b) can be constructed by inheritance along subconcept relationships from the ones
in P and are not overridden by more specific pieces of knowledge in P .

The following conditional constraints for the probabilistic individual John’s car are
some (assertional probabilistic) tight lexicographic consequences of KB , which infor-
mally say that John’s car is a sports car, has a red color, and has four wheels with
probabilities of at least 0.8, 0.8, and 0.72, respectively:

(SportsCar | >)[0.8, 1],
(∃HasColor.{red} |>)[0.8, 1],
(HasFourWheels | >)[0.72, 1] .

4 Probabilistic Description Logic Programs

We now summarize the main ideas behind loosely and tightly coupled probabilistic dl-
programs, introduced in [31,32,33,34] and [35,36,37,38,39], respectively. For further
details on the syntax and semantics of these programs, their background, and their se-
mantic and computational properties, we refer to the above works.

Loosely coupled probabilistic dl-programs [31,32,33] are a combination of loosely
coupled dl-programs under the answer set and the well-founded semantics with proba-
bilistic uncertainty as in Bayesian networks. Roughly, they consist of a loosely coupled
dl-program (L,P ) under different “total choices” B (they are the full joint instantia-
tions of a set of random variables, and they serve as pairwise exclusive and exhaustive
possible worlds), and a probability distribution µ over the set of total choices B. One
then obtains a probability distribution over Herbrand models, since every total choiceB
along with the loosely coupled dl-program produces a set of Herbrand models of which
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the probabilities sum up to µ(B). As in the classical case, the answer set semantics of
loosely coupled probabilistic dl-programs is a refinement of the well-founded semantics
of loosely coupled probabilistic dl-programs. Consistency checking and tight query pro-
cessing (i.e., computing the entailed tight interval for the probability of a conditional or
unconditional event) in such probabilistic dl-programs under the answer set semantics
can be reduced to consistency checking and query processing in loosely coupled dl-
programs under the answer set semantics, while tight query processing under the well-
founded semantics can be done in an anytime fashion by reduction to loosely coupled
dl-programs under the well-founded semantics. For suitably restricted description logic
components, the latter can be done in polynomial time in the data complexity. Query
processing for stratified loosely coupled probabilistic dl-programs can be reduced to
computing the canonical model of stratified loosely coupled dl-programs. Loosely cou-
pled probabilistic dl-programs can especially be used for (database-oriented) proba-
bilistic data integration in the Semantic Web, where probabilistic uncertainty is used
to handle inconsistencies between different data sources [34].

Example 4.1. A university database may use a loosely coupled dl-program (L,P ) to
encode ontological and rule-based knowledge about students and exams. A probabilis-
tic dl-program KB =(L,P ′, C, µ) then additionally allows for encoding probabilis-
tic knowledge. For example, the following two probabilistic rules in P ′ along with a
probability distribution on a set of random variables may express that if two master
(resp., bachelor) students have given the same exam, then there is a probability of 0.9
(resp., 0.7) that they are friends:

friends(X,Y ) ← given same exam(X,Y ),DL[master student(X)],

DL[master student(Y )], choicem ;

friends(X,Y ) ← given same exam(X,Y ),DL[bachelor student(X)],

DL[bachelor student(Y )], choiceb .

Here, we assume the set C = {Vm, Vb} of value sets Vm = {choicem,not choicem}
and Vb = {choiceb,not choiceb} of two random variablesXm resp.Xb and the proba-
bility distribution µ on all their joint instantiations, given by µ : choicem,not choicem,
choiceb,not choiceb 7→ 0.9, 0.1, 0.7, 0.3 under probabilistic independence. For exam-
ple, the joint instantiation choicem, choiceb is associated with the probability 0.9 ×
0.7 = 0.63. Asking about the entailed tight interval for the probability that john and bill
are friends can then be expressed by a probabilistic query ∃(friends(john, bill))[R,S],
whose answer depends on the available concrete knowledge about john and bill (name-
ly, whether they have given the same exams, and are both master or bachelor students).

Tightly coupled probabilistic dl-programs [35,36] are a tight combination of dis-
junctive logic programs under the answer set semantics with description logics and
Bayesian probabilities. They are a logic-based representation formalism that naturally
fits into the landscape of Semantic Web languages. Tightly coupled probabilistic dl-
programs can especially be used for representing mappings between ontologies [37,38],
which are a common way of approaching the semantic heterogeneity problem on the Se-
mantic Web. Here, they allow in particular for resolving inconsistencies and for merging
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mappings from different matchers based on the level of confidence assigned to different
rules (see below). Furthermore, tightly coupled probabilistic description logic programs
also provide a natural integration of ontologies, action languages, and Bayesian prob-
abilities towards Web Services. Consistency checking and query processing in tightly
coupled probabilistic dl-programs can be reduced to consistency checking and cau-
tious/brave reasoning, respectively, in tightly coupled disjunctive dl-programs. Under
certain restrictions, these problems have a polynomial data complexity.

Example 4.2. The two correspondences between two ontologies O1 and O2 that (i) an
element of Collection in O1 is an element of Book in O2 with the probability 0.62,
and (ii) an element of Proceedings in O1 is an element of Proceedings in O2 with
the probability 0.73 (found by the matching system hmatch) can be expressed by the
following two probabilistic rules:

O2 : Book(X)← O1 : Collection(X) ∧ hmatch1;

O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2.

Here, we assume the set C= {{hmatchi,not hmatchi} | i ∈ {1, 2}} of values of two
random variables and the probability distribution µ on all joint instantiations of these
variables, given by µ : hmatch1,not hmatch1, hmatch2,not hmatch2 7→ 0.62, 0.38,
0.73, 0.27 under probabilistic independence.

Similarly, two other correspondences between O1 and O2 (found by the matching
system falcon) are expressed by the following two probabilistic rules:

O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1;

O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2,

where we assume the set C′= {{falconi,not falconi} | i∈{1, 2}} of values of two
random variables and the probability distribution µ′ on all joint instantiations of these
variables, given by µ′ : falcon1,not falcon1, falcon2,not falcon2 7→ 0.94, 0.06, 0.96,
0.04 under probabilistic independence.

Using the trust probabilities 0.55 and 0.45 for hmatch and falcon, respectively, for
resolving inconsistencies between rules, we can now define a merged mapping set that
consists of the following probabilistic rules:

O2 : Book(X)← O1 : Collection(X) ∧ hmatch1 ∧ sel hmatch1;

O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1 ∧ sel falcon1;

O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2;

O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2.

Here, we assume the set C′′ of values of random variables and the probability distri-
bution µ′′ on all joint instantiations of these variables, which are obtained from C ∪C′
and µ · µ′ (defined as (µ · µ′)(BB′)=µ(B) · µ′(B′), for all joint instantiations B of C
and B′ of C′), respectively, by adding the values {sel hmatch1, sel falcon1} of a new
random variable, with the probabilities sel hmatch1, sel falcon1 7→ 0.55, 0.45 under
probabilistic independence, for resolving the inconsistency between the first two rules.
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A companion approach to probabilistic description logic programs [39] combines
probabilistic logic programs, probabilistic default theories, and the description logics
behind OWL Lite and OWL DL. It is based on new notions of entailment for reasoning
with conditional constraints, which realize the principle of inheritance with overriding
for both classical and purely probabilistic knowledge. They are obtained by generaliz-
ing previous formalisms for probabilistic default reasoning with conditional constraints
(similarly as for P-SHOIN (D) in Section 3). In addition to dealing with probabilistic
knowledge, these notions of entailment thus also allow for handling default knowledge.

5 Fuzzy Description Logic Programs

We next briefly describe loosely and tightly coupled fuzzy dl-programs, which have
been introduced in [40,41] and [42,43], respectively, and extended by a top-k retrieval
technique in [46]. All these fuzzy dl-programs have natural special cases where query
processing can be done in polynomial time in the data complexity. For further details
on their syntax and semantics, background, and properties, we refer to the above works.

Towards dealing with vagueness and imprecision in the reasoning layers of the Se-
mantic Web, loosely coupled (normal) fuzzy dl-programs under the answer set seman-
tics [40,41] generalize normal dl-programs under the answer set semantics by fuzzy
vagueness and imprecision in both the description logic and the logic program compo-
nent. This is the first approach to fuzzy dl-programs that may contain default negations
in rule bodies. Query processing in such fuzzy dl-programs can be done by reduction to
normal dl-programs under the answer set semantics. In the special cases of positive and
stratified loosely coupled fuzzy dl-programs, the answer set semantics coincides with
a canonical least model and an iterative least model semantics, respectively, and has a
characterization in terms of a fixpoint and an iterative fixpoint semantics, respectively.

Example 5.1. Consider the fuzzy description logic knowledge base L of a car shopping
Web site, which defines especially (i) the fuzzy concepts of sports cars (SportsCar ), “at
most 22 000 C” (LeqAbout22000 ), and “around 150 horse power” (Around150HP ),
(ii) the attributes of the price and of the horse power of a car (hasInvoice resp. hasHP ),
and (iii) the properties of some concrete cars (such as a MazdaMX5Miata and a
MitsubishiES ). Then, a loosely coupled fuzzy dl-program KB =(L,P ) is given by the
set of fuzzy dl-rules P , which contains only the following fuzzy dl-rule encoding the
request of a buyer (asking for a sports car costing at most 22 000 C and having around
150 horse power), where ⊗ may be the conjunction strategy of, e.g., Gödel Logic (i.e.,
x⊗ y = min(x, y), for all x, y ∈ [0, 1], is used to evaluate ∧ and← on truth values):

query(x)←⊗ DL[SportsCar ](x) ∧⊗ DL[∃hasInvoice.LeqAbout22000 ](x)∧⊗
DL[∃hasHP .Around150HP ](x) > 1 .

The above fuzzy dl-program KB =(L,P ) is positive (i.e., without default negation),
and has a minimal model MKB , which defines the degree to which some concrete cars
in the description logic knowledge base L match the buyer’s request, for example,

MKB (query(MazdaMX5Miata)) = 0.36 , MKB (query(MitsubishiES )) = 0.32 .
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That is, the car MazdaMX5Miata is ranked top with the degree 0.36, while the car
MitsubishiES is ranked second with the degree 0.32.

Tightly coupled fuzzy dl-programs under the answer set semantics [42,43] are a
tight integration of fuzzy disjunctive logic programs under the answer set semantics
with fuzzy description logics. They are also a generalization of tightly coupled disjunc-
tive dl-programs by fuzzy vagueness in both the description logic and the logic program
component. This is the first approach to fuzzy dl-programs that may contain disjunc-
tions in rule heads. Query processing in such programs can essentially be done by a
reduction to tightly coupled disjunctive dl-programs. A closely related work [46] ex-
plores the evaluation of ranked top-k queries. It shows in particular how to compute the
top-k answers in data-complexity tractable tightly coupled fuzzy dl-programs.

Example 5.2. A tightly coupled fuzzy dl-program KB =(L,P ) is given by a suitable
fuzzy description logic knowledge base L and the set of fuzzy rules P , which contains
only the following fuzzy rule (where x⊗ y = min(x, y)):

query(x)←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower(x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) > 1 .

Informally, query collects all sports cars, and ranks them according to whether they cost
at most around 22 000 C and have around 150 HP. Another fuzzy rule involving also a
negation in its body and a disjunction in its head is given as follows (where	x=1−x
and x⊕ y = max(x, y)):

Small(x)∨⊕Old(x)←⊗ Car(x) ∧⊗ hasInvoice(x, y)∧⊗
not	GeqAbout15000 (y) > 0.7 .

This rule says that a car costing at most around 15 000 C is either small or old. Notice
here that Small and Old may be two concepts in the fuzzy description logic knowledge
base L. That is, the tightly coupled approach to fuzzy dl-programs under the answer
set semantics also allows for using the rules in P to express relationships between the
concepts and roles in L. This is not possible in the loosely coupled approach to fuzzy
dl-programs under the answer set semantics in [40,41], since the dl-queries there can
only occur in rule bodies, but not in rule heads.

6 Probabilistic Fuzzy Description Logic Programs

We finally describe (loosely coupled) probabilistic fuzzy dl-programs [44,45], which
combine fuzzy description logics, fuzzy logic programs (with stratified default-nega-
tion), and probabilistic uncertainty in a uniform framework for the Semantic Web. Intu-
itively, they allow for defining several rankings on ground atoms using fuzzy vagueness,
and then for merging these rankings using probabilistic uncertainty (by associating with
each ranking a probabilistic weight and building the weighted sum of all rankings).
Such programs also give rise to important concepts dealing with both probabilistic un-
certainty and fuzzy vagueness, such as the expected truth value of a crisp sentence
and the probability of a vague sentence. Probabilistic fuzzy dl-programs can be used to
model a shopping agent as described in Example 2.4.
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Example 6.1. A (loosely coupled) probabilistic fuzzy dl-program is given by a suitable
fuzzy description logic knowledge base L and the following set of fuzzy dl-rules P ,
modeling some query reformulation / retrieval steps using ontology mapping rules:

query(x)←⊗ SportyCar(x) ∧⊗ hasPrice(x, y1) ∧⊗ hasPower(x, y2) ∧⊗
DL[LeqAbout22000 ](y1) ∧⊗ DL[Around150HP ](y2) > 1 , (1)

SportyCar(x)←⊗ DL[SportsCar ](x) ∧⊗ scpos > 0.9 , (2)
hasPrice(x, y)←⊗ DL[hasInvoice](x, y) ∧⊗ hipos > 0.8 , (3)
hasPower(x, y)←⊗ DL[hasHP ](x, y) ∧⊗ hhppos > 0.8 , (4)

where we assume the set C = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}}
of values of random variables and the probability distribution µ on all joint instan-
tiations of these variables, given by µ : scpos, scneg, hipos, hineg, hhppos, hhpneg 7→
0.91, 0.09, 0.78, 0.22, 0.83, 0.17 under probabilistic independence. Here, rule (1) is the
buyer’s request, but in a “different” terminology than the one of the car selling site.
Rules (2)–(4) are so-called ontology alignment mapping rules. For example, rule (2)
states that the predicate “SportyCar” of the buyer’s terminology refers to the concept
“SportsCar” of the selected site with probability 0.91.

The following are some tight consequences of the above probabilistic fuzzy dl-pro-
gram (where for ground atoms q, we use (E[q])[L,U ] to denote that the expected truth
value of q lies in the interval [L,U ]):

(E[query(MazdaMX5Miata)])[0.21, 0.21], (E[query(MitsubishiES )])[0.19, 0.19] .

That is, the car MazdaMX5Miata is ranked first with the degree 0.21, while the car
MitsubishiES is ranked second with the degree 0.19.
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