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Abstract. Cryptographic assumptions regarding tamper proof hard-
ware tokens have gained increasing attention. Even if the tamper-proof
hardware is issued by one of the parties, and hence not necessarily trusted
by the other, many tasks become possible: Tamper proof hardware is suf-
ficient for universally composable protocols, for information-theoretically
secure protocols, and even allow to create software which can only be
used once (One-Time-Programs). However, all known protocols employ-
ing tamper-proof hardware are either indirect, i.e., additional computa-
tional assumptions must be used to obtain general two party computa-
tions or a large number of devices must be used. In this work we present
the first protocol realizing universally composable two-party computa-
tions (and even trusted One-Time-Programs) with information-theoretic
security using only one single tamper-proof device issued by one of the
mutually distrusting parties.
Keywords: Secure Two-Party Computation, Universal Composability,
Tamper-Proof Hardware, Information-Theoretical Security

1 Introduction

Recently, tamper-proof hardware tokens have received increasing attention. Tam-
per-proof hardware tokens allow information-theoretically secure protocols which
are universally composable (UC) [4], they can be employed for protocols in the
globalized UC framework [5,17], and they even allow for One-Time-Programs,
i.e. circuits which can be evaluated only once [13]. However, all known protocols
employing tamper-proof hardware are either indirect, i.e., the secure hardware is
used to implement commitments or Zero Knowledge proofs and additional com-
putational assumptions must be used to obtain general, composable two party
computations [19,22,8,7], or a large number of devices must be used [13,15]. How-
ever, issuing multiple independent tamper-proof devices requires much stronger
isolation assumptions. Not only the communication between the device and the
issuer must be prevented, but also the many devices must be mutually isolated.
This is especially difficult as the devices are not necessarily trusted (see [3] for
the difficulty of isolating two devices in one location).

In this work we present the first protocol realizing universally composable
two-party computations (and even trusted One-Time-Programs) with informa-
tion-theoretic security using only one single (untrusted) tamper-proof device.



One of the main challenges is to prevent a corrupted token from encoding pre-
vious inputs in subsequent outputs.

2 Related Work

The idea of secure computation based on separation assumptions was introduced
by Ben-Or et al. [2] to construct multi-prover interactive proof systems. Ben-Or
et al. [2] construct an unconditionally secure protocol for Rabin-OT [23] between
two provers and a verifier. Even though this result is not explicitly stated in
the context of tamper-proof hardware1 and is proven secure in a standalone,
synchronous model, we suppose that an amplified variant of the protocol of
[2] can be proven UC-secure if the sender is allowed to issue two tamper-proof
hardware tokens.

The idea of explicitly using tamper-proof hardware for cryptographic pur-
poses was introduced by Goldreich and Ostrovsky [12]. They showed that tam-
per-proof hardware can be used for the purpose of software-protection.

The interest in secure hardware and separation assumptions was renewed,
when it was realized that universally secure multi-party computation can be
based on the setup assumption of tamper-proof hardware tokens. The tamper-
proof hardware must suffice strong separation conditions, even if a more recent
result showed that the assumptions about the physical separation can be relaxed
to some extent [8,7].

Generally, the work on secure multi-party computation with tamper-proof
hardware assumption can be divided in works dealing with either stateful or
stateless hardware-tokens. Katz [19] considers a scenario where all parties can
create and issue stateful tamper-proof hardware tokens. Using additional num-
ber theoretic assumptions, [19] implements a multiple commitment functionality
in this scenario. Subsequently Moran and Segev [22] improved upon Katz result,
by constructing commitments in an asymmetric scenario, where only one out
of two parties is able to issue stateful tamper-proof hardware tokens. Hofheinz,
Mller-Quade and Unruh [17] use (stateless) signature cards, issued by a trusted
authority to achieve universal composability with respect to global setup as-
sumptions [5]. Fischlin et al. [10] show how set intersection can be computed
securely using a single untrusted tamper-proof hardware token and additional
computational assumptions.

Goldwasser et al. [13] show that using a minimalistic stateful tamper-proof
hardware assumption called One-Time-Memory, a new cryptographic primitive
called One-Time-Program can be implemented. Recently, Kolesnikov [21] imple-
mented string oblivious transfer with stateless tamper-proof hardware tokens.
Goyal et al. [15] consider a unified treatment of tamper-proof hardware assump-
tions. Important in the context of this work, they show that in a mutually mis-
trusting setting, trusted One-Time-Programs can be implemented statistically
secure from a polynomial number of OTMs. Goyal et al. [14] show that a sin-
gle stateless tamper-proof hardware token is sufficient to implement statistically
1 [2] mention that the provers in their protocol might be implemented as bank-cards



secure commitments and statistical zero-knowledge. Furthermore, if stateless to-
kens can be encapsulated into other stateless tokens, general statistically secure
composable multi-party computation is possible in this setting. [14] also show
that unconditionally secure Oblivious Transfer cannot be realized from stateless
tamper-proof hardware alone.

With the exception of [2], all of the above schemes based on stateful tamper-
proof hardware either use additional complexity assumptions to achieve secure
two party computations [17,19,22,13,8,7,21] or a large number of hardware tokens
must be issued [13,15]. The question if one single tamper-proof device, issued
by one of two mistrusting parties, suffices for information-theoretically secure
two-party computations remains open in the literature.

3 Our Contribution

In this paper, we show that general, statistically secure, composable two-party
computations are possible in a setting where a single untrusted stateful tamper-
proof hardware token can be issued by one party. All previous solutions sup-
posed that either the creator of the tamper-proof hardware is honest, that addi-
tional complexity assumptions are used, or that a larger number of independent
tamper-proof hardware tokens is issued. As a reasonable abstraction for the prim-
itives that can be implemented in our setting, we introduce a new primitive which
we call Sequential-One-Time-Memory. Sequential-One-Time-Memories provide
a large amount of single One-Time-Memories, with the additional guarantee that
the memory cells can only be queried sequentially. Just like One-Time-Memories,
Sequential-One-Time-Memories have the property of being non-signaling to their
issuer once they have been sent. We show that the Oblivious Transfer (OT) func-
tionality can be realized straightforwardly using Sequential-One-Time-Memories,
thus our results for statistically secure, composable two party computations
follow immediately by [18,20]. Our main contribution is a statistically secure,
universally composable protocol that realizes the Sequential-One-Time-Memory
functionality with a single, untrusted, tamper-proof hardware token. Our pro-
tocol construction is efficient, it realizes m sequential n-bit-string-OTMs while
having a communication overhead of O(n2m) bits in its interactive send phase,
where n is the security parameter. This is achieved by using tokens that compute
blinded tensor-product functions. The algebraic structure of these functions al-
lows the token-sender to encapsulate two random keys, one of which the token-
receiver can learn. In turn, the token-receiver has the promise that the token
will not learn his choice-bit from his function input and that the key he com-
putes from the function-output solely depends on his choice-bit. Moreover, these
functions can be computed by simple linear algebra operations. The technical
challenge in the security-proof, compared to issuing a large number of indepen-
dent devices, is that an untrusted, adversarial token might deviate arbitrarily
from the specification of an honest token. It may thus try to correlate its out-
put or abort-behavior with previous inputs. Our protocol is semi-interactive as
it requires an interactive send-phase. This interaction is necessary, as we can



further show that any protocol that implements Sequential-OTMs using a sin-
gle untrusted device without any further interaction is insecure. Furthermore,
a simple modification of our protocol yields a completely non-interactive pro-
tocol that implements Sequential-One-Time-Memories from two tamper-proof
hardware tokens. Finally, we can resolve a question left open by [22] positively.
Moran and Segev asked if multiple commitments from the receiver of a token to
its issuer can be realized with a single untrusted tamper-proof hardware token.
As we can realize Oblivious Transfer, standard techniques (e.g. [9,18]) can be
used to implement commitments.

4 Framework

We state and prove our results in the Universal-Composability (UC) framework
of [4]. In this framework security is defined by comparison of an ideal model
and a real model. The protocol of interest is running in the latter, where an
adversary A coordinates the behavior of all corrupted parties. In the ideal model,
which is secure by definition, a simulator S tries to mimic the actions of A. An
environment Z is plugged either to the ideal or the real model and has to guess,
which model it is actually plugged to.

By the random variable ViewAΠ(Z) we denote the complete view of the envi-
ronment Z when plugged to the real model with protocol Π and adversary A.
Analogously, by the random variable ViewSF (Z) we denote the view of Z when
plugged to the ideal model, where the functionality F realizes the protocol task
and the simulator S coordinates the behavior of the corrupted parties. Therefore
Π is a (statistically) UC-secure implementation of F , if for every adversary A
there exists a simulator S, such that for all environments Z the random variables
ViewAΠ(Z) and ViewSF (Z) are (statistically) close.

In our case the adversarial entities A,S and the environment Z are computa-
tionally unbounded and a hybrid functionality F stateful

wrap models our tamper-proof
hardware assumption (cf. Section 6). Moreover, as it was proven sufficient in [4],
we always focus on the dummy adversary Ã, which is completely controlled by
the environment Z.

5 Preliminaries

We use the notation [m] := {1, . . . ,m}. To formulate our protocol, we need
some elementary concepts of linear algebra over finite fields. IF2 is the finite field
with two elements. We can canonically identify the vector-space IFn2 with the set
{0, 1}n of strings of length n. For two column-vectors a ∈ IFn2 and b ∈ IFk2 we
write abT = (aibj)ij ∈ IFn×k2 for the outer product (or tensor-product) of a and
b. Similarly, for a, b ∈ Fn2 we denote the inner product by aT b =

∑n
i=1 aibi ∈ IF2.

Let C ∈ IFn×2n
2 . Then dim(ker(C)) ≥ n. Let B = {b1, . . . , bn} ⊆ ker(C) be a

linearly independent set. We can choose a set B∗ = {bn+1, . . . , b2n} such that
B ∪ B∗ is a basis of IF2n

2 . Let ei ∈ IFn2 be the i-th unit-vector. Then there
exists a matrix G ∈ IFn×2n

2 such that Gbi = ei for i = 1, . . . , n and Gbi = 0



for i = n + 1, . . . , 2n. We call such a G a complementary-matrix to C. It holds
that rank(G) = n and B∗ ⊆ ker(G). For such C and G, we can always solve
linear equation systems Cx = r, Gx = s by solving CxB∗ = r and GxB = s
independently for some xB ∈ span(B) and xB∗ ∈ span(B∗). We can then set
x = xB + xB∗ . It holds Cx = r and Gx = s, as xB ∈ ker(C) and xB∗ ∈ ker(G).

6 Modeling Tamper-Proof Hardware

Our formulation of general stateful tamper-proof hardware resembles the mean-
while standard definitions of [19] and [22]. To model tamper-proof hardware, we
employ the F stateful

wrap wrapper-functionality. A sender-party G (Goliath) provides
as input a Turing-machineM to F stateful

wrap . The receiver party D (David) can now
query F stateful

wrap on inputs w, whereupon F stateful
wrap runs M on input w, sends the

output y that M produced to D and stores the new state of M. Every time D
sends a new query w′ to F stateful

wrap , it resumes simulatingM with its most recent
state, sends the output to D and updates the stored state of M. This captures
the following properties one expects from tamper-proof hardware. First, G is
unable to revoke M once it has sent a token to D. Second, D can run M on
inputs of his choice, but the program-code and state of M are out of reach for
D, due to the tokens tamper-proofness. Note that stateful tokens don’t need a
trusted source of randomness, as M can be provided with a sufficiently long
hard-coded random-tape. Thus we can, w.l.o.g restrict M to be deterministic.
See Figure 1.

Functionality F stateful
wrap

Parametrized by an implicit security parameter n and a (polynomial) runtime bound
p(·).

Creation Upon receiving a message (create,sid,Pi,Pj ,M) from party Pi, where M
is a deterministic Turing-machine, go to state ready and store (M,⊥), where ⊥ is
the initial state of M. Send (ready,sid,Pi,Pj) to party Pj .

Execution Upon receiving a message (run,sid,Pi,Pj ,in) where in is an input word,
first check if current state is ready. If so, run M(state, in) for at most p(k) steps.
Read out from the output tape ofM and save its new state. Send (out,sid,Pi,Pj ,out)
to Pj .

Fig. 1. The wrapper functionality that models general stateful tamper-proof hardware

A very basic tamper-proof hardware primitive called One-Time-Memory (OTM)
(Figure 2), that can be considered minimal in the sense that it only needs to
be able to erase its contents after being queried, was defined in [13]. OTMs
resemble the well known Oblivious Transfer (OT) functionality [23,9], with just



a slight difference. While OT notifies the sender when the receiver queries the
primitive, this is not the case for OTM. Moreover, OTMs have the property of
immediate delivery, which means that even a malicious sender cannot revoke or
abort the functionality once it has been sent. Together with One-Time-Memories,
[13] defined the notion of One-Time-Programs (OTP), and its generalization, k-
Time-Programs (k-TP). OTP is a functionality that allows a receiver to evaluate
a circuit on exactly one input, then it shuts down. Similarly, a k-TP can be
evaluated exactly k-times, then shuts down. While [13] showed that OTPs can be
realized with OTM and computational assumptions and assumed that the sender
of the OTPs is trusted, [15] provided an unconditionally secure implementation
of trusted OTPs using only OTMs, where the sender of the OTPs is untrusted.

Functionality FOTM

Parametrized by a security parameter n.

Creation Upon receiving a message (create,sid,Pi,Pj ,(s0, s1)) from party Pi, go to
state ready and store (s0, s1). Send (ready,sid,Pi,Pj) to party Pj .

Choice Upon receiving a message (choice,sid,Pi,Pj ,x) from Pj , check if current state
is ready. If so, send (out,sid,Pi,Pj ,sx) to Pj and go to state dead.

Fig. 2. The One-Time-Memory Functionality

We introduce a new variant of the One-Time-Memory functionality that we
call Sequential-One-Time-Memory (Seq-OTM) (Figure 3). Seq-OTM constitutes
a set of m single OTM functionalities, with the restriction that they can only be
queried in a fixed order. We refer to the single OTMs of Seq-OTM as its stages.
We impose the sequential ordering to the stages, to model that the untrusted
token might stop answering queries after an arbitrary stage. The limitation to
sequential access makes applications impossible where random access is essential.
All constructions where sequential access is sufficient can be implemented with
Seq-OTM as well. As the construction of unconditionally secure trusted OTPs
[15] using multiple OTM tokens is quite involved, we cannot present it here.
However, we observe that the construction of [15] works using Seq-OTM instead
of multiple independent OTM tokens. This holds because in this construction,
an honest receiver queries all the OTM primitives he received in a fixed order
anyway. Interestingly, the technical challenges [15] deals with in constructing
unconditionally secure OTPs arises from the fact that a malicious receiver might
query the OTMs out of order. Finally, a remark is in place. Even though Seq-
OTM can be used to implement several OTPs, the sequential nature of Seq-OTM
demands that those OTPs can only be executed in a fixed order. If one wishes to
execute several OTPs in random order, multiple Seq-OTMs (and thus multiple
hardware tokens) have to be issued.



The restriction to sequential access also bears advantages in certain appli-
cations. In [15], a construction was provided that realizes a single OT from
polynomially many OTM tokens. The construction is rather expensive regard-
ing the number of OTMs used, as it involves One-Time-Programs to issue a proof
that the primitive has been queried. Such a proof is necessary to convince the
OT-sender that the receiver has provided his input. Again, what makes this con-
struction technically challenging is that the single OTM tokens can be queried
in an arbitrary order.

Functionality FSeq−OTM

Parametrized by a security parameter n and a parameter m = poly(n), which is the
number of single OTMs that can be stored.

Creation Upon receiving a message (create,sid,Pi,Pj ,((s1,0, s1,1), . . . , (sm,0, sm,1)))
from party Pi, go to state ready and store ((s1,0, s1,1), . . . , (sm,0, sm,1)). Set a counter
t = 1. Send (ready,sid,Pi,Pj) to party Pj .

Choice Upon receiving a message (choice,sid,Pi,Pj ,x) from Pj , check if current state
is ready and t ≤ m. If so, send (out,sid,Pi,Pj ,st,x) to Pj and increment t by 1. If
t > m, go to state dead.

Fig. 3. The Sequential-One-Time-Memory Functionality

We will now briefly outline how a polynomial number of OTs can be im-
plemented using the Seq-OTM functionality. Given a Seq-OTM primitive with
2m single OTMs, OTM1, . . . ,OTM2m, the sender programs OTM2i−1 with his
inputs for OTi and programs a random-string ri into OTM2i. In the choice-
phase, the receiver queries OTM2i−1 with his i-th choice-bit xi and OTM2i with
choice-bit 0. To prove to the sender that OTM2i−1 has already been queried,
the receiver sends ri to the sender. As Seq-OTM forces the receiver to open
OTM1, . . . ,OTM2m sequentially, he has only negligible chance to guess ri cor-
rectly unless he has opened OTM2i−1 already. Thus, this reduction is perfectly
secure against the sender of the OT and statistically secure against the receiver
of the OT. Noting that OT can be stored and reversed [1,24,25], we conclude
that in the Seq-OTM hybrid-model, OT can be implemented in both ways (from
the Seq-OTM sender to the Seq-OTM receiver and from the Seq-OTM receiver
to the Seq-OTM sender).

7 The Necessity of Interaction

We will now show that any protocol, which implements a Seq-OTM with 2
or more stages from a single hardware token, requires some interaction between
sender and receiver. The proof is a variant of the impossibility result of [6], which



states that Bit-Commitments cannot be realized in the plain UC-model. We
show that any non-interactive protocol, realizing Seq-OTM from a single tamper-
proof device, that is secure against a corrupted receiver is necessarily insecure
against a corrupted sender. More precisely, once there exists a simulator against
a corrupted receiver, a corrupted sender can use this simulator to construct a
token that learns the receiver’s inputs. Such a token can make the output of the
second stage dependent on the input of the first stage. However, this behavior
cannot be simulated, because in the ideal experiment, the sender’s inputs to
FSeq−OTM have to be provided before the choice-phase begins, and can thus not
depend on any choice-bits.

Remark 1. This argument assumes that both the receiver and T are equivalent
in their computational resources, as it uses the simulator against a corrupted
receiver to construct a corrupted token. Thus, it only holds if the receiver is
subject to the same computational restrictions as the token. If we allow the
receiver (and thus the simulator against a corrupted receiver) to be computa-
tionally unbounded but require the token to run in polynomial time, there may
exist non-interactive UC-secure protocols for FSeq−OTM from F stateful

wrap relative
to some computational assumption.

Theorem 1. There is no non-interactive protocol which UC-realizes FSeq−OTM

with two or more stages from a single tamper-proof hardware instance F stateful
wrap ,

given that the receiver D and the token T ran by F stateful
wrap are bounded by the

same computational restrictions.

Proof. Assume there exists a protocol Π that UC-realizes a Seq-OTM with two
stages, which requires no further interaction between sender and receiver. For
simplicity, we assume that the Seq-OTM stages are bit-OTMs. As Π is UC-
secure, there exists a receiver-simulator SD which extracts the choice-bits x1 and
x2 from the dummy-adversary ÃD. As Π is non-interactive, ÃD only interacts
with a token T . But that means that SD must be able to extract ÃD’s input from
the messages ÃD has provided to T . Consider the case of a corrupted sender. We
will provide an environment Z ′ that distinguishes real and ideal with probability
≥ 1

2 . Z ′ constructs a token T , which does the following. The token T internally
simulates the simulator SD and some functionality F ′. SD is wired to F ′ instead
of FSeq−OTM. F ′ is a ”corrupted” version of FSeq−OTM, which always gives 0
as its first-stage OTM-output and x1 (its first-stage input) as its second-stage
output. Z ′ instructs ÃG to input T into Fwrap

stateful. In the choice-phase, Z ′ sets
the receiver’s first choice-bit x1 to a uniformly random value and the second
choice-bit x2 to 0. This concludes the description of Z ′. We claim that for every
simulator SG, the statistical distance between ViewAΠ(Z ′) and ViewSF (Z ′) is
at least 1

2 . In the real experiment, the output s2 that the receiver gets will
always be the same as his first input x1. In the ideal experiment however, the
simulator SG has to guess the choice-bit x1 in advance. As x1 depends solely on
an internal coin-toss of Z ′, the chance of SG guessing x1 correctly is ≤ 1

2 . Thus,
the probability that D gives an incorrect output to Z ′ is ≥ 1

2 .



8 The David-and-Goliath Sequential-OTM Protocol

In this Section, we will describe our protocol ΠSeq-OTM for David-and-Goliath
Sequential-OTM and give a sketch of the security proof. We will refer to the
sender of the Seq-OTM as Goliath and to the receiver as David. Let n be the
statistical security parameter. We first explain the token program that will be
used in the protocol. The token is created with m affine functions stored in it. It
has a counter t, which is initialized with 1. In the execution phase, if the token is
queried with an input x, it will evaluate its t-th affine function on x and output
the result. After each query the counter t is incremented by 1. When the counter
reaches m, the token stops functioning.

Before we describe in more detail how these tokens can be used to implement
Sequential-OTM, we will explain more precisely which kind of affine functions
are stored on the token. Let a ∈ IF2n

2 , B ∈ IF2n×2n
2 and z ∈ IF2n

2 be an input
vector. The functions have the form V (z) = azT + B. Thus, V (z) is an outer
product azT blinded by a matrix B. See Figure 4.

Program: Seq-OTM Token

Parametrized by a security parameter n.

Hardwired Inputs

– A parameter m ∈ IN, the maximum number of stages.
– (a1, B1), . . . , (am, Bm), where ai ∈ IF2n

2 and Bi ∈ IF2n×2n
2 for i ∈ [m]

Stateful Variables

– A counter variable t that is, upon creation, initialized with t = 1

Execution Upon receiving an input z ∈ IF2n
2

– Check if t ≤ m, if not abort.
– Compute Vt = atz

T +Bt.
– Set t← t+ 1.
– Output Vt and wait for further inputs.

Fig. 4. The program that is run by an honest token for Sequential-One-Time-Memories.

We will first give a high-level picture of protocol ΠSeq-OTM. The protocol
realizes a Seq-OTM with m = poly(n) stages, where each stage is an n-bit-string
OTM. It has three phases. In the first phase, Goliath creates a token with random
affine functions stored on it, then sends the wrapped token to David. Hereafter
Goliath is physically committed to the token. The second phase is the only
interactive part of the protocol. It involves the sending of check-values and one-
time-pad-encrypted OTM inputs. In the third phase, which is non-interactive,



David queries the token to get his desired one-time-pad keys. David’s input to
the token is a randomized value, in which his choice-bit is hidden. After receiving
output from the token, David checks the output with the check-values provided
by Goliath and aborts if the output does not pass the check. If the output passes
the check, David computes a key and decrypts his desired OTM output.

We will now describe the protocol in detail. In the creation-phase, Goliath
programs the token T with uniformly chosen (ai, Bi) ∈ IF2n

2 × IF2n×2n
2 , for i =

1, . . . ,m. Goliath then sends the wrapped token T to David.
The send-phase proceeds as follows. Let (si,0, si,1) ∈ IFn2 × IFn2 be Goliath’s

i-th Seq-OTM input. First, David announces a randomly chosen check-matrix
C ∈ IFn×2n

2 to Goliath. Then for i = 1, . . . ,m, Goliath computes (ãi, B̃i) ∈ IFn2 ×
IFn×2n

2 by ãi = Cai and B̃i = CBi. Goliath further chooses a matrix G ∈ IFn×2n
2

such that G is a complementary-matrix of C (cf. Section 5). Goliath now sends
the (ãi, B̃i)i∈[m] and G to David. The (ãi, B̃i) can be seen as commitments that
commit the token T to a unique output behavior, but reveal no meaningful
information to David. After David has received (ãi, B̃i)i∈[m] and G, he chooses
a random h = (h1, . . . , hm) ∈

(
IF2n

2 \{0}
)m

and sends h to Goliath. Goliath
computes ciphertexts s̃i,0 = si,0 + GBihi and s̃i,1 = si,1 + GBihi + Gai for
i = 1, . . . ,m and sends ((s̃i,0, s̃i,1))i∈[m] to David. This concludes the send-phase.

The choice-phase is non-interactive and has m stages. In stage i David queries
the i-th OTM of the Seq-OTM functionality being implemented. Let xi ∈ IF2

be David’s i-th choice-bit. David uniformly samples an element zi ∈ IF2n
2 such

that zTi hi = xi. That is, if xi = 0 David samples zi from the 2n− 1 dimensional
hyperplane Ai,0 = {z ∈ IF2n

2 : zThi = 0}. Likewise, if xi = 1, then zi is sampled
from the hyperplane Ai,1 = {z ∈ IF2n

2 : zThi = 1}. Let Vi be the output of the
token when input zi in stage i. If the token was created honestly, it holds that
Vi = aiz

T
i +Bi. David checks if CVi

?= ãiz
T +B̃i. If not, then the token computed

a different function than the one Goliath committed to and David aborts the
protocol. If the check is passed, David computes si,xi

= s̃i,xi
+GVihi and outputs

si,xi . This concludes the description of the protocol. The full protocol is given
in Figure 5.

Discussion. We will shortly sketch the ideas behind this construction. First no-
tice, that from the view of the token, David’s inputs look almost uniform. This
comes from the fact that the token is oblivious of the randomly chosen vector hi,
that defines Ai,0 and Ai,1. In fact, it can be shown, that a complete input history
z = (z1, . . . , zm) ∈

(
IF2n

2

)m
, for adversarially chosen choice-bits of David, is sta-

tistically close to a uniformly chosen input history u = (u1, . . . , um) ∈
(
IF2n

2

)m
.

This, in turn, means that a dishonest token is oblivious of David’s input. The
check-operation is performed to make sure that the token responds to queries in
an unambiguous way and that it does not encode further information into Davids
output. If the token answers dishonestly, David will notice that with overwhelm-
ing probability. The token’s output Vi needs to be projected with the matrix G,
so that David cannot learn anything about Goliath’s inputs si,0 and si,1 from ãi
and B̃i. Notice that Goliath commits to the check-values (ã1, B̃1), . . . , (ãm, B̃m)



Protocol ΠSeq-OTM: David & Goliath Sequential OTM

Let n be the statistical security parameter and let m = poly(n) be the number of
sequential OTMs. Further let F stateful

wrap be the wrapper-functionality that models the
tamper-proof hardware.

Creation-Phase: (only Goliath)

– For every index i ∈ [m], choose ai ∈ IF2n
2 and Bi ∈ IF2n×2n

2 uniformly at random.
– Program a Seq-OTM token T with hardwired inputs m and (ai, Bi) for i ∈ [m].
– Send T to F stateful

wrap .

Send-Phase: Let ((s1,0, s1,1), . . . , (sm,0, sm,1)) ∈ (IFn
2 × IFn

2 )m be Goliath’s Seq-
OTM input.

1. (David) Wait until the ready message from F stateful
wrap was received. Then, choose

a random matrix C ∈ IFn×2n
2 and send C to Goliath.

2. (Goliath) Compute a matrix G ∈ IFn×2n
2 , such that G is complementary to C.

For all i ∈ [m], set ãi = Cai and B̃i = CBi. Send (G, (ãi, B̃i)i∈[m]) to David.
3. (David) Choose h = (h1, . . . , hm) ∈

(
IF2n

2 \{0}
)m

uniformly a random and send
h to Goliath.

4. (Goliath) For each i ∈ [m], set s̃i,0 = si,0 +GBihi and s̃i,1 = si,1 +GBihi +Gai.
Send (s̃i,0, s̃i,1)i∈[m] to David.

Choice-Phase (Stage i ∈ [m]): (only David) Let xi ∈ IF2 be David’s i-th Seq-
OTM input.

– Choose zi ∈ IF2n
2 uniformly at random such that zT

i hi = xi and input zi into
F stateful

wrap .

– Let Vi be the output of F stateful
wrap . Check if CVi = ãiz

T
i + B̃i. If not, go to abort

state and output ⊥ for this query and for all further queries.
– If the check is passed, output si,xi = s̃i,xi +GVihi.

Fig. 5. A protocol for sequential OTM from a single stateful token

before he sees the vectors (h1, . . . , hm). Thus, the condition on which David
aborts is independent of the choice of (h1, . . . , hm). The use of the outer-product
operation for the affine functions stems from a subtle issue. We need to ensure
that the environment Z does not see any of the random coins David used to
sample the zi. If a corrupted Goliath could create a token that encodes several
bits of zi in its output, the environment might be able to tell apart real and
ideal model in a later stage. Such a token might, for instance, abort in a later
stage if some of the bits of zi fulfill a certain condition (e.g. have odd parity or
some special hash value). Given that the token actually computes the specified
function (which is enforced by the check-operation), the outer-product form en-
sures that there are only two different outputs an honest David might produce
in each stage. Particularly, let V (z) = azT +B be one of the functions computed
by the token. Basically, the outer product form allows David to derandomize the



token’s output. If x is such that zTh = x, then the randomness of z is removed
by V (z)h = (azT + B)h = azTh + Bh = ax + Bh. The term ax + Bh is inde-
pendent of the random coins used to sample z. Consequently, David’s outputs
si,xi are (with overwhelming probability) independent of the random coins used
to sample z.

Correctness of the Protocol. If both parties are honest, the correctness of
the protocol can be seen straightforwardly. Let s′i,xi

be one of David’s outputs.

s′i,xi
= s̃i,xi

+GVihi = s̃i,xi
+G(aizTi +Bi)hi = s̃i,xi

+Gaiz
T
i hi +GBihi

= s̃i,xi +Gaixi +GBihi = si,xi

8.1 Security of ΠSeq-OTM

The security of protocol ΠSeq-OTM is summarized in Theorem 2.

Theorem 2. Protocol ΠSeq-OTM UC-realizes the FSeq−OTM functionality, with
perfect security against a corrupted receiver and statistical security against a
corrupted sender.

We will provide the security-proof against a corrupted receiver and outline
the security-proof against a corrupted sender

Corrupted Receiver. We will first consider the case of a corrupted receiver,
as this is the easy case. Let Ã be the dummy adversary for David. We will
provide a simulator SD and show, that for any environment Z the distributions
ViewÃΠSeq−OT M

(Z) and ViewSD

FSeq−OT M
(Z) are identical. Simulator SD runs in

strict polynomial time. The simulator SD is given in Figure 6.
First notice that there is always a solution Vi for CVi = ãiz

T
i + B̃i and

GVihi = s̃i,xi
+ si,xi

, as G is a complementary matrix of C and has rank n. Fur-
thermore, from Ã’s view, each Vi with CVi = ãiz

T
i +B̃i and GVihi = s̃i,xi +si,xi is

equally likely. Thus we obtain perfect indistinguishability for ViewÃΠSeq−OT M
(Z)

and ViewSD

FSeq−OT M
(Z).

Corrupted Sender. The case of a corrupted sender is the technically chal-
lenging part of this proof. Let Ã be the dummy adversary for Goliath. We will
provide a simulator SG and show, that for any environment Z the distributions
ViewÃΠSeq−OT M

(Z) and ViewSG

FSeq−OT M
(Z) are statistically close. Simulator SG

runs in expected polynomial time. The simulator SG is given in Figure 7.

Remark 2. Let T be a (possibly malicious) token program. Write (V1, . . . , Vm) =
T (z1, . . . , zm) for a token run with inputs (z1, . . . , zm) and outputs (V1, . . . , Vm).



Simulator SD

– Setup a Goliath-machine G and provide G with a random tape.
– Simulate the creation phase with machine G and extract a Seq-OTM token pro-

gram T
– Send the ready message to Ã.
– If Ã queries F stateful

wrap with a zi, before hi has been received, wire the input to T
and forward T ’s output Vi to Ã.

– Simulate the send phase between G and Ã. For all indices i ∈ [m] such that Ã
has queried F stateful

wrap before sending hi, upon receiving hi, set xi = zT
i hi. Query

FSeq−OTM with xi and receive si,xi . Set s̃i,xi = si,xi + GVihi. Except for that,
continue the interaction between G and Ã normally.

– For every index i such that Ã queries F stateful
wrap with input zi after hi has been

received, compute xi = zT
i hi. Query FSeq−OTM with xi and receive si,xi . Uni-

formly sample Vi ∈ IF2n×2n
2 such that CVi = ãiz

T
i + B̃i and GVihi = s̃i,xi + si,xi .

Forward Vi to Ã.

Fig. 6. The simulator for a corrupted receiver.

The proof proceeds roughly as follows. In a hybrid argument, we show for each
stage i, that if David does not abort in stage i, then for both inputs xi = 0 and
xi = 1, the simulator can extract outputs V̂i,0 and V̂i,1 from T that David both
would accept. The extraction is done using a rewind-to-the-beginning technique.
This means, instead of rewinding an existing run to the previous stage, we sample
a completely new run. We can show that the event that the simulator fails
to extract happens only with negligibly small probability. Next, we show that
the token’s output in the hybrid real part matches the corresponding extracted
output with overwhelming probability (over the simulators coins). We can thus
modify the simulator to use the extracted token outputs instead of the token
output from the hybrid real part. After this transformation, David’s outputs
are ideal. Thus, only the stage at which David aborts, supposed that he aborts,
depends on the hybrid real part (and thus on input made by Z). We will call the
random variable that describes at which stage David aborts the stoptime S. To
determine the stage at which to abort in the ideal part, the simulator runs the
token with purely random inputs u∗1, . . . , u

∗
m. Let (V ∗1 , . . . , V

∗
m) = T (u∗1, . . . , u

∗
m).

Let i0 be the first index such that CVi 6= ãiu
∗T
i + B̃i. The simulator sets David’s

outputs to be ⊥ for indices i0, . . . ,m. We can show that from Z’s view, the
stoptime S of the hybrid real part is statistically close to the stoptime S′ of the
hybrid ideal part.

Consider the following sequence of games. In game i, the environment Z
interacts with simulator Si. As the send-phase is identical for the real protocol
and the simulation, we only care about the choice-phase. Recall that it has stages
1, . . . ,m.

Game 0 Simulator S0 simulates the real protocol ΠSeq−OTM.



Simulator SG

Simulation

– Setup a David-machine D and provide D with a random tape.
– Wait until Ã sends a token T to F stateful

wrap .

– Simulate the send phase between Ã and D

Extraction Once the send-phase is complete, proceed as follows. The variables
C,G, hi, ãi, B̃i, s̃i,0, s̃i,1 are taken from the view of D.

– Choose u∗ = (u∗1, . . . , u
∗
m) ∈

(
IF2n

2

)m
uniformly. Compute (V ∗1 , . . . , V

∗
m) = T (u∗).

– For i = {1, . . . ,m}
• If CV ∗i 6= ãiu

∗T
i + B̃i, then set sj,0 = sj,1 = ⊥ for j ≥ i and abort loop.

• Otherwise, for x = 0 and x = 1, try for 2
n
4 times

∗ Choose u ∈
(
IF2n

2

)i−1
uniformly at random.

∗ Choose z ∈ IF2n
2 uniformly at random such that zThi = x.

∗ Let (V ′1 , . . . , V
′

i ) = T (u, z). If for all j ∈ [i − 1] it holds that CV ′j =

ãju
T
j + B̃j and CV ′i = ãiz

T + B̃i, then set si,x = s̃i,x +GV ′i hi and exit
loop, otherwise repeat trying.

– Input ((s1,0, s1,1), . . . , (sm,0, sm,1)) into FSeq−OTM.

Fig. 7. The simulator for a corrupted sender.

Game i (for i = 1, . . . ,m) Si does the same as Si−1, except for the following.
In stage i, if Vi passes the test CVi = ãiz

T
i + B̃i sample V̂i,0 and V̂i,1 in the

following manner. For both x = 0 and x = 1 repeat for at most 2
n
4 times:

– Uniformly choose input-history (u1, . . . , ui−1) ∈
(
IF2n

2

)i−1
.

– Uniformly choose z ∈ IF2n
2 such that zThi = x.

– Let (V ′1 , . . . , V
′
i ) = T (u1, . . . , ui, z). If for all j ∈ [i] it holds that CV ′j =

ãju
T
j + B̃j and CV ′i = ãiz

T + B̃i, then set V̂i,x = V ′i and exit loop.

If Si fails to sample either V̂i,0 or V̂i,1 after the 2
n
4 iterations, Si halts.

Game m + i (for i = 1, . . . ,m) The same as game m + i − 1, except that now
David’s i-th output is GV̂i,xi

hi + s̃i,xi
instead of GVihi + s̃i,xi

.

Game 2m + 1 The same as game 2m, except that now the stage at which
David aborts is determined differently. S2m+1 samples (u∗1, . . . , u

∗
m) ∈

(
IF2n

2

)m
uniformly at random. Let (V ∗1 , . . . , V

∗
m) = T (u∗1, . . . , u

∗
m). For every stage i ∈ [m],

S2m+1 replaces the abort condition CVi = ãiz
T
i + B̃i by CV ∗i = ãiu

∗T
i + B̃i. This

is the ideal game.

Proof Techniques. We will briefly sketch the proofs that establish indistin-
guishability between successive games. The indistinguishability of games i − 1



and i, for i = 1, . . . ,m can be established as follows. Once a token T and a
check-matrix C (together with (ã1, B̃1), . . . , (ãm, B̃m)) are fixed, we can define
a set DT ,C of accepting input-histories. That is, DT ,C consists of all input his-
tories (z1, . . . , zi) for which David accepts T ’s corresponding outputs. As hi is
chosen independently of DT ,C , almost every choice of hi is good, in the sense
that it partitions DT ,C in two sets of almost (up to negligible) the same size,
one for which zTi hi = 0 and zTi hi = 1 for the other. As an analogy, hi can be
thought of as a universal hash function. If we fix hi to be good in the above-
mentioned sense, the chance to find an accepting run that belongs to choice-bit
0 roughly equals the chance to find an accepting run for choice bit 1. It can be
shown that the probability of the hybrid real part producing a run that lies in
DT ,C is statistically close to a uniformly chosen run lying in DT ,C . Hence, the
simulator’s probability of extraction-failure is negligible (over its random coins).

The indistinguishability for games m + i − 1 and m + i, for i = 1, . . . ,m is
proven as follows. We need to show that for a fixed hi and a fixed choice-bit
xi, Davids output s̃i,xi

+ GVihi in the hybrid real part of game m + i and the
extracted output s̃i,xi

+ GV̂i,xi
hi are identical. Assume there was a token T so

that T succeeds to output different Vi and V̂i,xi
such that Vihi 6= V̂i,xi

hi, that
are both accepted by David. Let z be the token-input corresponding to V̂i,xi

. If
David accepts both runs, it must hold that

CVi = ãiz
T
i + B̃i (1)

CV̂i,xi
= ãiz

T + B̃i. (2)

This implies that

CVihi = ãiz
T
i hi + B̃ihi = ãixi + B̃ihi (3)

CV̂i,xi
hi = ãiz

Thi + B̃ihi = ãixi + B̃ihi, (4)

and thus CVihi = CV̂i,xi
hi holds. But this means that T could as well form hash-

collisions for the universal hash-function C, of which it is oblivious. However,
this event has only negligible probability.

Finally, in game 2m, all of David’s output values are determined in the hybrid
ideal part. From Z’s view, the probability that either of the simulators S2m or
S2m+1 halts due to an extraction error is negligible. Thus we need to show that
the stoptimes S and S′ for game 2m and game 2m+1 are statistically close from
the view of Z. The proof needs to take into account that all the C and hi are
contained in Z’s view. Again, it can be shown that almost all choices for the hi
are good, which shows that even for fixed C and hi the stoptimes S and S′ in
game 2m and S′ in game 2m+ 1 are statistically close.

8.2 A Non-Interactive Protocol using two Tokens

The send-phase in protocol ΠSeq−OTM (Figure 5) is interactive. We have proven
this interaction to be necessary, given that only one token is issued (Theorem



1). However, if we allow the sender Goliath to issue a second stateful token T ′
to David, then we obtain a non-interactive protocol Π ′Seq−OTM for Seq-OTM.
The second token T ′ runs Goliath’s program for the send-phase of ΠSeq−OTM.
Instead of running the send-phase interactively with David, Goliath sends T ′ to
a second instance of Fwrap

stateful in the creation-phase. David then runs the send-
phase with T ′. The security-proof for ΠSeq−OTM still holds for Π ′Seq−OTM, due
to the following observations. In protocol ΠSeq−OTM, a corrupted sender Goliath
is controlled by the environment Z. In Π ′Seq−OTM, Z can only control Goliath
during the creation-phase. Afterwards, the tokens T and T ′ cannot communicate
with Z anymore. Thus a corrupted sender in Π ′Seq−OTM is strictly less powerful
than in ΠSeq−OTM, and we can conclude that Π ′Seq−OTM is UC-secure against
a corrupted sender. It is also UC-secure against a corrupted receiver David, as
from the view of a corrupted receiver, ΠSeq−OTM and Π ′Seq−OTM are the same
(it makes no difference if David interacts with Goliath or T ′).

9 Memory Limited Tokens

The protocol presented in the last Section guarantees perfect security against
David. However, to achieve this, the token needs to be able to store O(n2m)
bits of information (for m = poly(n)). For large m, this contradicts the idea of a
tamper-proof hardware token being a small and simple device. Moran and Segev
[22] noted, that if David is computationally bounded, then the functions stored
on the token could be chosen to be pseudorandom [11,16]. The same is true for
our construction. It suffices that the token stores a succinct seed of length O(n)
for a pseudorandom function F . The token can answer queries z by temporarily
computing (at, Bt) = F (t) and outputting Vt = atz

T +Bt.

10 Conclusion

In this paper, we showed that a single (untrusted) tamper-proof hardware to-
ken is sufficient for non-interactive, composable computation. We require no
additional complexity assumptions. As we only need a single device and no zero-
knowledge proofs, our approach is more efficient than previous solutions. Our
new primitive, Sequential-One-Time-Memory, is sufficient to realize uncondition-
ally secure One- and k-Time-Programs. However, Sequential-One-Time-Memory
is restricted to sequential-access, thus it cannot be used directly to implement
several independent One-Time-Programs that can be executed in random order.
We consider it an interesting open problem whether it is possible to implement
multiple random-access One-Time-Memories with a single untrusted tamper-
proof hardware token. However, this seems improbable. Any protocol realizing
multiple random-access One-Time-Memories with a single token needs to effec-
tively hide the order in which the One-Time-Memories are queried from the
token.
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