
Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Yue Wu 1 2 Shuangfei Zhai 1 Nitish Srivastava 1 Joshua Susskind 1 Jian Zhang 1 Ruslan Salakhutdinov 2

Hanlin Goh 1

Abstract

Offline Reinforcement Learning promises to learn

effective policies from previously-collected, static

datasets without the need for exploration. How-

ever, existing Q-learning and actor-critic based

off-policy RL algorithms fail when bootstrapping

from out-of-distribution (OOD) actions or states.

We hypothesize that a key missing ingredient from

the existing methods is a proper treatment of un-

certainty in the offline setting. We propose Un-

certainty Weighted Actor-Critic (UWAC), an al-

gorithm that detects OOD state-action pairs and

down-weights their contribution in the training

objectives accordingly. Implementation-wise, we

adopt a practical and effective dropout-based un-

certainty estimation method that introduces very

little overhead over existing RL algorithms. Em-

pirically, we observe that UWAC substantially

improves model stability during training. In ad-

dition, UWAC out-performs existing offline RL

methods on a variety of competitive tasks, and

achieves significant performance gains over the

state-of-the-art baseline on datasets with sparse

demonstrations collected from human experts.

1. Introduction

Deep reinforcement learning (RL) has seen a surge of inter-

est over the recent years. It has achieved remarkable success

in simulated tasks (Silver et al., 2017; Schulman et al., 2017;

Haarnoja et al., 2018), where the cost of data collection is

low. However, one of the drawbacks of RL is its difficulty of

learning from prior experiences. Therefore, the application

of RL to unstructured real-world tasks is still in its primal

stages, due to the high cost of active data collection. It is

thus crucial to make full use of previously collected datasets

whenever large scale online RL is infeasible.

Offline batch RL algorithms offer a promising direction to

1Apple Inc. 2Carnegie Mellon University. Correspondence to:
Yue Wu <ywu5@andrew.cmu.edu>.

Proceedings of the 38
th International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

leveraging prior experience (Lange et al., 2012). However,

most prior off-policy RL algorithms (Haarnoja et al., 2018;

Munos et al., 2016; Kalashnikov et al., 2018; Espeholt et al.,

2018; Peng et al., 2019) fail on offline datasets, even on ex-

pert demonstrations (Fu et al., 2020). The sensitivity to the

training data distribution is a well known issue in practical

offline RL algorithms (Fujimoto et al., 2019; Kumar et al.,

2019; 2020; Peng et al., 2019; Yu et al., 2020). A large

portion of this problem is attributed to actions or states not

being covered within the training set distribution. Since the

value estimate on out-of-distribution (OOD) actions or states

can be arbitrary, OOD value or reward estimates can incur

destructive estimation errors that propagates through the

Bellman loss and destabilizes training. Prior attempts try to

avoid OOD actions or states by imposing strong constraints

or penalties that force the actor distribution to stay within

the training data (Kumar et al., 2019; 2020; Fujimoto et al.,

2019; Laroche et al., 2019). While such approaches achieve

some degree of experimental success, they suffer from the

loss of generalization ability of the Q function. For example,

a state-action pair that does not appear in the training set

can still lie within the training set distribution, but policies

trained with strong penalties will avoid the unseen states re-

gardless of whether the Q function can produce an accurate

estimate of the state-action value. Therefore, strong penalty

based solutions often promote a pessimistic and sub-optimal

policy. In the extreme case, e.g., in certain benchmarking

environments with human demonstrations, the best perform-

ing offline algorithms only achieve the same performance

as a random agent (Fu et al., 2020), which demonstrates the

need of robust offline RL algorithms.

In this paper, we hypothesize that a key aspect of a robust

offline RL algorithm is a proper estimation and usage of

uncertainty. On the one hand, one should be able to reliably

assign an uncertainty score to any state-action pair; on the

other hand, there should be a mechanism that utilizes the

estimated uncertainty to prevent the model from learning

from data points that induce high uncertainty scores.

The first problem relates closely to OOD sample detection,

which has been extensively studied in the Bayesian deep

learning community. (Gal & Ghahramani, 2016a; Gal, 2016;

Osawa et al., 2019), often measured by the uncertainty of

the model. We adopt the dropout based approach (Gal &

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 1: Left. Plot of average return v.s. training epochs of our
proposed method (red) v.s. baseline (brown) (Kumar et al., 2019)
on the relocate-expert offline dataset. Right. Corresponding plot
of Q-Target values v.s. training epochs. Our proposed method
achieves much higher average return, with better training stability,
and more controlled Q-values.

Ghahramani, 2016a), due to its simplicity and empirical ef-

fectiveness. For the second problem, we provide an intuitive

modification to the Bellman updates in actor-critic based

algorithms. We then propose Uncertainty Weighted Actor

Critic (UWAC), which simply down weighs the contribution

of target state and action pairs with high uncertainty. By

doing so, we prevent the Q function from learning from

overly optimistic targets that lie far away from training data

distribution (high uncertainty).

Empirically, we first verified the effectiveness of dropout

uncertainty estimation at detecting OOD samples. We show

that the uncertainty estimation makes intuitive sense in

a simple environment. With the uncertainty based down

weighting scheme, our method significantly improves the

training stability over our chosen baseline (Kumar et al.,

2019), and achieves state-of-the-art performance in a variety

of standard benchmarking tasks for offline RL.

Overall, our contribution can be summarized as follows:

1) We propose a simple and efficient technique (UWAC)

to counter the effect of OOD samples with no additional

loss terms or models. 2) We experimentally demonstrate

the effectiveness of dropout uncertainty estimation for RL.

3) UWAC offers a novel way for stabilizing offline RL. 4)

UWAC achieves SOTA performance on common offline RL

benchmarks, and obtains significant performance gain on

narrow human demonstrations.

2. Related Work

In this work, we consider offline batch reinforcement learn-

ing (RL) under static datasets. Offline RL algorithms are

especially prone to errors from inadequate coverage of the

training set distribution, distributional shifts during actor

critic training, and the variance induced by deep neural net-

works. Such error have been extensively studied as ”er-

ror propagation” in approximate dynamic programming

(ADP) (Bertsekas & Tsitsiklis, 1996; Farahmand et al.,

2010; Munos, 2003; Scherrer et al., 2015). Scherrer et al.

(2015) obtains a bound on the point-wise Bellman error of

approximate modified policy iteration (AMPI) with respect

to the supremum of the error in function approximation

for an arbitrary iteration. We adopt the theoretical tools

from (Kumar et al., 2019) and study the accumulation and

propagation of Bellman errors under the offline setting.

One of the most significant problems associated with off-

policy and offline RL is the bootstrapping error (Kumar

et al., 2019): When training encounters an action or state

unseen within the training set, the critic value estimate on

out-of-distribution (OOD) samples can be arbitrary and in-

cur an error that destabilizes convergence on all other states

(Kumar et al., 2019; Fujimoto et al., 2019) through the Bell-

man backup. Yu et al. (2020) trains a model of the environ-

ment that captures the uncertainty. The uncertainty estimate

is used to penalize reward estimation for uncertain states

and actions, promoting a pessimistic policy against OOD ac-

tions and states. The main drawback of such a model based

approach is the unnecessary introduction of a model of the

environment – it is often very hard to train a good model.

On the other hand, model-free approaches either train an

agent pessimistic to OOD states and actions (Wu et al., 2019;

Kumar et al., 2020) or constrain the actor distribution to the

training set action distribution (Fujimoto et al., 2019; Ku-

mar et al., 2019; Wu et al., 2019; Jaques et al., 2019; Fox

et al., 2015; Laroche et al., 2019). However, the pessimistic

assumption that all unseen states or actions are bad may lead

to a sub-optimal agent and greatly reduce generalization to

online fine-tuning (Nair et al., 2020). Distributional con-

straints, in addition, rely on approximations since the actor

distribution is often implicit. Such approximations cause

practical training instability that we will study in detail in

section 5.4.

We propose a model-free actor-critic method that down-

weighs the Bellman loss term by inverse uncertainty of the

critic target. Uncertainty estimation has been implemented

in model-free RL for safety and risk estimation (Clements

et al., 2019; Hoel et al., 2020) or exploration (Gal & Ghahra-

mani, 2016a; Lines & Van Der Wilk), through ensembling

(Hoel et al., 2020) or distributional RL (Dabney et al., 2018;

Clements et al., 2019). However, distributional RL works

best on discrete action spaces (Dabney et al., 2018) and re-

quire additional distributional assumptions when extended

to continuous action spaces (Clements et al., 2019). Our ap-

proach estimates uncertainty through Monte Carlo dropout

(MC-dropout) (Srivastava et al., 2014). MC-dropout un-

certainty estimation is a simple method with minimal over-

head and has been thoroughly studied in many traditional

supervised learning tasks in deep learning (Gal & Ghahra-

mani, 2016a; Hron et al., 2018; Kingma et al., 2015; Gal &

Ghahramani, 2016b). Moreover, we observe experimentally

that MC-dropout uncertainty estimation behaves similarly

to explicit ensemble models where the prediction is the

mean of the ensembles, while being much simpler (Laksh-

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

minarayanan et al., 2017; Srivastava et al., 2014).

The most relevant to our work are MOReL (Kidambi et al.,

2020), MOPO (Yu et al., 2020), BEAR (Kumar et al., 2019),

and CQL (Kumar et al., 2020). MOReL and MOPO ap-

proach offline RL from a different model-based paradigm,

and obtain competitive results on some tasks with wide

data distribution. However, given the model-based nature,

MOReL and MOPO achieve limited performance on most

other benchmarks due to the performance of the model being

limited by the data distribution. On the other hand, BEAR

and CQL both use actor-critic and do not suffer from the

above problem. We use BEAR (discussed in section 3.2) as

our baseline algorithm and achieve significant performance

gain through dropout uncertainty weighted backups. CQL

avoids OOD states/actions through direct Q value penalty on

actions that leads to OOD unseen states within the training

set. However the penalty proposed by CQL 1) risks hurt-

ing Q estimates for (action, state) pairs that are not OOD,

since samples not seen within the dataset can still lie within

the true dataset distribution; 2) limits the policy to be pes-

simistic, which may be hard to fine-tune once on-policy data

becomes available. Additionally our method is not limited

to BEAR and can apply to other actor-critic methods like

CQL. We leave such exploration to future works.

3. Preliminaries

3.1. Notations

Following Kumar et al. (2019), we represent the environ-

ment as a Markov decision process (MDP) comprising of a

6-tuple (S,A, P,R, ρ0, γ), where S is the state space, A is

the action space, P (s′|s, a) is the transition probability dis-

tribution, ρ0 is the initial state distribution, R : S ×A → R

is the reward function, and γ ∈ (0, 1] is the discount fac-

tor. Our goal is to find a policy π(s|a) from the set of

policy functions Π to maximize the expected cumulative

discounted reward.

Standard Q-learning learns an optimal state-action value

function Q∗(s, a), representing the expected cumulative dis-

counted reward starting from s with action a and then acting

optimally thereafter. Q-learning is trained on the Bellman

equation defined as follows with the Bellman optimal oper-

ator T defined by:

T Q(s, a) := R(s, a) + γEP (s′|s,a)

[

max
a′

Q(s′, a′)
]

(1)

In practice, the critic (Q function) is updated through dy-

namic programming, by projecting the target Q estimate

(T Q) into Q (i.e. minimizing Bellman Squared Error

E
[

(Q− T Q)2
]

). Since maxa′ Q(s′, a′) in generally in-

tractable in continuous action spaces, an actor (πθ) func-

tion is learned to maximize the critic function (πθ(s) :=
argmaxa Q(s, a)) (Haarnoja et al., 2018; Fujimoto et al.,

2018; Sutton & Barto, 2018).

In the context of offline reinforcement learning, naively

performing maxa′ Q(s′, a′) in equation 1 may result in an

a′ unseen within the training dataset (OOD), and resulting

in a Q estimate with very large error that can propagate

through the Bellman bootstrapping and destabilize training

on other states (Kumar et al., 2019).

3.2. Baseline Algorithm

We use BEAR (Kumar et al., 2019) as our baseline algo-

rithm. BEAR restricts the set of policy functions (Πǫ) to

output actions that lies in the support of the training distri-

bution:

π(·|s) := arg max
π′∈Πǫ

Ea∼π′(·|s) [Q(s, a)] (2)

Since the true support of π ∈ Πǫ is intractable. Kumar et al.

(2019) instead relies on an approximate support constraint

through optimizing sampled maximum mean discrepancy

(MMD) (Gretton et al., 2012) between the training action

distribution and the policy distribution.

However, this constraint eliminates the possibility of the

Q function to learn to generalize to state-action pairs be-

yond the training dataset and therefore limits the agent’s

performance and generalization. Moreover, the justification

behind the sampled MMD approximation as support con-

straints is largely based on empirical evidence, and we ob-

serve numeric instability caused by discrepancies between

Q estimates and average returns on some narrower offline

datasets (Figure 1). Such observations also correspond to

Kumar et al. (2019)’s description in section 7.

4. Uncertainty weighted offline RL

Our approach (UWAC) is motivated by connecting offline

RL with the well-established Bayesian uncertainty estima-

tion methods. This connection enables UWAC to “identify”

and “ignore” OOD training samples, with no additional

models or constraints.

The design choice to use Monte Carlo (MC) dropout for

uncertainty estimation is out of implementation simplicity.

MC dropout on the Q function has been studied and applied

to online RL to encourage exploration through Thompson

Sampling (Gal & Ghahramani, 2016a). Despite their limita-

tions as noted by Osband et al. (2018), random prior based

methods including dropout have been widely applied to cap-

ture uncertainty in RL (Gal & Ghahramani, 2016a; Osband

et al., 2018; Fortunato et al., 2017; Lipton et al., 2018; Tang

& Kucukelbir, 2017; Touati et al., 2020).

Additionally, we note that uncertainty estimation methods

that enforce time-wise or trajectory-wise consistency (Os-

band et al., 2016; 2018) are incompatible with the offline RL

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

problem since the offline dataset does not necessarily need

to contain full trajectories. Our experiments (section 5.1)

empirically demonstrate that dropout uncertainty estimation

can identify OOD states.

4.1. Uncertainty estimation through dropout

Let X capture all the state-action pairs in the training

set: X = (s, a), and Y capture the true Q value of the

states. We draw inspiration from a Bayesian formulation

for the Q function in RL parameterized by θ, and maxi-

mize p(θ|X,Y) = p(Y |X, θ)p(θ)/p(Y |X) as our objec-

tive. Since p(Y |X) is generally intractable, we approximate

the inference process through dropout variational inference

(Gal & Ghahramani, 2016a), by training with dropout be-

fore every weight layer, and also performing dropout at test

time (referred to as Monte Carlo dropout). The model un-

certainty is captured by the approximate predictive variance

with respect to the estimated Q̂ for T stochastic forward

passes

V ar[Q(s, a)] ≈

σ2 +
1

T

T
∑

t=1

Q̂t(s, a)
⊤Q̂t(s, a)− E[Q̂(s, a)]⊤E[Q̂(s, a)]

with σ2 corresponding to the inherent noise in the data, the

second term corresponding to how much the model is un-

certain about its predictions, and E[Q̂(s, a)] the predictive

mean. We therefore use the second−third term to capture

model uncertainty for OOD sample detection.

Overall, instead of training a Qπ function and policy π, we

define an uncertainty-weighted policy distribution π′ with

respect to the original policy distribution π(·|s), the Qπ′

0

from last training iteration, and normalization factor Z(s)

π′(a|s) =
β

V ar
[

Qπ′

0 (s, a)
]π(a|s)/Z(s);

Z(s) =

∫

a

β

V ar
[

Qπ′

0 (s, a)
]π(a|s)da

(3)

We show in the appendix A.1 that optimizing π′ results in

theoretically better convergence properties against OOD

training samples.

4.2. Uncertainty Weighted Actor-Critic

Instead of training the Q function on Equation 1, we train

Qθ on π′. For clarity, we denote the TD Q-target as in

(Mnih et al., 2013; Kumar et al., 2019) by Qθ′ .

L(Qθ)

=E(s′|s,a)∼DEa′∼π′(·|s′)

[

Err(s, a, s′, a′)2
]

=E(s′|s,a)∼DEa′∼π(·|s′)

[

β

V ar [Qθ′(s′, a′)]
Err(s, a, s′, a′)2

]

Err(s, a, s′, a′) = Qθ(s, a)− (R(s, a) + γQθ′(s′, a′)) .

(4)

We absorb the normalization factor Z into β. The resulting

training loss down-weighs the Bellman loss for the Q func-

tion by inverse the uncertainty of the Q-target (Qθ′(s′, a′))
that does track gradient. This directly reduces the effect that

OOD backups has on the overall training process.

Similarly, we optimize the actor π using samples from π′.

Substituting π(·|s) by π′(·|s) in equation 2, we arrive at the

following actor loss

L(π) = −Ea∼π′(·|s) [Qθ(s, a)]

= −Ea∼π(·|s)

[

β

V ar [Qθ(s, a)]
Qθ(s, a)

]

(5)

The resulting actor loss intuitively decreases the probability

of maximizing the Q function on OOD samples, further dis-

couraging the vicious cycle of Q function explosion. Such

loss further stabilizes Q function estimations without con-

straints on the actor function distribution.

Algorithm 1 summarizes the proposed training curriculum,

mostly the same as in the baseline (Kumar et al., 2019). Note

that we do not propagate gradient through the uncertainty

(V ar(y(s, a)))
5. Experimental Results

Figure 2: Expert Trajectory Visualization. 2D heat maps of
the expert’s action distribution with respect to horizontal/vertical
displacement from the goal location. Warmer locations represent
more observations.

Our experiments are structured as follows: In section 5.1,

we validate and visualize the effectiveness of dropout uncer-

tainty estimation in RL. In section 5.2 we present compet-

itive benchmarking results on the widely-used D4RL Mu-

JoCo walkers dataset. We then experiment with the more

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Algorithm 1 Pseudo code for UWAC, differences from (Kumar
et al., 2019) are colored

Input: Dataset D, target network update rate τ , mini-batch

size N , sampled actions for MMD (n = 10), sample

numbers stochastic forward passes (T = 100), hyper-

parameters: λ, α, β
1: Initialize Q networks {Qθ1 , Qθ2} with MC Dropout.

Initialize actor πφ, target networks {Qθ′

1
, Qθ′

2
} and a

target actor πφ′ , with φ′ ← φ, θ′1,2 ← θ1,2
2: for t← 1 to N do

3: Sample mini-batch of transitions (s, a, r, s′) ∼ D
4: Q-update:

5: Sample p action samples, {ai ∼ πφ′(·|s′)}pi=1

6: y(s, a) := maxai

[

λmin(Qθ′

1
(s′, ai), Qθ′

2
(s′, ai))

+(1− λ)max(Qθ′

1
(s′, ai), Qθ′

2
(s′, ai))

]

7: Calculate variance of the y(s, a) through variance of

T stochastic samples from Qθ′

1
, Qθ′

2

8: Perform one step of SGD to minimize L(Qθ1,2) =
β

V ar[y(s,a)] (Qθ1,2(s, a)− (r + γy(s, a)))2

9: Policy-update:

10: Sample actions {ai ∼ πφ′(·|s′)}mi=1, {aj ∼ D}
n
i=1

11: Update φ, a according to equation 5 with MMD

penalty with weight α as in section 3.2

12: Update Target Networks: θ′1,2 ← τθ1,2;φ
′
i ← τφi

13: end for

complex Adroit hand manipulation environment in section

5.3, and analyze the training stability and the effectiveness

against OOD samples by examining the Q target functions

in section 5.4. We report the implementation details 1 in

section 5.5, ablation studies 5.6, and training time in A.2.

5.1. Dropout Uncertainty Estimation for

Reinforcement Learning

For the ease of 2D-visualization, we firstly investigate the

effectiveness of MC dropout for uncertainty estimation

on the OpenAI gym LunarLander-v2 environment. The

LunarLander-v2 environment features a lunar lander agent

trying to land at a goal location in a 2D world (between two

yellow flags) with 4 actions {do nothing, fire left engine,

fire downward engine, fire right engine}.

We generate the expert offline dataset from the final replay

buffer (size 100,000) of a fully trained expert AWR (Peng

et al., 2019) agent with average reward 270. Note that the

state-action distribution has a relatively complete coverage

over the observation space (Fig. 2).

To simulate the scenario in most offline datasets, where

the agent encounters lots of out-of-distribution states and

actions, we create two skewed datasets by removing all

observations from the upper-half or the leftmost-half ac-

1Code available at github.com/apple/ml-uwac

Figure 3: Top. The training set with horizontal displacements
(< 0.1) removed. This makes all states on the left OOD. Bottom.
Our model estimates higher uncertainty (brighter color) on the left
and lower uncertainty (colder color) on the right.
We visualize the heatmap with the average speed of the lander,
which is faster than observations at the bottom of the map. As a
result, Fig 2 does not represent the actual frequency of training
data, and the uncertainty should be compared horizontally, not
vertically.

cording to displacement from objective. We visualize the

clipped datasets distribution together with the estimated Q

function uncertainty in Figure 3,1. Our proposed frame-

work reports higher uncertainty estimates at locations where

the observations are sparse, especially where the observa-

tions are removed (OOD states). The results demonstrate

the effectiveness of our proposed method at estimating the

uncertainty of the Q function.

Additionally, in some benchmarking experiments, we ob-

serve lower uncertainty estimates of state-action pairs in

the training set than states from the training set paired with

random actions (as in Figure 4 for the walker2d-expert task).

This further validates the use of MC dropout as a way to

detect OOD state-action pairs.

5.2. Performance on standard benchmarking datasets

for offline RL

We evaluate our method on the MuJoCo datasets in the

D4RL benchmarks (Fu et al., 2020), including three environ-

ments (halfcheetah, hopper, and walker2d) and five dataset

https://github.com/apple/ml-uwac

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 4: Uncertainty (estimated as variance) of state-action pairs
from the (walker2d-expert) training dataset (green) compared to
uncertainty estimates of the states combined with random actions
from the same dataset.
Since the action space for robotic control is quite small and noisy,
a lot of random actions are actually in-distribution. Although
the regions overlap, we achieve a ROC/AUC score of 0.845 for
identifying OOD actions.

types (random, medium, medium-replay, medium-expert,

expert), yielding a total of 15 problem settings. The datasets

in this benchmark have been generated as follows: random:

roll out a randomly initialized policy for 1M steps. expert:

1M samples from a policy trained to completion with SAC.

medium: 1M samples from a policy trained to approxi-

mately 1/3 the performance of the expert. medium-replay:

replay buffer of a policy trained up to the performance of

the medium agent. medium-expert: 50-50 split of medium

and expert data.

Results are shown in Table 1. Our method is the strongest by

a significant margin on all the medium-expert datasets and

most of the medium-expert datasets, and also achieves good

performance on all of the random and medium datasets,

where the datasets lack state/action diversity. Our approach

performs less well on the medium-replay datasets com-

pared to model based method (MOPO) because model-based

methods typically perform well on datasets with diverse

state/action.

5.3. Performance on Adroit hand dataset with human

demonstrations

We then experiment with a more complex robotic hand

manipulation dataset. The Adroit dataset in the D4RL

benchmarks (Rajeswaran et al., 2017) involves controlling a

24-DoF simulated hand to perform 4 tasks including ham-

mering a nail, opening a door, twirling a pen, and pick-

ing/moving a ball. This dataset is particularly hard for

previous state-of-the-art works in that it contains of nar-

row human demonstrations on a high-dimensional robotic

manipulation task.

Figure 5: Our learned policies successfully accomplishes manip-
ulation tasks, such as opening a door as shown.

The dataset contains three types of datasets for each task. hu-

man: a small amount of demonstration data from a human;

expert: a large amount of expert data from a fine-tuned RL

policy; cloned: the third dataset is generated by imitating

the human data, running the policy, and mixing data at a

50-50 ratio with the demonstrations. It is worth noting that

mixing (for cloned) is performed because the cloned policies

themselves do not successfully complete the task, making

the dataset otherwise difficult to learn from (Fu et al., 2020).

Results are shown in Table 2. UWAC achieves signifi-

cant improvement on the baseline (BEAR) (Kumar et al.,

2019) on all the “human” demonstration datasets, where

the datasets lacks state/action diversity and the agent will

encounter lots of OOD backups during training. We also ob-

tain state-of-the art performance all other datasets in Adroit.

5.4. Analysis of Training Dynamics

Although the baseline method BEAR (Kumar et al., 2019)

already improves offline RL training stability on most of the

MuJoCo Walkers dataset, we observe significantly worse

training stability when training BEAR on the more complex

Adroit hand dataset, especially on demonstrations collected

from a narrow policy (i.e. human demonstrations). We show

some selected results in Figure 6.

Note that on 5 of the 6 panels shown, the performance of

BEAR drops after obtaining peak very early on into training,

and sometimes even falls back to initial performance. We

also observe similar behavior in all other environments, see

full adroit results in Figure 2 in the Appendix. Additionally,

we observe strong correlation between the training instabil-

ity and the explosion of Q values. All performance drops

begin at within 5 epochs when Q target estimate greatly

exceeds the average return. We attribute the problem of Q
function over-estimation and explosion to performing back-

ups from OOD states and actions: As performance improves

initially, the OOD Q estimates increases together with the

average Q estimates. Since the agent is unable to explore

on the OOD actions/states, any over-estimation on the OOD

samples can further increase average Q estimates through

the Bellman backups, causing a vicious cycle leading to Q
value explosion.

In the initial stages of training, the performance of UWAC

increases together with the baseline. By down-weighting

the OOD backups, UWAC breaks the vicious cycle, and

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Table 1: Normalized Average Returns of UWAC v.s. previous state-of-the-arts (BEAR, CQL, MOPO) and random ensemble

mixtures (REM), and AlgaeDICE (aDICE) on the D4RL MuJoCo Gym dataset according to (Fu et al., 2020). We report the

average over 5 random seeds (± standard deviation). BEAR, CQL do not report standard deviation. We omit BRAC-p and

SAC-off because they do not obtain performance meaningful for comparison. We bold the highest mean.

Task Name UWAC (OURS) MOPO MOReL BEAR BRACv AWR BCQ BC CQL REM aDICE

halfcheetah-random 14.5 ± 3.3 35.4 ± 2.5 25.6 25.1 31.2 2.5 2.2 2.1 35.4 -2.6 -0.3
walker2d-random 15.5 ± 11.7 13.6 ± 2.6 37.3 7.3 1.9 1.5 4.9 1.6 7 -0.3 0.5
hopper-random 22.4 ± 12.1 11.7 ± 0.4 53.6 11.4 12.2 10.2 10.6 9.8 10.8 0.7 0.9
halfcheetah-medium 46.5 ± 2.5 42.3 ± 1.6 42.1 41.7 46.3 37.4 40.7 36.1 44.4 -2.6 -2.2
walker2d-medium 57.5 ± 7.8 17.8 ± 19.3 77.8 59.1 81.1 17.4 53.1 6.6 79.2 -0.2 0.3
hopper-medium 88.9 ± 12.2 28.0 ± 12.4 95.4 52.1 31.1 35.9 54.5 29.0 58 0.6 1.2
halfcheetah-med-replay 46.8 ± 3.0 53.1 ± 2.0 40.2 38.6 47.7 40.3 38.2 38.4 46.2 -3.0 -2.1
walker2d-med-replay 27.0 ± 6.3 39.0 ± 9.6 49.8 19.2 0.9 15.5 15.0 11.3 26.7 -0.2 0.6
hopper-med-replay 39.4 ± 6.1 67.5 ± 24.7 93.6 33.7 0.6 28.4 33.1 11.8 48.6 0.8 1.1
halfcheetah-med-expert 127.4 ± 3.7 63.3 ± 38.0 53.3 53.4 41.9 52.7 64.7 35.8 62.4 -2.6 -0.8
walker2d-med-expert 99.7 ± 12.2 44.6 ± 12.9 95.6 40.1 81.6 53.8 57.5 6.4 98.7 -0.2 0.4
hopper-med-expert 134.7 ± 21.2 23.7 ± 6.0 108.7 96.3 0.8 27.1 110.9 111.9 111 0.7 1.1
halfcheetah-expert 128.6 ± 2.9 - - 108.2 -1.1 - - 107 104.8 - -
walker2d-expert 121.1 ± 22.4 - - 106.1 0 - - 125.7 153.9 - -
hopper-expert 135.0 ± 14.1 - - 110.3 3.7 - - 109 109.9 - -

Table 2: Normalized Average Returns on the D4RL Adroit dataset in the same format as Table 1, over 5 random seeds (±
standard deviation). We omit BRAC-p, BRAC-v because they do not obtain performance meaningful for comparison.

Task Name UWAC (OURS) BEAR BC SAC-off CQL(H) CQL(ρ) AWR BCQ SAC-on REM aDICE

pen-human 65.0 ± 3.0 -1.0 34.4 6.3 37.5 55.8 12.3 68.9 21.6 3.5 -3.3
hammer-human 8.3 ± 7.9 0.3 1.5 0.5 4.4 2.1 1.2 0.5 0.2 0.2 0.3
door-human 10.7 ± 5.5 -0.3 0.5 3.9 9.9 9.1 0.4 0.0 -0.2 -0.1 -0.0
relocate-human 0.5 ± 0.6 -0.3 0.0 0.0 0.2 0.4 0.0 -0.1 -0.2 -0.2 -0.1
pen-cloned 45.1 ± 5.8 26.5 56.9 23.5 39.2 40.3 28.0 44.0 21.6 -3.4 -2.9
hammer-cloned 1.2 ± 3.4 0.3 0.8 0.2 2.1 5.7 0.4 0.4 0.2 0.2 0.3
door-cloned 1.2 ± 3.6 -0.1 -0.1 0.0 0.4 3.5 0.0 0.0 -0.2 -0.1 0.0
relocate-cloned 0.0 ± 0.2 -0.3 -0.1 -0.2 -0.1 -0.1 -0.2 -0.3 -0.2 -0.2 -0.3
pen-expert 119.8 ± 4.1 105.9 85.1 6.1 - - 111.0 114.9 21.6 0.3 -3.5
hammer-expert 128.8 ± 4.8 127.3 125.6 25.2 - - 39.0 107.2 0.2 0.2 0.3
door-expert 105.4 ± 2.1 103.4 34.9 7.5 - - 102.9 99.0 -0.2 -0.2 0.0
relocate-expert 108.7 ± 1.7 98.6 101.3 -0.3 - - 91.5 41.6 -0.2 -0.1 -0.1

maintains meaningful Q estimates throughout training. This

allows UWAC to further train on the offline dataset and

surpass BEAR after the performance drop and maintain

positive performance.

5.5. Implementation Details

LunarLander: We set our expert to be a simple 3-layer

actor-critic agent trained to completion with (Peng et al.,

2019). We take the final replay buffer (size 100,000) with

average reward of 269.7. The vertically clipped dataset

in Figure 1 contains 76,112 samples, and the horizontally

clipped dataset in Figure 3 contains 21,038 samples.

We then train a simple 3-layer actor-critic off-policy agent

on the clipped datasets according to Algorithm 1 (we do not

take the MMD loss in line 11 to enlarge the effect of OOD

samples).

Baseline (BEAR): We ran benchmarks on the official

GitHub code2 of BEAR and the updated version3 provided

by the authors. We ran parameter search on all the rec-

ommended parameters kernel type∈{gaussian, laplacian},
mmd sigma∈{10,20}, 100 actions sampled for evaluation,

and 0.07 being the mmd target threshold. We are able to

reproduce the results reported in (Fu et al., 2020) with both

the official GitHub and the updated version.

Our method (UWAC): We apply our weighted loss to Al-

gorithm 1 to the updated BEAR code provided by Kumar

et al. (2019). We keep the hyper-parameters and the network

architecture exactly the same as in BEAR. For experiments

on the Adroit hand environment, we further enforce Spectral

Norm on the Q function for better stability similar to (Yu

et al., 2020) and theoretical guarantee as shown in Appendix

A.1. We clip the inverse variance to within the range of

(0.0, 1.5) for numerical stability.

2github.com/aviralkumar2907/BEAR
3github.com/rail-berkeley/d4rl evaluations

https://github.com/aviralkumar2907/BEAR
https://github.com/rail-berkeley/d4rl_evaluations

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Figure 6: Plot of average return v.s. training epochs, together with the corresponding average Q Target over training epochs. Results
are averaged across 5 random seeds. Left: Results of different types (human, cloned, expert) on the Adroit pen task. Right: Results on
human demos on the 3 remaining tasks. The performance of baseline (BEAR) degrades over time (also noted in (Kumar et al., 2019)), and
the Target Q value explodes.

For the choice of β in Algorithm 1, we swept over values

from the set {0.8, 1.6, 2.5}, determined by matching the av-

erage uncertainty output during training time. We found that

the model is quite robust against β: 0.8, 1.6 gave similarly

good performance across all tasks in our experiments. We

also note that β can be absorbed into the learning rate since

it acts both on the actor loss and critic loss. However, since

the MMD loss from BEAR is not β-weighted, we make the

design choice to tune β in stead of the MMD weight α.

5.6. Ablations

Spectral Normalization: Our first study isolates the effect

of Spectral Norm on the performance. Although BEAR +

Spectral Norm enforces a bounded Q function and main-

tains good training stability, Spectral Norm does not handle

OOD backups on the narrow Adroit datasets. We discover

experimentally that BEAR+SN performs much worse than

BEAR only, we plot the complete results of BEAR+SN v.s.

BEAR in Figure 4.

Dropout/Ensembles for Regularization: Our second

study isolates the effect of Dropout on the performance

as a regularizer, since dropout alone does not handle OOD

backups on the narrow Adroit datasets. We observe ex-

perimentally that UWAC without uncertainty weighing

(BEAR+Dropout+Spectral Norm) does not change the be-

havior of BEAR under Spectral Norm (Figure 5) and per-

forms worse than UWAC (Figure 6) and the original BEAR

(Figure 7). In addition, we note that ensemble based meth-

ods like REM (Agarwal et al., 2020) alone achieves bad

performance on the Adroit environment (Table 1,2).

Replacing Dropout with Ensembles: To verify the gener-

alization of UWAC to uncertainty estimation methods be-

yond dropout, we applied UWAC loss to ensembles trained

under REM (Agarwal et al., 2020) and average-DQN en-

sembles (Anschel et al., 2017). In both cases, UWAC still

outperforms baseline (BEAR). We notice that dropout has

very similar performance as average-DQN ensembles on the

Adroit dataset (Figure 8).

Down-weigh by Variance v.s. Standard Deviation: We

notice no significant difference in behavior down-weighing

using standard deviation or variance (Figure 9).

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

6. Conclusion and Future Work

In this work, we have leveraged uncertainty estimation

to detect and down-weight OOD backups in the Bellman

squared loss for offline RL. We show our proposed tech-

nique, UWAC, achieves superior performance and improved

training stability, without introducing any additional model

or losses. Furthermore, we experimentally demonstrate the

effectiveness of dropout uncertainty estimation at detecting

OOD samples in offline RL. UWAC also can be applied

to stabilize other actor-critic methods, and we leave the

investigation to future works.

In addition, our work demonstrates a valuable application

of uncertainty estimation in RL. Future works can com-

bine model-based and model-free methods for offline or off-

policy RL and use uncertainty estimation to decide when to

use the model to train the actor. Additionally, uncertainty

estimation may be used to guide curiosity based RL agents

for on-policy curiosity-based learning.

References

Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-

mistic perspective on offline reinforcement learning. In

International Conference on Machine Learning, pp. 104–

114. PMLR, 2020.

Anschel, O., Baram, N., and Shimkin, N. Averaged-dqn:

Variance reduction and stabilization for deep reinforce-

ment learning. In International Conference on Machine

Learning, pp. 176–185. PMLR, 2017.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-

gramming. Athena Scientific, 1996.

Clements, W. R., Robaglia, B.-M., Van Delft, B., Slaoui,

R. B., and Toth, S. Estimating risk and uncertainty in deep

reinforcement learning. arXiv preprint arXiv:1905.09638,

2019.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,

R. Distributional reinforcement learning with quantile

regression. In AAAI, 2018.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,

V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,

I., et al. Impala: Scalable distributed deep-rl with im-

portance weighted actor-learner architectures. In ICML,

2018.

Farahmand, A.-m., Szepesvári, C., and Munos, R. Error

propagation for approximate policy and value iteration.

In Advances in Neural Information Processing Systems,

pp. 568–576, 2010.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I.,

Graves, A., Mnih, V., Munos, R., Hassabis, D., Pietquin,

O., et al. Noisy networks for exploration. arXiv preprint

arXiv:1706.10295, 2017.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in

reinforcement learning via soft updates. arXiv preprint

arXiv:1512.08562, 2015.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,

S. D4rl: Datasets for deep data-driven reinforcement

learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., van Hoof, H., Meger, D., et al. Addressing

function approximation error in actor-critic methods. Pro-

ceedings of Machine Learning Research, 80, 2018.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep

reinforcement learning without exploration. In Interna-

tional Conference on Machine Learning, pp. 2052–2062,

2019.

Gal, Y. Uncertainty in deep learning. University of Cam-

bridge, 1(3), 2016.

Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-

imation: Representing model uncertainty in deep learn-

ing. In international conference on machine learning, pp.

1050–1059, 2016a.

Gal, Y. and Ghahramani, Z. A theoretically grounded ap-

plication of dropout in recurrent neural networks. In

Advances in neural information processing systems, pp.

1019–1027, 2016b.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,

and Smola, A. A kernel two-sample test. The Journal of

Machine Learning Research, 13(1):723–773, 2012.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft

actor-critic: Off-policy maximum entropy deep reinforce-

ment learning with a stochastic actor. In International

Conference on Machine Learning, pp. 1861–1870, 2018.

Hoel, C.-J., Tram, T., and Sjöberg, J. Reinforce-

ment learning with uncertainty estimation for tacti-

cal decision-making in intersections. arXiv preprint

arXiv:2006.09786, 2020.

Hron, J., Matthews, A., and Ghahramani, Z. Variational

bayesian dropout: pitfalls and fixes. In International

Conference on Machine Learning, pp. 2019–2028, 2018.

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson,

C., Lapedriza, A., Jones, N., Gu, S., and Picard, R.

Way off-policy batch deep reinforcement learning of

implicit human preferences in dialog. arXiv preprint

arXiv:1907.00456, 2019.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A.,

Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Van-

houcke, V., et al. Scalable deep reinforcement learning

for vision-based robotic manipulation. In Conference on

Robot Learning, pp. 651–673, 2018.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,

T. Morel: Model-based offline reinforcement learning.

arXiv preprint arXiv:2005.05951, 2020.

Kingma, D. P., Salimans, T., and Welling, M. Variational

dropout and the local reparameterization trick. In Ad-

vances in neural information processing systems, pp.

2575–2583, 2015.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.

Stabilizing off-policy q-learning via bootstrapping error

reduction. In Advances in Neural Information Processing

Systems, pp. 11784–11794, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conserva-

tive q-learning for offline reinforcement learning. arXiv

preprint arXiv:2006.04779, 2020.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple

and scalable predictive uncertainty estimation using deep

ensembles. In Advances in neural information processing

systems, pp. 6402–6413, 2017.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-

ment learning. In Reinforcement learning, pp. 45–73.

Springer, 2012.

Laroche, R., Trichelair, P., and Des Combes, R. T. Safe pol-

icy improvement with baseline bootstrapping. In Interna-

tional Conference on Machine Learning, pp. 3652–3661.

PMLR, 2019.

Lines, D. and Van Der Wilk, M. Disentangling sources of

uncertainty for active exploration.

Lipton, Z., Li, X., Gao, J., Li, L., Ahmed, F., and Deng, L.

Bbq-networks: Efficient exploration in deep reinforce-

ment learning for task-oriented dialogue systems. In

Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 32, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing

atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

Munos, R. Error bounds for approximate policy iteration.

In ICML, volume 3, pp. 560–567, 2003.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,

M. Safe and efficient off-policy reinforcement learning.

In Advances in Neural Information Processing Systems,

pp. 1054–1062, 2016.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating

online reinforcement learning with offline datasets. arXiv

preprint arXiv:2006.09359, 2020.

Osawa, K., Swaroop, S., Khan, M. E. E., Jain, A., Eschen-

hagen, R., Turner, R. E., and Yokota, R. Practical deep

learning with bayesian principles. In Advances in neural

information processing systems, pp. 4287–4299, 2019.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep

exploration via bootstrapped dqn. In Advances in neural

information processing systems, pp. 4026–4034, 2016.

Osband, I., Aslanides, J., and Cassirer, A. Randomized prior

functions for deep reinforcement learning. In Advances in

Neural Information Processing Systems, pp. 8617–8629,

2018.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.

Advantage-weighted regression: Simple and scalable

off-policy reinforcement learning. arXiv preprint

arXiv:1910.00177, 2019.

