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Abstract

This paper studies the equilibrium asset pricing implications of time-varying (Knigh-

tian) uncertainty regarding economic fundamentals. The paper argues that uncertainty

and its variation are important for jointly explaining the equity premium, risk-free rate,

and the large variance premium embedded in the “high” price of options. A calibra-

tion of the model is able to simultaneously match salient moments of consumption

and dividends, the equity premium, risk-free rate, the variance premium and implied-

volatility skew, and the documented predictive power of the variance premium for stock

returns. The calibration quantitatively demonstrates that uncertainty is strongly re-

flected in option prices, that fluctuations in the VIX and implied-volatility curve con-

tain an important uncertainty component, and that this component can account for

the variance-premium’s predictive power. The paper contributes to the ambiguity

aversion/robustness literature by solving in closed form for asset prices when the rep-

resentative agent is ambiguous about both jump and diffusive shocks and has recursive

preferences.
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1 Introduction

Uncertainty or ambiguity about the probabilistic structure of the environment is a different

concept than risk, as first pointed out by Knight (1921). Ellsberg (1961) demonstrated that

decision-makers have an aversion to uncertainty (ambiguity aversion) that is separate from

their aversion to pure risk. Hence, the level of Knightian uncertainty in the economy could

have a major influence on asset prices, both unconditionally and through its variation over

time. There is evidence that uncertainty does vary over time and that spikes in uncertainty

are associated with crises episodes. For example, during 2007-8 forecasters and market par-

ticipants have repeatedly noted that there is a high, persistent level of uncertainty regarding

the real economy.1 In addition, it has been observed that there is a strong correlation between

the level of uncertainty and the VIX index.2

This paper builds time-varying uncertainty into a general equilibrium model to quanti-

tatively determine its impact on ‘standard’ and option-related asset pricing moments. The

option-related moments include the variance premium, which is derived from the VIX, and

the implied-volatility curve at maturities of one month to a year. A calibration of the model

is able to simultaneously match salient moments of consumption and dividends, the risk-free

rate, the market return and its volatility, and the option-related quantities. The calibra-

tion demonstrates that time-varying uncertainty is particularly important for matching the

large variance premium embedded in option prices and the steepness of the implied-volatility

curve. The calibration is able to capture the predictive power of the variance premium for

equity returns, and consistent with the data, it predicts that option-implied measures, such

as the variance premium and VIX, should be superior predictors of excess stock returns than

physical (true) expectations of volatility.

1The following is from an October 6, 2008 article on Reuters, “Charles Evans, president of the Chicago
Federal Reserve, said risk evaluations reflect ‘substantial uncertainty in the outlook for both growth and
inflation.’ ” and “Evans said real economy activity in the United States would stay sluggish into the
new year and that the level of uncertainty about the timing of a pickup in growth, which will depend on
improvements in the financial and credit markets, ‘is very high.’ ” (Fed’s Evans: Weak Growth To Linger,
Inflation Too High) Also, from an October 8, 2008 article on CNBC, “My view is that the volatility and
uncertainty are far from over and will persist well into Q4,” – Global FX Strategist at BMO Capital Markets
(CNBC Guest Blog)

2An article from Reuters on October 6, 2008 comments on the VIX reaching a new high, “ ’This is
absolutely amazing. The elevated VIX is reflecting that people are unsure about every financial relationship
they have ever known not only in the U.S. but worldwide.’ ” (VIX Surges to All-Time High as Credit Fears
Spread)
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Attempting to address moments of cash flows, equity, and options within a single model

is challenging. A main challenge for any equilibrium model that addresses this data is that

cross-asset relationships make it difficult to account for the large, volatile (hedging) premium

in options without implying an unrealistically high equity premium and return volatility or

excessively volatile cash-flow processes. In the model of this paper, time-varying uncertainty

is important in accounting for the large, volatile option premium. During periods of high

uncertainty, fears of jump shocks to important economic fundamentals are amplified. Options

serve as a hedge to both these shocks, and to increases in the level of uncertainty. Hence,

their prices incorporate a large hedging premium. The model achieves these results with a

reasonable level of uncertainty and a relative risk aversion of only 5.

Uncertainty here takes the the form of model uncertainty or model specification concerns.

There is a representative agent who has in mind a benchmark or reference model of the econ-

omy’s dynamics that represents his best estimate of the data generating process. The agent

is concerned that his reference model is misspecified and that the true model is actually in a

set of alternative models that are statistically ‘close’ to the reference model. ‘Close’ means

these alternative models are difficult to distinguish statistically based on historical data, so

the agent’s concerns about the reference model are reasonable. The level of uncertainty

determines how large the alternative set of models he worries about is, at a given time; when

uncertainty increases the set of alternative models expands. 3

The reference model that the agent considers in this paper is flexible, and includes a

persistent component in cash-flow growth rates (long-run risk), moderate jump shocks, and

stochastic volatility. This flexibility serves two purposes. First, it allows the model to be

realistic enough for the calibration to match a large set of moments of cash flows and prices.

Second, the rich structure means model uncertainty is allowed to operate through multiple

channels and lets the model solution endogenously reveal how much specification concerns

there are about the different parts of the economic dynamics. The amount of concern is

determined through a tradeoff between the damage a specification error causes to lifetime

utility and the difficulty of detecting it. The most important specification errors have large

effects on utility but are difficult to detect. The calibration shows that infrequent jump shocks

3This framework and motivation correspond to the literature on Robust Control, which has been pioneered
by Hansen and Sargent. See e.g. Anderson, Hansen, and Sargent (2003), Hansen, Sargent, Turmuhambetova,
and Williams (2006), Hansen and Sargent (2007), and Hansen and Sargent (2008). The preferences fall into
both the Robust Control framework and the Recursive Multiple-Priors Utility of Epstein and Schneider
(2003), see e.g. Hansen, Sargent, Turmuhambetova, and Williams (2006).
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to important state variables, such as long-run growth rates, present prominent specification

concerns. Such shocks have large cumulative effects on utility and are also difficult to detect,

so underestimation of their frequency or size is a worrisome specification concern.

Related Literature

This paper is related to a number of papers that study the variance premium and option

prices. Bollerslev, Gibson, and Zhou (2008) and Bollerslev and Zhou (2007) also measure

the variance premium using the difference between option-implied and realized variance

measures of volatility. Both papers find that their measures have significant predictive power

for stock returns at short horizons (a few months). Santa-Clara and Yan (2008) extract a

measure of jump intensity from their option-pricing model and find it predicts stock returns.

This paper is also related to option-pricing studies that confront their models with both

physical and risk-neutral (i.e. price) data and conclude that jumps are necessary (e.g. Pan

(2002), Eraker (2004), Broadie, Chernov, and Johannes (2007)). This paper shares that

conclusion. A big difference is that the model here is preference-based and derives prices

starting from macroeconomic fundamentals. A very different paper that is also related is

Anderson, Ghysels, and Juergens (2007), which constructs measures of Knightian uncertainty

using survey forecasts and finds that these measures are able to to predict stock returns in

the time-series and the cross-section.

In its application of robustness to explaining option prices, this paper is closest to Liu,

Pan, and Wang (2005) (LPW), who use uncertainty towards rare events to explain the smirk

pattern in index options. There are a number of significant differences between LPW and

this paper. The environment in LPW is i.i.d, so it cannot address the conditional moments

considered here, such as the return predictability and volatility of the variance premium,

or the ‘excess volatility” of returns. Second, the calibration in LPW is limited to only the

equity premium and slope of the option smirk and does not consider other moments of equity

returns, the risk-free rate, or properties of cash flows. Third, LPW model robustness towards

’rare-disasters’, i.e. large, rare jumps in the aggregate endowment, while the calibration here

focuses on jumps that occur (on average) every year or two and are small to moderate.

Moreover, jump shocks enter the endowment only through a small, persistent component in

growth rates and therefore do not cause immediate, large drops in aggregate consumption.

Finally, the framework here is more general, allowing for multiple state variables, uncertainty
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in both diffusions and returns, and recursive utility.4 The framework in this paper is also

related to the work in Trojani and Sbuelz (2008), who specify a time-varying set of alternative

models, and Maenhout (2004), who solves for the equity premium in an economy with a

robust agent that has recursive utility.

Finally, this paper is related to Drechsler and Yaron (2008), who build an extended long-

run risks model with jump shocks that captures the size and predictive power of the variance

premium. They demonstrate that the variance premium effectively reveals variation in the

intensity of jump shocks, which accounts for its predictive power. This paper differs in its

focus on Knightian uncertainty as a key component of the model. While time-variation in

the risk of jump shocks is still the main driver of the variance premium, it arises from the

combination of jump risks in the reference model and model uncertainty. Model uncertainty

amplifies concerns about influential jump shocks, so that less is needed in terms of physical

jumps. This feature enables the model in this paper capture the equity premium and option

prices with a relatively low risk aversion of 5. Finally, the model in this paper generates

stochastic return volatility through two channels–stochastic cash-flow volatility and stochas-

tic uncertainty. This makes return volatility, the VIX, and variance premium be imperfectly

correlated and thus allows the model to capture why the latter two quantities are superior

predictors of equity returns.

2 Definitions and Data

The definitions of key terms is similar to those in Bollerslev and Zhou (2007) and follows

related literature. I define the variance premium as the difference between the risk neutral

and physical expectations of the market’s total return variation. I focus on a one month

variance premium, so the expectations are of total return variation between the current

time, t, and one month forward, t + 1. Thus, vpt,t+1, the (one-month) variance premium

at time t, is defined as EQ
t

[∫ t+1

t
(d lnRm,s)

2
]

- Et

[∫ t+1

t
(d lnRm,s)

2
]

where Q denotes the

risk-neutral measure and lnRm,s is the (log) return on the market.

4Tractability is an issue when solving for equilibrium prices in models with uncertainty or robustness.
Many financial applications have focused on either log utility, which aids tractability, or i.i.d or single state
variable environments. Some examples are Kleshchelski and Vincent (2007), Ulrich (2008), Brevik (2008),
Trojani and Sbuelz (2008), Maenhout (2004), and Uppal and Wang (2003).
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Demeterfi, Derman, Kamal, and Zou (1999) and Britten-Jones and Neuberger (2000)

show that, in the case that the underlying asset price is continuous, the risk neutral expec-

tation of total return variance can be computed by calculating the value of a portfolio of

European calls on the asset. Jiang and Tian (2005) and Carr and Wu (2007) show this result

extends to the case where the asset is a general jump-diffusion. This approach is model-free

since the calculations do not depend on any particular model of options prices. The VIX

Index is calculated by the Chicago Board Options Exchange (CBOE) using this model-free

approach to obtain the risk-neutral expectation of total variation over the subsequent 30

days. I obtain closing values of the VIX from the CBOE and use it as my measure of risk-

neutral expected variance. Since the VIX index is reported in annualized “vol” terms, I

square it to put it in “variance” space and divide by 12 to get a monthly quantity. Below I

refer to the resulting series as squared VIX.

As the definition of vpt,t+1 indicates, in order to measure it one also needs conditional

forecasts of total return variation under the physical measure. To obtain these forecasts I

measure the total realized variation of the market, or realized variance, for the months in

my sample. This measure is created by summing the squared five-minute log returns on

the S&P 500 futures over a whole month. I obtain the high frequency futures data used in

the construction of the realized variance measure from TICKDATA. To get the conditional

forecasts, I project the realized variance measure on the squared VIX and lagged realized

variance and construct forecasted series for realized variance. The forecast series serves as

the proxy for the conditional expectation of total return variance under the physical measure.

The difference between the risk neutral expectation, measured using the squared VIX, and

the conditional forecasts from the projection, gives the series of one-month variance premium

estimates. The projection specification used is the same as in Drechsler and Yaron (2008).

See that paper for further details.

The data series for the VIX and realized variance measures covers the period January

1990 to March 2007. The main limitation on the length of the sample comes from the VIX,

which is only published by the CBOE beginning in January of 1990. The model calibration

also presents a comparison of the empirical and model-based implied-volatility surfaces.

Daily data on the volatility surface is obtained from Citigroup and covers October 1999

to June 2008. The model calibration also requires data on consumption and dividends. I

use the longest sample available (1930:2006). Per-capita consumption of non-durables and

services is taken from NIPA. The per-share dividend series for the stock market is constructed
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from CRSP by aggregating dividends paid by common shares on the NYSE, AMEX, and

NASDAQ. Dividends are adjusted to account for repurchases as in Bansal, Dittmar, and

Lundblad (2005).

Table I provides summary statistics for the VIX, futures realized variance, and the vari-

ance premium measure (VP). Several characteristics are worth noting. First, all three series

display significant deviation from normality. The mean to median ratio is large, the skewness

is positive and greater than 0, and the kurtosis is clearly much larger than 3. Note also that

the mean variance premium is sizeable in comparison with the other two series and is quite

volatile.. This is important, since it shows that risk pricing accounts for a large portion of

the risk-neutral expectation of variance (the VIX).

Table II provides return predictability regressions. There are two sets of columns with

regression estimates. The first set shows OLS estimates and the second set provides estimates

from robust regressions. Robust regression performs estimation using an iterative reweighted

least squares algorithm that downweights the influence of outliers on estimates but is nearly

as statistically efficient as OLS in the absence of outliers. It provides a check that the results

are not driven by outliers. The first two regressions are one-month ahead forecasts using

the variance premium as a univariate regressor, while the third forecasts one quarter ahead.

The quarterly return series is overlapping. The last two specifications add the price-earnings

ratio, which is a commonly used variable for predicting returns. As a univariate regressor,

the variance premium can account for about 1.5-4.0% of the monthly return variation. The

multivariate regressions lead to a substantial further increase in the R2 – a feature highlighted

in Bollerslev and Zhou (2007). In conjunction with the price-earnings ratio, the in-sample

R2 increases to as much as 12.4%. Note that in all cases the variance premium enters with

a significant positive coefficient. This sign and magnitude will be shown to be consistent

with theory in this paper. Finally, we note that the robust regression estimates agree both

in magnitude and sign with the OLS estimates and in fact, some of the R-squares are even

larger than their OLS counterparts.

3 General Framework

The setting is an infinite-horizon, continuous-time exchange economy with a representative

agent who has utility over consumption streams. This agent has in mind a benchmark or
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reference model of the economy that represents his best estimate of economic dynamics.

However, the agent does not fully trust that his model is correct. His model uncertainty

or specification concerns cause him to worry that the true model lies in a set of alternative

models that are difficult for him to reject based on the data. This set of models is ‘close’

to the reference model in the sense that they are statistically difficult to distinguish from

the reference model. The agent guards against model uncertainty by acting cautiously and

evaluating his future prospects under the worst-case model in the alternative set of models.

The details follow.

3.1 Reference Model

Let Yt denote the n-dimensional vector of state variables. The reference model dynamics

follow a continuous-time affine jump-diffusion:

dYt = µ(Yt)dt+ Σ(Yt)dZt + ξt · dNt (1)

where Zt is an n-dimensional Brownian motion, µ(Yt) is an n-dimensional vector, Σ(Yt) is n×
n-dimensional matrix and both ξt and Nt are n-dimensional vectors. The term ξt·dNt denotes

component-wise multiplication of the jump sizes in the random vector ξt and the vector of

increments in the Poisson (counting) processes Nt. The Poisson arrivals are conditionally

independent and arrive with a time-varying intensity given by the n-dimensional vector lt.

The jump sizes in ξt are assumed to be i.i.d through time and in the cross-section. To

handle the jumps, it is convenient to specify their moment generating function (mgf). Let

ψk(u) = E[exp(uξk)] be the mgf of the random jump size ξk. It is convenient to stack the

mgf’s into a vector function denoted ψ(u). Thus, for u an n-dimensional vector, ψ(u) is

the vector with k-th component ψk(uk). It is also assumed that log consumption and and

dividend growth are linear in Yt:

d lnCt = δ′cdYt

d lnDt = δ′ddYt

For convenience lnCt and lnDt are included in Yt, so δc and δd are just selection vectors.

It is assumed that the drift, diffusion and jump intensity functions have an affine struc-
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ture. Specifically,

µ(Yt) = µ+KYt

where µ and K are n and n × n-dimensional respectively. It further assumed that the

economy’s dynamics under the reference model are independent of the level of consumption

Ct. This standard asset pricing assumption leads to an equilibrium that is homogenous in

the level of consumption. The assumption can be formalized as Kδc = 0, i.e. the column

corresponding to Ct is just 0. To simplify some of the later exposition, let K̃ denote the

n × (n − 1) dimensional sub-matrix of K which excludes this column and let Ỹt be the

sub-vector of Yt that excludes Ct. Then, the assumption can be rewritten as KYt = K̃Ỹt.

Let Y = (Y1,t, Y2,t) be a partition of the state vector. The diffusion covariance matrix

has a block-diagonal form:

Σ(Yt)Σ(Yt)
′ =

[
Σ1,tΣ

′
1,t 0

0 Σ2,tΣ
′
2,t

]

where the upper block corresponds to Y1,t and the lower block to Y2,t. Σ1,tΣ
′
1,t has a general

affine form:

Σ1,tΣ
′
1,t = h+

∑
i

HiYt,i

Let qt denote a state variable in Yt. This variable will appear repeatedly throughout the

model and has the role of governing variation in the level of uncertainty, as discussed below.

It is assumed that

Σ2,tΣ
′
2,t = Hqq

2
t

Finally, let the jump intensity vector take the form lt = l1q
2
t where l1 is an n-dimensional

vector.5 The partition of Yt relates to which subset of the model dynamics the agent is

uncertain about. As discussed below, uncertainty about the dynamics of a state variable

arises from uncertainty about the probability law for either its diffusive or jump shocks.

Rather than making the agent ambiguous about all of the state dynamics, the framework is

generalized so that the agent is only uncertain about the dynamics of the subset Y2,t.
6.

The specification makes qt drive variation in the size of shocks about which there is

5It possible to also partition the jump intensity vector and let the intensity for one partition have a
general affine form. Since this generality is not needed in what follows or the model calibration, it is omitted
to reduce notational complexity.

6Of course we can have Y2,t = Yt
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uncertainty. There are several motivations for this specification. First, it is reasonable that

the level of uncertainty rises when there is an elevated risk of large shocks to important

state variables. It seems quite plausible that the level of uncertainty be related to economic

risk. Second, the correlation of these shocks’ volatility with uncertainty is consistent with

the contention of this paper that variation in uncertainty is related to variation in the VIX.

Finally, this specification also facilitates analytical tractability.

3.2 Alternative Models

The alternative models are defined by their probability measures. A requirement for these

probability measures is that they put positive probability on the same events as the reference

model (i.e. they are equivalent measures). Let P be the probability measure associated with

the reference model (1). An alternative model is defined by a probability measure P (η),

which is determined by the process η for its Radon-Nikodym derivative (likelihood ratio)

with respect to P . It is useful to specify models through their Radon-Nikodym derivative

since this permits a convenient definition of the set of models that are statistically close to

(or difficult to distinguish from) the reference model. I now construct the Radon-Nikodym

derivatives under consideration by the agent and describe how they map to specifications

of dynamics. The intention is to consider the most general set of dynamics possible, before

restricting the alternatives to the subset of models that are statistically close to the reference

model.

From expression for ηt, one can derive the resulting dynamics under P (η). Changes to

the reference dynamics caused by η are referred to as “perturbations”, and the resulting

model is called the “perturbed model”. Perturbations fall into two categories. The first are

perturbations to the diffusion components via changes in the probability law of Zt. For this

category the perturbations considered are completely general, i.e. all equivalent changes of

measure are included. The second category are perturbations to the jumps. For tractability,

perturbations to the jumps are restricted to changes in the jump intensity and changes to

the parameters of the jump size distributions. By Girsanov’s theorem for Itô-Lévy Processes

we can write ηt = ηdZt ηJt where ηdZ perturbs dZt and ηJt perturbs the jumps7.

7See, for example, Oksendal and Sulem (2007), Theorem 1.31. This multiplicative form arises from the
fact that a Brownian motion Zt and Poisson process Nt defined on the same filtration are independent, which
follows from [Z,N ](t) = 0, i.e. their cross-variation is 0.
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ηdZt is defined by the SDE:
dηdZt
ηdZt

= hTt dZt

where ht is an n-dimensional process and ηdZ0 = 1. From Girsanov’s theorem we have Zη =

dZ−
∫
htdt is a Brownian motion under P (η), which implies that dY c

t = [µ(Yt) + Σ(Yt)ht] dt+

Σ(Yt)dZ
η
t .8 Thus, these perturbations change the drift dynamics and leave the diffusion

unchanged. Note that the drift perturbation is driven directly by ht. Since only the dynamics

of Y2,t are ambiguous, I impose ht = [0, h2,t]
′, where the 0 and h2,t vectors have the dimensions

of Y1,t and Y2,t respectively. The block-diagonal structure of the diffusion covariance matrix

then implies that only the drift of Y2,t is perturbed.

ηJ is constructed to change the jump intensity and jump size distribution under P (η).

Below I discuss the resulting dynamics under P (η) and leave the construction of ηJ to

Appendix A.1. Consider first the jump intensity. The jump intensity lη under P (η) is given

by

lηt = exp(a)lt

Thus, ηJ perturbs the jump intensity by a factor of exp(a). For the jump size perturbations, I

consider two specific jump size distributions, which are the ones used in the calibration below:

(i) normally distributed jumps: ξj ∼ N (µ, σ2), and (ii) gamma distributed jumps: ξj ∼
Γ(k, θ) where k and θ are the shape and scale parameters respectively. ηJ is constructed to

change the parameters of these distributions so that, under P (η), the jump size distributions

are:

ξηj ∼ N (µ+ ∆µ, σ2sσ) ξηj ∼ Γ(k,
θ

1− θb
)

For the normal distribution, the mean is shifted by an amount ∆µ, while the variance is

scaled by sσ. For the gamma distribution, the scale parameter is increased or decreased

depending on the sign of b. Note that, when ∆µ = b = a = 0 and sσ = 1, we are back to

the jump distributions of the reference model. Combining the perturbations, the dynamics

under P (η) can be written as:

dYt = [µ(Yt) + Σ(Yt)ht] dt+ Σ(Yt)dZ
η
t + ξηt · dN

η
t (2)

In addition, denote the moment generating function under P (η) by ψη(u).

8The notation Y c
t means the continuous part of Yt, i.e. the process obtained by removing the jumps of

Yt.
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The alternative one-step-ahead dynamics the agent worries about at time t are determined

by the set of ht, a, ∆µ, sσ, and b that he considers.9 The determination of this set is now

explained.

3.3 The Size of the Alternative Set

As discussed earlier, model uncertainty leads the agent to consider a set of alternative models

that are statistically close to the reference model – close in the sense that they are difficult

to distinguish from the reference model using historical data. A commonly used measure

of the statistical ‘distance’ between a model and a reference model is its relative entropy.

Relative entropy is directly related to statistical detection and is defined in terms of the

alternative model’s Radon-Nikodym derivative with respect to the reference model. The set

of alternative models is defined by placing an upper bound on the growth rate of alternative

models’ relative entropy10.

The growth in entropy of P (η) relative to P between time t and t + ∆t is defined as

H(t, t + ∆t) = Eη
t [ln η(t + ∆t)] − ln η(t). Thus, lim∆t→0

H(t,t+∆t)
∆t

gives the instantaneous

growth rate of relative entropy at time t. It is illustrative to look at this quantity for the

diffusion perturbation. A standard calculation (see Appendix A.2) shows that for ηdz the

instantaneous growth rate of relative entropy is just 1
2
h′tht.

This simple expression says that the rate of relative entropy growth at time t is just half

the norm of the ht vector. Hence, for ht = 0 (the reference model), the rate is 0. As ht

increases, the entropy growth rate increases. This is indicative of the tight link between

relative entropy and the ‘distance’ between P (η) and P . Moreover, it shows how the set of

alternative models is implicitly defined by an upper bound on the relative entropy growth

rate.

Since η = ηdzηJ , the overall relative entropy growth of P (η) is the sum of the relative

9In other words, this set determines the agent’s multiple priors over one-step-ahead probabilities. The
agent’s behavior falls within the Multiple-Priors framework axiomatized by Epstein and Schneider (2003). As
Epstein and Schneider (2003) show, when beliefs are built up as the product of one-step ahead probabilities,
the agent’s decision-making guaranteed to be dynamically consistent.

10This approach is due to Hansen and Sargent (see Hansen and Sargent (2008)). The approach used here for
time-varying uncertainty is used in Trojani and Sbuelz (2008) in a pure diffusion setting. Hansen, Sargent,
Turmuhambetova, and Williams (2006) contains a brief discussion of a similar approach to time-varying
alternative sets.
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entropy growth rates of ηdz and ηJ . Moreover, the relative entropy of ηJ is the sum of the

relative entropies for the individual jump perturbations. Appendix A.2 derives the relative

entropies for the normal and gamma jump perturbations and gives an expression for the

total relative entropy of P (η), which is denoted by R(ηt). As the Appendix A.2 shows, the

expression for R(ηt) is in terms of (ht, a, ∆u, sσ, b).

We now exploit the link between entropy and statistical proximity to define the set

of alternative models that concern the agent. The alternative set is defined by choosing all

models whose relative entropy growth rateR(ηt) is less than some upper bound. The intuition

is that, if the relative entropy of a given model is below the bound, then distinguishing

this model from the reference model is difficult enough that it warrants concern that this

alternative model (and not the reference model) is the true data generating process. This is

known as a model detection error. The bound on entropy therefore determines the size of the

alternative set. A large bound is interpreted as high uncertainty, since a larger set of models

will fall below the bound. In that case, the agent has little confidence in the correctness of

his reference model. At the other extreme, a bound of 0 on R(ηt) means the alternative set

is empty and the agent has fully confidence in the reference model.

To model time-varying uncertainty, the bound on R(ηt) is allowed to vary over time based

on the value of q2
t , which controls variation in the level of uncertainty. Hence, the alternative

set of dynamics at time t is defined by:

{ηt : R(ηt) ≤ ϕq2
t } (3)

where ϕ > 0 is a constant. Since q2
t > 0, the bound is always positive. Without loss of

generality, I normalize the process for q2
t so that E[q2

t ] = 1. Then, the unconditional mean

of the bound is simply equal to ϕ, while variation in the bound is due to q2
t . The constant ϕ

is part of the agent’s preferences. If ϕ = 0 then the agent has full confidence in the reference

model, while increasing the value of ϕ expands the size of the alternative set to include models

that are statistically ‘further’ away from the reference model. In calibrating the model, the

specific value of ϕ is chosen to imply a particular model detection error probability. This is

discussed in detail in the calibration section and in Appendix H. Finally, while ϕ determines

the agent’s average level of uncertainty, q2
t controls variation in uncertainty over time. When

q2
t increases, the agent is more uncertain and worries about a larger set of alternative models

that includes models that are further away from the reference model.

12



3.4 Utility Specification

For a given probability model, the agent’s utility over consumption streams is given by

the stochastic differential utility of Duffie and Epstein (1992), which is the continuous-time

version of the recursive preferences of Epstein and Zin (1989). Denote the agent’s value

function by Jt and the normalized aggregator of consumption and continuation value in

each period by ψ(Cs, Js). Therefore, for a given probability model, lifetime utility is given

recursively by: Jt = Et
[∫∞
t
ψ(Cs, Js)ds

]
. The set of probability measures considered by

the agent is given by the reference model and alternative set, as described above. The

representative agent’s utility is then given by:

J = min
P (η)

Eη
0

[∫ ∞
0

ψ(Cs, Js)ds

]
(4)

where Eη denotes expectation taken under the probability measure P (η).1112 This utility

specifies that the agent expresses his aversion to model uncertainty by being cautious and

evaluating his future prospects under the worst-case model within the set of alternatives.

The functional form used for ψ(C, J) is standard:

ψ(C, J) = δ
γ

ρ
J

[
Cρ

γ
ρ
γ J

ρ
γ

− 1

]
(5)

where δ is the rate of time preference, γ is 1−RRA (i.e. one minus the agent’s relative risk

aversion), and ρ = 1 − 1
ψ

, where ψ is the intertemporal elasticity of substitution (IES). An

important special case of this aggregator is γ = ρ, in which case the agent’s relative risk

aversion equals 1/ψ and the aggregator reduces to the additive power utility function.

As Epstein and Schneider (2003) show, rectangularity of beliefs implies that Jt solves the

following Hamilton-Jacobi-Bellman (HJB) equation:

0 = min
P (ηt)

ψ(Cs, Js) + Eη
t [dJ ] (6)

s.t. R(ηt) ≤ ϕq2
t

11This formulation already embeds the maximization of Ct which in equilibrium is given by the aggregate
consumption process.

12This utility specification is an instance of Epstein and Schneider (2003)’s Recursive Multiple Priors
utility. P (η) is the set of time-0 probability measures formed from the product of the sets of alternative
one-step-ahead dynamics
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The solution of this equation gives the worst-case perturbation, η∗, which is needed for asset

pricing. In order to understand the added complexity here in terms of solution, note that

in the ‘standard’ endowment economy framework, one can do pricing by proceeding directly

from the Euler equation. Here, the need to solve for η∗t and the agent’s value function adds

an extra layer of complexity.13 Moreover, there is no guarantee that the worst-case dynamics

associated with η∗t permit tractable asset pricing.14 In this paper, solutions for the worst-case

model, value function, and asset prices are found that are in closed-form.

4 Solution

Start by expanding the right side of (6) in terms of the perturbation parameters:

Eη
t [dJ ] = Eη

t

[
dJ c + Jt − Jt−

]
= Eη

t [dJ c] + Eη
t

[
J(Yt− + ξt · dNt)− J(Yt−)

]
where J ct is the continuous part of J and the second expectation is over the jumps. We can

rewrite the first term by applying Ito’s lemma and (2):

Eη
t [dJ c] = Et[dJ

c] + hTt ΣT
t JY dt = Et[dJ

c] + hT2,tΣ
T
2,tJY2dt

where JY is the gradient of J with respect to Y . The Lagrangian corresponding to the

minimization in (6) can now be written as:

ψ(Ct, Jt)dt+Et[dJ
c] + hT2,tΣ

T
2,tJY2dt+Eη

t

[
J(Yt− + ξtdNt)− J(Yt−)

]
− λt

(
ϕq2

t −R(ηt)
)

(7)

where λt is the lagrange multiplier on the (time-t) entropy constraint.

Solving for J now proceeds as follows. Take first-order conditions with respect to the

perturbation parameters (ht, a,∆u, sσ, b, . . .) and λt. Then conjecture and verify a functional

form for J that solves the system of first-order conditions and the HJB equation. The solution

for J is now discussed while the first-order conditions and other details are left to Appendix

D.

13Many papers in this literature have focused on single-state variable or i.i.d environments, which lead to
ODEs rather than difficult PDEs. For closed-form solutions, log-utility is often assumed

14In i.i.d environments this is not usually a problem because an i.i.d reference model typically leads to an
i.i.d worst-case model.
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4.1 Equilibrium Value Function

Since the aggregator (5) is homogenous of degree γ in the level of consumption and the

transition dynamics are independent of the level of consumption, the value function J and

HJB equation (6) should also be homogenous of this order in the level of consumption.

Consequently, I conjecture the following functional form for the value function:

J(Yt) = exp
(
γg(Ỹt)

) Cγ
t

γ
=

exp
(
γg(Ỹt) + γ lnCt

)
γ

(8)

where g(Ỹt) is a function of Ỹt whose form is not yet specified. Appendix B gives the

equation that results from substituting the conjecture into the HJB equation (6). In general,

there is no exact analytical solution to that equation. However, I find an approximate

analytical solution by approximating a term in this equation. This approximation has been

used successfully in the portfolio choice literature (see Campbell, Chacko, Rodriguez, and

Viciera (2004)). The approximation log-linearizes the equilibrium consumption-wealth ratio

around its (endogenous) unconditional mean. In the case ψ = 1 (and any value of γ), the

approximation is exact, as is the analytical solution. Moreover, as argued in the portfolio

choice literature, the approximation is accurate for an interval of values around 1 that easily

includes empirical estimates of ψ and the values I use in the calibrations.

The term that is approximated is exp
(
−ρg(Ỹt)

)
. As shown in the Appendix, this is

just 1/δ times the equilibrium consumption-wealth ratio. Following Campbell, Chacko,

Rodriguez, and Viciera (2004), I log-linearize this term around the unconditional mean of

the equilibrium log consumption-wealth ratio

exp
(
−ρg(Ỹt)

)
≈ κ0 + κ1ρg(Ỹt) (9)

where κ0 and κ1 are linearization constants whose values are endogenous to the equilibrium

solution of the model. The following proposition now provides the solution for the HJB

equation.

Proposition 1 The solution to the HJB equation for ψ = 1, or for ψ 6= 1 when the log-linear

approximation in (9) is applied, is given by (8) and

g(Ỹt) = A0 + A′Ỹt (10)
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where A0 is a scalar and A is a vector of loadings on the Ỹt. Let Â = [1, A]′ so Â has

the same dimension as Yt and partition it into Â = [Â1, Â2]′ corresponding to the partition

Y = [Y1, Y2]′. Then, A0, A, κ0, κ1, the parameters of the worst-case perturbation (i.e. a,

∆µ, sσ, b, etc. . . ), and λ̃, a constant related to the lagrange multiplier λt of the entropy

constraint, solve the (n× 1) system of equations

0 =
δ

ρ
(κ0 + κ1ρA0 − 1) + ÂTµ

0 = Ỹ T
t Aδκ1 + Ỹ T

t K̃T Â−
1

λ̃

(
ÂTHqÂ

) 1
2
q2
t +

1

2
γÂTΣtΣ

T
t Â+

1

γ
lη1
′
(
ψη(γÂ)− 1

)
q2
t (11)

jointly with the equations giving κ0, κ1 and a system of equations, defined in Appendix D,

that arises from the first-order conditions for the perturbation parameters.

The proof of Proposition 1 is given in Appendix D. The (n − 1) system in (11) must be

satisfied for any value of Ỹt, which implies that the terms multiplying a given element in Ỹt

must sum to 0. This gives (n − 1) equations. A solution of the system of equations given

in Proposition 1 and Appendix D verifies the conjecture for the value function. In general,

this system of equations must be solved numerically15. The Appendix provides details.

Hence, Proposition 1 shows that the equilibrium value function is exponential-affine with

the vector A giving the elasticities of the value function with respect to the state variables.

4.2 Worst-Case Dynamics

As noted in Proposition 1, the solution to the HJB equation involves finding the parameters

for the worst-case model. Recall that the perturbation to the drift is Σtht = [0,Σ2,th2,t]
′.

The derivation in Appendix D show that under the worst-case model:

Σ2,th2,t = −1

λ̃
Σ2,tΣ

T
2,tA2 = −1

λ̃
HqA2q

2
t (12)

where λ̃ is a constant that comes out of the equilibrium solution and is closely related to λt

(the lagrange multiplier). A number of observations can be made. First, the worst-case drift

15In some specific cases, analytical solutions can be derived in terms of κ0, κ1, whose values must still
be found numerically. These cases can be useful for finding starting values for numerical solutions to other
cases where analytical solutions are not available.
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perturbation is just a linear multiple of the vector A2. The intuition follows from the fact

that the A coefficients are the loadings of utility on the state vector. Hence, A determines

how sensitive utility is to a (one unit) change in the drift of each variable and therefore

which perturbations are most harmful. Second, the size of the perturbation varies over time

with q2
t . This is the case because variation in uncertainty is associated with variation in q2

t .

Hence, when uncertainty is high, the perturbation is large, and vice versa. Finally, λ̃ controls

the mean size of the perturbation. A large value of λ̃ means the perturbation is small on

average.

Appendix D also gives the equations determining the worst-case jump perturbation pa-

rameters. For both the drift and jumps the solution for the worst-case follows the same

principle: at the minimizing configuration, a given worst-case perturbation optimally trades

off the marginal amount of harm it does to utility against its marginal cost in terms of entropy.

Thus, the largest perturbations are assigned to aspects of the model where a specification

error harms utility in a way that is difficult to detect statistically. For the calibrated model,

the calibration section reports the exact allocation of entropy among the perturbations under

the worst-case model.

Finally, note that, though the reference model was formulated within the affine class,

there is no guarantee apriori that asset-pricing under the worst-case dynamics will remain

tractable. However, as (12) shows, the perturbation to the drift keeps the worst-case dynam-

ics in the affine class. This also the case for the jumps. Thus, the worst-case model remains

affine, which permits tractable asset pricing.

4.3 The Entropy Penalty and Homotheticity

It is interesting to compare the setup of this paper with other approaches, particularly

Maenhout (2004), who solves for equilibrium prices in an i.i.d endowment economy with a

robust-control agent that has Duffie-Epstein-Zin utility. Maenhout’s extension of Hansen

and Sargent’s canonical robust-control specification is intended to make the representative

agent’s value function analytically tractable in the case of non-log utility. For log-utility, the

value function (and worst-case model) is solvable in closed-form. However, for non-log utility,

the preferences are not homothetic in wealth, which Maenhout points out is important for

both tractability. To obtain homotheticity, Maenhout scales the entropy penalty parameter

in the robust-control problem by a multiple of wealth raised to (1 − RRA). For analytical
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convenience, his specific choice of scaling is (1− RRA)× J (the value function).

This penalty-scaling approach is also adopted by other papers, for example, Liu, Pan,

and Wang (2005), Uppal and Wang (2003), and Anderson, Ghysels, and Juergens (2007).

Although convenient, Maenhout’s penalty-scaling led to some concerns. For example, LPW

explicity make an effort to argue “that the choice of a normalization factor does not affect,

in any qualitative fashion, ... our main result”. Therefore, it is interesting to compare

Maenhout’s approach with the one in this paper, where the value function is homogenous

in wealth, though homotheticity is not explicitly imposed.

The Lagrangian in (7) is essentially the quantity minimized by ‘nature’ in a robust control

problem, with the multiplier λt corresponding to the entropy penalty parameter. Appendix

D shows that in the framework of this paper we get λt = γJ(Yt)λ̃, where λ̃ is a constant.

Mapping λ̃ to the penalty parameter, we have that the penalty is endogenously scaled by

the (state-dependent) term γJ(Yt) – the scale factor used by Maenhout and LPW. Thus,

imposing the entropy constraint endogenously leads to homotheticity.

The expression for λt also shows under what circumstances it is a constant. This is only

the case if γ = 0 (log preferences), otherwise it includes both the stochastic term exp(γg(Ỹt))

and the term exp(γ lnCt). If γ < 0 (RRA > 1) then neglecting exp(γ lnCt) implies that the

penalty parameter becomes larger as lnCt increases, which is akin to diminishing the agent’s

level of uncertainty.

5 Asset Pricing

Since the representative agent evaluates expectations under the worst-case measure when

making his portfolio choice, the Euler equation holds under the worst-case measure. There-

fore, assets can be priced using the Euler equation under the worst-case measure. However,

we are interested in expected returns under the reference model. The robust-control/uncertainty

aversion literature focuses on expected returns under the reference model since it is supposed

to be the best estimate of the data generating process based on historical data. While the

agent believes that the reference model is the best description of the historical data, he

behaves robustly by pricing assets under the worst-case probabilities. To obtain reference-

measure expected returns, expected returns calculated under the worst-case measure are

adjusted using (2) to account for the difference in expected dynamics.
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5.1 Pricing Kernel

Under the worst-case measure, the pricing kernel is the ‘standard’ Epstein-Zin kernel. Let

Mt denote the time-t pricing kernel. It is convenient to work with the log pricing kernel:

d lnMt = −θδdt− θ

ψ
d lnCt − (1− θ)d lnRc,t (13)

where θ = γ
ρ

and dRc,t = dPc,t+Ct
Pc,t

is the instantaneous return on the aggregate consumption

claim (aggregate wealth). As usual, when θ = 1, (13) reduces to the corresponding expression

for CRRA expected utility. To get the log pricing kernel in terms of primitives, we need

the return on the consumption claim. Appendix C shows that the consumption-wealth

ratio is simply δ exp(−ρg(Ỹ )). By market-clearing, the consumption-wealth ratio is also the

dividend-price ratio of the aggregate consumption claim. Using this equivalence, the solution

for g(Ỹt) in (10), and Itô’s lemma (with jumps), one obtains16:

d lnRc,t =
[
ρÂT + (1− ρ)δ′c

]
dYt + δ exp(−ρA0 − ρA′Ỹt)dt (14)

Note that dYt includes both the diffusive and jump shocks17. Substituting (14) and d lnCt

into (13) gives the Epstein-Zin (log) pricing kernel:

d lnMt = −
[
θδ + (1− θ)δ exp(−ρA0 − ρA′Ỹt)

]
dt− Λ′dYt (15)

where Λ =
(
θ
ψ
δc + (1− θ)

[
ρÂ+ (1− ρ)δc

])
. Λ is the vector of risk prices for the economy’s

shocks. When θ = 1, so that preferences reduce to power utility, Λ = (1− γ)δc, i.e the price

of risk on the immediate consumption shock is the agent’s RRA and all other risk prices are

0. In general, δ′cΛ = 1− γ, i.e. the price of risk for the immediate consumpton shock is the

agent’s RRA. Recall that 15 is the pricing kernel under the worst-case measure. Therefore,

the explicit uncertainty terms do not enter at this point.

16A useful notational simplification that I use here is: ρA′dỸt + d lnCt = ρÂT dYt + (1 − ρ)δ′cdYt, since
lnCt = δ′cYt. Rewriting the expression this way makes it possible to collect terms into the single term
multiplying dYt

17d lnRc,t = d lnRc
c,t + ∆ lnR where d lnRc

c,t is the continuous part and ∆ lnRc,t is the jump-related part.
Also, ∆ lnRc,t = ∆ lnPc,t where Pc,t = exp(− ln δ+ ρg(Ỹt)) exp(lnCt) is the price of the consumption claim.
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5.1.1 The Risk-free Rate

The risk-free rate, rf,t, is Eη
t [−dMt

Mt
] = −Eη

t [d lnM c
t ] −1

2
(d lnM c

t )
2 −Eη

t [exp(∆ lnMt) − 1]

where d lnM c
t is the continuous part and ∆ lnMt the jump-related part. Since rf,t is known

at time t, it is identical under the different measures and no measure adjustment is necessary.

Substituting in gives:

rf,t =θδ + (1− θ)δ exp
(
−ρA0 − ρA′Ỹt

)
+ ΛT (µ(Yt) + Σtht) dt

− 1

2
ΛTΣtΣ

T
t Λdt− lηt

′(ψη (−Λ)− 1) (16)

Uncertainty affects the risk-free rate explicitly through the term ΛTΣtht and via the change

in the jump intensity and mgf (jump distribution). It also acts implicitly through the values

of A0 and A. In general, the perturbations decrease expected growth and increase expected

variation, which increases the precautionary savings motive. Both effects lower the equilib-

rium risk-free rate.

5.2 Equity

The return on a share in the stock market is now derived. This is an overview, the full details

are left to Appendix F. Part of the derivation follows Eraker and Shaliastovich (2008), who

derive the market return for an Epstein-Zin representative agent in an affine jump-diffusion

setting.

The share in the stock market is modeled as a claim to the per-share dividend stream

Dt. Let vm,t denote the log price-dividend ratio of the market and let d lnRm,t be the

instantaneous market return. Following Eraker and Shaliastovich (2008), log-linearize the

market return around the unconditional mean of the log price-dividend ratio:

d lnRm,t = κ0,mdt+ κ1,mdvm,t − (1− κ1,m)vm,tdt+ d lnDt (17)

where κ0,m and κ1,m are the linearization constants and are given in the Appendix. This

log-linearization is similar to the one used earlier for the wealth-consumption ratio.
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Now conjecture that vm,t takes the following functional form:

vm,t = A0,m + A′mYt (18)

Substituting for dvm,t in (17) gives the log market return in terms of primitives:

d lnRm,t = κ0,mdt− (1− κ1,m)(A0,m + A′mYt)dt+B′rdYt (19)

where Br = (κ1,mAm + δd). The return on the market must satisfy the representative agent’s

Euler equation. Substituting (19) and (15) into the Euler equation and evaluating it under

the worst-case measure leads to a system of equations in the unknown coefficients A0,m and

Am. The solution to this system of equations gives the equilibrium values for A0,m and Am

and verifies the conjecture for vm,t. In general this system of equations admits no analytical

solution and must be solved for numerically, much as for the A coefficients in the case of the

consumption-wealth ratio. The details of the derivation are given in Appendix F.

5.3 The Equity Premium

Given Am, one can find the equity premium. This is first determined under the worst-

case measure and then adjusted to get an expression under the reference measure. The

main expressions are highlighted here and the derivation details are left to Appendix F. As

usual, the conditional risk premium is given by the covariance of the market return with

the pricing kernel. Accounting for the jumps is the only part of this calculation that is not

‘standard’. Let Rm,t denote the cumulative return through time t on a trading strategy that

reinvests all proceeds. The instantaneous market return is dRm,t/Rm,t. The Euler equation

implies that Eη
t [d(MtRm,t)] = 0.18 Applying Ito’s lemma (with jumps) and substituting in

rf,t = −Eη
t [−dMt

Mt
] leads to the following expression:

Eη
t

[
dRm,t

Rm,t

]
− rf,t dt =− dM c

t

Mt

dRc
m,t

Rm,t

+ Eη
t [exp(∆ lnMt)− 1]

+ Eη
t [exp(∆ lnRm,t)− exp(∆ lnMt + ∆ lnRm,t)]

18This follows from the condition that MtRm,t is a η-martingale.
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where as before a superscript ‘c’ refers to the continuous part and ∆ refers to the jump

part. The first term on the right-hand side is (negative one times) the continuous covariance

of the market return and pricing kernel. When there are no jumps, this term is the whole

equity premium. The remaining terms deal with the jumps. The last term, in particular,

accounts for the jump-related covariance between the market return and pricing kernel19.

Substituting into the previous expression then gives:

Eη
t

[
dRm,t

Rm,t

]
− rf,t dt = B′rΣtΣ

T
t Λ + lηt

′ (ψη(βr)− ψη(−Λ + βr) + ψη(−Λ)− 1)

This is the equity premium under the worst-case measure. To obtain it under the reference

measure, the adjustment Et[dRm,t/Rm,t]− Eη
t [dRm,t/Rm,t] is added to both sides, giving:

Et

[
dRm,t

Rm,t

]
− rf,t dt =B′rΣtΣ

T
t Λ−B′rΣtht

+ lt
′ (ψ(βr)− 1) + lηt

′ (−ψη(−Λ + βr) + ψη(−Λ)) (20)

The effect of model uncertainty shows up explicitly via the ht term and the perturbed jump

intensity lηt and moment-generating function ψη. For the jump part, the probability change

alters Et(∆M∆Rm), usually by decreasing it and lowering the covariance of the market

return and pricing kernel. In other words, the market return becomes a worse hedge to the

intertemporal marginal rate of substitution, which increases its required expected rate of

return.

5.4 The VIX and Variance Premium

This section highlights the main reasons that the risk-neutral expectation of return vari-

ance (the squared VIX) contains an important uncertainty-related component and why the

variance premium is a good filter for this component. Numerical results illustrating these

points are provided in the calibration, while complete analytical expressions are derived in

Appendix G.

For notational convenience in what follows, let ∗ ∈ {P, η,Q} indicate the physical (P ),

worst-case (η), or risk-neutral (Q) probability measures. Here I take the reference model as

19The term is related to the identity: −cov(∆M,∆R) = E(∆M)E(∆R)− E(∆M∆R)
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the description of the physical measure. Under the measure ∗ the expectation of integrated

return variance from time t to T is E∗t

[∫ T
t

(d lnRm,s)
2
]
, or taking the expectation inside

the integral,
∫ T
t
E∗t (d lnRm,s)

2. I highlight the reasons why this quantity differs across the

three measures. Consider E∗t (d lnRm,t)
2, the expectation of the squared return over the first

instant. (19) implies that:

E∗t (d lnRm,t)
2 = B′rΣtΣ

′
tBr +B2

r
′ [
E∗(ξ2

t ) · l∗t
]

where l∗t = l∗1 × q2
t and l∗1 is the mean jump intensity under the ∗ measure (lP1 = l1, lη1 =

exp(a)lt, and lQ1 is derived in the Appendix). Note that the jump term depends on the specific

measure, while the diffusion term does not. Under typical parameterizations (certainly also

the calibration in this paper), the magnitude and frequency of jumps is higher under the

worst-case model than the reference model, since such perturbations are harmful to utility.

Thus, EP (ξ2
t ) < Eη(ξ2

t ) and lP1 < lη1 . This implies that:

Eη
t (d lnRm,t)

2 − EP
t (d lnRm,t)

2 = B2
r
′ [
Eη(ξ2

t ) · l
η
1 − EP (ξ2

t ) · lP1
]
q2
t > 0 (21)

Thus, over the first instant, expected variance is higher under η than P due to uncertainty

about the frequency and magnitude of jumps. Moreover, since the difference is a multiple of

q2
t , it varies directly with the level of uncertainty. Finally, we see that this component, whose

size varies with uncertainty, has a greater weight in Eη
t (d lnRm,t)

2 than in EP
t (d lnRm,t)

2.

A similar result obtains when comparing this quantity under η and Q. Recall that the

agent determines asset prices, and hence the risk-neutral measure, relative to the worst-case

measure. Relative to the worst-case measure, the risk-neutral measure tilts probability mass

towards states where marginal utility is high. In particular, states with large, negative jump

shocks have greater probability under Q than η, which implies that Eη(ξ2
t ) < EQ(ξ2

t ) and

lη1 < lQ1 . This further implies the analog to (21) with Q in place of η and η in place of P .

Combining these results gives:

EQ
t (d lnRm,t)

2 − EP
t (d lnRm,t)

2 = B2
r
′
[
EQ(ξ2

t ) · l
Q
1 − EP (ξ2

t ) · lP1
]
q2
t > 0 (22)

Thus, for u = t, the quantity E∗t (d lnRm,u)
2 is highest for Q and lowest for P . The next

question is how this quantity evolves as u increases to some later time s. I sketch the main

idea, leaving the exact details to the Appendix. Consider first the difference in the “drift”
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of this quantity between P and η. Part of the difference is due to the drift perturbation

(12) under the worst-case model. This drift perturbation increases the drift of variables

that are harmful to utility. These variables include q2
t and other variables driving diffusion

volatility, since increased volatility harms utility. Moreover, as (12) shows, the size of the

drift perturbation is a multiple of q2
t and therefore varies with uncertainty. This causes

E∗t (d lnRm,u)
2 to have a higher drift under η than P and by an amount that varies with

uncertainty. Since we already showed that E∗t (d lnRm,u)
2 has a greater initial value under

η, this implies that: ∫ T

t

Eη
t (d lnRm,s)

2 >

∫ T

t

EP
t (d lnRm,s)

2

Moreover, variation in the difference between these two two quantities varies with q2
t .

Again, a similar result again obtains for η and Q. Marginal utility is higher when q2
t

is higher (since it implies higher uncertainty and jump intensity). Hence, the risk-neutral

measure tilts probability mass towards states with higher values of q2
t , which results in a

higher drift in q2
t under Q than η. This implies that

∫ T
t
EQ
t (d lnRm,s)

2 >
∫ T
t
Eη
t (d lnRm,s)

2.

Combining this result with the result for η and P implies that:

EQ
t

[∫ T

t

(d lnRm,s)
2

]
> EP

t

[∫ T

t

(d lnRm,s)
2

]
(23)

The one-month variance premium, vpt,t+1, is exactly the difference, for T = 1, between

the two expectations in (23). Thus, vpt,t+1 > 0. A second point is that vpt,t+1 is a good

filter for q2
t and the level of uncertainty. The reason is that, as (22) indicates, differencing

the expectations (largely) removes the influence of diffusion volatility on vpt,t+1. This is an

important point if the diffusion volatility is driven by variables other than q2
t . In these cases,

vpt,t+1 is a good filter for q2
t since it filters out most of the influence of these other volatility

drivers, which means variation in it mostly reflects variation in q2
t .

6 Calibration

6.1 Reference Model Specification

I now specify the reference model for the calibration. The reference model is an expanded

version of the model in Bansal and Yaron (2004) (BY). As in BY, there is a small but

24



persistent component in consumption and dividend growth, which is denoted by xt. The

cash flow processes are:

d lnCt =

(
µc + xt −

1

2
Φ2
cσ

2
t

)
dt+ σtΦcdZc,t

d lnDt =

(
µd + φxt −

1

2
Φ2
dσ

2
t

)
dt+ σtΦddZd,t

As in BY, φ represents the loading of dividend growth on xt and is greater than 1, reflecting

the fact that dividends are much more volatile than consumption.The (conditional) variance

of the consumption and dividend growth streams is driven by the stochastic process σ2
t , which

follows an AR(1) process. Hence, σ2
t governs the immediate level of risk in cash flow growth

rates. Moreover, I assume there is no ambiguity about the structure of these immediate

cash flow growth rates. using the notation from Section 3.1, I let Y1,t = (lnCt, lnDt)
′ and

Y2,t = (σ2
t , xt, q

2
t ). I make q2

t follow an AR(1) process. Thus, there is uncertainty about the

three persistent state variables.

To summarize, the state vector Yt and transition matrix K are given by:

Yt =


lnCt

lnDt

σ2
t

xt

q2
t

 K =


0 0 −1

2
Φ2
c 1 0

0 0 −1
2
Φ2
d φ 0

0 0 ρσ 0 0

0 0 0 ρx 0

0 0 0 0 ρq


In addition, let E(d lnCt) = µc, E(d lnDt) = µd, E(xt) = 0, E(σ2

t ) = 1 and E(q2
t ) = 1.20.

These values fix the value of the vector µ in the diffusion. Setting E(q2
t ) = 1 and E(σ2

t ) = 1

is a convenient normalization that is without loss of generality. The diffusion covariance

matrix is:

Σ(Yt)Σ(Yt)
′ =

[
Hσσ

2
t 0

0 Hqq
2
t

]
where Hσ = diag (Φ2

c , Φ2
d) and Hq = diag

(
Φ2
σ, Φ2

x, Φ2
q

)
. Hence, the diffusions are uncorre-

lated.

Finally, the jump intensity is specified by l1 = (0, 0, 0, l1,x, l1,q)
′ and the jump sizes are

20The normalization E(q2t ) = 1 was already imposed in Section 3.3.
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ξt = (0, 0, 0, ξx,t, ξq,t)
′. The jumps in xt have a zero-mean normal distribution: ξx ∼ N(0, σ2

x).

The jump sizes in q2
t have a gamma distribution: ξq ∼ Γ(νq,

µq
νq

). Specifying a gamma

jump size guarantees that the q2
t process remains positive. This parametrization of the

gamma distribution is convenient since it implies that E[ξq] = µq. The parameter νq is

called the ‘shape’ parameter of the gamma distribution, while the other parameter is the

‘scale’ parameter. As νq decreases, the right tail of the distribution becomes thicker and

the distribution becomes more asymmetric. When νq = 1, which is the value used in the

calibration, the gamma distribution reduces to the exponential distribution.

Several factors motivate the introduction of two volatility processes and the choice of

partition of Yt. First, I wish to separate pure stochastic cash flow and return volatility from

time-varying model uncertainty. The majority of return volatility in structural pricing models

comes from cash flow volatility, as is also the case below. However, it need not be the case

that uncertainty moves in lock-step with cash flow (or return) volatility and creating separate

volatility processes enables the model to capture this potential separation. In terms of the

partition of Yt, it is reasonable that model uncertainty should be much less important for

immediate cash flows than for the dynamics of the state variables. The immediate cash flow

growth rates are comparatively easy to observe and measure, and they have low persistence.

On the other hand, the state variable dynamics are hard to measure and are potentially quite

persistent. The persistence means that relatively small, difficult-to-detect perturbations to

the state variable dynamics may have large cumulative effects. Model uncertainty is then

particularly relevant for the dynamics of these variables. Moreover, since shocks to these

persistent variables can have large effects, it is reasonable that the level of uncertainty and

the risk of these shocks move together. Finally, letting q2
t drive the diffusion volatility for

these state variables facilitates tractability if one wishes to have uncertainty with respect to

the diffusion.

6.2 Parameter Values

In calibrating the model I use the following guidelines. I aim to find parameter values

for the model specification such that (i) once they are time-averaged to an annual level,

the model’s consumption and dividend growth statistics are consistent with salient features

of the consumption and dividend data (ii) the model generates unconditional moments of

asset prices, such as the equity premium and the risk-free rate that match those in the
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data (iii) the model matches moments of market return volatility, the VIX, and the variance

premium, as well as projections of stock returns on these variance-related quantities. Finally,

the calibration also compares the model’s implied-volatility curves for 1,3, and 12 month

maturities with their empirical counterparts. For the model calibration, I normalize the

parameter values to a monthly interval, i.e. ∆t = 1 is one month. Table III provides the

parameter values for the calibration, which are now discussed.

The monthly normalization makes it easy to compare the parameter values to those in

Bansal and Yaron (2004). The cash flow parameters are similar to those in Bansal and

Yaron (2004), though xt is somewhat less persistent. In comparing the parameter values

to those of a discrete-time model, it is important to remember that ρx in this model’s

continuous-time formulation maps to exp(ρx) in a discrete-time setup. Hence, the value

of ρx in Table III indeed implies that xt has high persistence and represents a long-run

component in consumption and dividend growth. As in BY, φ represents the sensitivity

of dividend growth to the long-run component, which is greater than that of consumption

growth. The volatility and uncertainty processes, σ2
t and q2

t , are also persistent, though

significantly less so than the volatility process in BY.

Table III also includes the jump parameters. Jumps in xt have a standard deviation that

is 2.25 times the average volatility of the xt diffusion, and occur at an average rate of 1

jump per year. In contrast to the rare-disasters literature, these jumps are infrequent, but

not ‘rare’, and are (potentially) large compared to the diffusion, but not ‘disastrous’. The

Table also shows that jumps in q2
t occur at an average rate of 0.75 jumps per year with

a mean jump size is 1.5. These jumps capture spikes in the level of uncertainty, which is

instrumental in capturing the high variance premium (and high price of options).

Finally, the table shows the preference parameters. Relative risk aversion is set to 5,

which is right in the middle of the range considered by Mehra and Prescott (1985), and is

far lower than the levels of risk aversion typically needed to match the equity premium. The

agent’s aversion to model uncertainty is an important part of the reason that this low risk

aversion is able to match the equity premium. The IES is set 2, which corresponds to the

estimate from Bansal, Kiku, and Yaron (2007) and dampens the level and volatility of the

risk-free rate.

Finally, the mean level of uncertainty is set by the value of ϕ. This parameter’s value

is not interpretable directly. Rather, Appendix H derives an expression that directly links
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the level of ϕ to the detection-error probability for the worst-case model. The detection-

error probability is the probability that, if the true dgp is the worst-case model, a likelihood

ratio test would actually favor the reference model. It is given by the probability that the

log-likelihood ratio of the worst-case and reference models is negative. Models with high

detection-error probabilities are difficult for the agent to distinguish empirically from the

reference model and therefore present a concern. The detection-error probability depends

on the span of the data history the agent uses for inference regarding the dgp. This history

is limited by both the availability of data records and also by any structural breaks that

may have occurred within the sample. I choose ϕ to correspond to a 10% detection-error

probability for the post-war sample or 7% for the long sample (1930:2006)21. Note that

two indistinguishable models correspond to a maximum 50% (not 100%) detection-error

probability. These are non-trivial chances of detection-error, so concerns about incorrectly

rejecting the worst-case model seem quite reasonable. Of course, if one believes the useful

sample is shorter, then the detection-error is higher. For comparison, the same ϕ also

implies detection-error probabilities of 22% and 43% for sample lengths of 20 years and 1

year respectively.

6.3 Results

Table IV provides the empirical moments and the corresponding statistics for the calibrated

model. In order to assess the model fit to the data, I provide model-based finite sample

statistics. Specifically, I present the model based 5%, 50% and 95% percentiles for the

statistics of interest generated from 250 simulations, each with the same sample length as

its data counterpart. The time increment used in the simulations is one month. For the

consumption and dividend dynamics I utilize the longest sample available, (1930:2006), so

the the simulations are based on 924 monthly observations which are time-averaged to an

annual sample of length 77, as in the data. I provide similar statistics for the ‘standard’ asset

pricing moments, such as the mean and volatility of the market and risk free rate. For the

variance premium-related statistics the data is monthly and available only for the latter part

of the sample (1990.1-2007.3). Thus, the model’s variance premium-related statistics are

based on the last 207 monthly observations in each of the 250 simulations. It is important

to note that the reference model’s dynamics are the ones being simulated. These are the

21This detection-error probability is approximate since I am using the formula (H.3) for the case of constant
ambiguity and volatility.
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right dynamics to use for reporting simulation moments under the view that the calibration’s

reference model is the one used by agents and that it provides a good fit to the historical

data (or in fact generated it). Under this view, the data point estimates should be within

the 90% confidence intervals generated by the model simulations. For completeness, I also

provide HAC robust standard errors of the data statistics.

The top panel in Table IV shows that the reference model captures quite well several

key moments of annualized consumption and dividend growth. The data-based mean and

volatility of dividends and consumption growth are in fact close to the median estimates

from the model and fall well within the 90% confidence interval. It is important to note that

despite the presence of jump shocks, the distribution of model moments is very reasonable.

The autocorrelations in the cash flow processes are also close to their model counterparts.

Hence, the calibrated reference model does a good job matching the cash flow data and is

quite a reasonable specification for agents to use as their reference model.

The second panel of Table IV presents some of the model’s asset pricing implications.

This panel pertains to annual data on the market, risk free rate and price-divided ratio.

As mentioned earlier, the corresponding model statistics are time averaged annual figures.

The panel shows that the model does a good job in capturing the equity premium and the

volatility of excess returns. The model is able to match the equity premium even with a

low relative risk aversion of 5. This reinforces the conclusion of other equilibrium models

that have included robustness concerns, for example Maenhout (2004) and Liu, Pan, and

Wang (2005). However, unlike the models in these two papers, the model here matches the

equity premium despite separating the consumption and dividend processes. Moreover, the

model here is able to match the volatility of the market return. The table further shows

that the model captures the low mean and volatility of the risk free rate. The rows labeled

‘skew’ and ‘kurt’ give the skewness and kurtosis of monthly excess returns for the sample

(1930:2006). The point of including these moments is to show that the dynamics of the

model, particulary the jumps, do not cause the return distribution to be excessively heavy-

tailed. Moreover, they show that the model is able to replicate the negative skewness and

high kurtosis observed in the data22. The one moment where the model falls somewhat short

is in generating the large volatility of the price-dividend ratio.

22The kurtosis estimate may appear high relative to some other estimates. This is due to starting the
sample in 1930. By comparison, the (1950:2006) estimate for the kurtosis of monthly excess returns is 6.00
(1.74) and skewness is -0.78 (0.35)
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The bottom panel in Table IV provides a number of statistics pertaining to integrated

variance and the variance premium, all at the monthly horizon. The impact of time variation

in model uncertainty shows up very strongly here. First, as in the data, the model has a large

variance premium so that the risk-neutral expectation of integrated variance is substantially

larger on average than its physical measure counterpart. Second, the model’s conditional

variance premium is also very volatile, as in the data. The table shows that the model

almost exactly matches the volatility of expected integrated variance under the two measures,

with the risk-neutral expectation of integrated variance varying substantially more than the

physical expectation. Moreover, the model’s median skewness and kurtosis for the variance

premium are right in line with the large values in the data. Finally, the model’s median

autocorrelation for the P and Q expectations of integrated variance are close to the data and

are easily within the 90% confidence interval. This shows that conditional return volatility

inside the model is persistent but not extremely so, as is the case in the data.

There are two main ways that uncertainty helps to produce a large and volatile variance

premium. The first reason is that, as discussed in Section 5.4, several of the perturbations

in the worst-case model cause an increase in variance. For instance, both the level of the

jump intensity and the drift in q2
t are increased under the worst-case model. The reason is

that both perturbations harm the agent’s utility. The jump perturbations, in particular, are

both harmful and difficult to detect. This means they are allocated a substantial fraction of

the ‘entropy budget’ and figure prominently in the worst-case model. Moreover, the means

of the jump size distributions change under the worst-case model in ways that also increase

the expectation of integrated variance. For example, the mean xt jump size, which is 0

under the reference model, becomes negative under the worst-case model. Time-variation in

uncertainty also leads to a large variance premium because it causes shocks to q2
t to carry a

large, negative price of risk. Since shocks to q2
t cause variation, this large, negative risk price

increases risk-neutral expectations of integrated variance. The reason q2
t shocks carry a high

risk price is that q2
t drives variation in the level of uncertainty and increases in uncertainty

adversely affect the agent’s utility. Therefore, the agent wants to hedge increases in q2
t and

is willing to pay a high premium for assets that pay well when uncertainty spikes up (for

example options) . Thus, time variation in uncertainty causes q2
t shocks to carry a large,

negative risk price, which leads to a large variance premium.

An increase in uncertainty and loss of confidence in the reference model increase the

distance between the worst-case and reference models. The agent then perceives that growth
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prospects are worse (through the perturbation to xt) and that the risk of jump shocks is

higher (through the perturbation to the jump intensity). Both affects decrease prices and

thereby increase expected returns. This implies that high levels of uncertainty are associated

with high expected excess returns and that the level of uncertainty has predictive power for

returns. Since uncertainty is also the main driver of time variation in the variance premium,

as discussed in Section 5.4, the variance premium should be a predictor of excess stock

returns. The predictive ability of the variance premium in the data was highlighted in the

Data section. As the bottom panel of Table IV shows, the model captures this predictability.

The bottom of the panel presents the projection coefficients in the data and in the model for

predictive regressions of excess returns on the variance premium for horizons of one, three

and six months. As the table shows, the projection coefficients have the right sign and the

median values are roughly in line with the data estimates. As in the data, the model-based

R2s are quite large for these short horizons. The model median R2 for the one-month ahead

projection is close to 2% and the 90% finite sample distribution of R2 clearly includes the

1.5% R2 from the data. For the 3 and 6-month ahead projections, the median R2 increases

to 3.9% and 5.3% inside the model, which, though high, is similar to the 5.9% and 4.0%

values in the data. Overall, the results of Table IV indicate that the model can capture quite

well the cash flow, asset pricing and variance-related moments in the data.

6.3.1 Variance under P and Q and Predictability

There is a long literature in empirical asset pricing that has looked at whether the conditional

variance of stock returns predicts expected excess stock returns. This literature has come to

mixed conclusions, with some early studies finding predictive power while others have not.

The recent work in Ghysels, Santa-Clara, and Valkanov (2005) claims to find this relation by

more precisely measuring conditional volatility. Bollerslev and Zhou (2007) first pointed out

that the variance premium appears to be a stronger predictor of excess stock returns than

conditional variance. The model in this paper is consistent with this observation. Within the

model, both σ2
t and q2

t drive variation in the conditional variance of returns. However, the

majority of the variation in the equity risk premium comes from variation in q2
t . As pointed

out in Section 5.4, the variance premium is a essentially a filter for q2
t since its variation is

driven almost exclusively by q2
t . Hence, the variance premium should be a better predictor

of excess returns than just the conditional variance.
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This point can be seen from Table V, which provides a more in-depth look at the prop-

erties of expected integrated variance under the P and Q measures. The top panel displays

properties of P -measure expected integrated variance, which corresponds closely to condi-

tional one-month variance. The bottom panel looks at the Q-measure expectation, which

effectively replicates the VIX inside the model. Comparing the P -measure variance’s predic-

tive R2 for excess stock returns to the predictive power of the variance premium in Table IV,

one sees that inside the model the variance premium has stronger predictive power than the

conditional variance. At the median values for both the 1 and 3 month horizons, the pre-

dictive power of the variance premium is over 50% greater than for the P -measure expected

variance. The bottom panel shows that the predictive power of Q-measure expected variance

(i.e the VIX2) falls in between that of conditional variance and the variance premium, at

both maturities in the data and the model. This is because the risk-neutral expectations

more strongly reflect the level of q2
t , which is important for pricing. Therefore the Q-measure

expectation does a better job of revealing the level of q2
t than does the P -measure expecta-

tion, though it is not as good at this as the variance premium. This is further reflected in the

skewness and kurtosis statistics of both the model and data, which reflect that variation in

q2
t has the greatest influence on the variance premium and smallest influence on P -measure

expectations of variance. Note that the model matches the empirical skewness and kurtosis

moments very well.

Along the same lines, Table V also shows that the median correlation in the model be-

tween the variance premium and Q-measure expected variance is higher than the correlation

between the variance premium and P -measure conditional variance. This is consistent with

the data. The model also does a very good job matching the correlation values and the fact

that the correlation between any two of the three series is quite high.

6.3.2 Option Prices and the Volatility Surface

Although the variance premium is a statistic that summarizes how ‘expensive’ options are,

one may be interested in the whole volatility surface implied by the model. To that end, I

price options within the calibrated model calculate their Black-Scholes implied-volatilities. I

numerically calculate option prices by using Fourier-transform techniques. I find the charac-

teristic function for the state vector using the methods in Duffie, Pan, and Singleton (2000)

and then calculate and invert the option transform based on the method of Madan and Carr
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(1999). The details of this procedure are in Appendix I. Figure 1 shows a comparison of the

model-based and empirical implied volatility curve at maturities of 1, 3 and 12 months for

strikes ranging in moneyness (Strike/Spot Price) from 0.75 to 1.25. This represents a wide

range of strikes for short-maturity options. The empirical data is obtained is obtained from

Citigroup and covers October 1999 to June 2008. It represents the averge of daily implied

volatilities on over-the-counter options on the S&P 500 index. The range of strikes available

in the otc market for index options is often much wider than for exchange-traded options.See

? for more details on the otc market. The model-based option prices are computed by setting

the state vector, Yt equal to its unconditional mean.

Figure 1 shows the the model does quite a good job matching both the overall shape

and actual values of the implied volatility curves. In particular, it captures the skew, the

steep slope in implied vols for out-of-the-money put prices (low moneyness). This feature

exists at all three maturities, but is particularly pronounced for the 1-month maturity. The

model also does a very nice job replicating the decay in the skew as the horizon increases. It

further matches the shallow positive slope in the vol surface for at-the-money vols, whereby

the 1-year at-the-money vol is the highest and the 1-month vol the lowest.

Figure 2 provides a closer look at the one and three month implied vol curves. The top

plot shows the 1-month curves. Note that in addition to doing a good job in matching the

very steep slope in the curve at low moneyness strikes, the model also replicates the smirk,

the slight increase in implied volatility at high moneyness strikes. However, it is apparent

that the model-based curve does not ‘dip’ as low as the empirical one. The same thing

happens for the 3-month curves in the bottom plot. The model does fit is very good for low

moneyness strikes but not as good for high-moneyness.

6.4 The Impact of Ambiguity

Table VI conducts a two-part comparative statistics exercise on the model of Table III by

shutting off ambiguity with respect to parts of the model’s dynamics. The first panel, labeled

Model 1-A, is for a model that shuts off ambiguity with regards to only the jump shocks

in the model, leaving on ambiguity regarding the diffusion part of the dynamics. Thus, the

jump components are unchanged under the corresponding worst-case model. The second

panel, Model 1-B, turns off all model uncertainty, so the agent has full confidence in the

reference model. This exercise is intended to assess the impact of model ambiguity on the
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different asset prices. The table shows only the asset price data, since the reference model

cash flow dynamics are unaffected.

The top panel, Model 1-A, shows that eliminating ambiguity with respect to the jump

shocks significantly reduces the median equity premium, though the premium remains non-

trivial. The other moments in the top panel are not greatly affected. Volatility is reduced

a little and the kurtosis of the monthly returns decreases somewhat. Note that for model

1-A the ‘distance’ to the worst-case model is the same as before (i.e. the relative entropy of

the worst-case model is the same). For Model 1-B, where entropy is zero and the worst-case

model is reduced to the reference model, the median equity premium becomes very small.

The bottom panel shows the impact of uncertainty on the variance premium. The results

for Model 1-A show that eliminating uncertainty regarding the jump components of the

model greatly reduces the size and volatility of the variance premium. The variance premium

is reduced by roughly an order of magnitude and the 90th percentile of the simulations

is nowhere near the data estimates. Eliminating all ambiguity in Model 1-B reduces the

variance premium even further, so that it is essentially zero. Finally, the predictive R2 of the

variance premium is reduced successively in the two models. As pointed out by Drechsler

and Yaron (2008), the variance premium’s predictive power comes largely from the fact that

it reveals the probability (intensity) of jump shocks. When the jump intensity is not directly

amplified under the worst-case model, as in Model 1-A, the jumps’ importance decreases

along with the predictive power of the variance premium. Without any model uncertainty,

as in Model 1-B, the influence of q2
t on risk premia is greatly diminished, as is its predictive

power. This is apparent in the diminished median R2s shown in the table. Lastly, as the

variance premium becomes very small, the predictive regression coefficients become very

unstable. If the variance premium was this small empirically, it would likely be obscured by

estimation noise.

Finally, the results from the table are reinforced by Figures 3 and 4, which plot the

implied-volatility curves for Model 1-B. The figures show that the model-implied curves

are very flat and the model does not capture the steep skew in implied-volatility. This is

particularly at apparent the 1-month maturity, though it is also a problem at maturities of

3 and 12 months.
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6.5 Forecast Dispersion and the VIX

Figure 5 provides further support for the link between the VIX and (model) uncertainty. To

measure uncertainty I use the dispersion in forecasts of next quarter’s real GDP growth from

the Philadelphia Fed’s Survey of Professional Forecasters (SPF). The dispersion is measured

simply as the standard deviation in the growth forecasts. Since the forecasters have access

to the same public information, the dispersion in their forecasts should capture differences in

their models. If we take the set of models they use as the representative agent’s alternative set

of models, then the dispersion should capture the size of the alternative set. This approach

to measuring uncertainty is closely related to the empirical approach in Anderson, Ghysels,

and Juergens (2007).

The Figure plots the quarterly dispersion measure along with the value of the VIX at the

end of the previous quarter. The two series appear to be strongly related. Their correlation

is 0.48, with a standard error of 0.11. Moreover, the two series tend to spike at the same

time, particularly in 1987-88, 1990-91, and 2001-2002. The economic turmoil of 2008 has

also caused both to spike. One notable exception to their strong comovement is the financial

crisis of 1998, which causes a sharp spike in the VIX without a corresponding strong increase

in forecast dispersion. For completeness, I also calculate the model’s correlation between the

level of q2
t and the model-implied VIX. For the calibrated model simulations described above,

the 5, 50, and 95 percentiles of this correlation are 52%, 78%, and 94% respectively. The

high correlation confirms that the model-generated VIX strongly reflects uncertainty, though

it is also clear that the correlation is not perfect.

7 Conclusion

An important part of studying asset prices in equilibrium models is that the fundamental

risk prices arise endogenously from the solution of the model and depend jointly on dynamics

and preferences. This can make it difficult to match empirically observed risk premia, such as

high mean excess equity returns and the large variance premium embedded in option prices.

Model uncertainty or concerns for robustness present an intuitively appealing and promising

direction for explaining these high risk premia. However, to explore this avenue effectively

requires building models with a structure rich enough to enable robustness concerns to have

their full implications. Tractability is an obstacle to solving for equilibrium in these models

35



and imposes an additional layer of complexity in solving for asset prices.

This paper presents a flexible, multivariate framework for solving for equilibrium asset

prices with uncertainty aversion/concern for model robustness. Uncertainty is modeled as

a local constraint on the relative entropy of alternative models and is allowed to vary over

time. The paper illustrates how to solve for the worst-case model within the multivariate

framework and further shows that asset pricing remains tractable under the resulting worst-

case model. As an additional point, the paper illustrates how the framework used here is

related the ‘homothetic’ robustness technique of Maenhout (2004).

The paper applies this framework to introduce time-varying uncertainty into an economy

with long-run risks, stochastic volatility, and jump shocks. Jump shocks and persistent

growth dynamics present important model specification concerns since perturbations to them

are potentially harmful to utility and are also statistically difficult to detect. Uncertainty

regarding these dynamics has important asset pricing implications. The paper presents a

calibration of the model economy that is able to jointly match moments of cash flows, the

equity premium and risk-free rate, and option prices. Uncertainty is particularly important

for matching the large and volatile variance premium embedded in option prices and the

high implied volatilities of out-of-the-money put options. The calibration further shows that

uncertainty regarding jump shocks is important for capturing the return predictability of

equity returns by option-implied quantities, such as the variance premium and VIX. Finally,

the calibration demonstrates that these ‘priced’ variance measures reflect uncertainty more

strongly than statistical variance measures, which can explain their greater predictive power

for returns.
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Appendix

A Measure Change and Entropy for Jumps

A.1 Derivation of Measure Changes for Jumps

TBA

A.2 Derivation of Relative Entropy Growth for Jumps

TBA

B HJB Derivation

TBA

C Equilibrium Consumption-Wealth Ratio

In equilibrium, markets clear so that the representative agent must hold all of his wealth in
the claim to aggregate consumption. Thus, the equilibrium consumption-wealth ratio can
also be viewed as the dividend-price ratio of the aggregate consumption claim.

To derive the equilibrium consumption-wealth ratio, consider the consumption and port-
folio problem of the representative agent in this Lucas-tree setting. Since the information
filtration is generated by Zt, we can assume that the price of the aggregate consumption
claim Pc, follows an Itô process:

dPc,t = (Pc,tuc,t − Ct)dt+ Pc,tσ
T
c,tdZt

There is also a risk-free money market account in zero-net supply, paying an endogenously
determined rate rf,t. The agent chooses the proportion αt of his wealth, Wt, to invest in the
consumption claim. His budget constraint is then:

dWt = Wt [αt(ut − rf,t) + rf,t] dt+Wtαtσ
T
c,tdZt − Ctdt

The lifetime utility of the agent J(Wt, Ỹt) is a function of Wt and the state variables for the
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dynamics, Ỹt. The agent’s HJB equation is:

0 = min
ht

sup
{αt,Ct}

ψ(Ct, Jt) + Eh
t [dJ ]

subject to the restriction on the norm of ht. The only part of this problem used at this point,
is the agent’s first-order condition with respect to Ct. Writing the Lagrangian and taking
the derivative with respect to Ct, the FOC is:

ψC(C, J) = JW

By the usual argument, homogeneity of the preferences in wealth and linearity of the budget
constraint imply that the value function must take the form J(W, Ỹ ) = H(Ỹ )W

γ

γ
for some

function H. Substituting in for ψ(C, J) and JW their functional forms, simplifying, and
rearranging, one obtains:

C

W
= H(Ỹ )

1−ψ
γ δψ

To get the consumption-wealth ratio in terms of the known function g(Ỹ ), instead of H(Ỹ ),
we use the expression for the equilibrium value function (8). In equilibrium, since the
market clears and the agent consumes exactly the aggregate consumption stream, lifetime
utility equals J given in (8). Equating the two expressions for J and dividing through by
W γ implies:

H(Ỹ ) = exp
(
γg(Ỹ )

)( C
W

)γ
Substituting this in for H(Ỹ ) in the expression above for C

W
and solving for C

W
leads to the

result:
Ct
Wt

= exp
(
−ρg(Ỹt)

)
δ (C.1)

D Proof of Proposition 1

TBA

E Numerical Solution Details

TBA
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F Equity Return

TBA

G Integrated Variance

TBA

H Detection Error Probability

The detection error probability is the probability that the wrong model/dgp will be inferred
from the data history. The model chosen is the one with the higher likelihood, and the
comparison is between the worst-case and reference models. The detection error probability
is the answer to the question: what is the probability that the true dgp is the worst-case
model, but a likelihood ratio has (erroneously) led the agent to believe the reference model
is the dgp.

Let {Yt}t∈[0,T ] be the history of state vector realizations. The probability of this history
is the probability of the history of innovations dZt that produced it (conditioning on the
initial observation). The Radon-Nikodym derivative ηT is exactly the likelihood ratio for the
worst-case model relative to the reference model for this history of innovations. Therefore,
the detection error probability is Probh(ln ηT < 0), where Probh denotes the probability
under the worst-case measure. From dηt

ηt
= hTt dZt and η0 = 1, Itô’s lemma implies that ηT =

exp
(∫ T

0
hTt dZt − 1

2

∫ T
0
hTt htdt

)
and therefore ln ηT =

∫ T
0
hTt dZt − 1

2

∫ T
0
hTt htdt. Substituting

in dZt = dZh
t + htdt gives an expression that is more convenient for evaluation under the

worst-case measure:

ln ηT =

∫ T

0

hTt dZ
h
t +

1

2

∫ T

0

hTt htdt (H.1)

Now consider the distribution (from time 0 viewpoint) of ηT , under the worst-case measure.
It is easy to see that

Eh
0 [ln ηT ] =

1

2

∫ T

0

Eh
0

[
hTt htdt

]
=

1

2

∫ T

0

2ϕ = ϕT (H.2)

If ht is constant, which is the case for the constant volatility and ambiguity specification
discussed above, then it follows that ln ηt has a normal distribution with variance hThT =
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2ϕT , i.e. ln ηT
h∼ N (ϕT, 2ϕT ). The detection error probability is

Probh (ln ηT < 0) = Prob

(
N (0, 1) <

−ϕT√
2ϕT

)
= Prob

(
N (0, 1) <

−1√
2

√
ϕT

)
(H.3)

Therefore, in this case, the detection error probability is Φ(−1√
2

√
ϕT ), where Φ is the cdf of

the standard normal distribution.

In general, a closed-form expression for the detection error probability is not available
since the distribution of ln ηT is not known in closed-form. However, for a general class of
specifications the detection error probability can be found in closed-form, up to a (numerical)
Fourier inversion. For example, for the stochastic volatility and ambiguity specification
discussed above, the expression 1

2
hTt ht + hTt dZ

h
t (which appears under the integral in (H.1)),

is affine in σ2
t

23. In this case, Maenhout (2006) shows, using results from Duffie, Pan,
and Singleton (2000), that it is possible to solve for the characteristic function of ln ηT
and then numerically invert it to get the exact detection error probability. Finally, Monte-
Carlo simulation of the model is a less elegant, but even more general method of calculating
detection error probabilities.

I Calculating Option Prices by Fourier Transform

TBA

23Specifically, it can be written as a1σ
2
t dt+ σta

T
2 dZt for some constant coefficients a1 and a2
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Table I

Summary Statistics

VIX2 Fut2 VP

Mean 33.30 22.17 11.27

Median 25.14 14.19 8.92

Std.-Dev. 24.13 22.44 7.61

Maximum 163.4 142.4 59.2

Minimum 9.05 2.66 3.27

Skewness 2.00 2.62 2.39

Kurtosis 8.89 11.10 12.03

AR(1) 0.79 0.65 0.65

Table I presents summary statistics for the integrated variance and variance premium measures. The sample
is monthly and covers 1990m1 to 2007m3. VIX2 is the value of CBOE’s VIX squared and divided by 12 to
convert it into a monthly quantity. Fut2t+1 is the sum over a month of squared 5-minute returns on the S&P
500 futures. VP is the measure of the variance premium described in the text.
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Table II

Return Predictability by the Variance Premium

Dependent Regressors OLS Robust Reg.

X1 X2 β1 β2 R2(%) β1 β2 R2(%)

rt+1 V Pt 0.76 1.46 1.12 3.20
(t-stat) (2.18) (2.77)

rt+1 V Pt−1 1.26 4.07 1.21 3.75
(t-stat) (3.90) (2.97)

rt+3 V Pt 0.86 5.92 0.87 6.09
(t-stat) (3.19) (4.12)

rt+1 V Pt log (P/E)t 1.39 -48.67 8.30 1.81 -50.52 10.77
(t-stat) (3.00) (-3.04) (4.33) (-4.36)

rt+1 V Pt−1 log (P/E)t 2.09 -58.12 13.43 1.98 -57.30 12.61
(t-stat) (4.82) (-3.50) (4.68) (-4.85)

Table II presents return predictability regressions. The sample is monthly and covers 1990m1 to 2007m3.
Reported t-statistics are Newey-West (HAC) corrected. P/E is the price-earnings ratio for the S&P 500. The
dependent variable is the total return (annualized and in percent) on the S&P 500 Index over the following
one and three months, as indicated. The three month returns series is overlapping. OLS denotes estimates
from an ordinary least-squares regression. Robust Reg. denotes estimates from robust regressions utilizing
a bisquare weighting function.
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Table III

Calibration – Model Parameter Configuration

Preferences δ RRA ψ ϕ

− ln 0.999 5 2.0 0.0048

∆ct+1 E[∆c] Φc

0.0016 0.0066

xt+1 ρx Φx l1(x) σx

-0.025 0.042× Φc 1.0/12 2.25× Φx

∆dt+1 E[∆d] φ Φd

0.0016 3 6.0× Φc

σ2
t+1 ρσ Φσ

-0.1 0.30

q2
t+1 ρq Φq l1(q) µq νq

-0.2238 0.25 0.75/12 1.5 1

Table III presents the parameters for the reference model used in the model calibration.
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Table IV

Model Calibration Results

Statistic Data Model
5% 50% 95%

Cashflow Dynamics

E[∆c] 1.88 (0.32) 0.94 1.95 2.82

σ(∆c) 2.21 (0.52) 2.02 2.45 3.00

AC1(∆c) 0.43 (0.12) 0.27 0.46 0.63

E[∆d] 1.54 (1.53) -1.77 1.45 5.31

σ(∆d) 13.69 (1.91) 10.62 12.39 14.65

AC1(∆d) 0.14 (0.14) 0.10 0.31 0.48

corr(∆c,∆d) 0.59 (0.11) 0.01 0.23 0.44

Returns

E[rm − rf ] 5.41 (2.09) 3.05 6.00 9.50

E[rf ] 0.82 (0.35) 1.07 1.52 1.96

σ(rm − rf ) 19.48 (2.35) 15.65 18.08 21.19

σ(rf ) 1.89 (0.17) 0.63 0.87 1.27

E[p− d] 3.15 (0.07) 2.76 2.83 2.90

σ(p− d) 0.31 (0.02) 0.13 0.16 0.21

skew(rm − rf ) (M) -0.43 (0.54) -0.86 -0.27 0.11

kurt(rm − rf ) (M) 9.93 (1.26) 3.95 5.75 11.55

Variance Premium

σ(varPt (rm)) 17.18 (2.21) 9.01 15.57 30.82

σ(varQt (rm)) 24.07 (3.15) 11.95 22.47 45.94

AC1(varPt (rm)) 0.81 (0.04) 0.76 0.85 0.92

AC1(varQt (rm)) 0.79 (0.05) 0.74 0.84 0.92

E[V P ] 11.27 (0.93) 5.81 8.23 13.34

σ(V P ) 7.61 (1.08) 3.47 7.75 17.76

skew(V P ) 2.39 (0.59) 1.32 2.68 4.25

kurt(V P ) 12.03 (3.30) 4.82 11.24 25.02

β(1) 0.76 (0.35) -0.02 1.13 2.84

R2(1) 1.46 (1.52) 0.03 1.86 8.32

β(3) 0.86 (0.27) -0.10 0.88 2.39

R2(3) 5.92 (4.67) 0.04 3.91 18.50

β(6) 0.49 (0.24) -0.15 0.75 1.87

R2(6) 3.97 (4.74) 0.04 5.32 27.84

Table IV presents (a) consumption and dividend dynamics (b) asset pricing moments (c) moments pertaining
to the variance premium. For each statistic the table reports its data and model corresponding values. The
data for consumption, dividends, the market return, risk free rate, and price-dividend ratio correspond to
the period from 1930 to 2006. The data pertaining to the variance premium is based on monthly data
from 1990.1-2007.3. For the model I report finite sample statistics based on 250 simulations each with the
corresponding sample size the same as its data counterpart. For the annual data the statistics are based on
time-averaged data. The parameters for calibrating the model are given in Table III. Standard errors are
calculated using the Newey-West variance-covariance estimator with 4 lags.



Table V

Model Calibration Results: Physical and Risk Neutral Variance

Statistic Data Model
5% 50% 95%

Integrated Variance P
σ(varPt (rm)) 17.18 (2.21) 9.01 15.57 30.82

AC1(varPt (rm)) 0.81 (0.04) 0.76 0.85 0.92

R2(1) 0.72 (1.28) 0.01 1.17 6.40

R2(3) 1.87 (3.49) 0.13 2.59 14.09

skew(varPt (rm)) 1.90 (0.38) 0.55 1.73 3.32

kurt(varPt (rm)) 7.61 (1.60) 3.09 6.87 17.19

corr(varPt (rm), V P ) 0.86 (0.05) 0.57 0.84 0.96

Integrated Variance Q

σ(varQt (rm)) 24.07 (3.15) 11.95 22.47 45.94

AC1(varQt (rm)) 0.79 (0.05) 0.74 0.84 0.92

R2(1) 0.98 (1.40) 0.01 1.54 7.05

R2(3) 3.05 (4.21) 0.10 3.26 16.38

skew(varQt (rm)) 2.00 (0.49) 0.86 2.16 3.57

kurt(varQt (rm)) 8.89 (2.26) 3.74 8.70 20.06

corr(varQt (rm), V P ) 0.93 (0.03) 0.77 0.93 0.98

Table V presents moments pertaining to physical expectations of integrated variance, varP
t (rm), and risk-

neutral expectations, varQ
t (rm). The physical-measure expectations represent conditional variance. The risk-

neutral expectations represent the VIX. For each statistic the table reports its data and model corresponding
values. The data is monthly 1990.1-2007.3. For the model, I report finite sample statistics based on 250
simulations each with the same sample size as the data. The parameters for calibrating the model are given
in Table III. Standard errors are calculated using the Newey-West variance-covariance estimator with 4 lags.



Table VI

Comparative Statics Results

Statistic Data Model 1-A Model 1-B
5% 50% 95% 5% 50% 95%

Returns

E[rm − rf ] 5.41 (2.09) 0.68 3.63 7.22 -2.55 0.50 4.04

E[rf ] 0.82 (0.35) 1.25 1.68 2.12 1.30 1.73 2.17

σ(rm − rf ) 19.48 (2.35) 15.55 17.90 20.51 15.84 18.13 20.58

σ(rf ) 1.89 (0.17) 0.60 0.81 1.12 0.59 0.80 1.11

skew(rm − rf ) (M) -0.43 (0.54) -0.39 -0.05 0.22 -0.22 0.05 0.35

kurt(rm − rf ) (M) 9.93 (1.26) 3.56 4.69 7.71 3.50 4.30 5.84

Variance Premium

σ(vart(rm)) 17.18 (2.21) 8.55 14.01 27.60 8.44 13.46 26.34

σ(varQt (rm)) 24.07 (3.15) 8.81 14.65 28.99 8.45 13.55 26.54

AC1(vart(rm)) 0.81 (0.04) 0.76 0.86 0.92 0.77 0.86 0.92

AC1(varQt (rm)) 0.79 (0.05) 0.76 0.86 0.92 0.77 0.86 0.92

E[V P ] 11.27 (0.93) 0.59 0.84 1.36 0.08 0.12 0.19

σ(V P ) 7.61 (1.08) 0.35 0.79 1.81 0.05 0.11 0.26

β(1) 0.76 (0.35) -4.82 7.43 23.59 -70.80 18.03 126.8

R2(1) 1.46 (1.52) 0.01 1.04 6.79 0.01 0.45 4.37

β(3) 0.86 (0.27) -4.01 5.79 20.15 -61.5 14.60 110.50

R2(3) 5.92 (4.67) 0.02 2.24 14.71 0.01 1.27 10.45

Table VI presents comparative statics exercise for the model given in Table III. The two panels alter the
model in TableIII by successively turning off uncertainty towards aspects of the model. Model 1-A eliminates
uncertainty with regards to the jump components of the model, but leaves uncertainty with respect to the
diffusion dynamics. Model 1-B turns off all model uncertainty (ϕ = 0), so the agent has full confidence in
the reference model.

49



F
ig

u
re

1:
Im

p
li
ed

V
ol

at
il
it

ie
s:

M
o
d
el

an
d

D
at

a

0.
8

0.
9

1
1.

1
1.

2

15202530354045

M
ea

n 
Im

pl
ie

d 
V

ol
at

ili
tie

s 
(D

at
a)

K
/P

t (
m

on
ey

ne
ss

)

Implied Vol, %

 

 
1 

m
on

th
3 

m
on

th
1 

ye
ar

0.
8

0.
9

1
1.

1
1.

2

15202530354045

Im
pl

ie
d 

V
ol

at
ili

tie
s 

(M
od

el
)

K
/P

t (
m

on
ey

ne
ss

)

Implied Vol, %

 

 
1 

m
on

th
3 

m
on

th
1 

ye
ar

T
he

fig
ur

e
pl

ot
s

im
pl

ie
d

vo
la

ti
lit

ie
s

fr
om

em
pi

ri
ca

lo
pt

io
n

pr
ic

es
an

d
pr

ic
es

ca
lc

ul
at

ed
fo

r
th

e
m

od
el

of
T

ab
le

II
I.

T
he

pl
ot

sh
ow

s
im

pl
ie

d-
vo

la
ti

lit
y

cu
rv

es
fo

r
m

at
ur

it
ie

s
of

1,
3,

an
d

12
m

on
th

s.
St

ri
ke

s
ar

e
ex

pr
es

se
d

in
m

on
ey

ne
ss

(S
tr

ik
e

P
ri

ce
/S

po
t

pr
ic

e)
.

T
he

le
ft

pl
ot

sh
ow

s
th

e
m

ea
n

of
da

ily
im

pl
ie

d
vo

la
ti

lit
ie

s
fo

r
S&

P
50

0
in

de
x

op
ti

on
s

fo
r

th
e

pe
ri

od
19

99
.1

0-
20

08
.6

,q
uo

te
d

in
th

e
ov

er
-t

he
-c

ou
nt

er
m

ar
ke

t.
T

he
ri

gh
t

pl
ot

sh
ow

s
th

e
m

od
el

-b
as

ed
im

pl
ie

d
vo

la
ti

lit
ie

s
fo

r
op

ti
on

pr
ic

es
th

at
ar

e
ca

lc
ul

at
ed

by
se

tt
in

g
th

e
m

od
el

’s
st

at
e

ve
ct

or
to

it
s

un
co

nd
it

io
na

l
m

ea
n.



Figure 2: 1 and 3 month Implied-Volatilities: Model and Data
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The figure plots comparisons of empirical and model-based implied volatilities for 1
and 3 month maturities for the model of Table III. Strikes are expressed in moneyness
(Strike Price/Spot price). The empirical curves are means of daily implied volatilities
for S&P 500 index options for the period 1999.10-2008.6, quoted in the over-the-counter
market. The model-based curves are calculated for option prices obtained when the
model’s state vector is set to its unconditional mean.
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Figure 4: 1 and 3 month Implied-Volatilities: No-Uncertainty Model and Data
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The figure plots comparisons of empirical and model-based implied volatilities for 1 and
3 month maturities for Model 1-B used for the comparative statics exercise in Table III.
Strikes are expressed in moneyness (Strike Price/Spot price). The empirical curves are
means of daily implied volatilities for S&P 500 index options for the period 1999.10-
2008.6, quoted in the over-the-counter market. The model-based curves are calculated
for option prices obtained when the model’s state vector is set to its unconditional
mean.
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