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Abstract It is important that a Cyber-Physical System

(CPS) with uncertainty in its behavior caused by its unpre-

dictable operating environment, to ensure its reliable oper-

ation. One method to ensure that the CPS will handle such

uncertainty during its operation is by testing the CPS with

model-based testing (MBT) techniques. However, existing

MBT techniques do not explicitly capture uncertainty in test

ready models, i.e., capturing the uncertain expected behav-

ior of a CPS in the presence of environment uncertainty. To

fill this gap, we present an Uncertainty-Wise test-modeling

framework, named as UncerTum, to create test ready models

to support MBT of CPSs facing uncertainty. UncerTum relies

on the definition of a UML profile [the UML Uncertainty

Profile (UUP)] and a set of UML Model Libraries extending

the UML profile for Modeling and Analysis of Real-Time

and Embedded Systems (MARTE). UncerTum also benefits

from the UML Testing Profile V.2 to support standard-based
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MBT. UncerTum was evaluated with two industrial CPS case

studies, one real-world case study, and one open-source CPS

case study from the following four perspectives: (1) Com-

pleteness and Coverage of the profiles and Model Libraries

in terms of concepts defined in their underlying uncertainty

conceptual model for CPSs, i.e., U-Model and MARTE, (2)

Effort required to model uncertainty with UncerTum, and

(3) Correctness of the developed test ready models, which

was assessed via model execution. Based on the evaluation,

we can conclude that we were successful in modeling all

the uncertainties identified in the four case studies, which

gives us an indication that UncerTum is sufficiently complete.

In terms of modeling effort, we concluded that on average

UncerTum requires 18.5% more time to apply stereotypes

from UUP on test ready models.

Keywords Uncertainty · Cyber-Physical System · UML ·

Model-based testing

1 Introduction

“Cyber-Physical Systems (CPS) are integrations of com-

putation, networking, and physical processes. Embedded

computers and networks monitor and control the physical

processes, with feedback loops where physical processes

affect computations and vice versa” [1]. These systems often

function in the unpredictable physical environment, leaving

them vulnerable to uncertainty during their operation [2–4].

CPSs are often designed and developed with known assump-

tions on their operating physical environment, which may

not hold during their operation. Currently, a common prac-

tice is to develop CPSs by integrating physical units without

knowing their internals. Consequently, even during testing,

assumptions about the expected behavior of CPSs and their
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operating environment are often made. Thus, we argue that

when applying model-based testing (MBT), uncertainty (i.e.,

“lack of knowledge” [5,6] about the internal behavior of a

CPS and its composed physical units, and its operating envi-

ronment) must be explicitly captured in test ready models,

i.e., the models representing the expected behavior of the CPS

being tested and are detailed enough such that test cases can

be generated from them. We took a subjective approach to

capture uncertainty since a test modeler(s) creates test ready

models, during which assumptions are made by the mod-

eler(s) about the internal behavior of a CPS and its physical

units, and its operating environment, based on her/his (their)

belief at the time the models are created.

Uncertainty in the context of CPSs is an immature area

of research in general, and several efforts have just begun

to study uncertainty in CPSs [7]. In this paper, we report

one such effort, where we aim to devise a set of model-

ing methodologies for explicitly modeling test ready models

(with uncertainty) for CPSs under test with the ultimate aim

of automatically generating test cases from test ready models

with MBT techniques. We report an Uncertainty-Wise Mod-

eling Framework, named as UncerTum (Fig. 1), which is

developed as part of an EU project [8]. The project has var-

ious types of partners contributing to the overall approach

such as researchers, use case providers, tool vendor, and test

bed providers, as shown in Fig. 1. UncerTum, developed by

researchers, supports modeling test ready models with known

uncertainty based on uncertainty test requirements provided

by use case providers (Fig. 1). In the project, the first use case

provider is Future Position X, Sweden [9], who provides the

CPS case study about GeoSports (GS) from the healthcare

domain, whereas the second use case provider is ULMA Han-

dling Systems [10] who provides case study about Automated

Warehouse (AW) from the logistics domain.

The core of UncerTum is the UML Uncertainty Profile

(UUP) (Fig. 1), which is defined based on the uncertainty

conceptual model for CPSs (U-Model) [7]. The UUP pro-

file consists of three parts (i.e., Belief, Uncertainty, and

Measurement profiles) and an internal library containing

enumerations required in the profiles. In addition, Uncer-

Tum also defines an extensive set of UML Model Libraries

(Model Libraries in Fig. 1) by either extending the UML

profile for Modeling and Analysis of Real-Time and Embed-

ded Systems (MARTE) [11] or defining new ones that were

not covered by existing standards. The key libraries include

Uncertainty Pattern Library, Measure Library, and Time

Library. Moreover, UncerTum relies on the UML Testing

Profile (UTP) V.2 to model test ready models for the purpose

of enabling MBT. Last, UncerTum includes a set of guide-

lines (Fig. 1) with recommendations and alternative scenarios

for applying the proposed modeling notations.

UncerTum was deployed on IBM Rational Software

Architect (RSA) [12] as shown in Fig. 1. Once test ready

models are created, they are inputted into the CertifyIt [13]

MBT tool, which is a plugin to IBM RSA. With this tool,

a set of executable test cases can be generated based on

various test strategies that are devised and prototyped by

researchers. Both the implementation of UncerTum and test

case generation strategies will be integrated into CertifyIt

by the tool vendor (EGM [14]). Finally, test bed providers

provide facilities to execute generated test cases on the pro-

vided CPSs case studies. This includes Test Infrastructure

(physical infrastructures and test emulators/simulators) and

Test APIs to control and monitor both the test infrastructure

itself and the CPS being tested. In the context of the U-Test

project, Nordic Med Test [15] (NMT) provides the facility to

execute test cases on GS, whereas in the case of AW, ULMA

[10], and IK4-Ikerlan [16] provide the corresponding facility.

Finally, the tool vendor implements the Test Case Execution

Platform, which executes test cases on the CPS (Fig. 1). Note

that the focus of this paper is only on UncerTum, which is

indicated by a dashed line box of Fig. 1 (i.e., “Scope of the

paper”) and the rest is ongoing.

UncerTum was evaluated with two industrial case studies,

one real world, and one open-source case study from the lit-

erature. The first two case studies are GS and AW available

to us as part of the project, whereas the third case study is

embedded Videoconferencing Systems (VCSs) developed by

Cisco, Norway [17], and was used in the second author’s pre-

vious work [18]. Currently, we have access to several VCSs

in our research laboratory due to our long-term collaboration

with Cisco and we modeled them ourselves for the purpose

of evaluating UncerTum. Thus, this case study is a real case

study, but using it to evaluate UncerTum is not performed in

a real industrial setting. The GS and AW case studies were

however performed in real industrial settings. The fourth case

study (SafeHome) is an open-source case study from [19],

and we extended it for our purpose. With these case studies,

we performed evaluation from these three perspectives: (1)

Completeness and Coverage of UUP/Model Libraries to U-

Model and MARTE, (2) Effort required to model uncertainty

using UncerTum in terms of the number of model elements

and effort measured in terms of time, and (3) Correctness of

the developed models by executing the models.

In our previous work, we developed a generic conceptual

model (called U-Model) to understand uncertainty indepen-

dent of its final use [7]. Notice that to keep the paper self-

contained, we have provided U-Model and definitions of its

concepts in “Appendix A” and we refer to it when necessary.

In this paper, U-Model was implemented as UUP, i.e., one of

the key contributions of this paper, to enable the development

of test ready models for supporting MBT. Other contributions

include a set of Model Libraries to model (partially extend-

ing MARTE), for example, various types of uncertainties and

their measures and a set of precise guidelines to create test

ready models using UUP, UTP V.2 and Model Libraries.
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Fig. 1 Overall workflow of the U-Test EU project

Note that the development of UTP V.2 is not a contribution

of this paper; rather its application to create test ready models

with uncertainty is one of our contributions. Notice that this

is one of the first papers reporting the application of UTP V.2

to industrial case studies. Another contribution of the paper is

our modeling approach to check the correctness of test ready

models through model execution. Finally, we consider the

extensive evaluation of the applicability of UncerTum with

the three real industrial case studies as a contribution as well.

The rest of the paper is organized as follows. Section 2

presents the background, followed by a running example

(Sect. 3). Section 4 presents the overview of UncerTum.

Section 5 discusses details of the UUP profile, and Sect. 6 dis-

cusses the Model Libraries. Section 7 presents the guidelines

for applying UncerTum. Section 8 presents our modeling

approach for checking the correctness of test ready models

with model execution. Section 9 provides the evaluation, and

Sect. 10 presents the related work. We conclude the paper in

Sect. 11.

2 Background

2.1 Cyber-Physical Systems and testing levels

A CPS is defined in [7] as: “A set of heterogeneous physi-

cal units (e.g., sensors, control modules) communicating via

heterogeneous networks (using networking equipment) and

potentially interacting with applications deployed on cloud

infrastructures and/or humans to achieve a common goal”

and is conceptually shown in Fig. 2. Uncertainty can occur

at the following three logical levels [7] (Fig. 2): (1) Applica-

tion level, due to events/data originating from an application

(one or more software components) of a physical unit of the

CPS; (2) Infrastructure level, due to data transmission via

information network enabled through networking infrastruc-

ture and/or cloud infrastructure; (3) Integration level, due to

either interactions of applications across the physical units at

the application level, or interactions of physical units across

the application and infrastructure levels. Notice that we chose

the definition of CPS from [7] as it was defined in the context

of our project and was further used to define the three levels

of uncertainties in CPS that are modeled in this paper and

conforms to the well-known definition in [1].

2.2 U-Model

In our previous work [7], to understand uncertainty in CPSs,

we developed a conceptual model called U-Model to define

uncertainty and associated concepts, and their relationships

at a conceptual level. Some of the U-Model concepts were

extended for supporting MBT of all the three levels of CPS

under uncertainty (Sect. 2.1). U-Model was developed based

on an extensive review of existing literature on uncertainty
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Fig. 2 Conceptual model of a Cyber-Physical System and the three levels

from several disciplines including philosophy, healthcare,

and physics, and two industrial CPS case studies from the

two industrial partners of the U-Test EU project. In this paper,

we implement U-Model as UncerTum to support the con-

struction of test ready models with uncertainty. Details of

U-Model are given in [7], and part of U-Model is provided

in “Appendix A” for the purpose of keeping this paper self-

contained.

2.3 UML Testing Profile (UTP)

UML Testing Profile (UTP) [20,21] is a standard at Object

Management Group (OMG) for enabling MBT. With UTP,

the expected behavior of a system under test can be modeled,

from where test cases can be derived. UTP can be also used

to directly model test cases. Transformations from models

specified with UTP to executable test cases can be performed

using specialized test generators. Since UTP is defined as a

UML profile, it is often applied to UML sequence, activity

diagrams, and state machines for describing behaviors of a

system under test or test cases. The key purpose is to intro-

duce testing-related concepts [e.g., Test Case, Test Data, and

Test Design Model and Model Libraries such as various types

of test case Verdict (pass, fail)] to UML models for the pur-

pose of enabling automated generation of test cases. UTP

V.2 [21] is the latest revision of the UTP profile, which is

conceptually composed of five packages of concepts: Test

Analysis and Design, Test Architecture, Test Behavior, Test

Data, and Test Evaluations. Various numbers of stereotypes

have been defined for some concepts of these packages. Sim-

ilar to other modeling notations, it is never been an objective

to exhaustively apply all the stereotypes when using UTP V.2

to annotate UML models with testing concepts [21]. Which

stereotypes to apply and how to apply them are however prob-

lem/purpose specific and should be defined by users of the

profile. More information about the UTP V.2 standardization

and the team can be found in [22,23].

To enable MBT of CPSs under uncertainty, we rely on

UTP V.2 to model the testing aspect of test ready models. In

our context, only a subset of UTP V.2 was used.

3 Running example

To illustrate UncerTum throughout the paper, we present a

running example in this section, which is a simplified secu-

rity function of the SafeHome system described in [19]. The

developed test ready model of the running example includes a

class diagram (Fig. 3), a composite structure diagram (Fig. 4),

and a set of state machines (Figs. 5, 6, 7) using IBM Rational

Software Architect (RSA) 9.1 [12]. For the sake of simplicity,

we only show one security function related to intrusion detec-

tion. Notice that, even though we present all the diagrams of

the model of the running example in this section (including

the application of the profiles and Model Libraries), we illus-

trate them using the running example when they are discussed

in later sections.

In general, the security system controls and configures

Alarm and related Sensors through their corresponding inter-

faces (class diagram in Fig. 3, detailed explanation in

Table 1). In Fig. 4, we show a composite structure of the

security system. Notice that the alarm and sensors do not

talk to each other directly. Instead, they communicate via the

provided interface of the port of the system: ISecuritySystem.

For example, the security system receives the IntrusionOc-

curred signal via portSecurity, which is sent by a sensor from

portSensor when an intrusion is detected (see the implemen-

tation of effect notifyIntrusion in Fig. 6).

Behaviors of the alarm, sensors, and the system were

specified as the three state machines by the first author of

the paper (modeled in Fig. 10) shown in Figs. 5, 6, and

7, respectively. The alarm state machine has two states:

AlarmDeactivated and AlarmActivated. AlarmDeactivated

represents the state that the alarm is not ringing, whereas
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-- «TestItem» is from UTP V.2; «ApplicationElement», «InfrastructureElement» and «IntegrationElement» are from the CPS Testing Levels profile; 

«IndeterminacySource» is from UUP; Note that «enumeration» and «signal» are not stereotypes. They are used in IBM RSA to denote different types of 

UML model elements. 

Fig. 3 Class diagram of the simplified security system

-- «TestItem» is from UTP V.2; «ApplicationElement», «InfrastructureElement» and «IntegrationElement» are from the CPS Testing Levels profile; 

Connectors between two ports are applied with «IntegrationElement», but IBM RSA does not visualize them in the diagram.

Fig. 4 Composite structure diagram of security system

the AlarmActivated state denotes that the alarm is ringing.

The sensor state machine has two states (Fig. 6): Sensor-

Deactivated denotes the state that a sensor is deactivated to

detect intrusion, whereas SensorActivated represents that a

sensor is activated to sense intrusion. The security system

state machine (Fig. 7) has two concurrent regions in the

composite state MonitoringAndAlarm and a set of sequen-

tial states (e.g., Idle and Ready). The top region (Monitor

Intrusion) of the MonitoringAndAlarm composite state has

two states: Normal and IntrusionDetected, which represent

that an intrusion is not detected and detected, respectively.

The bottom region (Timer Control) has three states: Timer

Stopped, Timer Started, and Police Notified, representing the

states that the timer of the system is stopped to notify the

police (TimerStopped), the timer is activated to wait for 3 min

before notifying the police (TimerStarted), and the police is

notified (PoliceNotified).

These three state machines communicate via signals using

the ports defined in the composite structure (Fig. 4). One

typical scenario in case of security breach is: (1) When a

sensor is in the state of SensorActivated, it sends the Intru-

sionOccurred signal to the security system (UML Action

Language (UAL) [24] code in the comment in Fig. 6)

once the intrusion is detected via the effect notifyIntrusion

defined in the self-transition (Fig. 6, A) of the SensorAc-

tivated state; (2) when the Security System receives the

IntrusionOccurred signal, it transits to the IntrusionDetected

state from the Normal state (Fig. 7 B.1). In parallel, as one

can see from the bottom region (Timer Control) of the Mon-

itoringAndAlarm composite state of the system (Fig. 7),

the system sends the StartAlarm signal to the Alarm state

machine via activateAlarm (Fig. 7 and effect* in Table 1)

and triggers StartTimer() when entering the IntrusionDe-

tected state (Figs. 7 B.2, 8), which leads to the transition

from TimerStopped to TimerStarted (Fig. 7). From Timer-

Started, after 3 min (time event), the system notifies the police

and transits to PoliceNotified; (3) the Alarm state machine

receives the StartAlarm signal in the AlarmDeactivated
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Table 1 An example of classifier SecuritySystem using UncerTum

(Fig. 4)

(Fig. 7)

(Fig. 10)

(Fig. 7, B.1)

(Fig. 10)

(Fig. 9)

(Fig. 5, C)
(see Fig. 6, A)

trigger * represents the “triggers” attribute of Transition in UML. effect * represents the “effects” attribute of Transition in UML

Fig. 5 State machine of alarm

Fig. 6 State machine of sensor

state and activates the alarm and transits to AlarmActi-

vated.

Figures 9 and 10 illustrate how we model uncertainty

using UUP/Model Libraries, whereas Figs. 3 and 4 show

the application of the CPS Testing Levels profile and UTP

V.2 on the models of the running example. As an exam-

ple, the detailed description for classifier SecuritySystem is

shown in Table 1. An example of using the Model Libraries

is shown in Table 1, on transition B.1, where the probabil-

ity of successful intrusion detection is measured in a 7 scale

of probability (Probability_7Scale defined in the probability

library) as VeryLikely (see the Transition row in Table 1 and

Success:ReceiveIntrsionOccurred in Fig. 9). More details are

presented in the following sections.

4 Overview of UncerTum

Figure 11 shows the overall flow of using UncerTum, and

an overview of UncerTum is presented in Fig. 12. Step 1 in

Fig. 11 is about creating test ready models using the UML

profiles (e.g., UUP), Model Libraries, and guidelines defined
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Fig. 7 State machine of security system

StateInvariant «CheckPropertyAction» of IntrusionDetected

Fig. 8 StateInvariant (in OCL) of IntrusionDetected (B.2)

Fig. 9 The example of

modeling measurement/measure

-- Probability, and BeliefInterval are from the Measure libraryProbability_7Scale

Fig. 10 The example of modeling BeliefAgent

in UncerTum. Section 5 presents the profiles in detail, Sect. 6

presents the Model Libraries, whereas Sect. 7 presents the

guidelines. Step 2 in Fig. 11 involves developing executable

test ready models to support validation of these models based

on the guidelines defined in Sect. 8.1. Step 3 executes these

executable test ready models and in case errors are found a

test modeler can use our guidelines defined in Sect. 8.2 to

fix these errors. Notice that our framework only supports test

modeling, i.e., creating test ready models that can be used to

generate executable test cases. Such type of modeling is less

detailed as compared to, e.g., modeling for automated code
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generation. This is mainly because, during test modeling, we

are only interested in modeling test interfaces (e.g., APIs to

send a stimulus to the system and capturing state variables)

and the expected behavior of a system.

The core of UncerTum is the implementation of U-Model

(relevant part of U-Model in “Appendix A” and complete

details in [7]) as UUP (Fig. 12). Notice that U-Model was

used as the reference model to create UUP. While developing

UUP based on U-Model, we took three types of decisions:

(1) Some concepts from U-Model (e.g., Uncertainty) were

incorporated into UUP as it is; (2) some concepts from U-

Model (e.g., Belief, which is an abstract concept) were not

implemented in UUP; (3) some concepts from U-Model were

refined in UUP. For example, the BeliefStatement concept

was implemented as «BeliefElement» in UUP since it cor-

responds to an explicit representation of model elements in

the modeling context. At a high level, the core part of U-

Model is implemented as UUP comprising of three parts:

Fig. 11 Overall flow of using

UncerTum

Fig. 12 Overview of UncerTum
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Belief, Uncertainty, and Measurement. All these profiles

import Internal_Library that define necessary enumerations

required in the profiles. The framework also consists of a

small CPS Testing Levels profile, which permits modeling

specific aspects of the three testing levels of CPSs, i.e., Appli-

cation, Infrastructure, and Integration, just for MBT.

The framework also consists of three UML Model

Libraries: Measure Library, Pattern Library, and Time

Library (which extend MARTE [11]). We would like to high-

light that we imported Time Library from MARTE without

any modifications and thus we will not describe it in the

paper. The framework relies on UTP V.2 to bring necessary

MBT concepts to test ready models. Finally, the framework

provides a set of guidelines on how to use its modeling nota-

tions to construct test ready models for enabling MBT of

CPSs under uncertainty.

5 UUP and CPS testing levels profile

This section presents UUP, whose modeling notations are

composed of stereotypes and classes for Belief (Sect. 5.1),

Uncertainty, and Measurement (Sect. 5.2), as shown in

Figs. 13, 14, and 15. The complete profile documentation

(including constraints) is provided in [25], and the map-

ping between concepts in UUP and U-Model is provided

in Table 2. We also present the CPS Testing Levels profile in

Sect. 5.3. Notice that in this section, we describe the UUP

concepts at a high level and please refer to definitions of the

U-Model concepts in “Appendix A” and the detailed profile

specification in [25].

5.1 UUP belief

The Belief part of UUP is one of the key components of

UUP since we focus on subjective uncertainty (“lack of

knowledge”), where a test modeler(s) (BeliefAgent(s), see

“Appendix A”) creates test ready models of a CPS based on

her/his/their assumptions (Belief, see “Appendix A”) about

the expected behavior of the CPS and its operating envi-

ronment. The Belief part of UUP thus defines concrete

concepts to model Belief of test modelers with UML. As

shown in Fig. 13, it implements the high-level concepts

defined in U-Model:BeliefModel provided in “Appendix

A.1” (the mapping is provided in Table 2, and further dis-

cussion is provided in Sect. 9.2.1). As shown in Fig. 13

and Table 2, five stereotypes are defined, among which

«BeliefElement» is the key stereotype associated with var-

ious UML metaclasses. This stereotype is used to signify

which UML model elements are representing belief of belief

agent(s). Generally speaking, any model element may rep-

resent a belief, but in the context of our work, we only

extend UML metaclasses that are required to support MBT.

For example, a StateMachine (subtype of metaclass Behav-

ior) itself can be a belief element (i.e., expected state-based

behavior of a CPS and its operating environment), such that

«BeliefElement » can be applied on it to characterize it with

additional information such as to which extent a test modeler

(stereotyped with «BeliefAgent») is confident about the state

machine (i.e., beliefDegree of BeliefStatement), all uncer-

tainties (i.e., Uncertainty) associated with the state machine,

and their Measurements. In our context, we extend UML

state machines; however, it is worth mentioning that «Be-

liefElement» can be used, for example, with activity and

sequence diagrams if needed. We intentionally kept the pro-

file generic (e.g., by making «BeliefElement» extend the

UML metaclass Behavior) such that different MBT tech-

niques based on different diagrams can be defined when

needed.

In case that there is some evidence, e.g., existing data to

support the belief, «Evidence» can be used. It is defined to

capture any evidence for supporting the definition of a mea-

surement for an uncertainty. The stereotype extends UML

metaclass Element, implying that any UML model element

(e.g., Class) can be used to specify evidence, e.g., as a Value-

Specification. Each uncertainty is also associated with a set of

indeterminacy sources (definition in “Appendix A”), which

can be explicitly specified using «IndeterminacySource» and

classified with enumeration IndeterminacyNature (Fig. 13)

as defined in “Appendix A.”

The profile also implements OCL constraints defined in U-

Model. For example, as shown in Fig. 13, each beliefDegree

(an instance of Measurement) of a «BeliefStatement» must

have exactly one measure associated with it, which can be

specified in three different ways: a «Measure» (via attribute

measure of Measurement), DataType (via measureInDT) or

Class (via measureInDTViaClass). This OCL constraint is

given:

When we look at the running example, the belief agent

(Fig. 10) is Man_Simula (stereotyped with «BeliefAgent»)

who defines three state machines: one for the alarm, one for

the sensors, and one for the security system itself. As shown

in Table 1, «BeliefElement» is applied on the IntrusionOc-

curred transition from Normal to IntrusionDetected (Fig. 7

B.1). The belief agent of this belief element is specified as
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Fig. 13 The Belief Profile

Fig. 14 The Uncertainty Profile

Fig. 15 The Measurement Profile

class Man_Simula (stereotyped with «BeliefAgent» shown

in Fig. 10). The belief degree of this belief element is spec-

ified as a value specification «VeryLikely» and measured

as Probability_7Scale. The belief element has one occur-

rence uncertainty, which is associated to «BeliefElement,

Cause» notifyIntrusion of «IndeterminacySource» Sensor

(Table 1).

5.2 UUP uncertainty and measurement

The second key component of UUP is about the implemen-

tation of concepts related to Uncertainty («BeliefElement »

composed of Uncertainty in Fig. 14) and is presented in

Fig. 14. In addition, each Uncertainty may have associ-

ated measurements that are captured in the Measurement
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Table 2 Definitions of the

stereotypes and classes in UUP
Profile Stereotype/class in UUP Concept in U-Model (Appendix A)

Belief «BeliefStatement» BeliefModel::BeliefStatement

«BeliefElement» –

«BeliefAgent» BeliefModel::BeliefAgent

«IndeterminacySource» BeliefModel::IndeterminacySource

Uncertainty BeliefModel::Uncertainty

Measurement BeliefModel::Measurement

«Evidence» BeliefModel::Evidence

Uncertainty «Cause» –

«Effect» UncertaintyModel::Effect

«Lifetime» UncertaintyModel::Lifetime

«Risk» UncertaintyModel::Risk

«Pattern» UncertaintyModel::Pattern

Measurement/Measure «Measurement» BeliefModel::Measurement

«BeliefDegree» “beliefDegree” attribute of Belief

«Indeterminacy Degree» “indeterminacyDegree “attribute of

IndeterminacySource

«EffectMeasurement» “measurement” attribute of Effect

«RiskMeasurement» –

«UncertaintyMeasurement» “measuredValue” attribute of

Uncertainty

«Measure» MeasureModel::Measure

«BeliefDegreeMeasure» “measure” attribute of

Measurement

«IndeterminacyDegreeMeasure» “measure” attribute of

Measurement

«RiskMeasure» –

«UncertaintyMeasure» “measure” attribute of

Measurement

«EffectMeasure» “measure” attribute of

Measurement

part as shown in Fig. 15. In Fig. 14, the key element is

Uncertainty, which is characterized with a list of attributes

such as kind (typed with enumeration UncertaintyKind)

indicating a particular type of uncertainties. All of the

attributes (except for kind and field) are optional. For exam-

ple, an uncertainty might or might not have an indeterminacy

source (i.e., indeterminacySource as defined in “Appendix

A”).

The U-Model concepts of Effect, Pattern, Lifetime, and

Risk (“Appendix A”) can be specified with UUP in difference

ways. For example, one can specify the effect (i.e., the result

of an uncertainty, as defined in “Appendix A”) of an uncer-

tainty simply as a string (attribute effect of Uncertainty). One

can also create a UML model element and stereotype it with

«Effect», and the uncertainty can then be associated with

it (i.e., referredEffect). More details regarding the possible

alternatives can be found in Sect. 7.

«IndeterminacySource», «BeliefStatement», Uncertainty,

«Effect», and «Risk» can be further elaborated with Mea-

surement. A measurement can be specified in different ways:

(1) as a string (attribute measurement of class Measurement),

(2) as a value specification (measurementInVS), (3) as a

package stereotyped with a subtype of «Measurement», and

(4) a constraint stereotyped with «MeasurementConstraint».

«Measurement» is further classified into five subtypes,

corresponding to the five types of elements to be mea-

sured.

«Measure» is defined to classify different types of mea-

sures and provide users an option to denote classes and data

types with concrete measure types such as «EffectMeasure».

Such a stereotyped class or data type is linked via Mea-

surement to «IndeterminacySource», «Effect», Uncertainty,

«Risk» or «BeliefStatement».

A set of OCL constraints has been implemented in UUP.

One of the examples is that Element with applied «Ef-

fect» should be referred at least once via the “referredEffect”

attribute of the Uncertainty instance:
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For the running example, «BeliefElement, Effect» Acti-

vatedAlarm is associated with Uncertainty of «BeliefState-

ment» IntrusionOccurred via the “referredEffect” attribute

(Table 1).

5.3 CPS testing levels profile

We define a small CPS Testing Levels profile with the three

stereotypes (Fig. 16) to denote which model element belongs

to which level of the three: «Application», “Infrastructure,”

and «Integration» . This enables a test generator to use differ-

ent mechanisms (if used) to control and access elements from

different levels. For example, infrastructure-level variables

may be accessed with different tools/APIs as compared to

application-level variables. All the three stereotypes extend

the UML metaclass Element, as one can apply them to a class,

a state, a state machine, and many other model elements.

Note that this profile is defined for enabling MBT of

CPS under uncertainty from the three logical levels, and

we have no intention to break down CPS according to their

system architectures by denoting physical units, sensors, net-

work, etc. For example, class Sensor in Fig. 3 is stereotyped

with «IndeterminacySource» and «InfrastructureElement»,

meaning that sensors are infrastructure elements. As shown

in Fig. 4, the composite structure of the system describes

the interactions between the infrastructure elements (Alarm

and Sensors) and the application-level elements: portSensor,

portAlarm, and portSecurity, which are typed by three inter-

faces (i.e., ISensor, IAlarm, and ISecuritySystem) as shown

in Fig. 3. This is the reason that the composite structure is

stereotyped as «IntegrationElement».

6 Model Libraries

To model uncertainty with advanced modeling features,

we define three Model Libraries that can be used together

with UUP for modeling uncertainty Patterns (in Fig. 20),

uncertainty Measurements (corresponding to Probability,

Vagueness, and Ambiguity in Figs. 17, 18, 19), and Time-

related properties. Measure, Pattern, and Time libraries

import the MARTE_PrimitiveTypes library [11] to facilitate

the expression of data in the domain of CPSs such as Real.

Respectively, the Measure library adapts the operation of

NFP_CommonType of MARTE [11] related to probability

distributions. The Pattern library imports elements related to

Pattern from the BasicNFP_Types library of MARTE [11]

(e.g., AperiodicPattern) and further extends them. For exam-

ple, the Transient pattern does not exist in MARTE [11] and

has been newly defined. The Time library imports the time

concepts from MARTE_DataTypes library [11] to facilitate

the expression of time, e.g., Duration and Frequency, and

thus does not discuss these in this paper.

6.1 Measure Libraries

We define three measure packages (Probability, Ambiguity,

and Vagueness) to facilitate modeling with different uncer-

tainty measures (Figs. 17, 18, 19; Table 3). Notice that in

U-Model (Appendix A), these three concepts were defined

only at a very high level; no breakdown of Probability, Ambi-

guity, and Vagueness was provided in U-Model. In this paper,

we largely extended and implemented the detailed measures

Fig. 16 The CPS testing-level

profile

Fig. 17 The Ambiguity model

library

123



Uncertainty-Wise Cyber-Physical System test modeling 1391

Fig. 18 The Vagueness model library

Fig. 19 The Probability model library

belonging to these three categories/packages, based on vari-

ous theories such as Fuzzy Set and Probability Theory.

In the Ambiguity library, we define the data types corre-

sponding to the relevant Ambiguity measures published in the

literature (Fig. 17). Since these measures are well known, we

do not provide further details in this paper; however, inter-

ested readers may consult the provided references listed in

Table 3 for more details and the technical report correspond-

ing to this paper [25]. The concepts of the fuzzy set theory
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Table 3 The main concepts in

Measure Libraries
Measure Library Concept References

Ambiguity BeliefInterval, Belief, Plausibility,

ShannonEntropy,

Belief theory [27]

Conflict [28]

HartleyMeasure [29]

AlternativeMeasure [30]

DissonanceMeasure [31]

U_Uncertainty [32]

PossibleDistribution [33]

PignisticDistribution [34]

Vagueness MembershipDegree, FuzzySet,

FuzzySetOperationKind,

FuzzyLogicOperation, FuzzyLogic,

FuzzyNumber

Fuzzy set and fuzzy logic theory [26]

FuzzySetCut [35]

FuzzyEntropy [36]

Fuzziness, EuclidFuzziness,

HammingFuzziness,

MinkowskiFuzziness

[37,38]

Roughness and RoughSet [39]

LFuzzySet [40]

IntuitionisticFuzzySet [41]

IntervalValuedFuzzySet [42–44]

VagueSet [45]

Sharpness [46]

Probability NormalDistribution,

BernoulliDistribution,

ExponentialDistribution,

GammaDistribution,

PoissonDistribution,

UniformDistribution,

GeometricDistribution,

TriangularDistribution,

LogarithmicDistribution

Probability distribution [47]

Probability, ConfidenceLevel,

ConfidenceInterval

[47]

[26] are defined in the Vagueness library (Fig. 18), and Table 3

lists the relevant references.

Various data types related to the probability are defined in

the Probability library (Fig. 19). All the modeled probability

distributions are well known, and thus we do not present fur-

ther details in this paper. Some details of these distributions

are provided in the technical report corresponding to this

paper [25]. The other data types such as Percentage, Proba-

bility, Probability_Interval, and different qualitative scales of

probability (e.g., Probability_4Scale) are from basic statis-

tics and thus are not further explained.

For example, as shown in Fig. 9, the IndeterminacyDe-

gree of Sensor_IntrusionSensed, which is used to measure

the occurrence of successful sensing intrusion of Sensor, the

self-transition of SensorActivated (Fig. 6), is expressed by

BeliefInterval [27], which is composed of belief (97%) and

plausibility (99%), which are predefined in the Ambiguity

library (Fig. 17). Further details are provided in the technical

report corresponding to this paper [25] for references.

6.2 Pattern Library

This section presents Pattern Library shown in Fig. 20

to support modeling various known patterns, in which an

uncertainty may occur. All the patterns except for Tran-

sient andPersistentPattern are imported from MARTE [11].

Details of these patterns can be consulted from the MARTE

specification and the technical report corresponding to this

paper [25]. The definition of Transient is adopted from [7],

i.e., “Transient is the situation whereby an uncertainty does

not last long”. Transient inherits from IrregularPattern. The

newly introduced attributes are minDuration and maxDu-
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ration describing the duration for which the uncertainty

lasts. The definition of PersistentPattern is adopted from [7],

i.e., “the uncertainty that lasts forever”. The definition of

“forever” varies. For example, an uncertainty may exist per-

manently until appropriate actions are taken to deal with the

uncertainty. On the other hand, an uncertainty may not be able

to resolve and stays forever. The duration attribute of Persis-

tentPattern is set to “forever” to indicate that the uncertainty

with this pattern stays forever until resolved. In the context

of testing, “forever” may be the duration for which a test case

is being executed on a CPS.

7 UncerTum modeling methodology

In this section, we present our modeling methodology for

UncerTum. The rest of this section is organized as fol-

lows: Sect. 7.1 presents the overview of modeling activities,

Sect. 7.2 presents modeling activities at Application Level,

Sect. 7.3 presents modeling activities at Infrastructure Level,

Sect. 7.4 presents modeling activities at Integration level,

and Sect. 7.5 presents the modeling activities of applying

UUP which is invoked at the above three levels. Notice

that we used the activity diagram to provide a step-wise

procedure to create test ready models and this activity dia-

gram is not used for testing. We used structured activities

in the activity diagram when it was necessary to break an

activity down. Whenever an activity is used by multiple

activity diagrams, we created the activity and call it from

the multiple activity diagrams using call behavior activity

nodes.

To facilitate the construction of test ready models, we

made a set of design decisions, which are summarized, along

with the rationales behind, in Table 4. We refer to them in

the text whenever those are discussed.

7.1 Overview

The modeling methodology is naturally organized from the

viewpoints of the three types of stakeholders: Application

Modeler, Infrastructure Modeler, and Integration Modeler,

as shown in Fig. 21. For activities performed by each type of

modelers, we distinguish them by tagging each of them (in

their names) using “AP”, “IF”, and “IT”, respectively.

As shown in Fig. 21, all modelers are recommended to start

from creating a package (i.e., AP1, IF1, and IT1), which is

used to group and contain model elements for each respective

level (DD1 in Table 4). Next, application and infrastructure

modelers apply the UUP notations to model system behav-

iors of the application and infrastructure levels, respectively

(i.e., AP2 and IF2). These two structured activities are further

elaborated in Sects. 7.2 and 7.3. When these two activities

are finished, integration modelers take their results as inputs

and perform IT2: Model Integration Behavior. Details of this

structured activity are further discussed in Sect. 7.4.

7.2 Application-level modeling

The application-level modeling activities (Fig. 22) include

four sequential steps: creating application-level class dia-

grams (AP2.1, DD2 in Table 4), creating application-level

state machines (AP2.2, DD5 in Table 4), applying CPS test-

ing levels profile (AP2.3), and applying the UUP notations

on the created class and state machines (AP2.4).

A class diagram (DD2) created for the application level

captures application-level state variables (attributes), whose

values either can be accessed directly or with dedicated APIs.

We also model operations representing APIs to send stimuli

to the CPS being tested. Also, it is important to mention that

such a class diagram usually needs to specify Signal, which

is a Classifier for specifying communication of send requests

across different state machines. In addition, a class in the class

diagram may receive signals from other classes (even across

levels) that are modeled as signal reception (DD3/DD4 in

Table 4). When creating a class diagram for the application

level, for each class, each of its attributes captures an observ-

able system attribute, which may be typed by a DataType in

the UUP’s Model Libraries (Sect. [25]) or MARTE_Library

[11]. An attribute may represent a physical observation on a

device (e.g., battery status on an X4 device). Each operation

of a class in a class diagram represents either an API of the

application software or an action physically performed by an

operator (e.g., switching on or off of an X4 device). Each

signal reception represents the stimulus that can be received

from a different state machine.

In a state machine (DD5-DD8 in Table 4), each state is

precisely defined with an OCL constraint specifying its state

invariants (DD6 in Table 4). Such an OCL constraint is con-

structed, based on one or more attributes of one or more

classes of an application-level class diagram. Each transition

in a state machine should have its trigger defined as a call

event corresponding to an API or a physical action defined in

the class diagrams of the application level and has its guard

condition modeled as an OCL constraint on the input param-

eters of the transition’s trigger (DD6/DD7 in Table 4).

Next, application modelers need to apply UUP on state

machines (AP2.4) to specify uncertainties and apply the UTP

profile to add testing information (e.g., indicating TestItem).

The application of UUP is the same for the three levels, and

thus we only describe it under the integration-level modeling

section (Sect. 7.4).

7.3 Infrastructure-level modeling

For the infrastructure level, a similar modeling procedure

as the one defined for the application level should be fol-
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Fig. 20 Pattern Library

Table 4 Design decisions in UncerTum to model test ready models

# Scope Decision Justification

DD1 Package Group model elements belonging to different

levels in different packages

The purpose is to enable separation of

concerns, based on each logical level, e.g.,

application, and enable reuse of model

elements

DD2 Class Diagram Use Class Diagram to model the structure of a

CPS

Class diagrams are commonly used to capture

the structure of a CPS as state variables, test

APIs (as operations), configuration

variables, signals, and receptions

DD3 Class Diagram/Signal Use Signals to facilitate sending stimulus from

one physical unit to another

Signals can model asynchronous

communication across various physical

units of a CPS, which is the purpose of

UML defining signals

DD4 Class Diagram/Reception Use signal Reception to model the stimulus that a

physical unit can receive from another

The rationale conforms to the purpose of

UML defining signalReception

DD5 State Machine Use State Machines to model the expected

behavior of a CPS and its operating

environment with uncertainty

The reason is that a large number of CPSs

exhibit state-based behaviors [48,49] In

addition, we have already developed test

generators to generate test cases from UML

state machines [50], some part of which can

be extended for testing CPSs under

uncertainty when needed

DD6 State Machine/Guard, State

Invariants

Specify a State Invariant as an OCL constraint

modeling test oracles. Guard conditions are

also specified as OCL constraints that are used

to generate test data to fire triggers on

transitions

OCL is a standard language for specifying

constraints on UML models. Several tools

for evaluating OCL constraints (e.g.,

Eclipse OCL [51] and Dresden OCL [52])

and solving OCL constraints (e.g., EsOCL)

are available

DD7 State Machine/Transition Triggers on transitions are specified as

SignalEvent, CallEvent, TimeEvent or

ChangeEvent

(1) SignalEvent is used to facilitate

communication across state machines of

different physical units of a CPS; (2)

CallEvent is used to model invocation of a

testing API or manual operation to a CPS;

(3) TimeEvent models time-related events;

(4) ChangeEvent models changes in values

of state variables. All these elements are

used as they are intended in UML

DD8 State Machine/Terminate Terminate is used to interrupt the State Machine The purpose is to indicate the termination of

the execution of a test case on a CPS

DD9 Class Diagram and State

Machine

UAL is used to enable the execution of models Our overall approach is implemented in

CertifyIt, i.e., a plug-in to IBM RSA

(Sect. 1). UAL [24] is implemented based

on the OMG Alf standard and in IBM RSA

Simulation Toolkit. Thus, we used it to fit in

the overall approach
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Table 4 continued

# Scope Decision Justification

DD10 Composite Structure Diagram Use Composite Structure Diagrams to model

interactions of a CPS with outside the world

and among different physical units of the CPS

In UML, Composite Structure Diagrams are

for capturing the internal structure of a

classifier, its interaction with environment

or other physical units via Ports. Our use of

composite structure diagrams conforms to

UML

DD11 Composite Structure

Diagram/Port, Connector

Use Ports/Connectors to model communication

of a CPS with outside the world and

communications across physical units of a CPS

Ports/Connectors in the UML are defined to

facilitate communication in the same way as

we intend

DD12 UUP/Belief Agent, Evidence,

Lifetime, Measurement,

Cause, Pattern, Effect, Risk,

IndeterminacySource

Model these concepts as String values It is recommended if test ready models are

annotated with information describing these

concepts not for enabling test generation.

Doing so can help reducing modeling effort

DD13 UUP/Belief Agent, Evidence,

Lifetime, Measurement,

Cause, Pattern, Effect, Risk,

IndeterminacySource

Model these concepts by applying stereotypes on

model elements (e.g., classes, packages) and

group them in dedicated packages

This option facilitates defining specific test

strategies based on the captured information

via these stereotypes. In addition, it helps to

facilitate reuse of model elements

Fig. 21 The top-level guidelines

Fig. 22 Application-level guidelines

Fig. 23 Infrastructure-level guidelines
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Fig. 24 Integration-level guidelines

lowed to derive class diagrams and state machines, apply

UUP and UTP (further details in Sect. 7.4), as shown in

Fig. 23. One difference is that attributes of infrastructure-

level class diagrams should capture observable infrastructure

attributes. For example, an attribute (isIntrusionOccurred

in Fig. 3) can reflect the occurrence of intrusion sensed

by Sensor. Operations of infrastructure-level class diagrams

represent APIs for manipulating infrastructure-level compo-

nents. Regarding state machines, they should be consistent

with the infrastructure-level class diagrams. In other words,

states should have their invariants defined as OCL constraints

based on the attributes defined in the infrastructure-level class

diagrams, and transitions having their triggers defined as call

events or time/change events (DD5–DD7 in Table 4).

7.4 Integration-level modeling

Recall that, activity IT2 is started after class diagrams and

state machines created for the application and infrastructure

levels. As shown in Fig. 24, the IT2 activity starts from

creating integration-level class diagrams (IT2.1) and state

machines (IT2.2) and applying the CPS testing levels profile

(IT2.3), followed by applying UUP and UTP.

Regarding creating class diagrams for the integration

level, such a class diagram should focus on specifying inter-

actions between the application software and infrastructure.

Particularly, signal receptions should be defined to model

events that a class can receive from the infrastructure and/or

application levels (DD3–DD4). Each signal reception cor-

responds to an instance of UML Signal defined in a created

integration-level class diagram (DD3–DD4). Notice that cre-

ating class diagrams for the integration level is not mandatory

(DD1). Model elements that have been defined in the applica-

tion and infrastructure-level class diagrams can appear in the

integration-level class diagrams, and they should be specified

from the perspective of integration-level modelers.

There are different ways of defining model elements for

the integration level. One way is to refine the created appli-

cation and infrastructure-level state machines by directly

introducing new model elements to them. For example, a

state in the application level can send a Signal to the infras-

tructure level and vice versa. Transitions of a state machine

in the application (infrastructure) level should capture trig-

gers of type Signal Reception and effects containing Signals

from the infrastructure (application) level. Another way is

to keep application and infrastructure-level state machines

untouched by applying a specific modeling methodology

(e.g., Aspect Oriented Modeling methodologies) to spec-

ify crosscutting behaviors separately. In addition, one should

also benefit from advanced features of UML state machines

(e.g., concurrent state machines, parallel regions) to for

example refer to existing state machines defined in the appli-

cation and infrastructure levels.

7.5 Apply UUP (AP2/IF2/IT2)

Since test ready models can be created in several different

ways, we propose a set of options to restrict the way, in which

test modelers apply UUP. Notice that our test generators

will only be able to generate test cases when one of these

options is followed. The same modeling decisions (D12, D13

in Table 4) are taken for several concepts in UUP including

Belief Agent, Evidence, Measurement, Lifetime, Cause, Pat-

tern, Effect, IndeterminacySource, andRisk. All these can be

simply modeled as String values. This option is informal

since a test modeler is allowed to provide any String value.

Second, a more formal way is to model these concepts as

Fig. 10 (e.g., a Ph.D. student at Simula class for a particular

BeliefAgent) with possible attributes and operations inside a

dedicated package (e.g., for all BeliefAgents for a CPS under

test). Followed by this, we recommend applying dedicated

stereotypes (e.g., «BeliefAgent») either on classes, package,

or both. The justification of these design decisions is sum-

marized in Table 4.

Recall that the activity of applying UUP is invoked at all

the three levels. We tag each type of the activities of the activ-

ity diagrams from Figs. 25, 26, 27, 28, 29, 30, 31, 32, and

33 with S, C, and A to represent structured activities, call

behavior, and normal activity nodes (standard semantics as

in UML). Note that these activity diagrams are developed

to explain the step-wise procedure to create test ready mod-

els and themselves are not part of the test ready models.

As shown in Fig. 25, applying UUP starts from apply-

ing «BeliefElement» on any UUP allowed state machine

model element. Then a modeler can specify values for the

“from” and “duration” attributes of the stereotype, model

belief agents, model belief degree, and/or model uncertain-

ties (Fig. 25).

As shown in Fig. 26, there are two ways (D12, D13) to

model belief agents (S1.1 and S1.2). A modeler can specify

belief agents simply as one or more strings via the “beliefA-

gent” attribute of «BeliefElement» (S1.1). She/he can also
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Fig. 25 Applying UUP

Fig. 26 Model «BeliefAgent»

Fig. 27 Common measurement

modeling activity

create a package to organize all the belief agents (S1.2). In

this case, each belief agent can be modeled as a class in

the package and the package is stereotyped with «BeliefA-

gent» . Alternatively, one can model each belief agent as a

class and stereotype it with «BeliefAgent». The other option

is to model each belief agent as a class and stereotype it with

«BeliefAgent» and also stereotype the package with «Be-

liefAgent» . When choosing to apply options 2, 3, and 4,

one needs to link a created belief agent package to the agent

attribute of «BeliefElement» (S2). For example, we mod-

eled the belief agent, Man_Simula, using Option 3 as shown

in Fig. 10.

Modeling BeliefDegree is presented in Sect. 7.5.1, and

modeling uncertainties are discussed in Sect. 7.5.2.

7.5.1 Measurement modeling

Modeling measurements and measures are important for

applying UUP. These activities are used to measure beliefDe-

gree, Uncertainty, indeterminacyDegree, Risk, and Effect.

As shown in Fig. 27, one first needs to create a package to

contain measurements for indeterminacyDegree, beliefDe-

gree, uncertaintyMeasurement, measurement of Risk and

measurement of Effect (A1). Then, a modeler can option-
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Fig. 28 Specify evidence

Fig. 29 Specify measure

Fig. 30 Specify measurement

ally specify Evidence (S1), followed by the specification of

each measurement instance and its corresponding measure

(S3 and S2).

A. Specify Evidence

As shown in Fig. 28, there are two ways (D12, D13)

to specify evidence. Option 1 is to specify evidence as a

String value (in the “measurement” attribute of Measure-

ment). Option 2 is to create a package for evidence if such

a package does not exist and optionally stereotype it with

«Evidence» (S1.2.1). One can then create any UML model

element to represent evidence, according to UUP and option-

ally stereotype it with «Evidence» (S1.2.2). The last step of

Option 2 is to link either the package or UML model elements
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Fig. 31 Model uncertainty

representing evidence to the “referredEvidence” attribute of

Measurement (S1.2.3).

B. Specify Measure

As shown in Fig. 29, to specify a measure, a modeler

needs to create a class diagram (A1) and then create instances

of Measures (for measurements of either “indeterminacyDe-

gree,” “beliefDegree,” “uncertaintyMeasurement,” measure-

ment of Risk or measurement of Effect) as classes or data

types (A2). One then needs to add attributes to these classes

or data types by using the data types defined in the Measure

Libraries (Sect. 6.1). One can optionally apply correspond-

ing measure stereotypes (e.g., «UncertaintyMeasure») to the

classes or datatypes (A4). The last step is to link a measure

to an instance of Measurement (A5).

C. Specify Measurement

There are three ways (D12, D13) to specify measurements

(in Fig. 30): specifying a measurement as a String of the mea-

surement attribute of Measurement (A1), ValueSpecification

(A2), and an OCL constraint owned by a class or datatype

representing a measure, based on the attributes defined in

the class or datatype (A3.1). One can also optionally apply

«MeasurementConstraint» to an OCL constraint defined to

specify a measurement (A3.2).

7.5.2 Uncertainty modeling

As shown in Fig. 31, one first needs to specify the kind of

an uncertainty (A1), optionally specify values for attributes

“from,” “field,” and “locality” of the uncertainty, optionally

model Lifetime (or Cause, Pattern, Effect) of the uncertainty,

optionally define IndeterminacySource(s), optionally model

uncertaintyMeasurement and Risk.

A. Model Lifetime/Cause/Pattern/Effect of Uncertainty

A modeler has two options (D12, D13) to specify Life-

time/Cause/Pattern/Effect of an uncertainty, as shown in

Fig. 32. One option is to simply specify an instance of these as

a String value owned by the uncertainty (via attributes “life-

time,” “cause,” “effect,” “pattern” or “risk” of Uncertainty).

The second option needs to start from creating a package

for Lifetime/Cause/Pattern/Effect if such a package does not

exist, and optionally apply «Lifetime», «Cause», «Pattern»,

or «Effect» (S1.2.1). After creating packages, one needs

to create Lifetime/Cause/Pattern/Effect as any UML model

element and optionally apply the corresponding stereotypes.

Since Effect can be measured, an instance of it can be option-

ally associated with one or more measurements (Sect. 7.5.1).

The last step of Option 2 is to associate each created pack-

age or element to corresponding attributes of Uncertainty,

i.e., “referredPattern,” “referredEffect,” “referredLifetime,”

or “referredCause.”

B. Model IndeterminacySource

As shown in Fig. 33, a modeler can simply specify an

indeterminacy source as a String value (D12) of attribute

“indeterminacySource” of Uncertainty (Option 1). Alterna-

tively, one can create a package (D13) to organize inde-

terminacy sources (A2.2.1), create instances of any UML

Classifier to represent an indeterminacy source and apply

«IndeterminacySource» on them (A2.2.2), specify the nature

and description of each indeterminacy source (A2.2.3), spec-

ify measurements for each indeterminacy source (C1), and

associate the created classifiers to the “referredIndetermina-

cySource” attribute of Uncertainty.

C. Model Risk

A modeler can optionally associate an uncertainty to Risk

(D12, D13). As shown in Fig. 34, one can simply specify Risk

as a String value of the “riskLevel” attribute of Uncertainty

(Option 1) or one of the predefined risk levels in enumer-

ation RiskLevel (Option 2). Alternatively, one can create

a package for Risk if such a package does not exist, fol-

lowed by creating classes and/or data types to represent Risks

and optionally applying “Risk” (A4.3.2). Afterward, a mod-

eler can also optionally specify measurement for Risk (C1)

and link the created classes and datatypes to Uncertainty

via the “riskInDTViaClass” and/or “riskInDT” attributes

(A4.3.3).
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Fig. 32 Model Lifetime/Cause/Patten/Effect of Uncertainty

Fig. 33 Model IndeterminacySource

8 UncerTum validation process

In this section, we explain our validation process, which

ensures that test ready models are syntactically correct and

communication across state machines of various physical

units constituting a CPS takes place correctly. Such validation

is aimed at finding modeling errors that may have been intro-

duced by a test modeler accidently. Once test ready models

have been validated without any problems, test cases can be

then generated from them. Since the execution of test ready

models requires data to execute triggers, we generate data

manually as follows: (1) If a trigger (Call Event/Signal Event)

is guarded with a guard condition, we generate random values

for all the variables involved in the guard condition that sat-

isfy the guard condition and use these values to fire the trigger,

and generate random values for all the other parameters of

the call event/signal event, (2) if a trigger (Call Event/Signal

Event) is not guarded, we generate random values for all the

parameters of the Call Event/Signal Event to fire the trigger,

(3) if a trigger corresponds to a Change Event, we randomly

generate values that satisfy the change condition, (4) if a trig-

ger corresponds to a Time Event, we ensure that the specified

period of time in the event is elapsed.

To validate test ready models, we apply UAL [24] to exe-

cute them with IBM RSA Simulation Toolkit [53] (DD9 in

Table 4). We decided to use UAL and IBM RSA Simulation

Toolkit since our test generators are built in CertifyIt [13],

which is a plugin for IBM RSA as we discussed in Sect. 1.

Further, we provide a set of guidelines as an activity diagram

to add UAL code on the test ready models in Sect. 8.1 and

propose a set of recommended actions in Sect. 8.2, based
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Fig. 34 Model risk

Fig. 35 Guidelines to create executable test ready models

on various types of problems identified while executing test

ready models to help test modelers fix them.

8.1 UAL executable modeling guidelines

In this section, we describe the guidelines (in Fig. 35) to

convert test ready models that were created based on the

guidelines in the last section into executable models to facil-

itate validation.

As shown in Fig. 35, (1) in the CD1 activity, a test mod-

eler can optionally specify UAL code on the model elements

of classes (e.g., specifying default values for attributes and

implementing bodies of operations). For example, the UAL

code of the timeout attribute of SecuritySystem (Fig. 3) is

false, i.e., its default value. (2) As shown in the CSD2 activity

in Fig. 35, a test modeler should create a composite structure

diagram (DD10, DD11 in Table 4) to model the internal struc-

ture of the Classifier (e.g., a physical unit) and interactions

with other associated Classifiers (other physical units) or the
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operating environment of the CPS. For example, the portSe-

curity port of SecuritySystem (Fig. 4) specifies an interaction

point, through which SecuritySystem can communicate with

its surrounding environment or with Alarm or Sensor. The

provided interface of the portSecurity is ISecuritySystem,

which enables the reception of the IntrusionOccurred sig-

nal and other Signal Receptions in Fig. 3. Two connectors

between portSecurity and portSensor (Fig. 4) are created

to enable two-way communications between SecuritySystem

and Sensor. (3) As shown in SM3 in Fig. 35, a test modeler

can specify UAL code on the effect and entry/do/exit activity

of a state in a state machine to implement a specific activity,

especially the ones that involve sending signals across state

machines. For example, the effect of the A transition in Fig. 6

is implemented with UAL as portSensor.send(new Intru-

sionOccurred(this.ID)). Since portSensor and portSecurity

are connected (Fig. 4) and provided interface ISecuritySystem

of portSecurity has the capability to receive the IntrusionOc-

curred signal (in Fig. 3), the B.1/B.2 transition (in Fig. 7) can

be triggered when SecuritySystem receives the IntrusionOc-

curred signal through portSecurity.

8.2 Recommendations to fix problems in test ready

models

This section represents our recommendations (Table 5) to

fix test ready models, once these are executed and problems

are observed. For example, one observed problem is that the

IntrusionOccurred signal event cannot be triggered (Fig. 7)

even when it was sent out (O4, Table 5). One possible reason

is that the IntrusionOccurred Signal Reception in the ISecu-

ritySystem interface of SecuritySystem is missing (SA7).

9 Evaluation

In this section, we present the process of the development

and validation of UncerTum with two industrial case studies

(i.e., GS and AW), which were available to us as part of the

project, one real-world case study (VCS), and one case study

from the literature in Sect. 9.1, the results are described in

Sect. 9.2, and overall discussion and limitations are presented

in Sect. 9.3.

9.1 Development and validation of UncerTum and test

ready models

As previously discussed, the project has two official CPS

case study providers. First, the first one is from the healthcare

domain, which is about GeoSports (GS) provided by Future

Position X (FPX) [9] Sweden. This case study includes

attaching devices to Bandy1 players that record various

measurements (e.g., heartbeat, speed, location) periodically.

These measurements are communicated during a Bandy

game via a receiver station to the sprint system, where

coaches can monitor them at runtime. In addition, these mea-

surements can also be used offline for analyses, for example,

aimed at improving the performance of an individual player

or a team. To test this CPS in a laboratory setting without real

players, Nordic Med Test (NMT) [15] provides a test infras-

tructure to execute test cases. The second case study is about

Automated Warehouse (AW) provided by ULMA Handling

Systems [10], Spain. ULMA develops automated handling

systems for worldwide warehouses of different natures such

as Food and Beverages, Industrial, Textile, and Storage. Each

handling facility (e.g., cranes, conveyors, sorting systems,

picking systems, rolling tables, lifts, and intermediate stor-

age) forms a physical unit, and together they are deployed to

one handling system application (e.g., Storage). A handling

system cloud supervision system (HSCS) generally interacts

with diverse types of physical units, network equipment, and

cloud services. Application-specific processes in HSCS are

executed spanning clouds and CPS requiring different con-

figurations. This case study implements several key industrial

scenarios, i.e., introducing a large number of pallets to the

warehouse, transferring the items by Stacker Crane. To test

these scenarios, ULMA [10], and IK4-Ikerlan [16] devel-

oped and provided relevant simulators and emulators. Further

details on the case studies can be consulted in [54].

In addition, we used a real-world case study of embed-

ded Videoconferencing System (VCS) developed by Cisco

Systems, Norway. Simula has been collaborating with Cisco

since 2008. As part of our long-term collaboration under the

umbrella of Certus Center [55], we have access to real VCS

systems. We created test ready models for one of the real

CPSs ourselves without involving Cisco, based on the previ-

ous work [18] of the second author of this paper. The fourth

case study is a modified version of the SafeHome case study

provided in [19]. This case study implements various secu-

rity and safety features in smart homes including intrusion

detection, fire detection, and flooding.

The development and validation procedure of UncerTum

and test ready models is summarized in Fig. 36, which

involves four stakeholders: (1) Simula Researchers (includ-

ing the first three authors of this paper) play the key role

of developing UncerTum and creating test ready models;

(2) Use Case Providers (i.e., FPX and ULMA) provided

uncertainty test requirements and real operational data from

previous Bandy games in the case of GS, and manually

checked the conformance of the developed test ready mod-

els to their corresponding uncertainty test requirements; (3)

1 Bandy is a variation of ice hockey commonly played in Northern

Europe.
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Table 5 Recommended actions

to fix test ready models based on

observed problems

No. Observed problem Related problems and recommended action

O1 State change does not happen State Machines

SA1: Check the Exit activity of this State;

SA2: Check Guards of all the outgoing Transitions of

this State;

SA3: Check if one or more outgoing Transitions are

missing;

Related Problems

O4, O5, O6

O2 State invariant cannot be satisfied State Machines

SA4: Check the State Invariant of this State

SA5: Check the incoming Transition(s) of this State;

SA6: Check if one or more States are missing;

Related Problems

O7

O3 State cannot be reached Related Problems

O7, O9

O4 Signal Event cannot be triggered Class Diagrams

SA7: Check the Reception of the

Interface/Class/Component

Composite Structure Diagrams

SA8: Check if the Port related to this signal event is

linked with the correct Provided Interface;

SA9: Check the Connectors between Ports;

State Machines

SA10: Check if the Signal corresponding to this

SignalEvent is modeled;

O5 Call Event cannot be triggered State Machines

SA11: Check the invocation of the Operation

corresponding to the CallEvent;

O6 Change Event cannot be triggered State Machines

SA12: Check the specified condition of this

ChangeEvent;

SA13: Check activities in parallel regions that

manipulate the same attributes;

O7 Transition happens without any trigger State Machines

SA14: Check the Trigger of this Transition, especially

for ChangeEvent and TimeEvent;

SA15: Check the Guard of this Transition;

O8 State invariant of this state is

overlapping with another state

invariant(s) leading to firing an

unexpected transition

State Machines

SA16: Check if the Guard conditions of all or subset of

the outgoing Transitions of this state have overlapping.

SA17: Check if Uncertainty(ies) of this Transition are

missing;

O9 Unexpected loop in the State Machine Related Problems

O7
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Fig. 36 Development and validation of UncerTum and test ready models

Test Bed Providers (NMT and ULMA/IK4-Ikerlan) provide

physical and software infrastructures (including test APIs) to

automate the execution of test cases and manually checked

that the test ready models conform to the provided imple-

mentation of the test APIs; (4) Tool Vendor is responsible to

integrate UncerTum and the proposed test case strategies to

facilitate test case generation and execution. Please note that

the UncerTum methodology reported in this paper is fully

developed by Simula Research Laboratory, which is generic

and therefore can be applied to test CPS at the three levels.

Notice that it is also possible to develop different modeling

methodologies than the one proposed in this paper, e.g., one

such instance is reported in [56] for the application level by

one of the our project partners. Such modeling methodolo-

gies can be potentially compared when needed in the future.

The development of UncerTum took place incrementally

(Activities A1 and A2 in Fig. 36). First, UncerTum (A1) was

developed by researchers based on U-Model and MARTE,

in parallel to creating the initial test ready models (B1) for

VCS, SafeHome, GS, and AW with this initial version of

UncerTum. For GS and AW, uncertainty test requirements

were provided by FPX and ULMA; for VCS, we had some

requirements available to us from our previous work [18];

SafeHome is from the literature. Based on our experience of

creating these test ready models, we further refined Uncer-

Tum (A2) and as a result UncerTum V.1 was developed. This

was in turn used to further refine the initial test ready models

(B2). At this point, both versions of the test ready models

and UncerTum were refined once again by researchers. As a

result, Test Ready Model V.1 and UncerTum V.2 were pro-

duced (Fig. 36).

UncerTum V2 and Test Ready Models V1 were then used

in the modeling technique workshop (two days) conducted

with the industrial use case providers (FPX and ULMA), test

bed providers (ULMA/IK4-Ikerlan and NMT), tool vendor

(Easy Global Market (EGM))[14], and two other research

partners who focused on their own modeling methodologies

and models. During the workshop, UncerTum and test ready

models were presented to the participants of the workshop

and their feedback was collected. In addition, the test API

documentation was also presented. Based on the feedback

and test APIs, a plan was devised to further refine the test

ready models after the workshop. The key output of the work-

shop from our side was UncerTum (V.3), which is presented

in this paper. Based on the feedback and test API documenta-

tion, we refined the test ready models (i.e., Test Ready Models
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Table 6 Descriptive statistics of

the case studies
Case study CPS profile Class diagram/composite

structure diagram

State machine Total

SafeHome # of diagrams 2 3 5

# Application Elements 15 10 66

# Infrastructure Elements 16 19

# Integration Elements 3 3

# Uncertainties/IndeterminacySource 7 10 17

VCS # of diagrams 6 12 18

# Application Elements 92 59 442

# Infrastructure Elements 103 67

# Integration Elements 51 70

# Uncertainties/IndeterminacySource 24 83 107

GS # of diagrams 3 4 7

# Application Elements 31 99 226

# Infrastructure Elements 36 34

# Integration Elements 6 20

# Uncertainties/IndeterminacySource 10 29 39

AW # of diagrams 4 11 15

# Application Elements 39 52 91

# Infrastructure Elements 52 75 127

# Integration Elements 11 33 44

# Uncertainties/IndeterminacySource 20 52 72

V2 in Fig. 36) after the workshop. In parallel, the test bed

providers started to develop the test infrastructures to enable

the execution of test cases, which is not in the scope of this

paper.

To further refine the test ready models, another two work-

shops were conducted: one for AW and one for GS arranged

by the respective industrial partners. The first workshop

took place at IK4-Ikerlan [16], where Simula researchers

and ULMA participated and the workshop lasted for three

days. During the workshop, detailed uncertainty test require-

ments, test ready models, and detailed implementation of

test execution were discussed. The second workshop lasted

for two days and took place at the NMT’s site in Sweden.

FPX, EGM, and other research partners participated. Sim-

ilar discussion as with ULMA took place with FPX/NMT.

In addition, EGM presented their tool (CertifyIt) and their

plans to integrate UncerTum and further implementation of

test execution APIs. The outputs of these workshops were

Test Ready Models V3 as shown in Fig. 36. Finally, we val-

idated Test Ready Models V3 using IBM RSA Simulation

Toolkit (see Sect. 9.2.3 for results).

9.2 Evaluation results

Descriptive statistics of the test ready models developed for

the four case studies are provided in Table 6. For each case

study, (1) the number of modeled UML diagrams is pre-

sented in the first row, (2) the second, third, and fourth

rows represent the number of application, infrastructure,

and integration-level elements, respectively, (3) the last row

shows the number of uncertainties and indeterminacy sources

modeled for each case study. Notice that these statistics

provide an indication of the complexity and scale of the devel-

oped test ready models.

9.2.1 Mapping UUP/Model Libraries to U-Model and

MARTE

This section provides the descriptive statistics for the map-

ping of the UUP model elements and the Model Libraries to

concepts defined in U-Model and elements in MARTE.

Table 7 is divided into four main sections. First, we pro-

vide the statistics of elements in UUP/Model Libraries that

can be directly mapped to U-Model. For example, «Be-

liefStatement» in UUP can be directly mapped to the

BeliefStatement concept defined in U-Model. Second, we

provide the statistics of elements in UUP/Model Libraries

(e.g., BeliefInterval) that can be indirectly mapped to U-

Model concepts (e.g., Ambiguity). Third, we provide statistics

of elements that are introduced to UUP/Model Libraries

(e.g., «BeliefElement») by extending U-Model concepts

(e.g., BeliefStatement). Fourth, since the Model Libraries are

developed via extending MARTE, we also provide statistics

for mapping elements in UUP/Model Libraries to elements in
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Table 7 Mapping UUP/model libraries to U-Model and MARTE

UncerTum model elements U-Model

Directly mapped

(x, y, z, t)

Indirectly mapped

(x, y, z, t)

Newly added

(x, y, z, t)

M ART E Coverage

(n, p(%))

UUP

Belief 8 13 3 24 0 6 0 6 1 0 0 1 0 27 30

Uncertainty 7 12 7 26 1 9 0 10 1 3 0 4 0 32 36

Measure 7 5 5 17 0 1 12 13 12 10 0 22 0 15 17

Total 22 30 15 67 1 16 12 29 14 13 0 27 0 74 83

Model Library

Risk 1 0 0 1 0 0 0 0 9 0 0 9 0 0∗ 0

Pattern 7 4 0 11 0 0 0 0 4 0 0 4 8 6 7

Measure 0 0 0 0 3 0 0 3 55 34 3 92 10 0∗ 0

Time 2 0 0 2 0 0 0 0 4 0 0 4 6 2 2

Total 10 4 0 14 3 0 0 3 72 34 3 109 24 8 9

Total 32 34 15 81 4 16 12 32 86 47 3 136 24 82 92

Percentage (%) 13 14 6 33 2 6 5 13 35 19 1 54 10

#x is the number of Class/Stereotype/Enumeration/DataType in UUP/Model Libraries

#y is the number of Attributes/Associations in UUP/Model Libraries

#z is the number of Constraint(s) in UUP/Model Libraries

#t is the sum of #x, #y and #z

#n is the number of concepts (Class/Enumeration/ Association) in U-Model that are mapped to UUP

#p is the percentage of coverage, p =
n
89

(the total number of concepts of U-Model is 89)

0* means the number that is covered by others

MARTE. For example, 10 data types in the Measure library

can be mapped to MARTE.

As we can see from the last row of Table 7, 33% of the

elements in UUP/Model Libraries can be directly mapped

to U-Model, whereas 13% of elements can be indirectly

mapped to U-Model, 54% of elements were newly intro-

duced by extending U-Model concepts, most of which are

for measures. In addition, 10% of UUP/Model Libraries

elements were either directly adopted from MARTE or are

extensions of MARTE elements. The last column of Table 7

shows the coverage of the U-Model concepts, from which

one can observe that 83% of the U-Model concepts were

implemented in UUP, whereas 9% of the U-Model concepts

were implemented in the Model Libraries. The remaining

8% of the concepts that were not mapped to any element of

UUP, and the Model Libraries are the ones related to Knowl-

edge. Such concepts are important at the conceptual level and

are defined based on well-defined taxonomies of Knowledge

[57], but are not required to be implemented in UUP and

the Model Libraries. From these results, we can see that U-

Model is comprehensive enough to develop UncerTum and it

has potential to be used as the basis for other researchers and

practitioners to develop similar kinds of uncertainty-related

modeling solutions in the future. We, therefore, consider data

reported here as a useful experience that can be shared with

the community. On the other side, from the reported data,

one can get confidence about UncerTum, as it was indeed

developed by following a rigor process and a comprehensive

conceptual model.

9.2.2 Application of UUP/Model Libraries

In this section, we present the results of our evaluation with

the aim of assessing the applicability of UncerTum in terms

of effort required to create test ready models. We conducted

the evaluation from two aspects: (1) the percentage of the

applied UUP/Model Libraries elements in all the test ready

models (UML class diagrams and state machines) developed

for all the four case studies and (2) the effort in terms of

time required to apply UUP/Model Libraries. The first aspect

focuses on assessing the effort in terms of the number of

model elements and gives us a surrogate measure of measur-

ing effort, whereas the second aspect focuses on measuring

the effort in terms of time taken by the test modelers to create

the test ready models. In our case studies, the first author (sec-

ond year Ph.D. candidate) created the first version of the test

ready models, which were iteratively discussed with the sec-

ond (a senior scientist) and third (a chief scientist) authors of

this paper. In addition, as we discussed in Sect. 9.1, the test

ready models were discussed with other partners involved

in the project. As it does not exist an approach compara-

ble with UncerTum in the literature (see more discussions in

Sect. 10), we, therefore, do not have a comparison baseline.

Conducting controlled experiments with test modelers could
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Table 8 Percentage of UUP/Model Libraries Concepts to UML Concepts

Case study Class diagram State machine %UUP/Model Libraries elements

Class (u/t) Relationship (t) State (u/t) Transition (u/t)

SafeHome 7/21 18 3/17 7/29 20

VCS 24/197 303 39/216 61/278 12

GeoSports 10/62 56 13/82 26/106 16

AW 20/92 166 17/88 42/122 17

Average percentage of effort in terms of additional model elements: 16.25%

#u: the number of elements with applied UUP/Model Libraries; #t: the total number of elements modeled using UML

Table 9 Effort (time in hours) of applying UUP/Model Libraries

Case study Class diagram State machine % Time

UML Modeling UUP/Model Libraries Modeling UML Modeling UUP/Model Libraries Modeling

SafeHome 4.5 0.5 22.5 7.5 22

VCS 22.5 6 45 15 23

GeoSports 37.5 3.5 52.5 12.5 15

AW 39.5 5.5 75 12.5 14

Average percentage of effort in time: 18.5%

be a better option, which is fortunately under the plan and

is a future work item, though it is notably that conducting

such controlled experiments is often time and monetarywise

expensive.

As shown in Table 8, for the SafeHome case study, in

total we modeled 21 classes in the class diagrams, 7 out

of which have UUP stereotypes applied (e.g., the «Indeter-

minacySource» sensor is applied to Sensor, see Fig. 3).

For the modeled state machines, three out of 17 states

and seven out of 29 transitions require the application of

UUP/Model Libraries. In total, as shown in the last column

of the table, around 20% of the modeling elements of the

SafeHome case study required the application of UUP/Model

Libraries. Similarly, 12% (16, 17%) of the modeling elements

for the VCS (GS, AW) case study required the applica-

tion of UUP/Model Libraries. For all the four case studies,

on average 16.25% of the model elements require applying

UUP/Model Libraries.

Table 9 summarizes effort [measured in time (hours)]

spent by the first author (the modeler) on constructing the test

ready models for the four case studies. The effort is divided

into two parts: time for applying standard UML notations and

additional effort required for applying UUP/Model Libraries.

For example, as shown in Table 9, for SafeHome, it took the

modeler 4.5 h for modeling the UML class diagrams, whereas

additional 0.5 h was spent on applying UUP/Model Libraries.

For the UML state machines, it took 22.5 h, whereas addi-

tional 7.5 h were spent on applying UUP/Model Libraries.

For SafeHome, as shown in the last column (%Time) of

Table 9, it took additional 22% of time to apply UUP/Model

Libraries. Similarly, for VCS it took additional 23% of time,

15% of additional time for GS and 14% of additional time

for AW. On average, for all the four case studies, modeling

with UUP/Model Libraries required additional 18.5% of the

total modeling effort.

9.2.3 Validation of test ready models via model execution

In this section, we present the results of the validation of

the test ready models developed with UncerTum for the

four case studies. The overall aim is to check the correct-

ness of the test ready models against collected (uncertainty)

requirements. The test ready models were enriched with

UAL (a implementation of the Action Language For Founda-

tional UML [24], Alf [58]))—a formal language supported

in IBM RSA [12] for executing UML models implemented

in Java. UML models with UAL can be executed with

IBM RSA Simulation Toolkit [53] as we discussed in

Sect. 8.

Table 10 shows the results of the validation. We classi-

fied identified problems during the validation process into

two main categories: incorrect and incomplete model ele-

ments (states and transitions) for each case study. For State,

we report problems identified in state invariants and «Be-

liefElement» . For Transition, we report problems identified

in Guard, Trigger, Effect, and «BeliefElement» . For State, in

total, 79 problems (17 + 62) were identified across the four

case studies, where 17 problems were related to Incorrectness

and 62 were related to Incompleteness. For «BeliefEle-

ment» related to State, we identified 32 missing stereotypes.
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Table 10 Results of the validation of the test ready models

Case study State Transition Total

StateInvariant «BeliefElement» Guard Trigger Effect «BeliefElement»

Incorrect

SafeHome 1 0 0 0 1 0 38

VCS 6 0 0 5 0 0

GeoSports 3 0 2 1 0 0

AW 7 0 1 8 3 0

Incomplete

SafeHome 5 2 0 7 2 3 226

VCS 30 13 15 23 21 18

GeoSports 11 9 2 4 2 4

AW 16 8 12 6 6 7

Total 79 (17, 62) 32 122 (22, 100) 32 264

#Incorrect: the number of elements corrected after simulation; #Incomplete: the number of concepts newly added after simulation;

#of triggers: #CallEvent + #SignalEvent + #TimeEvent

For Transition, we discovered 122 problems, 22 (100) of

which were related to Incorrectness (Incompleteness). For

«BeliefElement» related to Transition, we identified 32 miss-

ing stereotypes.

The typical problems identified include: (1) A transi-

tion between two states was fired without any event (O7 in

Table 5); (2) after firing a transition the state change did not

occur or the state changed to an unexpected one (O1, O2

in Table 5); (3) failed to send signals across concurrent state

machines (O4 in Table 5); (4) there were no non-deterministic

transitions from a state (O8 in Table 5); (5) unexpected exit,

block, or deadlock were observed in a state machine (O1, O9

in Table 5); (6) unreachable states were discovered (O3 in

Table 5); and (7) a guard condition was always true (O2, O7

in Table 5). Notice that these problems are not a comprehen-

sive set of problems, but demonstrate the most commonly

observed ones. After simulating the test ready models, we

ensure that our models are correct and complete and hence

can be used for facilitating MBT.

9.2.4 Application of UTP V.2

Applying UTP V.2 is the last step of UncerTum modeling as

shown in Fig. 24. In the running example, «TestItem» from

the Test Context package of UTP V.2 was applied on Secu-

ritySystem (Fig. 3) and «CheckPropertyAction» from the

Arbitration Specification package of UTP V.2 was applied to

the state invariant of IntrusionDetected (Fig. 7).

Table 11 reports the results of the application of UTP V.2 to

the models of the case studies. Notice that we only report the

descriptive statistics of the high-level packages (e.g., Arbi-

tration Specification) of UTP V.2 instead of the number of

applications of each stereotype. Notice that each high-level

package contains a set of related stereotypes. For SafeHome,

Table 11 Applications of UTP V.2 Stereotypes

Category SafeHome VCS GeoSports AW

Arbitration specification 20 246 92 101

Test data 29 278 106 122

Test configuration 2 15 7 12

Test context 3 12 4 12

Total 54 551 209 247

in total UTP V.2 stereotypes were applied 54 times, whereas

551 for VCS, 209 for GS and 247 for AW.

Based on our experience of applying UTP V.2, we dis-

covered that it is a generic UML profile for MBT and does

meet all our needs. However, we discovered that combining

UUP/Model Libraries and UTP V.2 together is sufficient to

model test ready models with uncertainty in our case.

9.3 Overall discussion and limitations

Based on the results presented in Sect. 9.2, we conclude our

findings as follows: (1) With UncerTum, we were able to

model all the identified uncertainties in the four case stud-

ies. Such modeling suggests that UncerTum is sufficiently

complete to create test ready models of CPS with explicit con-

sideration of various types of uncertainties to support testing

of CPS in the presence of such uncertainties; (2) in terms of

estimating the effort required to apply the UUP stereotypes

and Model Libraries, we conclude that we need to apply

them to on average 16.25% of model elements (Table 8).

When estimating effort in terms of time, we observed that we

needed on average additional 18.5% of time to apply UUP

(Table 9); (3) with our model execution-based model valida-

tion, we managed to identify and fix in total 264 problems
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across the four case studies (Table 10) which are necessary

before test case generation as otherwise generated test cases

would have been incorrect.

In terms of evaluation, we would like to highlight the

fact this section reported a preliminary evaluation of Uncer-

Tum from various perspectives. A more thorough evaluation

would require conducting surveys and questionnaires from

the participants from our industrial partners to solicit their

views about the modeling methodology in terms of, for exam-

ple, understandability and usability. We plan to conduct such

evaluation at the end of our project when the complete results

have been transferred to the industry partners with the par-

ticipants who are not the co-authors of this paper in order to

obtain unbiased feedback about UncerTum.

We would also like to mention that UncerTum cannot be

used to model detailed continuous behaviors of a CPS, to

support, for example, analyses during the system design and

analysis phase or to generate code. UncerTum only supports

test modeling for enabling the generation of executable test

cases. Such types of models are less detailed as compared to

models used for code generation or models for design time

analyses. This is due to the fact that testing is always con-

cerned with sending a stimulus to the system and observing

whether the system transits to a correct state because of the

stimulus according to the expected behavior specified in a

test ready model, developed for the system.

10 Related work

There are some works in the literature that attempt to deal

with modeling uncertainty with UML. For example, the

authors of [59] proposed to perform fuzzy modeling with

UML 1.5 without violating its semantics, based on theoreti-

cal analyses of UML 1.5. However, the proposed extensions

to UML 1.5 were not implemented and validated. Moreover,

there is no evidence to show the proposed extensions can be

applicable for UML 2.x.

To model uncertainty (inherent in real-world applications)

with UML class diagrams, an extension was proposed in [60–

62], which is referred to as fuzzy UML data modeling. The

extension relies on two theories: fuzzy set and possibility

distribution, and was later on further extended in [63] to

transform fuzzy UML data models into representations in

the fuzzy description logic (FDLR) to check the correctness

of fuzzy properties. Furthermore, another automated trans-

formation was proposed in [64] to transform fuzzy UML data

models into web ontologies to support automated reasoning

on fuzzy properties in the context of web services.

In [65], the UML profile (named as fuzzy UML) was pro-

posed to model uncertainty on use case diagrams, sequence

diagrams, and state machines. Another work in [66] for-

malizes UML state diagrams with fuzzy information and

transforms them into fuzzy petri nets for supporting auto-

mated verification and performance analysis. In [67], the

authors developed two stereotypes: moveTo and moveTo? for

UML collaboration diagrams. The first stereotype is applied

when a modeler has full confidence, whereas the second

stereotype is used when the modeler lacks confidence.

In comparison with these works, UncerTum focuses on

modeling uncertainty in a comprehensive and precise manner

by considering various types of measures such as probabil-

ity, vagueness, and fuzziness. The methodologies proposed

in [60–62] for specifying fuzzy UML data can easily be

integrated with our Model Libraries when needed. Notice

that UncerTum is proposed to explicitly capture the uncer-

tainty of CPSs for the purpose of supporting MBT of CPSs

under uncertainty, and there is no evidence showing that these

works can be used for this purpose.

The work reported in [68] is the closest to our work, where

uncertainty in time is modeled in UML sequence diagrams

applied with the UML-SPT profile [69]. These sequence dia-

grams are then used for test case generation by taking into

consideration the uncertainties in time. This work, however,

only supports modeling uncertainty in time on messages of

sequence diagrams. In contrast, UncerTum covers other types

of uncertainties, in addition to time, such as content and envi-

ronment. Moreover, the work does not account for sources of

time uncertainties that are essential to be explicitly captured

in order to introduce uncertainties for test execution.

In [70], the authors presented a solution to transform

UML use case diagrams and state diagrams into usage graphs

appended with probability information about expected use of

the software. Such probability information can be obtained

in several ways by relying on domain expertise or usage pro-

files of software, for example. Usage graphs with probability

can be eventually used for testing. This work only deals with

modeling uncertainty using probabilities and does not sup-

port other types of uncertainty measures such as ambiguity

as supported in UncerTum. In addition, the work only sup-

ports modeling application-level uncertainties and cannot be

used to model uncertainties in the other two CPS levels as

UncerTum.

In [71], a language-independent solution was proposed

for Partial Modeling with four types of partialities: May

partiality, Abs partiality, Var partiality, and OW partiality,

to denote the degree of incompleteness specified by model

designers. The work also provides a solution for merging and

reasoning possible partial models with tool support [72,73].

The approach was demonstrated on UML class and sequence

diagrams [71]. This work is related to our work in terms of

expressing the uncertainty of modelers. In UUP, the Belief-

related stereotypes and classes capture subjective views of

modelers and provide modeling notations for specifying the

degree of their confidence (uncertainty) on the models they

built. A set of possible models may have different belief
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degrees provided by different belief agents at the same time.

In the context of their work, the focus is on uncertainty in

partial models for supporting model refinement and evolu-

tion. In contrast, UUP focuses on modeling uncertainty (lack

of confidence) in test ready models to support MBT of CPSs

under uncertainty.

11 Conclusion and future work

To facilitate model-based testing (MBT) of Cyber-Physical

Systems (CPSs) under uncertainty, we proposed in this paper

Uncertainty Modeling Framework (UncerTum). UncerTum

allows creating test ready models with uncertainty at three

logical testing levels of CPSs: Application, Infrastruc-

ture, and Integration. The core of UncerTum is the UML

Uncertainty Profile (UUP), which implements an existing

uncertainty conceptual model, called U-Model. In addition,

UncerTum defines a comprehensive set of UML Model

Libraries extending the UML profile for Modeling and Anal-

ysis of Real-Time and Embedded Systems (MARTE), which

can be used together with UUP. UncerTum also relies on

UML Testing Profile (UTP) V.2 to construct test ready

models. Finally, UncerTum defines concrete guidelines for

supporting the use of UncerTum for creating and validating

test ready models with uncertainty. We evaluated UncerTum

with two industrial, one real-world case study, and one open-

source case studies. As a future work, we are implementing

test generators that can take test ready models created with

UncerTum as input and generate executable test cases.
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Appendix A: The definitions of U-Model

To understand uncertainty in CPSs, we define the con-

ceptual model, U-Model, to specify, classify, and identify

uncertainty and its associated concepts that was evaluated by

two industrial case studies [7]. UncerTum is an implementa-

tion of U-Model to enable MBT of CPSs under uncertainty

by specializing the modeling notations and modeling activ-

ities. U-Model [7] was published in ECMFA 2016, and we

have added definitions from the U-Model in this section to

make this paper self-contained.

A.1: Belief Model

The Belief Model in Fig. 37 takes the subjective way to rep-

resent uncertainty—uncertainty is a subjective phenomenon

that is indelibly bound to the worldview held by a belief

agent,—that, for whatever reason, is incapable of possessing

complete and fully accurate knowledge about some subject

of interest [7]. In addition, the definitions of the concepts in

Belief Model are represented in Table 12.

A.2: Uncertainty Model

The Uncertainty Model in Fig. 38 inspired by the literature

of uncertainty expands on uncertainty from several different

viewpoints and introduces related abstractions [7], i.e., risk,

pattern, and the definitions of the concepts in Uncertainty

Model are represented in Table 13.

Fig. 37 The core belief model of U-Model
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Table 12 The definitions of concepts in the Belief Model

Concept Definition

Belief (abstract) A belief is an implicit subjective explanation or description of some phenomena or notions2 that is held by a

BeliefAgent

Semantics: This is an abstract concept whose only concrete manifestation is in the form of a belief statement

Features:

beliefdegree [*] The Measurement of Belief derived from Measurement of Uncertainties in this Belief

beliefAgents [1..*] The set of BeliefAgent held this Belief

BeliefAgent BeliefAgent represents an individual, a community of individuals sharing the same set of beliefs, or a technology,

such as a software system, with built-in beliefs

Semantics: A belief agent is a physical entity3 that holds (i.e., owns) one or more beliefs about phenomena or

notions associated with one or more subject areas derived from Indeterminacy. This could be a human individual or

group, an institution, a living organism, or even a machine such as a computer. Crucially, a belief agent is capable

of actions based on its beliefs

Features:

beliefs [*] The set of Belief that represent the full set of beliefs held explicitly by the BeliefAgent

BeliefStatement A BeliefStatement is an explicit specification of some Belief about a possible phenomenon or notions belonging to a

given subject area

Generalizations: Belief, IndeterminacySource

Semantics: The concrete form of this statement can vary, and may represent informal pronouncements made by

individuals or groups, documented textual specifications expressed in either natural or formal languages, formal or

informal diagrams, etc. Since it represents a belief, which is a subjective concept, a BeliefStatement may not

necessarily correspond to objective reality. This means that it could be completely false, or only partially true, or

completely true. However, due to the complex nature of objective reality, it may not always be possible to

determine whether or not a BeliefStatement is valid. Furthermore, the validity of a statement may only be

meaningfully defined within a given context or purpose. Thus, the statement that “the Earth can be represented as a

perfect sphere” may be perfectly valid for some purposes but invalid or only partly valid for others. For our needs,

we are less interested in the validity of a BeliefStatement than we are in the level of Uncertainty that a belief agent

associates with it

Features:

substatements [*]—The set of finer-grained BeliefStatements that are components of a composite BeliefStatement

prerequisites [*]—The set of BeliefStatement on which this BeliefStatement depends.

indeterminacySource [*]—The set of IndeterminacySource that this BeliefStatement involves.

evidence [*]—The set of Evidence providing this BeliefStatement.

uncertainties [*]—The set of expressions of uncertainty that qualify and/or quantify the degree to which the

BeliefAgent lacks confidence in this BeliefStatement; this attribute provides the core link between the Belief

portion and the Uncertainty portion of the core uncertainty model

from [0..1]—The Timepoint when BeliefStatement is initialized

duration [0..1]—The Duration when BeliefStatement is active

Evidence Evidence is either the observation of or record of a real-world event occurrence or, alternatively, the conclusion of

some formalized chain of logical inference, which provides information that may contribute to determining the

validity (i.e., truthfulness) of a BeliefStatement

Semantics: Evidence is fundamentally an objective phenomenon, representing something that actually happened.

This means that we do exclude here the possibility of counterfeit or invented evidence. Nevertheless, although

Evidence represents objective reality, it need not be conclusive in the sense that it removes all doubt (uncertainty)

about a BeliefStatement. On the other hand, any valid BeliefStatement must have at least some Evidence to support it

EvidenceKnowledge EvidenceKnowledge expresses an objective relationship between a BeliefStatement and relevant Evidence

Semantics: EvidenceKnowledge identifies whether the corresponding BeliefAgent is aware of the appropriate

Evidence. Thus, an agent may be either aware that it knows something (KnownKnown), or it may be completely

unaware of Evidence (UnknownKnown)

IndeterminacyNature IndeterminacyNature represents the kind of indeterminacy4

Enumeration literals:

InsufficientResolution—The information available about the phenomenon in question is not sufficiently precise
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Table 12 continued

Concept Definition

MissingInfo—The full set of data is unavailable at the time the statement is made

Non-determinism—The phenomenon in question is either practically or inherently non-deterministic

Composite—This represents some combination of multiple other kinds of indeterminacy

Unclassified—Indeterminate indeterminacy

IndeterminacySource IndeterminacySource represents a situation whereby the information required to ascertain the validity of a

BeliefStatement is indeterminate in some way, resulting in uncertainty being associated with that statement.

Semantics: One possible source of indeterminacy could be another BeliefStatement. A given indeterminacy source

could in some cases be decomposed into more basic sources

Features:

indeterminacydegree [*]—This set of Measurement represents the quantification (or qualification) of this

IndeterminacySource

nature [1]—The IndeterminacyNature represents the kind of indeterminacy reason

IndeterminacyKnowledge IndeterminacyKnowledge expresses an objective relationship between an IndeterminacySource and the awareness

that the BeliefAgent has of that source

Semantics: IndeterminacyKnowledge identifies whether the corresponding BeliefAgent is aware of the appropriate

IndeterminacySource. So, even though it is agent specific, it is still an objective concept since it does not represent

something that is declared by the agent. For instance, an agent may be aware that it does not know something about

a possible source (KnownUnknown), or the agent may be completely unaware of a possible source of

indeterminacy (UnknownUnknown)

KnowledgeType KnowledgeType represents the type of the knowledge

Enumeration literals:

KnownKnown—Indicates that an associated BeliefAgent is consciously aware of some relevant aspect

KnownUnknown (Conscious Ignorance)—Indicates that an associated BeliefAgent understands that it is ignorant

of some aspect

UnknownKnown (Tacit Knowledge)—Indicates that an associated BeliefAgent is not explicitly aware of some

relevant aspect that it, nevertheless, may be able to exploit in some way

UnknownUnknown (Meta Ignorance)—Indicates that an associated BeliefAgent is unaware of some relevant aspect

Measure Measure represents the way of measuring Belief/Uncertainty/IndeterminacySource

Semantics: Measure is objective concept, and specifies the existing way/theory to measure uncertainty.

Measurement Measurement represents the optional quantification (or qualification) that specifies the degree of

Belief/Uncertainty/IndeterminacySource

Semantics: It may be possible to specify a Measurement that quantifies in some way (e.g., as a probability or a

percentage) the degree of Uncertainty by the agent making the belief statement. Note, however, that this is a

subjective measure defined by the BeliefAgent

Features:

measure [1]—This Measure represents the related way of measuring Belief/Uncertainty/IndeterminacySource

Uncertainty Uncertainty (lack of confidence) represents a state of affairs whereby a BeliefAgent does not have full confidence in

a Belief that it holds

Semantics: “Full confidence” here means that the agent does not have any doubts about the validity of a statement. It

is important to distinguish here between certainty and validity. That is, an agent could have full confidence in a

BeliefStatement that is actually false; i.e., a statement that does not match (objective) truth. In general, the source of

uncertainty associated with a BeliefStatement is that, for some reason, the agent does not have full knowledge of all

relevant facts pertaining to the phenomena or notions that are the subject of the statement

Features:

from [0..1]—The Timepoint when Uncertainty is initialized
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Table 12 continued

Concept Definition

measured [*]—This Measurement is used for representing confidence degree of Uncertainty by the agent making

the BeliefStatement

source [1..*]—This set of IndeterminacySource derived from the involves association and generalization of

BeliefStatement

2 The term “phenomena” here is intended to cover aspects of objective reality, whereas “notion” covers abstract concepts, such those encountered

in mathematics or philosophy.
3 We exclude here from this definition “virtual” belief agents, such as those that might occur in virtual reality systems and computer games.
4 Indeterminacy represents a situation whereby the full knowledge necessary to determine the required factual state of some phenomena or notions

is unavailable

Fig. 38 The core uncertainty

model of U-Model

Table 13 The definitions of concepts in the core uncertainty model

Concept Definition

Effect Effect represents the result of Uncertainty in the BeliefStatement

Semantics: An uncertainty may result into: (1) another known Uncertainty, (2) something known and is not Uncertainty,

(3) anything unknown

Features:

locality [0..1]—This value is used to represent that the Locality of the Effect

measurement [*]—This set of Measurement represents the quantification (or qualification) of this Effect

Lifetime Lifetime represents the duration of time for which an Uncertainty remains active

Semantics: The length of time for which Uncertainty exists. For example, an Uncertainty may appear temporarily for a

short period of time and disappears itself. On the other hand, an Uncertainty could be persistent, i.e., it stays active

until appropriate actions are taken to resolve the Uncertainty

Locality A particular place or a position where Uncertainty occurs in the BeliefStatement

Semantics: A location could be a geographical location or a position where Uncertainty occurs. The concept of location

is different than the Uncertainty type GeographicalLocation, where Uncertainty is due to the geographical location,

however in this concept Uncertainty occurred at a location may not be due to the geographical location

Pattern Pattern represents an intelligible way in which an Uncertainty appears.

Semantics: An Uncertainty may occur without any Pattern, i.e., Random, or may have a pattern in which it may occur,

for example, occurring at equal intervals of time, i.e., Periodic

Random An Uncertainty that occurs without definite method, purpose or conscious decision

Semantics: An Uncertainty occurring without any specific pattern

Risk Risk measures the risk associated with Uncertainty

Semantics: An uncertainty may have an associated risk and high-risk uncertainties deserve special attention

Level/Rating Level/Rating is derived from Measurement owned by Uncertainty (Probability of the Occurrence of an Uncertainty) and

Measurement owned by Effect (e.g., high impact), for example, using the risk matrix [74] or any other matrices

Occurrence Occurrence represents a situation whereby a BeliefAgent lacks confidence in occurrence existing in a BeliefStatement

Generalizations: Uncertainty

Content Content represents a situation whereby a BeliefAgent lacks confidence in content existing in a BeliefStatement

Generalizations: Uncertainty

Time Time represents a situation whereby a BeliefAgent lacks confidence in time existing in a BeliefStatement

Generalizations: Uncertainty
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Table 13 continued

Concept Definition

GeographicalLocation GeographicalLocation represents a situation whereby a BeliefAgent lacks confidence in geographical location existing

in a BeliefStatement

Generalizations: Uncertainty

Environment Environment represents a situation whereby a BeliefAgent lacks confidence in environment existing in a BeliefStatement

Generalizations: Uncertainty

Uncertainty Semantics: The Uncertainty Model expands on Uncertainty from several different viewpoints and introduces related

abstractions. Notice that Uncertainty has a self-association. This self-association facilitates: (1) relating different

Application level uncertainties to each other, (2) relating different Infrastructure level uncertainties to each other, (3)

relating Application level and Infrastructure level uncertainties to each other, (4) relating Integration level uncertainties

to each other, and (5) relating Application, Integration, and Infrastructure level uncertainties. This self-association can

be specialized into different types of relationships such as ordering and dependencies. Here, we intentionally did not

specialize it to keep the model general, so that it can be specialized for various purposes and contexts

Features:

lifetime [1]—This value is used for representing the duration of this Uncertainty

pattern [0..1]—This value is used for describing whether this Uncertainty happens in a pattern or what kind of the

pattern this Uncertainty occurs in

risk [0..1]—This value is used for whether this Uncertainty has a risk, and what kind of risk this Uncertainty causes

locality [0..1]—This value is used for representing what location this Uncertainty occurs

effect [*]—This value is used for describing what effect the uncertainty may produce

dependency [*]—The set of Uncertainty represents the dependency relationship with other Uncertainty

Fig. 39 The Pattern Model

A.2.1: Pattern Model

The Pattern Model in Fig. 39 shows the conceptual model for

the occurrence pattern of Uncertainty [7], and the definitions

of the concepts in Pattern Model are represented in Table 14.

A.3: Measure Model

The Measure Model in Fig. 40 describes the commonly

known measures related to uncertainty [7], and the defini-

tions of the concepts in Measure Model are represented in

Table 15.

Table 14 The definitions of

concepts in the Pattern Model
Concept Definition

Temporal Uncertainty occurring in a temporal pattern

Generalizations: Measure

Semantics: Temporal describes the notion of time with the occurrence of uncertainty

Systematic Uncertainty occurring in a systematic pattern

Generalizations: Temporal

Semantics: Uncertainty occurring in some methodical pattern, i.e., a pattern that can be

described in a mathematical way

Persistent A permanent Uncertainty, i.e., lasting forever

Generalizations: Systematic

Semantics The definition of “forever” varies. For example, an uncertainty may exist

permanently until appropriate actions are taken to deal with the uncertainty. On the other

hand, an uncertainty may not be able to resolve and stays forever.

Periodic An Uncertainty that occurs in repeated periods or at regular intervals

Generalizations: Systematic
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Table 14 continued
Concept Definition

Semantics: Uncertainty repeating itself after an equal interval of time

Aperiodic An Uncertainty that occurs at irregular intervals of time

Generalizations: Temporal

Semantics: It is important to note that Aperiodic is inherited from Temporal; this means it

has a notion of time in which the Uncertainty appears in an Aperiodic pattern

Sporadic Uncertainty occurring in a sporadic pattern

Generalizations: Aperiodic

Semantics: Uncertainty occurring occasionally

Transient Uncertainty occurring temporarily

Generalizations: Aperiodic

Semantics: Uncertainty that does not last long

Fig. 40 The core measure model of U-Model

Table 15 The definitions of concepts in the core measure model

Concept Definition

Vagueness Uncertainty measured with the vagueness methods

Generalizations: Measure

Fuzziness Uncertainty measured by fuzzy methods. More

details can be referred to the fuzzy logic literature

[75]

Generalizations: Vagueness

NonSpecificity Uncertainty measured using non-specificity methods

Generalizations: Vagueness

Semantics: In certain cases, it may not be possible to

measure an uncertainty using quantitative

measurements and instead qualitative

measurements can be used. Such qualitative

measurements are classified under Non-Specificity

methods

Probability Uncertainty measured with the probability

Table 15 continued

Concept Definition

Generalizations: Measure

Semantics: A quantitative way of measuring

uncertainty

Ambiguity Uncertainty in the BeliefStatement is measured using

ambiguity way

Generalizations: Measure

Semantics: An uncertainty may be described

ambiguously. For example, in the following

statement: “The food is hot”, the ambiguity is in

the measurement, i.e., the food is either hot in

terms of temperature or in terms of spices

References

1. Lee, E.A.: Cyber physical systems: design challenges. In: 2008

11th IEEE International Symposium on Object Oriented Real-Time

Distributed Computing (ISORC), pp. 363–369 (2008)

2. Rawat, D.B., Rodrigues, J.J., Stojmenovic, I.: Cyber-Physical Sys-

tems: From Theory to Practice. CRC Press, Boca Raton (2015)

3. Sunder, S.: Foundations for innovation in Cyber-Physical Systems.

In: Proceedings of the NIST CPS Workshop, Chicago, IL, USA

4. Geisberger, E., Broy, M.: Living in a Networked World: Integrated

Research Agenda Cyber-Physical Systems (agendaCPS). Herbert

Utz Verlag, Munich (2015)

5. Bammer, G., Smithson, M.: Uncertainty and Risk: Multidisci-

plinary Perspectives. Routledge, Abingdon (2012)

123



1416 M. Zhang et al.

6. Lindley, D.V.: Understanding Uncertainty (Revised Edition).

Wiley, Hoboken (2014)

7. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.:

Understanding uncertainty in Cyber-Physical Systems: a concep-

tual model. In: Proceedings of the 12th European Conference on

Modelling Foundations and Applications (ECMFA), pp. 247–264

8. Ali, S., Yue, T.: U-test: evolving, modelling and testing realistic

uncertain behaviours of Cyber-Physical Systems. In: Proceedings

of the IEEE 8th International Conference on Software Testing, Ver-

ification and Validation (ICST), pp. 1–2

9. Future Position X. http://www.fpx.se/. Accessed 2017

10. ULMA Handling System. http://www.ulmahandling.com/en/.

Accessed 2017

11. Object Management Group (OMG): UML profile for MARTE:

modeling and analysis of real-time embedded systems, Version

1.1. http://www.omg.org/spec/MARTE/ (2011)

12. IBM Rational Software Architect Modeling Tool. https://www.

ibm.com/developerworks/downloads/r/architect/. Accessed 2016

13. CertifyIt. http://www.smartesting.com/en/certifyit/. Accessed

2017

14. Easy Global Market. http://www.eglobalmark.com/. Accessed

2017

15. Nordic Med Test. http://www.nordicmedtest.se/. Accessed 2017

16. IK4-IKERLAN. http://www.ikerlan.es/eu/. Accessed 2017

17. Cisco. http://www.cisco.com/. Accessed 2017

18. Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior

using aspect-oriented modeling to support robustness testing of

industrial systems. Softw. Syst. Model. 11(4), 633–670 (2012)

19. Pressman, R.S.: Software Engineering: A Practitioner’s Approach,

7th edn. Palgrave Macmillan, Basingstoke (2010)

20. Object Management Group (OMG): UML testing profile, Version

1.2. http://www.omg.org/spec/UTP/ (2013)

21. Ali, S., Yue, T., Hoffmann, A., Wendland, M.F., Bagnato, A.,

Brosse, E., Schacher, M., Dai, Z.R.: How does the UML test-

ing profile support risk-based testing. In: 2014 IEEE International

Symposium on Software Reliability Engineering Workshops, pp.

311–316

22. UML Testing ProfileTM(UTP) 2.0. http://utp.zen-tools.com/

23. Object Management Group (OMG): UML testing profile, Ver-

sion 2. http://utp.omg.org/, http://www.omg.org/cgi-bin/doc?ad/

16-05-10 (2016)

24. IBM: UML Action Language (UAL). https://www.ibm.com/

support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.

ual.doc/topics/c_umlactionlanguage.html (2017). Accessed 2017

25. Zhang, M., Ali, S., Yue, T., Nguyen, P.H.: Uncer-

tainty Modeling Framework for the Integration Level

V.1. Technical Report 2016-01 Simula Research Labora-

tory, 2016. https://www.simula.no/publications/uncertainty-

modeling-framework-integration-level-v1 (2016)

26. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

27. Dempster, A.P.: Upper and lower probabilities induced by a mul-

tivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

28. Shafer, G.: A Mathematical Theory of Evidence. Princeton Uni-

versity Press, Princeton (1976)

29. Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J.

7(3), 535–563 (1928)

30. Lamata, M.T., Moral, S.: Measures of entropy in the theory of

evidence. Int. J. Gen. Syst. 14(4), 297–305 (1988)

31. Yager, R.R.: Entropy and specificity in a mathematical theory of

evidence. Int. J. Gen. Syst. 9(4), 249–260 (1983)

32. Higashi, M., Klir, G.J.: Measures of uncertainty and information

based on possibility distributions. Int. J. Gen. Syst. 9(1), 43–58

(1982)

33. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy

Sets Syst. 1(1), 3–28 (1978)

34. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell.

66(2), 191–234 (1994)

35. George, J.K., Bo, Y.: Fuzzy sets and fuzzy logic, theory and appli-

cations (2008)

36. Kosko, B.: Fuzzy entropy and conditioning. Inf. Sci. 40(2), 165–

174 (1986)

37. Didier, D., Henri, P.: Fuzzy Sets and Systems: Theory and Applica-

tion. Mathematics in Science and Engineering, vol. 144. Academic

Press, Cambridge (1980)

38. Zimmermann, H.-J.: Fuzzy Set Theory—And Its Applications.

Springer, Berlin (2011)

39. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356

(1982)

40. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174

(1967)

41. Atanassov, K., Georgiev, C.: Intuitionistic fuzzy prolog. Fuzzy Sets

Syst. 53(2), 121–128 (1993)

42. Zadeh, L.A.: The concept of a linguistic variable and its application

to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

43. Grattan-Guinness, I.: Fuzzy membership mapped onto intervals

and many-valued quantities. Math. Logic Q. 22(1), 149–160 (1976)

44. Jahn, K.U.: Intervall-wertige Mengen. Math. Nachr. 68(1), 115–

132 (1975)

45. Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Trans. Syst. Man

Cybern. 23(2), 610–614 (1993)

46. De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy

in the setting of fuzzy sets theory. Inf. Control 20(4), 301–312

(1972)

47. Feller, W.: An Introduction to Probability Theory and Its Applica-

tions. Wiley, Hoboken (2008)

48. Song, H., Rawat, D.B., Jeschke, S., Brecher, C.: Cyber-Physical

Systems: Foundations, Principles and Applications. Morgan Kauf-

mann, Burlington (2016)

49. Talcott, C.: Cyber-Physical Systems and events. In: Wirsing,

M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-

Intensive Systems and New Computing Paradigms: Challenges and

Visions, pp. 101–115. Springer, Berlin (2008)

50. Ali, S., Briand, L.C., Rehman, M.J.-U., Asghar, H., Iqbal, M.Z.Z.,

Nadeem, A.: A state-based approach to integration testing based on

UML models. Inf. Softw. Technol. 49(11–12), 1087–1106 (2007)

51. Eclipse OCL. http://www.eclipse.org/modeling/mdt/?project=

ocl-ocl. Accessed 2016

52. Dresden OCL. https://marketplace.eclipse.org/content/dres

den-ocl. Accessed April, 2016

53. IBM RSA Simulation Toolkit. http://www-03.ibm.com/software/

products/en/ratisoftarchsimutool. Accessed 2016

54. Use Cases—Industrial Case Studies. http://www.u-test.eu/

use-cases/. Accessed 2017

55. Certus. http://certus-sfi.no/. Accessed 2017

56. Schneider, M., Wendland, M.-F.: Gaining certainty about uncer-

tainty: testing for uncertainties of Cyber-Physical Systems at the

application level. In: 4th International Workshop on Risk Assess-

ment and Risk-driven Quality Assurance (RISK), In Conjunction

with 28th International Conference on Testing Software and Sys-

tems (ICTSS) (2016)

57. Kerwin, A.: None too solid medical ignorance. Sci. Commun.

15(2), 166–185 (1993)

58. Object Management Group (OMG):Concrete syntax For A UML

action language: action language for foundational UML (ALF),

Version 1.0.1. http://www.omg.org/spec/ALF/ (2013)

59. Sicilia, M.-A., Mastorakis, N.: Extending UML 1. 5 for fuzzy con-

ceptual modeling: an strictly additive approach. WSEAS Trans.

Syst. 3(5), 2234–2239 (2004)

60. Ma, Z.: Fuzzy information modeling with the UML. Advances in

fuzzy object oriented databases: modeling and applications. Idea

Group Inc., USA, 153–75 (2004)

123

http://www.fpx.se/
http://www.ulmahandling.com/en/
http://www.omg.org/spec/MARTE/
https://www.ibm.com/developerworks/downloads/r/architect/
https://www.ibm.com/developerworks/downloads/r/architect/
http://www.smartesting.com/en/certifyit/
http://www.eglobalmark.com/
http://www.nordicmedtest.se/
http://www.ikerlan.es/eu/
http://www.cisco.com/
http://www.omg.org/spec/UTP/
http://utp.zen-tools.com/
http://utp.omg.org/
http://www.omg.org/cgi-bin/doc?ad/16-05-10
http://www.omg.org/cgi-bin/doc?ad/16-05-10
https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.ual.doc/topics/c_umlactionlanguage.html
https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.ual.doc/topics/c_umlactionlanguage.html
https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.ual.doc/topics/c_umlactionlanguage.html
https://www.simula.no/publications/uncertainty-modeling-framework-integration-level-v1
https://www.simula.no/publications/uncertainty-modeling-framework-integration-level-v1
http://www.eclipse.org/modeling/mdt/?project=ocl-ocl
http://www.eclipse.org/modeling/mdt/?project=ocl-ocl
https://marketplace.eclipse.org/content/dresden-ocl
https://marketplace.eclipse.org/content/dresden-ocl
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
http://www.u-test.eu/use-cases/
http://www.u-test.eu/use-cases/
http://certus-sfi.no/
http://www.omg.org/spec/ALF/


Uncertainty-Wise Cyber-Physical System test modeling 1417

61. Ma, Z.M., Zhang, F., Yan, L.: Fuzzy information modeling in UML

class diagram and relational database models. Appl. Soft Comput.

11(6), 4236–4245 (2011)

62. Yan, L., Ma, Z.M. : Extending nested relational model for fuzzy

information modeling. In: 2009 WASE International Conference

on Information Engineering, pp. 587–590 (2009)

63. Ma, Z.M., Zhang, F., Yan, L., Cheng, J.: Representing and reason-

ing on fuzzy UML models: a description logic approach. Expert

Syst. Appl. 38(3), 2536–2549 (2011)

64. Zhang, F., Ma, Z.M.: Construction of fuzzy ontologies from fuzzy

UML models. Int. J. Comput. Intell. Syst. 6(3), 442–472 (2013)

65. Haroonabadi, A., Teshnehlab, M., Movaghar, A.: A novel method

for behavior modeling in uncertain information systems. World

Acad. Sci. Eng. Technol. 41, 959–966 (2008)

66. Motameni, H., Daneshfar, I., Bakhshi, J., Nematzadeh, H.: Trans-

forming fuzzy state diagram to fuzzy Petri net. J. Adv. Comput.

Res. 1(1), 29–44 (2010)

67. Grassi, V., Mirandola, R.: UML modelling and performance analy-

sis of mobile software architectures. In: UML 2001—The Unified

Modeling Language. Modeling Languages, Concepts, and Tools,

pp. 209–224. Springer (2001)

68. Garousi, V.: Traffic-aware stress testing of distributed real-time sys-

tems based on UML models in the presence of time uncertainty.

In: 2008 1st International Conference on Software Testing, Verifi-

cation, and Validation, pp. 92–101

69. Object Management Group (OMG): UML profile for schedulabil-

ity, performance, and time, Version 1.1. http://www.omg.org/spec/

SPTP/ (2005)

70. Riebisch, M., Philippow, I., Götze, M.: UML-based statistical test

case generation. In: Aksit, M., Mezini, M., Unland, R. (eds.)

Objects, Components, Architectures, Services, and Applications

for a Networked World. NODe 2002. Lecture Notes in Computer

Science, vol. 2591, pp. 394–411. Springer, Berlin (2002)

71. Salay, R., Famelis, M., Chechik, M.: Language independent refine-

ment using partial modeling. In: de Lara, J., Zisman, A. (eds.)

Fundamental Approaches to Software Engineering. FASE 2012.

Lecture Notes in Computer Science, vol. 7212, pp. 224–239.

Springer, Berlin (2012)

72. Famelis, M., Salay, R., Chechik, M.: Partial models: towards mod-

eling and reasoning with uncertainty. In: 2012 34th International

Conference on Software Engineering (ICSE), pp. 573–583 (2012)

73. Famelis, M., Santosa, S.: MAV-Vis: a notation for model uncer-

tainty. In: 2013 5th International Workshop on Modeling in

Software Engineering (MiSE), pp. 7–12 (2013)

74. Garvey, P.R., Lansdowne, Z.F.: Risk matrix: an approach for iden-

tifying, assessing, and ranking program risks. Air Force J. Logist.

22(1), 18–21 (1998)

75. Klir, G.: Facets of Systems Science. Springer, Berlin (2013)

Man Zhang is a Ph.D. stu-

dent at Simula Research Labo-

ratory, Norway (2015–present),

and the Department of Infor-

matics, University of Oslo, Nor-

way. Previously, she obtained

her Master Degree in Computer

Technology from Beihang Uni-

versity, Beijing, China (2012–

2015). Her main research inter-

ests include model-based test-

ing of Cyber-Physical Systems,

uncertainty modeling, model-

based engineering and require-

ments engineering.

Shaukat Ali is currently a

senior research scientist in Sim-

ula Research Laboratory, Nor-

way. His research focuses on

devising novel methods for Ver-

ification and Validation (V&V)

of large-scale highly connected

software-based systems that are

commonly referred to as Cyber-

Physical Systems (CPSs). He has

been involved in several basic

research, research-based innova-

tion, and innovation projects in

the capacity of PI/Co-PI related

to model-based testing (MBT),

search-based software engineering, and model-based system engineer-

ing. He has rich experience of working in several countries including

UK, Canada, Norway, and Pakistan. Shaukat has been on the program

committees of several international conferences (e.g., MODELS, ICST,

GEECO, SSBSE) and also served as a reviewer for several software

engineering journals (e.g., TSE, IST, SOSYM, JSS, TEVC). He is also

actively participating in defining international standards on software

modeling in Object Management Group (OMG), notably a new stan-

dard on Uncertainty Modeling.

Tao Yue is a chief research sci-

entist of Simula Research Lab-

oratory, Oslo, Norway, and she

is also affiliated to University

of Oslo as an associate profes-

sor. She has received the Ph.D.

degree in the Department of Sys-

tems and Computer Engineering

at Carleton University, Ottawa,

Canada, in 2010. Before that, she

was an aviation engineer and sys-

tem engineer for 7 years. She has

more than 15 years of experience

of conducting industry-oriented

research with a focus on model-

based engineering (MBE) in various application domains such as

avionics, maritime and energy, and communications in several coun-

tries including Canada, Norway, and China. Her present research area

is software engineering, with specific interests in requirements engi-

neering, product line engineering, model-based engineering and testing,

search-based software engineering, empirical software engineering, and

uncertainty modeling. Dr. Yue has been on the program and organiza-

tion committees of several international conferences (e.g., MODELS,

RE, SPLC). She is also on the editorial board of Empirical Software

Engineering. Tao is also actively participating in defining international

standards in Object Management Group (OMG), including uncertainty

modeling, SysML, and UTP.

123

http://www.omg.org/spec/SPTP/
http://www.omg.org/spec/SPTP/


1418 M. Zhang et al.

Roland Norgren holds a Bach-

elor’s Degree in system science.

He has worked mainly as devel-

oper and project manager in both

small- and large-scale organisa-

tions. Roland is today working

as process manager for research

and innovation at the GIS-cluster

Future Position X in Gävle, Swe-

den.

Oscar Okariz is with ULMA

since 2010. He is Computer

Engineer by the Basque Univer-

sity (UPV) since 2003. Oscar

Okariz is recognized by his expe-

rience on J2EE and .Net devel-

opment as well as his experi-

ence of more than ten years

as software developer analyst

on several enterprises manag-

ing and directing projects. He

is currently “Software technol-

ogy” area responsible in charge

of leading internal team work to

achieve a new generation soft-

ware product in Ulma Handling

Systems.

123


	Uncertainty-Wise Cyber-Physical System test modeling
	Abstract
	1 Introduction
	2 Background
	2.1 Cyber-Physical Systems and testing levels
	2.2 U-Model
	2.3 UML Testing Profile (UTP)

	3 Running example
	4 Overview of UncerTum
	5 UUP and CPS testing levels profile
	5.1 UUP belief
	5.2 UUP uncertainty and measurement
	5.3 CPS testing levels profile

	6 Model Libraries
	6.1 Measure Libraries
	6.2 Pattern Library

	7 UncerTum modeling methodology
	7.1 Overview
	7.2 Application-level modeling
	7.3 Infrastructure-level modeling
	7.4 Integration-level modeling
	7.5 Apply UUP (AP2/IF2/IT2)
	7.5.1 Measurement modeling
	7.5.2 Uncertainty modeling


	8 UncerTum validation process
	8.1 UAL executable modeling guidelines
	8.2 Recommendations to fix problems in test ready models

	9 Evaluation
	9.1 Development and validation of UncerTum and test ready models
	9.2 Evaluation results
	9.2.1 Mapping UUP/Model Libraries to U-Model and MARTE
	9.2.2 Application of UUP/Model Libraries
	9.2.3 Validation of test ready models via model execution
	9.2.4 Application of UTP V.2

	9.3 Overall discussion and limitations

	10 Related work
	11 Conclusion and future work
	Acknowledgements
	Appendix A: The definitions of U-Model
	A.1: Belief Model
	A.2: Uncertainty Model
	A.2.1: Pattern Model

	A.3: Measure Model

	References


