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Abstract. New uncertainty relations in quantum mechanics are derived. They express restrictions
imposed by quantum theory on probability distributions of canonically conjugate variables in terms
of corresponding information entropies. The Heisenberg uncertainty relation follows from those
inequalities and so does the Gross-Nelson inequality.

The purpose of this paper is to derive a new, stronger version of the Heisenberg
uncertainty relation in wave mechanics. This new uncertainty relation has a simple
interpretation in terms of information theory. It is also closely related to newly
discovered logarithmic Sobolev inequalities.

The new uncertainty relation has the form (for wave functions normalized
to unity)

-<lnρ>-<lnρ>^n(l+lnπ), (1)

where ρ and ρ are probability densities in n-dimensional position space and
momentum space (or more precisely in wave-vector space),

ρ(ή=\Ψ(rf,

ρ(k)=\Ψ(k)\2 •

Brackets ( ) denote integration over the whole position space or momentum
space with ρ or ρ. For example

= J<frρ(ι )lnρ(r).

Our normalization of the Fourier transform is

It is worth observing that the inequality (1) does not depend on the unit of length
used in measuring ρ and ρ.

Unlike the standard uncertainty relation, which expresses indeterminacy of
positions and momenta in terms of the second moments of the corresponding
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distributions, our uncertainty relation is expressed directly in terms of uncertainty
measures used in information theory. Two integrals appearing on the l.h.s. of (1)
represent information theory entropies. The position-space entropy — <lnρ>
measures the uncertainty in the localization of the particle in space. The lower is
this entropy the more concentrated is the wave function, the smaller is the uncer-
tainty, and the higher is the accuracy in predicting the localization of the particle.
In the same way momentum-space entropy — <lnρ> measures the uncertainty
in predicting the momentum of the particle. Each entropy taken separately
decreases without bound when the corresponding probability density is becoming
more and more concentrated, i.e. when the information is increasing. The bounded-
ness from below of the sum of two entropies means that the total uncertainty in
positions and in momenta can not be decreased beyond the value given in (1).

The inequality (1) can be derived from the recently1 obtained value of the
(p, g)-norm of the Fourier transformation [1,2]. The (p, g)-norm of the Fourier
transformation is the smallest number k(p, q) for which the following inequality
holds for all Ψ e U

| |Ψ | | ^/c(p,4) | |¥%, (2)

where

||(P||p = (jΛ |ϊ'n1 /<\

Ui-1. (3)
p q

and q ̂  2. The calculated value of fe(p, q) is

r\n/2q /9 \-nl2p

Let us write now (2) in the form

W{q) = k(p9q)\\Ψ\\p-\\Ψ\\q^09

where p is treated as a function of q according to (3). Since W(2) = 0 (Parseval-
Plancherel theorem), the right derivative of W(q) &tq = 2 must be nonnegative, i.e.

where N=\\Ψ\\2=\\Ψ\\2. For JV=1, this inequality reduces to (1).
In the introduction we wrote that inequality (1) is stronger than the Heisenberg

uncertainty relation. In order to prove this assertion we will first calculate the
maximum value of the position-space entropy subject to two conditions

1, <(r-<,-» 2> = r 2 . (5)

This problem is equivalent to finding the extremum of the following functional of ρ

1 The earlier result obtained in Ref. [1] is not sufficient for our purpose because it is restricted
to integer values of q.
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where λ and μ are Lagrange multipliers. By equating to zero the variation of this
functional with respect to ρ we obtain

lnρ(r) + 1 + λ + μr2-2μ(r} r = 0 .

The extremum determined by this condition is a true maximum since the entropy
is a strictly concave functional of ρ. The Lagrange multipliers λ and μ can be
determined with the use of the two subsidiary conditions (5) leading to the following
results

» e x p [ - φ < - < > » 2 / 2 r 2 ] ,

We have thus proven the inequality

which can also be written in the form

^ « ( r - < r » 2 » - 1 . (6)

Owing to complete symmetry between the r and k spaces, we can write the same
inequality for momentum-space entropy and dispersion in the k variable. We
choose to write it in the inverted form.

) (7)

Our inequality (1) tells us, however, that the l.h.s. of (6) does not exceed the r.h.s.
of (7). To summarize our results we shall write the following chain of inequalities.

^«(r-<r»2»-1 . (8)

After the identification p = hk, the first and the last part of this chain give the
Heisenberg uncertainty in n dimensions.

One can verify that all three inequalities in (8) become exact equalities for
every Gaussian wave function. Moreover, it follows from our variational calcula-
tion that the first and the third inequalities become equalities only for Gaussian
functions. We conjecture that this is also the case for the second inequality.

If we take only the first and the third term in (8) we obtain the Gross-Nelson
(logarithmic Sobolev) inequality proved recently by Gross [3] and also studied
by us in connection with wave equations with logarithmic nonlinearities2. To

Actually, we arrived at inequality (1) while studying those equations.
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show this we may use an elementary inequality e~1ex^x to obtain from (8)

-<(fc-<fc»2>^-

or equivalently

as used by us in [4].
To end we shall derive an analog of inequality (1) for another pair of canonically

conjugate variables, viz. for the angular momentum Mz and the angle φ.
This inequality is of the form

-Σ^-ookJ 2 ln |cJ 2-jgπg|Φ(φ)| 2 ln |Φ(φ)| 2^0, (9)

where cm are the Fourier coefficients in the expansion of a normalized wave
function Φ(φ) into the series

Inequality (9) can be proved in the same manner as inequality (1) starting
from the Hausdorff-Young inequality [5]

The sum of the two entropies in (9), measuring the total uncertainty in Mz

and φ attains its lower bound if and only if the system is in an eigenstate of angular
momentum.
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