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Abstract. Computationally expensive tasks that can be parallelized are
most efficiently completed by distributing the computation among a large
number of processors. The growth of the Internet has made it possible to
invite the participation of just about any computer in such distributed
computations. This introduces the potential for cheating by untrusted
participants. In a commercial setting where participants get paid for their
contribution, there is incentive for dishonest participants to claim credit
for work they did not do. In this paper, we propose security schemes
that defend against this threat with very little overhead. Our weaker
scheme discourages cheating by ensuring that it does not pay off, while
our stronger schemes let participants prove that they have done most of
the work they were assigned with high probability.
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1 Introduction

Computationally expensive tasks, to the extent that they can be parallelized,
are best done by distributing the work among a large number of processors.
Consider for example a challenge issued by RSA Labs: the goal is to recover
a cipher key given a few pairs of plaintext and ciphertext. For that, the best
known algorithm is to try all keys in succession until the right one is found. This
task may be efficiently distributed to a number of processors, each searching a
fraction of the total key-space.

The Internet has opened up distributed computations to the world. Just
about any computer may be invited to participate in a given task. A number
of projects have already taken advantage of the power of Internet computa-
tions. For example, the Search for Extra-Terrestrial Intelligence (SETI@home)
project [SETI], which distributes to thousands of users the task of analyzing
radio transmissions from space, has a collective performance of tens of teraflops.
Another Internet computation, the GIMPS project directed by Entropia.com,
has discovered world-record prime numbers. Future projects include global cli-
mate modeling [A99] and fluid dynamics simulation.

The success of these projects has demonstrated the spectacular potential for
distributing computations over the Internet. Participation in such computations
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has so far been limited to groups of volunteers who support a particular project.
But there is intense commercial interest in tapping the free cycles of a lot more
Internet users. Harnessing the free cycles of 25 million AOL users for profit is a
tempting proposition, but it introduces the potential for cheating by dishonest
participants. In a commercial setting where participants get paid an amount
proportional to their contribution, there is incentive to claim credit for work
that was not done. Consider an effort coordinated by distributed.net to solve one
of RSA challenges. The task could be outsourced to AOL, whose users would
be paid a small fee for their computer time. If the computation ended without
revealing the key, we would want a scheme that lets us trace the cheaters who
didn’t do the work they were assigned.

This paper proposes security schemes to address this issue. We begin by
defining our model of generic distributed computations, as well as cheating and
what it means to secure a computation. In the next section, we propose a number
of schemes to secure certain types of parallel computations. The weaker of our
schemes simply discourages cheating by ensuring that it does not pay off, while
our stronger schemes let participants prove that they have done almost all the
work they were assigned with high probability. Our schemes are very efficient,
both in terms of computation and communication overhead for the participants
and the supervisor of the search. In section 3, we discuss other applications of
our schemes as well as open problems. Finally in the last section, we give a brief
overview of prior art and conclude.

1.1 Model of Distributed Computation

We consider a distributed computation in which untrusted participants are taking
part. The computation is organized by a supervisor, who may or may not be
trusted by the participants.

A distributed effort to solve one of the RSA Labs’ challenges is a good ex-
ample to introduce our model of computation. Assume the goal is to find the
DES key that matches a given plaintext PT to a given ciphertext CT . Let
f(k) = DESk(PT ). The supervisor partitions the range [0, . . . , 256 − 1] of keys
and assigns a subset to each participant. Participants are required to evaluate f
on all keys k in their range, and test whether f(k) = CT . If the equality holds, k
is reported to the supervisor, who rewards the discovery with a prize of $10,000.

Formally, such computations are defined in our model by the following three
elements:

– A function f defined on a finite domain D. The object of the computa-
tion is to evaluate f on all k ∈ D. For the purpose of distributing the compu-
tation, the supervisor chooses a partition of D into subsets Di. The evalua-
tion of f on Di is assigned to participant i. In our example D = [0, . . . , 256−1]
and f(k) = DESk(PT ).

– A screener S. The screener is a program that takes as input a pair of the
form (k; f(k)) for k ∈ D, and returns a string s = S(k; f(k)). S is intended
to screen for “valuable” outputs of f that are reported to the supervisor



by means of the string s. In our example, S compares f(k) to CT . If they
are equal, S(k; f(k)) = k, otherwise there is nothing worth signaling to the
supervisor and S returns the empty string. We assume that the run-time of
S is of negligible cost compared to one evaluation of f .

– A payment scheme P . The payment scheme is a publicly known function
P that takes as input a string s from participant i and outputs the amount
due to that participant. We require that P may be efficiently evaluated.
Specifically, one evaluation of P should equal a small constant number of
evaluations of f . In our example, the payment scheme might work as follows.
If s belongs to the domain of f and f(s) = CT , then P (s) = $10,000 reward.
Otherwise P (s) = $0.

In this model, observe that the screener S and the payment scheme P are the
same for all participants. It will prove useful however, for the purpose of verifying
the work of individual participants, to give the supervisor the ability to customize
S and P for each participant. We propose the following extension to the basic
model of distributed computation, which we call customized computations. Like
a distributed computation, a customized computation is a triplet (f, S, P ) but
with the following differences:

– Customized screener. Rather than a unique screener S, there is now one
screener Si per participant. Together with screener Si, the supervisor gener-
ates a secret key Ki. The screener is given to the participant, while the key is
known only to the supervisor. The key stores secret information associated
with the screener, and is used in the payment scheme to verify the work of
participant i.

– Customized payment scheme. Similarly, the payment scheme P is cus-
tomized. We define P as a function of two inputs: a string s from participant
i, and the secret key Ki. The amount due to participant i is P (Ki, s).

We distinguish the following three stages of a distributed computation:

– Initialization: The supervisor makes public the function f , the payment
scheme P and decides on a partition of the domain into finite subsets Di.
The supervisor generates a screener Si for each participant, and a key Ki to
go with it. All the keys are kept secret. Each participant receives his share
Di of the domain, and the screener Si.

– Computation: For every input d ∈ Di, participant i is required to evalu-
ate f(d), then run the screener Si on f(d). All the strings s produced by
the screener are concatenated into a string mi, which is returned to the
supervisor at the end of the computation.

– Payment: The supervisor computes P (Ki,mi) to determine the amount
due to participant i.

This model captures the nature of parallel distributed computations. We will
return to the example of DES challenges in the next section, and propose modi-
fications to the original screener and payment scheme to make the computation
secure against cheaters.



1.2 Cheating and Models of Security Enforcement

To appreciate how much of a threat cheating is to distributed computing, con-
sider the following anecdote. Project managers from SETI@home have report-
edly [B99] uncovered attempts by some users “to forge the amount of time they
have donated in order to move up on the Web listings of top contributors.” Yet
SETI participants are volunteers who do not get paid for the cycles they con-
tribute. If participants get paid for their contribution, they will no doubt cheat
in every possible way to try to maximize their profit.

In our model of distributed computation, we define a cheater as a participant
who either did not evaluate f on every input in Di, or did not run the screener Si

on every value f(d). A cheating strategy is an algorithm that, given the publicly
known payment scheme P and everything so far computed, decides at each step
of the computation whether to proceed with the next step, or interrupt the
computation and submit the current result s to the supervisor for payment.

A computation is ideally secure if it allows the supervisor to verify that
participants did not cheat. It is trivial to construct ideally secure computations
if we place no restrictions on the computational cost of the payment scheme. For
example, the supervisor might require participants to submit every value f(d)
and S(f(d)) that they compute, and verify all of them. For efficient distributed
computations however, it appears impossible to deter every possible cheating
strategy. For the most part, we will restrain our focus to the following subclass:

Definition 1. Rational cheating strategy A cheating strategy is rational if
it maximizes the expected profit per unit of time for the cheater.

To classify the security of efficient distributed computations, we propose the
following two properties. These are complementary rather than exclusive.

– Financial property: A computation has the financial property if it ensures
that cheating does not pay off. Specifically, there exists no cheating strategy
that yields a better profit per CPU cycle contributed than an honest user
would get.

– Coverage constant: This constant is in the range [0; 1]. It is the expected
fraction of Di on which a rational participant i must evaluate f before sub-
mitting his result for payment. (The probability space is the set of all rational
cheating strategies.) A computation is ideally secure against rational cheaters
if it has a coverage constant of 1.

1.3 Simple Solutions of Use in Limited Settings

We survey here a few simple security schemes, of possible use in restricted set-
tings, and point out the limitations that make them inadequate for general use.
A more general survey of related work will be presented in section 4.

A simple solution is to reward with a prize the outcome of a certain compu-
tation. This scheme is currently used to encourage participation in distributed
cipher-cracking. The user who discovers the correct key wins a prize, while the



others get nothing. This scheme has the financial property. Indeed, the chance
of winning the prize is proportional to the amount of work done. In a setting
where millions of users might be involved however, it is not desirable that the
compensation for work should have the high variance of a single prize.

Another solution is for participants to save the results f(k) and S(f(k)) of all
their computations. Using a Private Information Retrieval scheme (PIR)[CMS99],
the supervisor can randomly verify a small number p of values. Alternatively, all
the values computed can be sent back to the supervisor. This scheme has cover-
age constant of 1−1/p. Indeed, with p queries, the supervisor will catch with high
probability any cheater who did less than (1−1/p) of the work. SETI@home uses
a security scheme analogous to this. The problem with this scheme is that it is
often unrealistic to expect participants to save the result of their work. Consider
the following example: an average desktop can perform 240 DES evaluations in
reasonable time. But it is not possible to commit 8 · 240 bytes = 8000 gigabytes
to memory.

2 Inverting a One-way Function

In this section, we introduce a generic class of distributed computations called
Inversion of a One-Way function (IOWF), and study how to secure such com-
putations against cheating. Let f : D 7→ T be a one-way function, and y = f(x)
for some x ∈ D. Given f and y only, the object of the computation is to dis-
cover x by exhaustive search of the domain D. This class of computations is a
generalization of the RSA Labs’ challenges mentioned in the introduction.

Our starting point to secure IOWF is the basic screener S and payment
scheme P proposed for RSA Labs’ challenges in Section 1.1. Let us recall that S
does nothing but report x when it is found, and P awards a single fixed prize for
that discovery. Recall that this basic implementation of IOWF has the financial
property. We propose here several modifications to the screener and the pay-
ment scheme. Our first security scheme (magic numbers) preserves the financial
property, but lowers considerably the variance of the expected payment for each
participant. Our second family of schemes (ringers) ensures a coverage constant
arbitrarily close to 1, but it requires all participants to trust the supervisor of
the computation.

2.1 Magic Numbers

The basic IOWF scheme, in which the participant who discovers x is rewarded
with a prize, has the financial property. Indeed, the chance for each participant to
win the prize is proportional to the amount of work done. We wish to preserve
this characteristic while reducing the variance of the expected profit for the
participants. Low variance is desirable to ensure a direct relation between the
work done and the reward for an average participant.

Our approach is to expand the set of values whose discovery is rewarded with
a prize. We define a subset M of magic numbers, included in the image of f .



Participants are rewarded not only for finding x, but also for finding any value
z for which f(z) ∈ M . These additional values do not contribute to our main
goal of inverting f on y. Rather, they act like milestones along the computation,
which let us estimate the progress of a participant and pay him accordingly. The
formal definition of our scheme follows.

Definition 2. Family of magic sets. Let f : D 7→ T be a function, where
D =

⋃
Di. A family of magic sets for f is a family F of subsets M ⊂ T with

the following properties:

• There is an efficient algorithm to test membership in M for any M ∈ F .

• For any Di, the size of M ∩ f(Di) has Poisson distribution with mean n,
over the probability space M ∈ F . We call the constant n the set-size of the
family F .

For a fixed M , we call M ∩ f(Di) the set of magic numbers for participant i.

Let us give an example. Assume f behaves as a random function with image
[0 . . . 2m − 1]. For any k-bit integer K = b1b2 . . . bk, we define MK as the set
of all elements in [0 . . . 2m − 1] whose binary representation starts with the bits
b1b2 . . . bk. It is possible to test efficiently if an element is in MK . For any Di ⊂ D,
the expected size of |MK ∩ f(Di)| is |Di|/2k with Poisson distribution.

In the case of a general function f , F can be defined as a set of kernels {Mi}
for functions drawn from a family of one-way functions {gi} defined on f(S).
Testing whether f(x) ∈ Mi requires only one evaluation of gi.

Magic number scheme. Assume that there exists a family F of magic sets for
f of set-size n. In the initialization phase, we choose at random one set M ∈ F .
The distributed computation is then defined as follows:

• The screener S returns x if f(x) = y or if f(x) ∈ M (i.e., x is a magic number.)
Otherwise, S returns the empty string.

• The payment scheme verifies that all the numbers reported by the screener
map to magic numbers. The amount due is proportional to the number of
distinct magic numbers found.

Observe that this scheme does not require participants to trust the supervi-
sor. Indeed, the supervisor keeps no secret. Using standard techniques, it can be
replaced by a publicly accessible random function. The amount earned by each
participant can be computed and verified by the other participants or any third
party.

Analysis of the magic number scheme. The following theorem shows
that the magic number scheme has financial property if f is a one-way function.
We apply the random oracle heuristic to the screener. For an introduction to
the random oracle model, see [BR93]. Before stating the theorem, we recall the
definition of a (t, ε)-one-way function:



Definition 3. A function f is (t, ε)-one-way if no t-time algorithm succeeds in
inverting f on a random output with probability more than ε.

Theorem 1. Let τ be the time an honest participant must spend to process a
share D. Suppose that f |D is (τε, ε)-one-way for any 0 < ε ≤ 1, and that the
screener S is a random oracle. Then the magic number scheme has financial
property.

Proof. Suppose that there is a cheating algorithm A that outperforms the honest
strategy. A earns on average a fraction p of an honest participant’s payment,
while doing a fraction less than p of the work. We use A to efficiently invert f ,
thus violating the assumption that f is one-way.

Given a random challenge y we must find x ∈ D such that f(x) = y. Define
the screener S as follows. S accepts y as a magic number and chooses in addition
other magic numbers randomly to bring the total to n on average. Now let us run
A with this screener. The expected running time of A is less than pτ , and the
expected number of magic numbers found is pn. With probability p the challenge
y is one of the magic numbers that A inverted. Therefore, A is a (pτ, p)-algorithm
to invert f , contradicting the assumption that f is (τε, ε)-one-way function for
any 0 < ε ≤ 1. ut

Let us now estimate the probability that a participant gets paid significantly
more, or significantly less than expected. Let N denote the number of magic
numbers found by the participant. Recall that the payment received is propor-
tional to N . Magic numbers have Poisson distribution with mean n and standard
deviation

√
n. So for any ε

Pr[ |N − n| > nε] ≤ 2e−ε2n/2.

Let ε = λ/
√

n. Then

Pr[ |N − n| > λ
√

n] ≤ 2e−λ2/2.

Take for instance n = 10,000 and λ = 6. The actual payment will deviate
from its expected value by more than 6% with probability less than 3 · 10−8.

2.2 Ringers: the Basic Scheme

From here on, we assume that the supervisor is trusted by all participants. This
assumption lets us design a variety of efficient customized distributed computa-
tions. In these, it is no longer possible for a third party to verify independently
the work of any given participant. Instead, the supervisor is trusted not to col-
lude with any participant and to apply the payment scheme impartially.

We propose a family of schemes built on the concept of ringers. A ringer is
a value chosen by the supervisor in the domain of f . The supervisor distributes
to participants the images of ringers by the one-way function f , but keeps the
ringers themselves secret. Distributed in the range of a participant, ringers can



be used as spot-checks for the work of that participant. A formal description of
the basic ringer scheme follows. We subsequently propose a number of variants
to address the weaknesses of the basic scheme.

Basic ringer scheme We assume that all participants trust the supervisor.

• In the initialization phase, the supervisor chooses for participant i uniformly
independently at random n values xi

1, . . . , x
i
n in Di, and also computes the

corresponding images: yi
j = f(xi

j).

• The screener Si is defined as follows. On input (k, f(k)), test whether f(k)
belongs to the set {y, yi

1, . . . , y
i
n}. If so output the string k, otherwise output

the empty string.

• The secret key Ki is the set {xi
1, . . . , x

i
n}, which we call the set of ringers.

• The payment scheme P (Ki, si) is defined as follows. Check that si contains all
the ringers in Ki plus possibly x such that f(x) = y. If so, pay the participant
a fixed amount, otherwise pay the participant nothing.

Proposition 1. If f is a one-way function, the scheme with n ringers ensures
a coverage constant of (1− 1/n).

Proof. A participant who interrupts the computation before discovering all the
ringers will get paid nothing for the work done so far. Thus any rational strategy
will not interrupt the computation before all the ringers are found. Given that
the n ringers are distributed uniformly independently at random in the range
Di, the expected fraction of Di searched before finding them all is 1− 1/n. ut

The basic ringer scheme does not guarantee the financial property. Partici-
pants will maximize their profit by interrupting the computation as soon as they
have found all the ringers.

This scheme enables participants to delegate work to underlings. This is done
in a straightforward way: a participant who wishes to redistribute his share of
the work becomes the supervisor of a sub-search. He distributes all his own
ringers to the participants in the sub-search. He may also add a few ringers of
his own to check the work of sub-participants. In that case, the number of ringers
grows linearly with the number of degrees of delegation. The whole process is
transparent to the supervisor of the original computation.

Observe that a variant of this scheme is possible in the absence of a trusted
supervisor. In that case, each participant becomes a supervisor for a small num-
ber of other participants, giving them a set of ringers to discover in their range.
Let us represent the participants as the vertices of a graph G. We draw an edge
from participant A to participant B if A is a supervisor for B. If G is an expander
graph, the scheme is quite resistant to collusion.

2.3 Bogus Ringers

The weakness of the basic ringer scheme is that a participant knows when the last
ringer is found. There is no incentive to proceed with the computation beyond



that point. To fix this weakness, we propose to hide the number of ringers from
participants by adding a random number of “bogus” ringers.

A participant receives a total of 2n ringers, where n is a fixed constant of the
scheme. Of these, some are “true” ringers picked at random from the domain Di

of the participant and some are “bogus” ringers. Bogus ringers are values chosen
at random in the target of f .

The number of true ringers is chosen in [n . . . 2n] with the following prob-
ability distribution. For i ∈ [n . . . 2n − 1] the probability of i true ringers is
d(i) = 2n−1−i. We choose d(2n) = 2−n so the total adds up to 1. A formal
description of the scheme follows.

Bogus ringers Let 2n be the fixed total number of ringers.

• In the initialization phase, the supervisor chooses for participant i an integer
ti at random in the range [n . . . 2n] with the probability distribution d defined
above. The supervisor then chooses uniformly independently at random ti

“true” ringers xi
1, . . . , x

i
ti in Di, and si = 2n − ti “bogus” ringers in D \ Di.

The supervisor also computes all the 2n corresponding images: yi
j = f(xi

j).
The set of these images is permuted at random before being passed on to
participant i, so that there is no way to distinguish true from bogus ringers.

• The screener Si is defined as follows. On input (k, f(k)), test whether f(k)
belongs to the set {y, yi

1, . . . , y
i
2n}. If so output the string k, otherwise output

the empty string.

• The secret key Ki is the set {xi
1, . . . , x

i
ti} of true ringers.

• The payment scheme P (Ki, si) is defined as follows. Check that si contains
all the true ringers in Ki plus possibly x such that f(x) = y. If so, pay the
participant a fixed amount, otherwise pay the participant nothing.

Theorem 2. Suppose that f is one-way. Then the bogus ringer scheme ensures
a coverage constant of 1− 1

n2n+1 − ( 4
n )n.

This is a considerable improvement over the basic ringer scheme. The cover-
age constant is here exponentially close to 1 with respect to the communication
cost n, rather than linearly close to 1.

Proof. We determine the rational strategy for participants. Let G be the ex-
pected gain of a participant who chooses to interrupt the computation having
done a fraction 0 < p < 1 of the work and discovered k ringers. Let us deal first
with two trivial cases. If k < n, the gain G is negative. Indeed, the cheating is
sure to be detected and the work already done will not be paid for. If k = 2n,
the gain G is positive. Indeed, the cheating is sure to go undetected since the
maximum possible number of ringers has already been found.

We deal now with the general case n ≤ k < 2n. Recall that we write t for the
number of true ringers for a given participant. If k = t, the participant gets paid
as if all the work had been done, which translates into an economy of (1 − p).
On the other hand, if k < t, the cheating is detected and the participant loses p,



the work already done. We define the event E = {k ringers have been discovered
having searched a fraction p of the keyspace}. Then

G = (1− p) Pr[t = k|E]− p Pr[t > k|E].

And therefore

G ≤ (1− p) Pr[t = k|E]− p Pr[t = k + 1|E].

Now

Pr[t = k|E] =
Pr[t = k]

Pr[E]
· Pr[E|t = k].

And a similar equation gives us Pr[t = k + 1|E]. It follows that

G ≤ (1− p)d(k)
pk

Pr[E]
− p d(k + 1)

pk(1− p)(k + 1)
Pr[E]

.

And so G < 0 as long as p > d(k)
(k+1)d(k+1) . Since for all k, d(k)

(k+1)d(k+1) ≤
2

n+1 ,
we are sure that G < 0 as long as p ≥ 2

n+1 . To summarize, there are only two
situations where a rational participant will interrupt the computation before the
end. The first is if k = 2n: with probability d(2n) the participant interrupts the
computation having processed a fraction 1− 1

2n of the total. The second is if at
least n ringers are discovered having processed less than a fraction 2

n+1 of the
total. The probability of that is bounded by ≤ ( 4

n )n.

This all adds up to a coverage constant of 1− d(2n)
2n − ( 4

n )n which is exactly
1− 1

n2n+1 − ( 4
n )n. ut

2.4 Hybrid Scheme: Magic Ringers

The scheme proposed here introduces another way of hiding from participants
the ringers known to the supervisor. As before, the supervisor chooses at random
for each participant a set of ringers and computes their images by f . But the
images are not directly given to the participant. Rather, the supervisor “blurs”
each image by choosing a magic set that contains it. Any value that maps to one
of these magic sets is called a magic ringer. Participants are required to return
all the magic ringers they discover.

Observe that even a participant who has found at least one magic number
for every magic set has no way to determine whether that is the magic number
known to the supervisor, or whether another value was used to generate the
magic set. Thus, it is never safe for a cheater to interrupt the computation
before the end. Formally, we define the scheme as follows:



Magic ringers We assume that f : D 7→ T is a one-way function. Let g : T 7→ T ′

be a compression function drawn from a pseudo-random family.

• In the initialization phase, the supervisor chooses for participant i uniformly
independently at random n values xi

1, . . . , x
i
n in Di, and computes the cor-

responding images yi
j = g(f(xi

j)). The n magic sets for participant i are
M i

j = g−1(yi
j).

• The screener Si is defined as follows. On input (k, f(k)), test whether f(k)
belongs to a magic set M i

j for some j or f(k) = y. If so, output the string k,
otherwise output the empty string.

• The secret key Ki is the set {xi
1, . . . , x

i
n} of known ringers. The payment

scheme P (Ki, si) is defined as follows. Check that si contains all the known
ringers in Ki plus possibly x such that f(x) = y. If so, pay the participant a
fixed amount, otherwise pay the participant nothing.

The following theorem gives the coverage constant of the magic ringers:

Theorem 3. Suppose that f is one-way. Let M be the compression ratio |T |/|T ′|.
Then the magic ringer scheme ensures a coverage constant of 1− n30.9M(n−3).

Proof. Let us consider first the case where a single magic ringer is involved.
Suppose that a participant has searched a fraction 0 < p < 1 of the domain and
found k pre-images of the magic ringer. We denote this event E. For convenience
of notations, we will write q = 1 − p. Let P be the probability that the pre-
image known to the supervisor is among the k pre-images already found by the
participant. We write N for the total number of pre-images of the magic ringer.

P =
∞∑

n=k

k

n
Pr[N = n|E].

Now

Pr[N = n|E] =
Pr[N = n]

Pr[E]
Pr[E|N = n] =

Q[n, M ]
Q[k, pM ]

pk(1− p)n−k

(
n

k

)
,

where Q[n, µ] = e−µ µn

n! is the probability of n successes in a Poisson experiment
of mean µ. After simplifying the expression for Pr[N = n|E], the formula for P
becomes P = kfk(qM) where the function fk is defined as

fk(x) = e−x
∞∑

n=0

xn

n!(k + n)
.

It is easy to verify that the second derivative of fk is a positive function, and
thus fk is convex. It follows that for all 0 < x < M

fk(x) < fk(0)− x

M

(
fk(0)− fk(M)

)
. (∗)



We know that fk(0) = 1/k. Let us estimate fk(M). It is easy to verify that the
derivative of fk is

f ′k(x) = fk+1(x)− fk(x) =
1
x

(1− (k + x)fk(x)).

From the theory of differential equation we know that if two functions fk and
gk defined on x ≥ 0 are such that

f ′k(x) = U(x, fk(x))
gk(0) > fk(0) (∗∗)
g′k(x) > U(x, gk(x)),

then fk(x) < gk(x) for any x ≥ 0. If we let gk = 1
(k−1)+x , then (∗∗) holds and

thus fk(x) < 1
(k−1)+x . In particular fk(M) < 1

k−1+M . If we plug this value in (∗)
we get

P = kfk(qM) < 1− q
( 1

1 + k
M−1

)
.

Now let us return to the general case. The participant is required to report all
the pre-images of n magic ringers. Suppose the participant has done a fraction
p of the work and found k1, . . . , kn pre-images for each of the n magic ringers.
The expected gain of interrupting the computation at this point is negative if
cheating is detected with probability at least q. As above, let us write Pi for the
probability that the participant has already found the pre-image known to the
supervisor for magic ringer i. A rational participant will not cheat as long as

P1 . . . Pn < p.

We prove that this inequality holds with probability exponentially close to
1. Observe that if ki/(M − 1) < 2 then

Pi < 1− q
( 1

1 + ki

M−1

)
< 1− q

3
.

The product P1 . . . Pn is less than p if this inequality holds for at least four
indices i ∈ {1, . . . , n}. Indeed, if q < 1/2 then

(
1− q

3

)4
< 1− q.

Denote the probability of an individual event ki/(M − 1) ≥ 2 by ξ. The
probability that this inequality holds for less than four indices i in the range
{1, . . . , n} is

ξn +
(

n

1

)
ξn−1(1− ξ) +

(
n

2

)
ξn−2(1− ξ)2 +

(
n

3

)
ξn−3(1− ξ)3 < n3ξn−3.

Since ki is no more than one plus the total number of solutions in the range
to the ith equation, we can bound ξ according to the Poisson distribution

ξ < [eβ−1β−β ]M ,

where β = (2(M − 1) − 1)/M . We may suppose that β > 1.5, which is true
when M ≥ 6. In this case ξ < 0.9M . Therefore the probability that a rational
participant processes the entire domain is at least 1− n30.9M(n−3). ut



3 Other Applications and Open Problems

In this section, we propose two more applications of our schemes: uncheatable
benchmarks, and estimation of the size of a database. We also sketch two open
problems for which we know no efficient solution.

3.1 Other Applications

Uncheatable benchmarks. Benchmarking suites are designed to capture the
performance of certain real-world applications on a computer architecture. They
measure the time it takes to complete a certain amount of computation. It
is usually assumed that the benchmark runs without interference. This leaves
the door open to cheating: if the results of the benchmark are not verifiable,
a dishonest machine or operating system might interrupt the benchmark early
and declare the computation “done.” The problem of designing uncheatable
benchmarks was first studied in [CLSY93]. They propose a number of specific
programs whose execution does not allow shortcuts, and for which the final result
of the computation is efficiently verifiable. Our schemes let us secure a general
class of parallel computations. These can be used as uncheatable benchmarks,
to measure for example the collective performance of a distributed computer
system.

Estimation of the size of a database. Given unrestricted access to a database,
it is trivial to measure the number of objects it contains. But there is no direct
way to measure the size of a proprietary database given limited access to it.
Suppose we want to verify independently the claims made by an Internet search
engine about the size of its database. Given the commercial secrets involved,
such databases can not be made available whole for inspection. We can use an
approach similar to the “magic number” scheme. For a certain definition of magic
object, we ask the database administrator to produce all the magic objects in
the database. We can then verify that the number of these objects matches our
expectations. For other solutions to this problem, see [BB98] or [S].

3.2 Open Problems

Inversion of a one-way predicate Our solutions to IOWF all require that the
image of the one-way function f be sufficiently large. Suppose f is a predicate,
which takes almost always the value true. The goal of the computation is to
find an input for which the predicate returns false. None of the schemes of
section 2 are directly applicable to secure this computation. One approach would
be to look at the logic binary circuit that computes the predicate and extract
additional bits from this circuit.

Sequential computations. The schemes we have proposed apply only to par-
allel computations. But there are distributed computations that are sequen-
tial rather than parallel. A good example of a sequential distributed compu-
tation is the Great Internet Mersenne Prime Search (GIMPS), coordinated by



Entropia.com. The object of this computation is to discover large Mersenne
primes. Each participant is given a different candidate number to test for pri-
mality. The computation is distributed, but the work of each participant is in-
trinsically sequential. It consists in running the Lucas-Lehmer primality test,
which works as follows. To test if n = 2s − 1 is prime, we evaluate the sequence
uk = (u2

k−1 − 2) mod n starting from u0 = 4. If us−2 = 0, then 2s − 1 is a
Mersenne number.

We do not know how to secure efficiently sequential computations against
cheating. GIMPS simply double-checks the work by distributing every compu-
tation to two participants and comparing the results they return. A promising
approach to securing sequential computations has emerged from the study of
probabilistically checkable proofs (PCP). PCP constructions let a supervisor
check with a constant number of queries that a program was executed. Using
a PIR scheme, these queries can be performed without transmitting the PCP
to the verifier [ABOR00]. Unfortunately, known PCP and PIR schemes are cur-
rently too inefficient for practical use.

4 Related Work

The problem of protecting a computation from the host has been studied in
several research communities. A number of solutions of both practical and the-
oretical interest exist for different models.

Our work is closest to [MWR99], which studies the problem of remote audit
in a distributed computing model. The scheme of [MWR99] relies on recording
the trace of the execution and is heuristically secure. In contrast, we formulate
the problem in game theoretic terms and use an efficient cryptographic primitive
(hash functions) to solve it.

Distributed computing projects such as [BBB96,BKKW96,NLRC98,SH99]
focus on fault-tolerance assuming that hosts are honest but error-prone. A typical
error in this model is the crash of a participant’s computer. Malicious cheating
may go undetected, which limits the deployment of such projects to trusted
participants.

The problem of malicious hosts is key to the study of mobile agents [V98,Y97].
Several practical solutions have been proposed, based on code tracing and check-
points [V97], replication and voting [MvRSS96], or code obfuscation with timing
constraints [H98]. But the environment in which mobile agents operate differ
significantly from our model of computation in a number of respects. First, com-
munication cost is presumably low for mobile agents. Second, a malicious host
may wish to invest a significant amount of computational resources in order to
subvert the execution of a mobile agent, since its potential gain may be much
larger than the cost of the computation. Third, mobile agents execute code on
unknown data, which precludes the use of our techniques.

A good survey of the field of result-checking and self-correcting programs
can be found in [WB97]. Result-checking however is mostly limited to specific



arithmetic functions. It is not known how to design result-checkers for general
computations.

Generic cryptographic solutions as in [ST98,ABOR00] are provably secure
and have very low communication cost. However known algorithms for homo-
morphic encryption schemes [ST98] or PIR and PCP [ABOR00] involve com-
putationally expensive operations like exponentiation modulo large primes at
every step of the program execution. This makes these schemes inappropriate
for realistic scenarios of distributed computations.

5 Conclusion

We have defined a model of parallel distributed computing and proposed a va-
riety of schemes to make such computations secure against cheating. The table
below summarizes our schemes. The magic number scheme does not require a
trusted supervisor, whereas the three ringer schemes do. The table compares our
schemes both in terms of the security properties they offer, and the overhead
they put on the participants.

Scheme Properties Communication overhead
Financial Coverage constant

Magic numbers X n
Basic ringers 1− 1/n n
Bogus ringers 1− 1

n2n+1 − ( 4
n )n 2n

Magic ringers 1− n30.9M(n−3) Mn
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