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ABSTRACT 12 

 We introduce a joint geophysical inversion workflow that aims to improve subsurface 13 

imaging and decrease uncertainty by integrating petrophysical constraints and geological data. 14 

In this framework, probabilistic geological modeling is used as a source of information to 15 

condition the petrophysical constraints spatially and to derive starting models. The workflow 16 

then utilizes petrophysical measurements to constrain the values retrieved by geophysical joint 17 

inversion. The different sources of constraints are integrated into a least-square framework to 18 

capture and integrate information related to geophysical, petrophysical and geological data. 19 

This allows us to quantify the posterior state of knowledge and to calculate posterior statistical 20 

indicators. To test this workflow, using geological field data we have generated a set of 21 

geological models, which we used to derive a probabilistic geological model. In this synthetic 22 

case study, we show that the integration of geological information and petrophysical constraints 23 

in geophysical joint inver-sion can reduce uncertainty and improve imaging. In particular, the 24 

use of petrophysical constraints retrieves sharper boundaries and better reproduces the statistics 25 

of the observed petrophysical measurements. The integration of probabilistic geological 26 

modeling permits more accurate retrieval of model geometry, and better constrains the solution 27 
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while still satisfying the statistics derived from geological data. The analysis of statistical 28 

indicators at each step of the workflow shows that 1) the inversion methodology is effective 29 

when applied to complex geology, and 2) the integration of prior information and constraints 30 

from geology and petrophysics significantly improves the inversion results while decreasing 31 

uncertainty. Lastly, the analysis of uncertainty to the integration of the conditioned 32 

petrophysical constraints also shows that, for this example, the best results are obtained for 33 

joint inversion using petrophysical constraints spatially conditioned by geological modeling.  34 

 35 

INTRODUCTION 36 

Over the last 15 years, significant research efforts have been directed towards the 37 

integration and use of the complementarity between different geophysical datasets in 38 

geophysical exploration to better constrain the properties of the subsurface [see Gallardo and 39 

Meju (2011), Gyulai et al. (2013) and Moorkamp et al. (2016) for more information about the 40 

different joint inversion approaches in exploration geophysics]. The main interest of joint 41 

inversion is to use and combine the strengths of different geophysical techniques to reduce the 42 

effect of non-uniqueness and uncertainty with respect to single domain inversions (Vozoff and 43 

Jupp, 1975). One of the motivations for developing these techniques is that the exploration of 44 

natural resources is becoming increasingly challenging. Hydrocarbon discoveries are becoming 45 

rarer and smaller (Crooks, 2014), and economic mineral deposit discoveries also show a 46 

decreasing trend since the mid 90’s (Schodde, 2010) while deposits are found at increasing 47 

depths (Schodde, 2014). Geophysical joint inversion is one of the tools used to mitigate the 48 

risk of inaccurate interpretation of geophysical data in exploration scenarios (Rubin et al., 49 

2006). 50 
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The usual approach to performing geophysical joint inversion is to jointly invert 51 

datasets of two or more geophysical methods using selected constraints and links between the 52 

datasets that depend on the amount and type of prior knowledge. When minimum geological 53 

information is available, several authors enforce structural constraints between the models 54 

jointly inverted (Gallardo and Meju, 2003 and 2004, Gallardo et al., 2005, Linde et al., 2006, 55 

Gallardo, 2007, Colombo and de Stefano, 2007, Fregoso and Gallardo, 2009, Hu et al. , 2009, 56 

Abubakar et al., 2012, Lelièvre et al., 2012, Bouchedda et al., 2012, Moorkamp et al., 2011 and 57 

2013, Bennington et al., 2015, and Molodstov et al., 2013). Alternatively, when more external 58 

information is available, De Stefano et al. (2011) offer the possibility of linking multiple 59 

domains during joint inversion using either structural constraints or empirical petrophysical 60 

laws. When probabilistic geological or petrophysical data are available, several authors 61 

developed approaches involving statistical tools that account for prior information (Shamsipour 62 

et al., 2012, Reid et al., 2013, McCalman et al., 2014, Lane and Guillen, 2005, Bosch, 2004, 63 

Jardani et al., 2011, Mahardika et al., 2012, Roberts et al., 2016, Gloaguen et al., 2004). In a 64 

similar fashion, Chen et al. (2012) performs stochastic joint inversion to retrieve petrophysical 65 

properties.  66 

In the deterministic realm, Paasche and Tronicke (2007), Sun and Li (2012, 2013) and 67 

Lelièvre et al. (2012) use clustering approaches to constrain the values of inverted properties. 68 

Garofalo et al. (2015) use a physical relationship and impose similar layer geometry during 69 

joint inversion. Another strategy has been introduced and used by Hoversten et al. (2006), Gao 70 

et al. (2012b), Giraud et al. (2013), and Liang et al. (2016) who use constitutive equations 71 

linking petrophysical properties to physical properties to retrieve petrophysical properties. 72 

Alternatively, Dell’Aversana et al. (2011 and 2016), Miotti et al. (2015), Medina et al. (2015) 73 

and Miotti and Giraud (2015) estimate petrophysical relationships using well-log data before 74 
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running joint inversion to retrieve petrophysical properties (e.g., porosity, water saturation, and 75 

volume of shale).  76 

Successful case studies have shown the relevance of integrating different geophysical 77 

datasets in complex scenarios using some of the methodologies listed above (see for example 78 

Colombo and De Stefano, 2007; Gallardo et al., 2012; De Stefano et al., 2011; Reid et al. 2013 79 

and Medina et al., 2015). However, while geological measurements and orientation data can 80 

be used as constraints during inversion (Fullagar et al., 2008, Lelièvre and Oldenburg, 2009, 81 

and Scholl et al., 2016), less effort has been put on the quantitative integration of geostatistical 82 

modeling into geophysical joint inversion. Several studies show examples where different 83 

disciplines of geology and geophysics are integrated in a cooperative manner using expert 84 

knowledge (Jessell and Valenta, 1996, Betts et al., 2003, Lane et al., 2009, and more recently 85 

Mantovani et al., 2016 and Tschirhart et al., 2016). Quantitative integration of these two 86 

disciplines is an active, yet underexplored research area. Recent research works (Revil et al., 87 

2015, Zhou et al., 2016, Zhang and Revil, 2015,) illustrate the increase of interest from the 88 

community, and show that integration of multiple datasets is a way forward in tackling the 89 

limitations of current inversion methodologies.  90 

Recent advances in geostatistical modeling enable geologists to quantitatively generate 91 

more realistic geological models from surface and borehole data (Calcagno et al., 2008, Hillier 92 

et al., 2014, de la Varga and Wellmann 2016, Jessell et al., 2014). However, quantitative 93 

validation using geophysical and petrophysical data is necessary (Lindsay et al., 2013a, 2013b 94 

and 2014; Jessell et al. 2010, 2014). 95 

To mitigate the lack of quantitative integration between geology and geophysics, 96 

several authors developed geophysical inversion algorithms addressing the geometry of the 97 

inverted models. Fullagar and Pears (2007), Gallardo et al. (2005), Guillen et al. (2008), 98 

Wellmann et al. (2013) and Zhang and Revil (2015) developed geology-geophysics inversion 99 



5 

 

algorithms that allow the geometry of the geological structures to vary in order to honour 100 

geophysical data. Li et al. (2010), Davis et al. (2012), McMillan et al. (2015) and Balidemaj 101 

and Remis (2010) parameterize geology to include model geometry in inversion. To cope with 102 

the additional variables introduced by geological modeling, Doetsch et al. (2010) allow their 103 

algorithm to discretize the medium in layers. Similarly, Juhojuntti and Kamm (2015) introduce 104 

a layered joint inversion scheme. These layered schemes attempt to solve hydrogeological 105 

problems, and the investigated models do not have the same geological complexity encountered 106 

in hard rock scenarios. With this regard, Lelièvre et al. (2012, 2015) developed a more general 107 

method using a stochastic approach to invert for contact surface geometry.  108 

In joint inversion, the hypotheses underlying structure-based approaches (e.g. the 109 

curvature of the models as introduced by Haber and Oldenburg, 1997, or the cross-product of 110 

the gradients of the model as introduced by Gallardo and Meju, 2003), may exert little influence 111 

on the inversion depending on the geological setting of the area, in cases where gradients of 112 

the considered properties are not parallel. A possible strategy to complement joint inversion 113 

approaches relying on structural similarities is to link the different geophysical methods 114 

through constraints derived from non-geophysical field measurements. In this work, we 115 

propose such a methodology which we apply to a general case where some of the assumptions 116 

commonly made to link models in joint inversion are not valid across the entire model.  117 

As discussed above, the use of petrophysical laws can be used to link different domains 118 

in joint inversion and to avoid making hypotheses on the structural setting of the medium. 119 

However, accurate determination and upscaling of these laws to the entire model is challenging 120 

and sufficient prior information is necessary to determine and tune them. On the other hand, 121 

statistical petrophysical analysis is a powerful tool to derive correlations between physical 122 

properties. In addition to the templates using mechanical properties, petrophysical templates 123 

have been produced to classify rocks according to their mineral content or lithology using, 124 
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among others, density and magnetic susceptibility. Some authors (Barlow 2004, Hatfield et al. 125 

2002, Rao 2008) also use plots of density and magnetic susceptibility to discriminate 126 

lithologies, although in hard rock scenarios lithological classes may overlap (Williams, 2009). 127 

In this article, we use the statistics of the petrophysical properties in cross-plot domain and link 128 

it to lithology from probabilistic geological modeling to constrain inversion. We address the 129 

petrophysical constraints in the same spirit as the clustering approaches introduced by Sun and 130 

Li (2012, 2013 and 2016) and Lelièvre et al. (2012). The clustering approach has been further 131 

investigated by Carter-McAuslan et al. (2015), applied to field data by Sun and Li (2015 and 132 

2017b), and extended, for single domain inversion, to the use of geological interpretation by 133 

and Rapstine et al. (2016). We adapt and extend these concepts to a joint least-square inversion 134 

framework, in which we integrate probabilistic geological information.  135 

Inverse problems in geosciences typically have a high dimensionality and are under-136 

constrained (Li and Oldenburg, 1998, and McCalman et al., 2014). The workflow we present 137 

integrates complementary sources of information to constrain geophysical inversion in order 138 

to reduce both uncertainty and non-uniqueness due to the effect of the ill-posedness of the 139 

inverse problem. Geological prior information is commonly used to mitigate non-uniqueness 140 

and as a means to derive starting and reference models. However, the reliability of geological 141 

prior information is linked to the level of the geologist’s expertise, and is therefore affected by 142 

biases (Bond et al., 2007, and Bond, 2015). To alleviate this, we introduce a methodology that 143 

integrates probabilistic geological modeling, petrophysical measurements and geophysical 144 

joint inversion in a fully integrated workflow. In this way, our methodology accounts 145 

quantitatively for prior uncertainty relating to geology, petrophysics and geophysics. We obtain 146 

spatially conditioned petrophysical constraints by combining surface petrophysical 147 

measurement and the geological model resulting from what we refer to as Monte Carlo 148 

Uncertainty Estimation (MCUE).The novelty of the work presented in this article is that not 149 
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only do we take advantage of complementary geophysical methods in joint inversion, we also 150 

combine probabilistic geological modeling and petrophysical measurements to derive 151 

constraints for inversion. We use this to integrate the statistics of the petrophysical 152 

measurements, geological modeling and geophysical data. This allows us to calculate posterior 153 

uncertainty indicators and to evaluate the quality of the results.  154 

In this manuscript we first introduce the theoretical background describing the 155 

methodology we have used, detailing the inversion algorithm and how geological modeling 156 

and petrophysical constraints are derived and integrated. Then, prior to introducing the 157 

synthetic case study we generated to test our workflow we explain our choice of statistical tools 158 

for uncertainty analysis. The final section of the paper analyzes the results using the selected 159 

statistical tools. This section shows the improvements and limitations of the integration of 160 

geological modeling and petrophysical constraints in geophysical inversion.  161 

 162 

METHODOLOGY 163 

To integrate geological measurement in the inversion we use a probabilistic geological 164 

modeling approach accounting for geological uncertainty. We use what we refer to Monte 165 

Carlo Uncertainty Estimator (MCUE). It utilizes stochastic modeling to obtain a probabilistic 166 

geological model (i.e. a lithology probability for each voxel in the model). MCUE is based on 167 

a Monte Carlo perturbation of geological input data  used to produce a relatively large number 168 

of possible geological models (typically between several hundred to a few thousand), which 169 

we couple with the statistics of the petrophysical measurements to constrain the inversions 170 

(joint and single domain). MCUE builds upon the work of Wellmann et al. (2010), Jessell et 171 

al. (2010), Lindsay et al. (2012), and Pakyuz-Charrier et al. (2015). As a statistical description 172 

of a wide range of possible geological models, MCUE removes the need for a best guess model. 173 
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The workflow we present here can be divided into several steps. The first two steps of 174 

the workflow are to perform MCUE analysis and in parallel derive statistical laws that 175 

reproduce the statistics of petrophysical measurements (see subsection on petrophysical 176 

constraints, equation (6)). The next step consists of combining the geological statistical model 177 

with the former statistical laws to obtain starting models and constraints for inversion. Then, 178 

geophysical inversions are performed. After joint inversion, the last step of the workflow is the 179 

calculation of uncertainty indicators. This allows us to quantify the reduction of uncertainty, to 180 

evaluate the effect of integrating geology and petrophysics in single domain and joint inversion. 181 

Zones of higher uncertainty, which remain poorly constrained, can be identified as the foci for 182 

further study (Lindsay et al., 2012, Wellman et al., 2010).  183 

The test data set uses a geological model computed from actual surface structural 184 

measurements (rock type, foliations, dip and strike and surface contact geometry) but for which 185 

we increased the complexity by adding additional structures in order to test the robustness of 186 

the methodology. We use GeoModeller 3.3 to generate models. This relatively complex 187 

synthetic case study allows us to evaluate the behaviour of the inversion algorithm in real cases 188 

studies, where there is no control on the actual model. To test and illustrate the workflow we 189 

simulate gravity and magnetic surface data. 190 

Workflow summary 191 

The workflow is summarised in Figure 1. Before inversion, the first step is to translate 192 

prior geological and petrophysical data into information that can be used during the inversion. 193 

In the MCUE approach, geological modeling uses geological data to produce a probabilistic 194 

geological model. A mixture model that reproduces the statistics of the petrophysical 195 

measurements is derived. The probabilistic geological model and the mixture model are used 196 

to derive starting models, global (spatially invariant) and geologically conditioned 197 
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petrophysical constraints. Once these are available, constrained single domain inversions are 198 

performed first. These are used as controls to assess the improvement brought by constraints 199 

and to compare with joint inversion. The next step of the workflow is to run joint inversion. 200 

After joint inversions have been performed, the last step of the workflow is the estimation of 201 

posterior uncertainty using uncertainty indicators for the inverted models.  202 

  203 

Figure 1. Integrated joint inversion workflow summary illustrating the interaction between 204 

geology, petrophysics and geophysics. 205 

Inversion framework 206 

Objective function 207 

We formulate the inverse problem in a least-square sense as detailed in Tarantola 208 

(2005).  209 

We derive the following objective function (equation 1):  210 
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 211 

𝜃(𝒎) = (𝒅 − 𝒈(𝒎))𝑇 𝑪𝒅−𝟏(𝒅 − 𝒈(𝒎)) + (𝒎 −𝒎𝒑)𝑇𝑪𝒎−𝟏 (𝒎 −𝒎𝒑)+ 𝛿𝐺(𝒑𝒎𝒂𝒙 − 𝒑(𝒎))𝑇𝑪𝒑𝑮−𝟏(𝒑𝒎𝒂𝒙 − 𝒑(𝒎))+ 𝛿𝑀(𝒑𝒎𝒂𝒙 − 𝒑(𝒎))𝑇𝑪𝒑𝑴−𝟏(𝒑𝒎𝒂𝒙 − 𝒑(𝒎)) 
(1) 

where 212 

 213 

𝒈(𝒎) =  [𝒈𝑮(𝒎)𝒈𝑴(𝒎)] ,𝒎 = [𝒎𝑮𝒎𝑴] , 𝒅 = [𝒅𝑮𝒅𝑴] , 𝑪𝒅 = [𝑪𝒅𝑮 𝟎𝟎 𝑪𝒅𝑴] ,  𝑪𝒎 = [𝑪𝒎𝑮 𝟎𝟎 𝑪𝒎𝑴]  (2) 

 214 

In the equations above 𝒎 represents the model of inverted properties while 𝒅 represents the 215 

geophysical measurements to be inverted. 𝒈 is the forward operator that calculates the data 216 

model 𝒎 produces. 𝒎𝒑 is the prior model, which we also use as starting model. 𝑪𝒎 and 𝑪𝒅 are 217 

spherical covariance matrices corresponding to model and data noise, respectively. G and M 218 

superscripts and subscripts refer to gravity and magnetics, respectively.  219 𝑪𝒑 is what we call the petrophysical probability covariance matrix (described later). 𝒑 is the 220 

probability density function derived from petrophysical measurements, calculating the 221 

likelihood of model 𝒎, 𝒑(𝒎), of a given model 𝒎.𝒑𝒎𝒂𝒙 is the mode of 𝒑(𝒎). Superscript 𝑇 222 

denotes the transpose operator. 𝛿𝐺 and 𝛿𝑀 are scalars that are set either to 0 or 1 depending on 223 

the type of inversion.  224 

In the objective function, the first two terms in equation (1) relate to data and model 225 

misfit, respectively. The third and fourth terms are specific to petrophysical constraints on 226 

gravity and magnetic data inversion, respectively. They relate to the probabilistic description 227 

of the model based on independent, non-geophysical sources of information. 𝒑 encapsulates 228 



11 

 

the coupling in joint inversion. It is a function of both 𝒎𝑮 and 𝒎𝑴 and is defined such that 𝑝 ∶229 𝑁 × 𝑁 → 𝑁 with 𝒎 as input, returning the corresponding 𝒑(𝒎) values.  230 

Optimization scheme 231 

We minimize the joint objective function 𝜃(𝒎) (equation 1) using a Newton least-232 

squares algorithm, adapting the solution proposed by Tarantola (1984) to our joint inversion 233 

problem. The model is iteratively updated using a fixed-point method as follows (equation 3) 234 

for gravity data and magnetic data:  235 

 236 

𝒎𝒌+𝟏𝑮 = 𝒎𝒌𝑮 + [𝑨𝑘𝑮𝑇𝑪𝒅𝑮−𝟏𝑨𝑘𝑮 + 𝑪𝒎−𝟏 + 𝑱𝑘𝑮𝑻𝑪𝒑𝑮−𝟏𝑱𝑘𝑮]−1 [𝑨𝑘𝑮𝑇𝑪𝒅𝑮−𝟏  (𝒅𝑮 − 𝒈𝑮(𝒎𝒌𝑮))− 𝑪𝒎𝑮 −𝟏(𝒎𝒌𝑮 −𝒎𝒑𝑮) + 𝑱𝑘𝑮𝑻𝑪𝒑𝑮−𝟏(𝒑𝒎𝒂𝒙 − 𝒑(𝒎𝑘))] , 𝑎𝑛𝑑 

𝒎𝒌+𝟏𝑴 = 𝒎𝒌𝑴 + [𝑨𝑘𝑴𝑇𝑪𝒅𝑴−𝟏𝑨𝑘𝑴 + 𝑪𝒎−𝟏 + 𝑱𝑘𝑴𝑻𝑪𝒑𝑴−𝟏𝑱𝑘𝑴]−1 [𝑨𝑘𝑴𝑇𝑪𝒅𝑴−𝟏 (𝒅𝑴− 𝒈𝑴(𝒎𝒌𝑴)) − 𝑪𝒎𝑴−𝟏(𝒎𝒌𝑴 −𝒎𝒑𝑴) + 𝑱𝑘𝑴𝑻𝑪𝒑𝑴−𝟏(𝒑𝒎𝒂𝒙 − 𝒑(𝒎𝑘))],  
 

 

 

(3) 

with 237 

 238 

{  
  𝑨𝑘 = [𝑨𝑘𝑮𝑨𝑘𝑴] = [𝑨𝑘=0𝑮𝑨𝑘=0𝑴 ] = [𝜕𝒈𝑮(𝒎𝑮)𝜕𝒎𝑮 , 𝜕𝒈𝑴(𝒎𝑴)𝜕𝒎𝑴 ]𝑇

𝑱𝑘 = [𝑱𝑘𝑮(𝒎𝑘)𝑱𝑘𝑴(𝒎𝑘)] = [𝜕𝒑(𝒎𝑘)𝜕𝒎𝑮 , 𝜕𝒑(𝒎𝑘)𝜕𝒎𝑴 ]𝑇    

(4) 

 239 

where 𝑨𝑘 and 𝑱𝑘 are, respectively, the matrices of the partial derivatives of 𝒈 and 𝒑 with respect 240 

to 𝒎. Subscript 𝑘 denotes the 𝑘-th iteration. The inverse of the Hessian matrix (the left part of 241 

the second term in equation 3) is calculated using a Cholesky direct solver based on Gauss 242 
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pivot rules. Partial derivative matrices 𝑨𝑘 are calculated analytically while the elements of 𝑱𝑘 243 

are calculated using first order finite difference derivatives.  244 

Stopping criteria 245 

The number of iterations is controlled by two criteria: iterations stop when the model updates 246 

stabilize below a chosen threshold; or when the Bravais-Pearson correlation (BP, also called 247 

linear correlation) between the inverted models and the BP correlation between the magnitudes 248 

of the spatial gradients of inverted models have both reached a plateau. We calculate the BP 249 

correlation as follows (equation 5):  250 

            𝑟(𝑻(1), 𝑻(2)) = 𝑻(1) 𝑻(2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −𝑻(1)̅̅ ̅̅ ̅̅   𝑻(2)̅̅ ̅̅ ̅̅{(𝑻(1)2̅̅ ̅̅ ̅̅ ̅−𝑻(1)̅̅ ̅̅ ̅̅ 2) (𝑻(2)2̅̅ ̅̅ ̅̅ ̅−𝑻(2)̅̅ ̅̅ ̅̅ 2)}1 2⁄ = (𝑻(1)−𝑻(1)̅̅ ̅̅ ̅̅ ) ∙ (𝑻(2)−𝑻(2)̅̅ ̅̅ ̅̅ )‖𝑻(1)−𝑻(1)̅̅ ̅̅ ̅̅  ‖‖𝑻(2)−𝑻(2)̅̅ ̅̅ ̅̅  ‖ ,  (5) 

 251 

where 𝑻(1) and 𝑻(2) are the properties for which the correlation is calculated, and the horizontal 252 

bar operator is the arithmetic average operator. We calculate 𝑟 for 𝑻(1) and 𝑻(2) being the 253 

inverted models or the magnitude of their gradients. In the second case, 𝑻(1) and 𝑻(2) are 254 

calculated as 𝑻(1) = |∇𝒎(1)|, 𝑻(2) = |∇𝒎(2)| for a given set of models.  𝑟 can be interpreted 255 

as the cosine similarity between the vectors 𝑻(1) − 𝑻(1)̅̅ ̅̅ ̅ and 𝑻(2) − 𝑻(2)̅̅ ̅̅ ̅, cos(𝑻(1) −256 𝑻(1)̅̅ ̅̅ ̅, 𝑻(2) − 𝑻(2)̅̅ ̅̅ ̅). It reaches its maximum value when the two vectors have the same 257 

orientation in the entirety of the model. Therefore, we can use 𝑟(|∇𝒎(1)|, |∇𝒎(2)|) to 258 

characterize the geometrical convergence of the inverted models during inversion. Similarly, 259 𝑟(𝒎(1), 𝒎(2)) provides a metric characterizing the degree of linear relationship between the 260 

two models during inversion. When 𝑟 reaches a plateau, the changes in the models are not 261 

sufficient to have an impact on 𝑟, meaning that, with regards to geometrical considerations, 262 

inversion has converged.  263 
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Geological modeling  264 

 Building geological models from geological observations depends on the interpreter 265 

(Bond et al. 2007), on the type of data (Bond, 2015) and of the quality of the data and how well 266 

it represent nature (Alcade et al., 2017). Under these conditions, rigorous prior uncertainty 267 

estimation on geological prior models is difficult to obtain even with error estimates on input 268 

data. Thus, following the method described by Wellmann and Regenauer-Leib (2012), Lindsay 269 

et al. (2012, 2013) and Jessell et al. (2014), we use a geological modeling scheme capable of 270 

generating a ‘suite’ of geological models, which allows the quantification of uncertainty 271 

inherent in a 3D model.  272 

 Geological models are drawn from probability distributions defined by basic assumptions 273 

about the statistics of the errors on geological data using a Monte-Carlo simulation. In MCUE, 274 

topological rules prevent unstructured behavior, ensuring that the models are geologically 275 

plausible. The data replacement and perturbation procedure used in the Monte Carlo simulation 276 

is an extension of work by Wellmann et al (2010), Jessell et al. (2010) and Lindsay et al. (2012) 277 

using ideas of Pakyuz-Charrier et al. (2015).  278 

 The probability of presence of  a lithology is calculated for each cell of the model. For the 279 𝒊-th cell of the medium, the probability of presence of rock unit 𝒌 is 𝝍𝒌,𝒊 . That is, the end 280 

product of MCUE is analogous to a ‘geological model with an uncertainty estimate’. In the 281 

workflow we present in the paper, the results from of MCUE are used to calculate several terms 282 

in equation (1): 𝒑(𝒎), 𝒑𝒎𝒂𝒙.  283 

Petrophysical constraints 284 

The petrophysical constraints are applied to inversion through the minimization of the 285 

third term of equation (1) simultaneously to the minimization of the data and model misfit 286 

terms. To maximize the similarity between the statistical properties of the measured 287 
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petrophysical data and the inverted model we follow concepts introduced by Sun and Li (2012, 288 

2013) and Lelièvre et al. (2012). We assume that the petrophysical properties are normally 289 

distributed for each rock type. Therefore, there exists a statistical model that can represent the 290 

probability distribution of the overall measurements. 𝒑(𝐦) is formulated using a mixture 291 

model as (equation 6):  292 

 293 

𝒑(𝒎) = ∑𝜔𝑘N(𝒎|𝝁𝒌, 𝝈𝒌)𝑛𝑓
𝑘=1  (6) 

 294 

In equation (6), 𝑛𝑓 is the number of lithologies observed in the petrophysical measurements. 295 

The parameters of N(𝒎|𝝁𝒌, 𝝈𝒌), 𝝈𝒌 and 𝝁𝒌, are estimated using an expectation maximization 296 

algorithm. Although there are no constraints on the type of distribution to be used, we assume, 297 

to fix ideas, a normal distribution N. As described in Grana and Della Rossa (2010) and Grana 298 

et al. (2017), Gaussian mixture models can be used in statistical of rock physics modelling. In 299 

equation (6), each distribution is characterized by a mean value vector, 𝝁𝒌, which corresponds 300 

to the clusters’ centers, and the associated covariance matrix, 𝝈𝒌. 𝜔𝑘 is the relative weight of 301 

the 𝑘-th lithology in the measurements. 𝝁𝒌, 𝝈𝒌 and 𝜔𝑘 are obtained by fitting equation (6) to 302 

the petrophysical measurements. The correlation between petrophysical properties of different 303 

nature (for example density and magnetic susceptibility) is captured in the off-diagonal 304 

elements of 𝝈𝒌, which is a full matrix.  305 

After the mixture is characterized we calculate the diagonal matrix 𝑪𝒑 as follows:  306 

 307 

𝑪𝒑 = ( max𝑘=1:𝑛𝑓 𝑑𝑖𝑎𝑔(𝝈𝒌))−1 𝑰,  (7) 
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This method of weighting is chosen to enhance the contribution of well-defined components 308 

of the mixture model in the model update. 309 

Model covariance matrix 𝑪𝒎 is preconditioned through the application of a depth-310 

weighting inverse power law function following Li and Oldenburg (1998) and Li and Chouteau 311 

(1999) for gravity, and following Li and Oldenburg (1996) for magnetic data, to balance 312 

decreasing sensitivity with depth. For the conditioning of petrophysical constraints by 313 

geological modeling, 𝒑(𝒎) is calculated using both the results from MCUE and the mixture 314 

estimated in equation (6). The probability of presence of the different rock units 𝜓𝑘,𝑖 , in each 315 

cell of the medium, is accounted for. In such case, 𝒑(𝒎) is calculated as follows (equation 8): 316 

 317 

𝒑(𝒎) = [  
 𝑝1(𝑚1)𝑝2(𝑚2)…𝑝𝑛𝑚(𝑚𝑛𝑚)]  

 , where: 𝑝𝑖(𝑚𝑖) = ∑𝜓𝑘,𝑖 𝐍(𝑚𝑖|𝝁𝒌, 𝝈𝒌)𝑛𝑓
𝑘=1 ,  (8) 

 318 

where 𝑛𝑚 is the total number of cells of the model. The conditioning of the petrophysical 319 

constraints is illustrated as follows (Figure 2):  320 

 321 
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   322 

Figure 2. Principle of conditioning of petrophysical constraints by EG. 323 

After conditioning of 𝒑(𝒎) (equation 6 and 8) the term 𝒑𝒎𝒂𝒙 (in equation 1 and 3) can 324 

be calculated. It is calculated as follows (equation 9), for the 𝑖-th cell of the medium:  325 

 326 

{  
  𝑘∗ = {𝑘|𝜓𝑘,𝑖 = max𝑛=1:𝑛𝑓𝜓𝑛,𝑖 }𝑝𝑚𝑎𝑥𝑖 = 𝜓𝑘∗,𝑖 ∑𝐍(𝜇𝑘∗|𝝁𝒋, 𝝈𝒋)𝑛𝑓

𝑗=1
 (9) 

 327 

MCUE is also used to calculate starting models for inversions using conditioned petrophysics. 328 

In such case, the starting model is determined by calculating the mathematical expectation of 329 𝒑(𝒎) after it is conditioned by geological modeling. The use of the mathematical expectation 330 

is convenient here because it represents the average model obtained after a sufficiently large 331 

number of draws using Monte Carlo sampling in model space, which is performed during 332 

MCUE. The starting model is calculated as follows for the 𝑖-th cell (equation 10):  333 

 334 

Geological 
model from 
MCUE

*

*

Petro. statistics

Non-weighted 
mixture model

*

i-th geological 
model cell

Conditioning of petrophysical constraints
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𝑚0,𝑖 =∑𝜓𝑘,𝑖 𝜇𝑘𝑛𝑓
𝑘=1  (10) 

In the case of global petrophysical constraints, 𝒑(𝒎) is calculated assuming 335 

equiprobability for all lithologies (all 𝜓𝑘,𝑖 being equal to 
1𝑛𝑓), and  𝑚0 = 0. 336 

Uncertainty analysis and inversion uncertainty indicators 337 

In our workflow, we monitor inversion and perform posterior statistical analysis that 338 

incorporates geological and petrophysical information: we study the convergence, reduction of 339 

non-uniqueness and increase of model likelihood. To this end, we calculate the petrophysical 340 

likelihood of the inverted model and indicators it allows us to derive. In addition, the posterior 341 

analysis of the correlations introduced in the previous subsection provides information on the 342 

degree of coupling between the inverted models. For tests on synthetic models, we calculate 343 

the root-mean-square (RMS) model misfits. For geophysical (field or synthetic) data we 344 

calculate the first term in equation (1), corresponding to the data misfit term,  345 

The petrophysical likelihood function of the inverted models is calculated a posteriori 346 

for each cell of the medium, using geologically conditioned petrophysical constraints (equation 347 

8): 348 

 349 𝑳 = 𝒑(𝒎𝒇) ,  (11) 

 350 

where 𝒑 is conditioned by MCUE (as in equation (8)) and 𝒎𝒇 is the model obtained after 351 

convergence of the algorithm.  352 
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In the definition of the petrophysical likelihood 𝑳 (equation 11) we do not include the term 353 

related to geophysical data fit in order to isolate the reduction of geological and petrophysical 354 

uncertainty brought by geophysical inversion.  355 

As stated above, 𝑳 is used to derive other indicators. It is straightforward to show that, 356 

assuming that the observables are constituted of the parameters defining 𝒑 in equation (8) and 357 

that the unknown parameter is the model, we can derive a result analogous to the Fisher 358 

information (introduced by Fisher, 1925; see Kitanidis, 1995, Snodgradd and Kitanidis, 1997, 359 

who use the Fisher information matrix in their inversion scheme) in petrophysical domain, 360 

which estimates how much curvature (under-determination) exists around the petrophysical 361 

likelihood value. In the present case, it provides an indicator as to the sharpness of 𝑳 in the 362 

neighbourhood of the obtained solutions. Essentially, Fisher information quantifies how stable 363 𝐋 is where it is estimated. This, in turn, allows for a better understanding of uncertainty because 364 

it evacuates the common ambiguities as compared to moment generating functions (such as 365 

about the mean, variance, skew, etc). Let this indicator be expressed as follows:  366 

𝑰𝑭 = [𝐼𝐹𝐺 , 𝐼𝐹𝑀] = [𝔼 {(𝑆𝑖𝐺)𝑖=1,..,𝑛𝑚2 } , 𝔼{(𝑆𝑖𝑀)𝑖=1,..,𝑛𝑚2 }] 
= [𝑣𝑎𝑟(𝑆𝑖=1,..,𝑛𝑚𝐺 ), 𝑣𝑎𝑟(𝑆𝑖=1,..,𝑛𝑚𝑀 )] ,  (12) 

with 367 

 𝑆𝑖𝐺 = 𝐽𝑓,𝑖𝑖 𝐺𝐿𝑖  , 𝑆𝑖𝑀 = 𝐽𝑓,𝑖𝑖𝑀𝐿𝑖  , (13) 

 368 

where 𝔼 is the mathematical expectation operator, 𝑣𝑎𝑟 symbolizes the variance (square of 369 

standard deviation), and 𝑱𝒇 represents the Jacobian matrix (equation 4) of the petrophysical 370 

constraints for 𝒎 = 𝒎𝒇. The first and second element of 𝑰𝑭 refer to the density contrast and 371 

magnetic susceptibility models, respectively. 𝑆, called the score, is obtained by calculating the 372 

partial derivative of the logarithm of the likelihood function with respect to the model 373 
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parameters. We assume that the values are centered on the cluster centers. In such case, the 374 

expected value, or mean, of 𝑆 is zero (e.g., points are evenly distributed around the cluster 375 

centers). Fisher’s information becomes the variance of the score, and indicates how stable the 376 

solution is with respect to the parameters. Therefore, ideally, for the Gaussian mixture model 377 

we use, it is flat in the neighborhood of the cluster centers and sharper farther away up until a 378 

few standard deviations, each term of equation (12) would decrease and tend towards 0when 379 

an optimal model maximizing 𝑳 is obtained. To characterize the degree of uncertainty of the 380 

result we calculate another indicator, consisting in the average normalized RMS of the score 381 

of the inverted models. It is expressed as follows: 382 

 383 

 𝑆𝑟𝑚𝑠 = 12{ 1max𝑗=1:𝑛𝑚𝑆𝑗𝐺 √ 1𝑛𝑚∑ (𝑆𝑖𝐺)2𝑛𝑚𝑖=1  +  1max𝑗=1:𝑛𝑚𝑆𝑗𝑀√ 1𝑛𝑚∑ (𝑆𝑖𝑀)2𝑛𝑚𝑖=1 } (14) 

 384 

It calculates the sum of the normalized RMS of the score for density contrast and magnetic 385 

susceptibility. Similarly to 𝑰𝑭, 𝑆𝑟𝑚𝑠 would be equal to zero for a perfectly constrained model.  386 

Final values for the different inversions and analysis of the value of 𝑳, 𝑰𝑭 and 𝑆𝑟𝑚𝑠 allow us to 387 

estimate the amount of information from the petrophysical constraints that contributed to the 388 

inversion. These indicators also show how well the algorithm converged, and permit to estimate 389 

the reduction of uncertainty.  390 

 391 

SYNTHETIC GEOPHYSICS WITH REAL GEOLOGY 392 
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Geological context and modeling 393 

We generated a 3D geological model derived from surface data from the Mansfield area 394 

(Victoria, Australia). The original model is the Mansfield sedimentary basin located North-395 

West to Mansfield, Victoria, Australia. It presents itself as a Carboniferous mudstone and 396 

sandstone syncline oriented N170. It abuts a faulted contact with a Silurian-Devonian folded 397 

sandstone basement to the South West. After we obtained a geological model that reproduces 398 

field geological data we increased the complexity of the model to better test the inversion 399 

algorithm by the addition of a fictitious North-South fault across the Carboniferous basin and 400 

of an imaginary mafic intrusion to the South West corner of the model, in the Devonian 401 

basement; details on the original model can be found in GeoModeller User Manual, Tutorial 402 

case study H (Mansfield). The reference geological model was constructed without addressing 403 

errors in geological data (e.g. using unperturbed input data), and is shown on Figure 3. The 404 

map view shows that the model contains faults that intersect. Cross-section A-B was chosen 405 

for the testing the geophysical part of the workflow as it shows complex, realistic structures 406 

that can be challenging to retrieve through inversion. Since we are only solving a 2D problem, 407 

the obliquity of the section to the regional structures does not pose a problem. 408 

  409 

Figure 3. Reference geological model used for geological modeling. Faults are shown by black 410 

lines in map view. The left part shows the map view while the right hand part shows the 411 
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extracted cross-section A-B, which has been extracted from this volume and is used as the 412 

reference geological model. The numbers on the Figure indicate the index assigned to the 413 

lithologies. 414 

 415 

We applied the MCUE method to the geological reference model by assuming that 416 

errors on orientation data can be modelled using the von Mises-Fisher distribution, using a 417 

solid angle of approximately 0.1 steradians. This corresponds to the case scenario where 99% 418 

of the orientation data lies within a 22 degree aperture cone. 300 samples generated by the 419 

Monte-Carlo simulation in MCUE allowed us to obtain a stable 3D statistical model, shown in 420 

Figure 4 for cross-section A-B.  421 

  422 

Figure 4. Probability of presence for the different lithologies for cross-section A-B. These 423 

probabilities have been obtained from MCUE on the whole geological model and extracted 424 

along the cross-section to be used in a 2D setting.  425 

 426 

Figure 4 shows the resulting probability of the presence at a given location of each of 427 

the modelled lithologies after applying MCUE. Comparing the results for different lithologies 428 
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it is interesting to note that some parts of the model are better constrained at depth than closer 429 

to ground level. This can be explained by the fact that geological complexity can be more 430 

important closer to ground level depending on orientation data, thus increasing uncertainty in 431 

such cases. For instance, lithology 3 shows high probability of presence around 2.5 km depth 432 

in the bottom left corner of the corresponding plot. Lithology 1 represents the basement, and is 433 

defined as the lack of observation of the other units. As such lithology 1 is a proper unit, it 434 

embodies the limits of our knowledge where other units are not observed.  435 

Simulating geophysical and petrophysical data 436 

Using the reference geological model, we assigned values of density contrast and 437 

magnetic susceptibility to each lithology of section A-B consistently with the structural setting. 438 

We assigned a low density contrast and limited magnetic susceptibility to basin fill (lithologies 439 

4, 5 and 6). We assigned higher density contrast and magnetic susceptibilities to lithologies 1, 440 

2 and 3. The petrophysical model, as shown in Figure 5, is directly derived from the reference 441 

geological model by assigning values to each lithology (Figure 3). The values we assigned to 442 

lithologies have been chosen to obtain contrasts that are close to what could be observed in real 443 

scenarios. For density contrast, the background density is set at 2.6 g/cc (or 2600 kg/m³). This 444 

model is used to generate geophysical data for inversion, and is referred to as the reference 445 

model.  446 

Magnetic and gravity data were computed at the same horizontal location along the 447 

section but at two different altitudes as the aim here is to simulate magnetic airborne (data 448 

acquired at 50 m elevation) and gravity ground surveys (data acquired at ground level). 449 

Magnetic data are simulated following the same approach as Guo et al. (2015). Gravity data 450 

are simulated following Boulanger and Chouteau (2001). We inverted for the horizontal 451 
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component of the total magnetic field and the vertical component of the Bouguer anomaly 452 

assuming a flat topography. 453 

 454 

 455 

Figure 5. True petrophysical model (top) and simulated geophysical data (bottom). Gravity 456 

density contrast (left) is expressed in kg/m³ while magnetic susceptibility has no units. The 457 

numbers on the Figure indicate the index assigned to the lithologies as per Figure 3. 458 

 459 

In this synthetic dataset we simulated petrophysical measurements using a Gaussian mixture 460 

model (GMM). The individual Gaussian distributions making up the simulated petrophysical 461 

data have a variance of (40 kg/m³)² for density contrast, (0.01 SI)² for magnetic susceptibility, 462 

and a cross-covariance  of 0.04 (SI·kg/m³). In this example we describe magnetic susceptibility 463 

using Gaussian distributions (although it could also be done using another type of distribution 464 

such as lognormal distributions, depending on the petrophysical measurements).  465 

 466 

Table 1 – parameters of the mixture model describing petrophysical measurements 467 

Lithology 

number 

Density 

contrast 

(kg/m³): 

cluster 

Variance 

on density 

contrast 

((kg/m³)²) 

Magnetic 

susceptibility 

(SI): cluster 

centers (mean) 

Variance on 

magnetic 

susceptibility 

Cross-

Covariance 

(SI·kg/m³) 

1
2

3
4

5

6

1
2

3
4

5

6



24 

 

centers 

(mean) 

1 300 1600 0.075 1e-4 0.04 

2 300 1600 0.05 1e-4 0.04 

3 200 1600 0.025 1e-4 0.04 

4 100 1600 0.05 1e-4 0.04 

5 0 1600 0.025 1e-4 0.04 

 468 

Table 1 summarizes the statistical properties of the distributions describing the 469 

simulated petrophysical data. The corresponding cross-plot is shown in Figure 6, where the 470 

center of the Gaussians correspond to physical property values assigned to the different 471 

lithologies of the true model as shown in Figure 3 and Figure 5. In Figure 6, one would notice 472 

that the projection of cluster centers on the magnetic susceptibility and density contrast axes 473 

overlap. For example, clusters pairs 1, 2 and 5, 6 (2, 4 and 3, 5) have the same center along the 474 

density contrast (magnetic susceptibility) axis. In such case, because of this ambiguity, the six 475 

geological units cannot be resolved properly without joint interpretation.  476 
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 477 

  478 

Figure 6. Plot of the mixture model describing petrophysical measurements, as per properties 479 

summarized in Table 1. The crosses indicate the centre (mean) of the individual distributions 480 

making up the mixture model; the associated numbers refer to lithology number as shown on 481 

Figure 3. 482 

 483 

RESULTS: FROM UNCONSTRAINED SINGLE DOMAIN INVERSION TO 484 

CONSTRAINED JOINT INVERISON 485 

Inverted models 486 

We performed a sensitivity analysis to evaluate the influence of prior information and 487 

constraints on the inverted model. For single domain inversion we evaluate: unconstrained 488 

inversion; inversion with global (e.g., spatially invariant and geologically un-constrained) 489 

petrophysical constraints; and inversion with geologically conditioned petrophysical 490 

constraints. For joint inversion, we evaluate the use of petrophysical constraints and 491 
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geologically conditioned petrophysical constraints. The classification of inversion types is 492 

summarised in Table 2.  493 

 494 

Table 2 – inversion types. The degree of integration increases from (a) to (e). Light blue shading 495 

symbolises lower levels of integration while dark blue symbolises higher levels of integration. 496 

No shading indicates an absence of integration.  497 

Abbreviation Inversion attributes petrophysics Inversion 

type 

Geology 

(a) No constraints, Single 

domain inversion 

none Single 

domain 

none 

(b) Single domain 

inversion, global 

petrophysical 

constraints 

non-

conditioned 

Single 

domain 

none 

(c) Joint inversion, global 

petrophysical 

constraints 

non-

conditioned 

Joint 

inversion 

none 

(d) Single domain 

inversion, conditioned 

petrophysics 

conditioned Single 

domain 

For 

conditioning 

and starting 

model 

(e) Joint inversion, 

conditioned 

petrophysics 

conditioned Joint 

inversion 

For 

conditioning 

and starting 

model 
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 498 

The comparison and analysis of results obtained from inversion (a) through (e) (Table 499 

2) constitutes the sensitivity analysis of inversion subject to increasing degrees of integration. 500 

It allows us to estimate the contribution of various constraints to inversions and improvements 501 

they might bring to the inverted models. The inverted models for inversion (a) through (e) as 502 

per Table 2 are shown in Figure 7 for qualitative analysis.  503 

 504 

Figure 7. Inversion results for gravity data (left) and magnetics (right). Left column: density 505 

contrast, in kg/m³. Right column: magnetic susceptibility. Inversion types are referred to as (a) 506 
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through (e) as per Table 2. Black dotted lines represent the interfaces between lithologies in 507 

the reference model.  508 

 509 

The gravity data (Figure 5) contains long wavelength information, which explains why 510 

in this case only the largest structure is resolved by unconstrained gravity inversion (a) (Figure 511 

7a). In contrast, the magnetic data (Figure 5) is able to resolve smaller structures, even though 512 

in the case of unconstrained magnetic inversion (a) (Figure 7a) it still only retrieves the largest 513 

structures of the model.  514 

From Figure 7, qualitative comparison of inversions (a) through (e) shows that the use of global 515 

petrophysical constraints in single domain inversion (Figure 7b) does not resolve the geometry 516 

of lithologies accurately. More structural complexity is resolved when petrophysical 517 

constraints are applied to joint inversion (Figure 7c), and when petrophysical constraints are 518 

conditioned by geological modeling in single domain inversion (Figure 7d). Besides showing 519 

models that are consistent with each other, Figure 7e shows improvements in terms of structural 520 

geology. Even if noticeable differences occur only at a few locations, unit 1 (basement) is better 521 

constrained and unit 4 is better defined and does not link to unit 2 anymore. This improvement 522 

is critical because this link could lead to misinterpretation of the basin size.  523 

Results from Figure 7 show that joint inversion allows us to better retrieve complex 524 

geometries than single domain inversions, while the use of geologically conditioned 525 

petrophysical constraints increases the agreement of retrieved geometries with the reference 526 

model. Petrophysical constraints allow us to retrieve values that respect the statistics of surface 527 

measurements. As the petrophysical units are well defined in the mixture model matching the 528 

statistics of the petrophysical data we simulate, the effect of the constraint is to sharpen the 529 

contacts between units. Thus, as can be observed in Figure 7c, petrophysical constraints 530 

sharpen the inverted models. As can be seen in Figure 7d geological conditioning makes the 531 
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inverted model’s geometries closer to that of the reference model. Joint inversions in Figure 7c 532 

and Figure 7e increase geological complexity in the inverted model while increasing 533 

resemblance to the reference model (when comparing to single domain inversion in Figure 7b 534 

and Figure 7d, respectively). Visually, Figure 7e shows results that are closest to the reference 535 

model.  536 

Uncertainty Analysis 537 

We analyzed the uncertainty of the results obtained from the different types of inversion 538 

in Table 2 and shown in Figure 7 through the calculation of the indicators introduced above. 539 

These indicators are the likelihood 𝑳 (equation 11), the Fisher information 𝑰𝑭 (equation 12), 540 

and the normalized RMS of the score 𝑆𝑟𝑚𝑠 (equation 14). This assessment allows us to quantify 541 

qualitative observations from the inverted models shown in Figure 7. First, we compare the 542 

inversion results by displaying the inverted models using cross-plots where inverted physical 543 

property values are color-coded by corresponding likelihood values (Figure 8a-e). As an 544 

additional indicator, we used the absolute value of the cross-product of the gradients (Figure 545 

8f) to compare the different inversions.  546 
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 Figure 8. Cross-plots of inverted models for the different levels of integration. Inversion types 547 

are referred to as (a) through (e) as per Table 2. The color coding represents likelihood values 548 

for each point in the cross-plot. Colored lines are contour levels of the GMM shown in Figure 549 

6. The bottom right plot (f) shows the comparison of cross-product values for different 550 

inversions with the true value. 551 

 552 

Comparing cross-plots in Figure 8a and in Figure 8b it is observed that petrophysical 553 

constraints sharpen the model as inverted data are clustered around specific values. Single 554 

domain inversions (Figure 8b) are run separately and the inverted models do not interact: the 555 

geometry of inverted models does not match. Therefore, in this case, the ambiguity of cluster 556 

centers in single domain inversion is affecting the resulting cross-plot. Results shown in Figure 557 

8b are affected by the ambiguity existing on values of the center of clusters (lower likelihood 558 

points shown in blue). On the other hand, to honour the petrophysical constraint in joint 559 

inversion (Figure 8c and Figure 8e), inverted values must be clustered around values that 560 

belong concurrently to cluster centers along the gravity contrast and magnetic susceptibility 561 

axes (higher likelihood points shown in red). Consequently, joint inversion results are less 562 

affected by ambiguity.  563 

Ambiguities observed in Figure 8b disappear in Figure 8c as in the latter global 564 

petrophysical constraints are applied jointly to the inverted properties. However, ambiguity 565 

appears again on Figure 8d when geologically conditioned petrophysical constraints are applied 566 

to single domain inversion. Finally, Figure 8e shows that inverting geophysical datasets jointly 567 

reduces the remaining ambiguity reduced number of low likelihood). Figure 8f shows  the 568 

average cross-gradient is, for all 5 inversion types we ran, higher than for the true model. For 569 

this indicator , the final product of our workflow (e.g. joint inversion using geologically 570 
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conditioned petrophysical constraints, inversion (e) as per Table 2) shows values closest to 571 

those calculated for the reference model.  572 

In addition to cross-plots with likelihood values, we propose to analyze inversion results 573 

using the Fisher information for the inversion types listed in Table 2. Figure 9 shows the 574 

relationship between uncertainty and integration degree. It also shows the normalized model 575 

RMS error and the normalized RMS value of the score 𝑆𝑟𝑚𝑠. 576 

 577 

Figure 9. Fisher information for gravity (horizontal axis) and magnetics (vertical axis). 578 

Inversion types (a) through (e) are labelled as per Table 2. The dashed blue line represents the 579 

linear trend in log-log space that can be observed.  580 

  581 

As can be seen in Figure 9, a linear empirical relationship can be derived in log-log space 582 

between the Fisher information on magnetic susceptibility and density contrast. The points 583 

which lie along the line correspond, from left to right, to increasing levels of integration. This 584 

trend being observed in log-log space means that the impact of additional datasets decreases 585 

rapidly with the number of datasets already integrated in the inversion scheme.  586 

The Fisher information shows the curvature of the likelihood function around the 587 

model, and is therefore an indicator of uncertainty. Consequently, Figure 9 shows that lower 588 

levels of integration (inversion (a) and (b)) are strongly affected by non-uniqueness. The 589 

resulting likelihood showing higher curvature, the algorithm converged towards a less likely, 590 
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more uncertain local minimum. This observation is corroborated, to some extent, by both high 591 

model RMS misfit and 𝑆rms  values. Conversely, results obtained from the integration of three 592 

different types of data or more (inversions (c), (d) and (e)) show improved Fisher information, 593 

lower 𝑆rms  and model RMS error. Figure 9 shows that, for this synthetic survey, the best results 594 

are obtained for inversion (e) (joint inversion with geologically conditioned petrophysical 595 

constraints). For inversion (e), the Fisher information has decreased with respect to the least 596 

integrated inversions by 3 orders of magnitude for density contrast and by 2 orders of 597 

magnitude for magnetic susceptibility. In comparison, calculation of the first term in equation 598 

(1) for the different inversions we performed shows that data misfit does not change 599 

significantly, and is therefore not shown here. Similarly to other works joint inversion does not 600 

decrease data misfit dramatically, and the major improvements occur in model space (Gallardo 601 

and Meju, 2004; Abubakar et al., 2012; Johunjuntti and Kamm 2015; Jardani et al., 2012; Gao 602 

et al., 2012; Molodstov et al., 2013, Gallardo and Meju, 2011).  603 

 604 

Constrained joint inversion with inaccurate starting model 605 

In this subsection we investigate the influence of a starting model that does not accurately 606 

incorporate information from geological modeling. Instead of deriving starting models using 607 

the result of MCUE combined with petrophysical measurements (equation 10), we use a one-608 

dimensional starting model constituting a vertical positive gradient of density and magnetic 609 

susceptibility distributions. The values of the starting model range from 0 g/cc to 3 g/cc and 0 610 

SI to 0.075 SI. 611 

Figure 10 shows the inversion results obtained used for inversion type (e) (Table 2). 612 
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 613 

Figure 10. Inverted model obtained through inversion type (e) (bottom row) using a 1D starting 614 

model that follows a positive vertical gradient (middle row). For comparison, the starting model 615 

derived from MCUE and petrophysical measurements is also shown (first row). 616 

 617 

Inversion results shown in Figure 10 show that, except in the deepest, least constrained parts 618 

of the model where structural features of the model are guided by the starting model, the 619 

inversion methodology is robust to the starting model containing minimum prior information 620 

we used. Although the retrieved model lacks the complexity of results shown on Figure 7e, it 621 

still retains important features of the geological model. The analysis of quality indicators 622 

reveals that the model RMS misfit is in the same order as for inversion (c) (Table 2) and that 623 

the values of 𝑰𝑭 and 𝑆𝑟𝑚𝑠 are intermediate to inversion (c) and (d).  624 

DISCUSSION 625 

In the examples we showed we assumed that the petrophysics of the models can be 626 

described by petrophysical measurements. However, in real case scenarios it is possible that 627 

some lithologies have not been sampled by either petrophysics or geology; one approach to 628 

mitigating this is to consider this source of uncertainty in the estimation of the mixture model 629 

describing petrophysical measurements. We also assumed that the petrophysical measurements 630 
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show distinct clusters, which is not always the case in nature. When clusters are not easily 631 

distinguishable, it is more difficult to differentiate the corresponding geological units through 632 

inversion. In such cases, the concerned units might be undistinguishable after conditioning of 633 

the petrophysical constraints, thus decreasing the complexity of the geological information 634 

contained in the constraints and the influence they may exert on inversion.  635 

We made the arbitrary choice of Gaussian mixtures to describe the petrophysical 636 

measurements. Nevertheless, there is no restriction to the type of function used to describe the 637 

statistics of these measurements. In the workflow we introduced, the only requirement is for 638 

the mixture model to be differentiable, which is the case for almost all the functions that can 639 

characterize the statistics of petrophysical measurements.  640 

One of the motivations behind the use of geologically conditioned petrophysical 641 

constraints is the incorporation of probabilistic geological information. A less computationally 642 

expensive strategy is to estimate the value of an attribute characterizing the medium using 643 

geological modeling (for instance MCUE) or expert knowledge to derive less strong constraints 644 

for inversion. For example, when using the cross-gradient approach (Gallardo and Meju, 2003), 645 

a non-zero objective value reflecting the geology of the area could be used. In the same fashion, 646 

when maximizing the correlation between models (Lelièvre et al., 2012) and/or the gradient of 647 

the models during joint inversion, an optimum value different from unity can be used to honor 648 

prior geological information. In such case, another possibility is to calculate the BP correlation 649 𝑟 for the orientation of the gradients in the model. This could be useful in cases similar to the 650 

model we used because the cross-product and the correlations we calculate for the true model 651 

are different from 0 and 1, respectively (see Figure 8f). In such case, a possible strategy to 652 

combine the cross-gradient technique with geological information is to derive local cross-653 

gradient constraints in a fashion similar to the conditioning of petrophysical constraints.   654 
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CONCLUSION 655 

We have developed a new inversion workflow that integrates probabilistic geological 656 

modeling, petrophysical measurements and geophysical data in a statistical sense. We 657 

evaluated the efficacy of the workflow and found it successfully reduces uncertainty. The 658 

sensitivity analysis conducted on prior information and inversion constraints shows that 659 

inclusion of petrophysical data significantly improves results. Also, the use of geological 660 

information from MCUE to condition petrophysical constraints shows better uncertainty and 661 

model misfit reduction than when only global petrophysical constraints are applied to 662 

inversion, and was particularly effective when used on single-domain constrained inversion.  663 

Small differences in the petrophysics of retrieved models and in geophysical data fit between 664 

petrophysically conditioned single-domain and joint inversion do not indicate that joint 665 

inversion improved results significantly. Nonetheless, from a geological point of view, joint 666 

inversion produces results that are more consistent than single-domain inversions. This result 667 

is important because decisions made using one or the other of these two models could result in 668 

different outcomes (e.g., error in basin size estimation, wrong interpretation of blocking or 669 

open fault, etc). In covered terranes, complex regions may be subject to inconsistencies in 670 

model construction or be undetectable without surface evidence. In such cases, the use of 671 

MCUE in inversion would lead, in portions of the model that depart most from reality, to non-672 

constructed zones where geological structures are difficult to identify. This can reveal the 673 

necessity to acquire additional data, to adapt the modelling of these areas, or show the need for 674 

targeted exploration.  675 

Some studies focus on one particular aspect of integrated inversion, such as the 676 

improvement of a specific joint inversion approach or an original way of using either geological 677 

or petrophysical information. More holistic, our approach combines quantitatively, and gives 678 

equal importance to petrophysical, geological and geophysical data. Besides providing 679 
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improved imaging consistent across the different disciplines involved, this workflow allows 680 

quantitative evaluation of uncertainty reduction. The adaptability of the described methods 681 

permits possible further uncertainty reduction through the integration of additional datasets, 682 

adaptation to 3D inversion and implementation on supercomputing platforms for high 683 

complexity and resolution datasets. One of the main issues we will have to face is the indirect 684 

computation of Hessian matrices by using more sophisticated gradient-based iterative 685 

procedures, because direct solvers like Cholesky decomposition are very difficult to scale. 686 
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Figure 1. Integrated joint inversion workflow summary illustrating the interaction between geology, 1060 
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Figure 2. Principle of conditioning of petrophysical constraints by EG. .............................................. 16 1062 

Figure 3. Reference geological model used for geological modeling. Faults are shown by black lines in 1063 

map view. The left part shows the map view while the right hand part shows the extracted cross-1064 

section A-B, which has been extracted from this volume and is used as the reference geological 1065 

model. The numbers on the Figure indicate the index assigned to the lithologies.............................. 20 1066 

Figure 4. Probability of presence for the different lithologies for cross-section A-B. These 1067 

probabilities have been obtained from MCUE on the whole geological model and extracted along the 1068 

cross-section to be used in a 2D setting. ............................................................................................... 21 1069 

Figure 5. True petrophysical model (top) and simulated geophysical data (bottom). Gravity density 1070 

contrast (left) is expressed in kg/m³ while magnetic susceptibility has no units. The numbers on the 1071 

Figure indicate the index assigned to the lithologies as per Figure 5. .................................................. 23 1072 

Figure 6. Plot of the mixture model describing petrophysical measurements, as per properties 1073 

summarized in Table 1. The crosses indicate the centre (mean) of the individual distributions making 1074 

up the mixture model; the associated numbers refer to lithology number as shown on Figure 3. ........ 25 1075 

Figure 7. Inversion results for gravity data (left) and magnetics (right). Left column: density contrast, 1076 

in kg/m³. Right column: magnetic susceptibility. Inversion types are referred to as (a) through (e) as 1077 

per Table 2. Black dotted lines represent the interfaces between lithologies in the reference model. .. 27 1078 
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Figure 8. Cross-plots of inverted models for the different levels of integration. Inversion types are 1079 

referred to as (a) through (e) as per Table 2. The color coding represents likelihood values for each 1080 

point in the cross-plot. Colored lines are contour levels of the GMM shown in Figure 6. The bottom 1081 

right plot (f) shows the comparison of cross-product values for different inversions with the true 1082 

value. ..................................................................................................................................................... 30 1083 

Figure 9. Fisher information for gravity (horizontal axis) and magnetics (vertical axis). Inversion 1084 

types (a) through (e) are labelled as per Table 2. The dashed blue line represents the linear trend in 1085 

log-log space that can be observed. ...................................................................................................... 31 1086 

Figure 10. Inverted model obtained through inversion type (e) (bottom row) using a 1D starting model 1087 

that follows a positive vertical gradient (middle row). For comparison, the starting model derived 1088 

from MCUE and petrophysical measurements is also shown (first row). ............................................ 33 1089 
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  1097 

Figure 11. Integrated joint inversion workflow summary illustrating the interaction between 1098 

geology, petrophysics and geophysics. 1099 
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  1103 

Figure 12. Principle of conditioning of petrophysical constraints by EG. 1104 
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  1117 

Figure 13. Reference geological model used for geological modeling. Faults are shown by 1118 

black lines in map view. The left part shows the map view while the right hand part shows the 1119 

extracted cross-section A-B, which has been extracted from this volume and is used as the 1120 

reference geological model. The numbers on the Figure indicate the index assigned to the 1121 

lithologies. 1122 
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 1126 

Figure 14. Probability of presence for the different lithologies for cross-section A-B. These 1127 

probabilities have been obtained from MCUE on the whole geological model and extracted 1128 

along the cross-section to be used in a 2D setting.  1129 
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 1140 

Figure 15. True petrophysical model (top) and simulated geophysical data (bottom). Gravity 1141 

density contrast (left) is expressed in kg/m³ while magnetic susceptibility has no units. The 1142 

numbers on the Figure indicate the index assigned to the lithologies as per Figure 3. 1143 
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 1152 

Figure 16. Plot of the mixture model describing petrophysical measurements, as per properties 1153 

summarized in Table 1. The crosses indicate the centre (mean) of the individual distributions 1154 

making up the mixture model; the associated numbers refer to lithology number as shown on 1155 

Figure 3. 1156 
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 1158 

Figure 17. Inversion results for gravity data (left) and magnetics (right). Left column: density 1159 

contrast, in kg/m³. Right column: magnetic susceptibility. Inversion types are referred to as (a) 1160 

through (e) as per Table 2. Black dotted lines represent the interfaces between lithologies in 1161 

the reference model.  1162 
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 1166 

Figure 18. Cross-plots of inverted models for the different levels of integration. Inversion types 1167 

are referred to as (a) through (e) as per Table 2. The color coding represents likelihood values 1168 

for each point in the cross-plot. Colored lines are contour levels of the GMM shown in Figure 1169 

6. The bottom right plot (f) shows the comparison of cross-product values for different 1170 

inversions with the true value. 1171 
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 1174 

Figure 19. Fisher information for gravity (horizontal axis) and magnetics (vertical axis). 1175 

Inversion types (a) through (e) are labelled as per Table 2. The dashed blue line represents the 1176 

linear trend in log-log space that can be observed.  1177 
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 1188 

Figure 20. Inverted model obtained through inversion type (e) (bottom row) using a 1D starting 1189 

model that follows a positive vertical gradient (middle row). For comparison, the starting model 1190 

derived from MCUE and petrophysical measurements is also shown (first row). 1191 
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