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Abstract

We prove new lower bounds for learning intersections of halfspaces, one of the most important
concept classes in computational learning theory. Our main result is that any statistical-query algorithm
for learning the intersection of

√
n halfspaces in n dimensions must make 2Ω(

√
n) queries. This is the

first non-trivial lower bound on the statistical query dimension for this concept class (the previous best
lower bound was nΩ(logn)). Our lower bound holds even for intersections of low-weight halfspaces. In
the latter case, it is nearly tight.

We also show that the intersection of two majorities (low-weight halfspaces) cannot be computed
by a polynomial threshold function (PTF) with fewer than nΩ(logn/ log logn) monomials. This is the first
super-polynomial lower bound on the PTF length of this concept class, and is nearly optimal. For inter-
sections of k = ω(logn) low-weight halfspaces, we improve our lower bound to min{2Ω(

√
n),nΩ(k/ logk)},

which too is nearly optimal. As a consequence, intersections of even two halfspaces are not computable
by polynomial-weight PTFs, the most expressive class of functions known to be efficiently learnable
via Jackson’s Harmonic Sieve algorithm. Finally, we report our progress on the weak learnability of
intersections of halfspaces under the uniform distribution.



1 Introduction

Learning intersections of halfspaces is a fundamental and well-studied problem in computational learning
theory. In addition to generalizing well-known concept classes such as DNF formulas, intersections of
halfspaces are capable of representing arbitrary convex sets. While many efficient algorithms exist for
PAC learning a single halfspace, the problem of learning the intersection of even two halfspaces remains a
difficult challenge. A variety of efficient algorithms have been developed for learning natural restrictions of
intersections of halfspaces in various learning models [12, 13, 17, 25].

Progress on proving hardness results for learning intersections of halfspaces has been more limited.
Klivans and Sherstov [14] have recently given the first representation-independent (cryptographic) hardness
results for PAC learning intersections of halfspaces. Feldman et al. [9] have obtained closely related results.
The only other relevant hardness results are for representation-dependent (proper) learning: if the learner’s
output hypothesis must be from a restricted class of functions (e.g., intersections of halfspaces), then the
learning problem in question is NP-hard with respect to randomized reductions [1].

The PAC hardness results surveyed above are conditional, i.e., they depend on widely believed but un-
proven assumptions from cryptography or complexity theory. Our paper complements that work by proving
lower bounds that are unconditional but valid only for a restriction of the PAC model. Specifically, we study
the problem of learning intersections of halfspaces in Kearns’ statistical query model of learning [11], an
elegant restriction of Valiant’s PAC model [24]. A learner in the statistical query model is allowed queries
of the form “What is Prx∼µ [Q(x, f (x)) = 1], approximately?” Here µ is the underlying distribution on
{−1,1}n, the function Q : {−1,1}n×{−1,1} → {−1,1} is a polynomial-time computable predicate, and
f : {−1,1}n →{−1,1} is the unknown concept. The motivation behind the statistical query model model is
that efficient algorithms in this model are robust to classification noise. Kearns showed that concept classes
learnable via a polynomial number of statistical queries are efficiently PAC learnable. Perhaps surprisingly,
virtually all known PAC learning algorithms can be adapted to work via statistical queries only; the one
exception known to us is the algorithm of Blum, Kalai, and Wasserman [6] for learning parity functions.

The SQ dimension of a concept class C under distribution µ is defined as the size of the largest subset
A ⊆ C of concepts such that the elements of A are “almost” orthogonal under µ (see Section 2.2 for a
precise definition). Blum et al. [5] proved the SQ dimension of a concept class to be a measure of the
number of statistical queries required to learn that class. It is well known that the concept class of parity
functions has SQ dimension 2n (the maximum possible) under the uniform distribution. This observation
has been the basis of all known statistical query lower bounds.

1.1 Our Results

Our main contribution is a lower bound for learning intersections of halfspaces in the statistical query model.
We construct distributions under which intersections of halfspaces have a large SQ dimension. Let MAJk
denote the concept class of intersections of k majorities, a subclass of intersections of halfspaces.

Theorem 1.1. There are (explicitly given) distributions on {−1,1}n under which

sqdim(MAJk) =
{

nΩ(k/ logk) if logn 6 k 6
√

n,

max
{

nΩ(k/ log logn),nΩ(logk)
}

if k 6 logn.

Our result is essentially optimal. Namely, the SQ dimension of MAJk (and more generally, of intersec-
tions of k polynomial-weight halfspaces) is known to be at most nO(k·logk·logn) under all distributions. For
completeness, we recall a proof of this upper bound in Section 4. An illustrative instantiation of our main
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theorem is as follows: for any constant 0 < ε 6 1/2, the intersection of nε halfspaces has SQ dimension
2Ω(nε ), the known upper bound being 2O(nε log3 n).

The previous best lower bound for this concept class was nΩ(logn). The nΩ(logn) bound holds even for
nε -term DNF, a subclass of the intersection of nε halfspaces. The proof is as follows. A DNF formula
with 2t terms can compute any function on t variables. Thus, a polynomial-size DNF can compute parity
on any subset of logn variables. Since any two distinct parity functions are orthogonal under the uniform
distribution, the SQ dimension of polynomial-size DNF is at least

( n
logn

)
= nΩ(logn).

Our second contribution is a series of lower bounds for the representation of MAJk as a polyno-
mial threshold function (PTF). Jackson gave the first polynomial-time algorithm, the celebrated Harmonic
Sieve [10], for learning polynomial-size DNF formulas with membership queries under the uniform distribu-
tion. More generally, he showed that the concept class of polynomial-weight PTFs is learnable in polynomial
time using the Harmonic Sieve. A natural question to ask is whether every intersection of k low-weight half-
spaces, a straightforward generalization of k-term DNF, can be represented as a polynomial-weight PTF. We
answer this question in the negative even for k = 2. Let MAJ denote the majority function, which can be
represented as the low-weight halfspace ∑xi > 0. We prove that the intersection of two majority functions
requires not only large weight but also large length:

Theorem 1.2. The function MAJ(x1, . . . ,xn)∧MAJ(y1, . . . ,yn) requires PTF length nΩ(logn/ log logn).

The lower bound of Theorem 1.2 nearly matches the nO(logn) upper bound of Beigel et al. [3], proving
that their PTF construction is essentially optimal. As a corollary to Theorem 1.2, we observe that intersec-
tions of even two low-weight halfspaces cannot be computed by polynomial-weight PTFs, the most expres-
sive class of concepts known to be learnable via Jackson’s Harmonic Sieve. We note here that intersections
of a constant number of halfspaces are learnable with membership and equivalence queries in polynomial
time via Angluin’s algorithm for learning finite automata. For the case of intersections of k = ω(1) halfspa-
ces, however, no polynomial-time algorithms are known. For this case, we prove PTF length lower bounds
with an exponential dependence on k:

Theorem 1.3. Let k 6
√

n. Then there are (explicitly given) functions in MAJk that require PTF length
nΩ(k/ logk).

This lower bound is almost tight: Klivans et al. [12, Thm. 29] have shown that every function in MAJk
has a PTF of length nO(k·logk·logn). Note that Theorem 1.3 improves on Theorem 1.2 for k = ω(logn).

Finally, we consider the feasibility of learning intersections of halfspaces weakly in polynomial time
under the uniform distribution. (Recall that strong learning refers to constructing a hypothesis with error ε

in time poly(n,1/ε); weak learning refers to constructing a hypothesis with error 1/2− 1/poly(n) in time
poly(n).) We report our progress on this problem in Section 5, proving negative results for generalizations
of the problem and positive results for several restricted cases.

1.2 Our Techniques

Most of our results follow from a variety of new applications of bent functions, i.e., functions whose Fourier
coefficients are as small as possible. Although the Fourier analysis of Boolean functions is usually rele-
vant only to uniform-distribution learning, we apply an observation due to Bruck [7] that the flatness of
a function’s spectrum is directly related to the length of its PTF representation, a quantity involved with
arbitrary-distribution learning. We construct non-uniform distributions under which various intersections of
low-weight halfspaces are capable of computing bent functions. This in turn yields a variety of lower bounds
on their PTF length, depending on the construction we employ. We then extend the construction of a single
bent function to a family of bent functions and prove that this yields a large set of orthogonal functions,
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the critical component of our SQ dimension lower bound. All functions and distributions we construct are
explicitly defined.

For the near-optimal lower bound on the PTF length of the intersection of two majority functions, we
combine results on the PTF degree of intersections of halfspaces due to O’Donnell and Servedio [21] with
a translation lemma in circuit complexity due to Krause and Pudlák [15].

1.3 Organization

We first prove PTF length lower bounds for intersections of majorities in Section 3. We build on these
results to prove our main SQ dimension lower bound in Section 4. Our discussion of weak learning appears
in Section 5.

2 Preliminaries

A Boolean function is a mapping {−1,1}n →{−1,1}, where 1 corresponds to “true.” In this representation,
the parity χS of a set S ⊆ [n] of bits is given by the product of the corresponding variables: χS

def=
⊕

i∈S xi =
∏i∈S xi. A majority function is a Boolean function of the form

sign(x j1 + x j2 + . . .),

where the x ji are distinct variables from among x1, . . . ,xn. A generalization of majority is a halfspace

sign(a1x j1 +a2x j2 + . . .),

where the ai are integer weights. Finally, a polynomial threshold function (PTF) has the form

sign(a1χ1 +a2χ2 + . . .),

where the ai are integer coefficients and the χi are distinct parity functions over x1, . . . ,xn, possibly including
the constant function 1. Note that halfspaces and majorities are PTFs. One can assume w.l.o.g. that the
polynomial a1χ1 +a2χ2 + . . . sign-representing a PTF is nonzero on all inputs.

Two important characteristics of PTFs from a learning standpoint are its weight and length. The weight
of a PTF sign(∑i aiχi) is ∑i |ai|. The length of a PTF is the number of monomials, i.e., distinct parity
functions. Thus, a PTF’s weight is never less than its length. A PTF is light (respectively, short) if its weight
(respectively, length) is bounded by a polynomial in n.

In the above description, the polynomial (weighted sum of parities) computing a PTF f agrees in sign
with f on every input. We refer to this type of sign-representation as strong: a polynomial p strongly
represents a Boolean function f iff for all x we have p(x) 6= 0 and f (x) = sign(p(x)). We will also need
the following relaxed version of threshold computation [23]: a polynomial p weakly represents a Boolean
function f iff p(x) 6= 0 for some x, and f (x) = sign(p(x)) on any such x. We say that a function has a strong
(respectively, weak) representation on a set of parities A ⊆P([n]) iff there is a polynomial ∑S∈A aSχS that
strongly (respectively, weakly) represents f . The following is a useful tool in analyzing PTFs.

Theorem 2.1 (Theorem of the Alternative [2,21]). Let A ⊆P([n]) denote any set of parities on x1, . . . ,xn,
and let P([n]) denote the full set of the 2n parities. Then for any function f : {−1,1}n → {−1,1}, exactly
one of the following statements holds:

(a) f has a strong representation on A ;

(b) f has a weak representation on A ⊥ = P([n])\A .

3



2.1 Fourier Transform

Consider the vector space of functions {−1,1}n → R, equipped with the inner product 〈 f ,g〉 =
Ex∼U [ f (x) ·g(x)] . The parity functions {χS}S⊆[n] form an orthonormal basis for this inner product space.
As a result, every Boolean function f can be uniquely written as its Fourier polynomial

f = ∑
S⊆[n]

f̂ (S)χS,

where f̂ (S) def= 〈 f ,χS〉. Observe that f̂ ( /0) = 2Prx[ f (x) = 1]− 1. The f -specific constants f̂ (S) are called
Fourier coefficients. The orthonormality of the parities yields Parseval’s identity for Boolean functions:

∑
S⊆[n]

f̂ (S)2 = 〈 f , f 〉= 1.

As in signal processing, one can obtain an approximation to a function by identifying and estimating its
large Fourier coefficients (the “dominant frequencies”). Although there are 2n coefficients to consider, the
large ones can be retrieved efficiently by the elegant algorithm of Kushilevitz and Mansour [16], to which
we refer as “KM”:

Theorem 2.2 (Kushilevitz and Mansour [16]). Let f be any Boolean function and let δ ,θ > 0 be param-
eters. With probability > 1− δ , KM outputs every S ⊆ [n] for which | f̂ (S)| > θ , and no S ⊆ [n] for which
| f̂ (S)|6 θ/2. KM runs in time poly(n, 1

θ
, log 1

δ
).

It is thus useful to recognize classes of functions that have large Fourier coefficients. We denote by
L∞( f ) the largest absolute value of a Fourier coefficient of f . Formally, L∞( f ) def= maxS{| f̂ (S)|}. This quan-
tity places a lower bound on the length of a PTF computing f :

Theorem 2.3 (Bruck [7, Thm. 5.1]). Any PTF computing f has length at least 1/L∞( f ).

Theorem 2.3 implies that functions with short PTFs are weakly learnable under the uniform distribution:

Proposition 2.4. Let C be a class of Boolean functions. If each f ∈ C has a PTF of length `, then C is
learnable to accuracy 1

2 + 1
2` under the uniform distribution in time poly(n, `).

Proof. Let f ∈C be the unknown target function. In time poly(n, `), KM identifies all parities that predict f
with advantage 1/` or better. It thus suffices to show that for some parity χ, |Ex [χ · f ] |> 1/`. The latter is
equivalent to showing that L∞( f ) > 1/`. But if we had L∞( f ) < 1/`, then any PTF implementing f would
require more than ` monomials (by Theorem 2.3). Thus, some parity χ predicts f with advantage 1/` or
better.

Proposition 2.4 shows that PTF length is an indicator of weak learnability under the uniform distribution.
Additionally, PTF weight is an indicator of strong learnability under the uniform distribution: Jackson [10]
proves that the Harmonic Sieve strongly learns an unknown Boolean function if it can be written as a
polynomial-weight PTF.

For all f : {−1,1}n → {−1,1}, we have L∞( f ) > 2−n/2 by Parseval’s identity. For n even, f is called
bent if all Fourier coefficients of f are 2−n/2 in absolute value. It is known [7] that bent functions include
inner product mod 2

IPn(x) = (x1∧ x2)⊕ (x3∧ x4)⊕·· ·⊕ (xn−1∧ xn)

and complete quadratic

CQn(x) =
{

1 if (‖x‖ mod 4) ∈ {0,1},
−1 otherwise.

Above and throughout the paper, ‖x‖ stands for the number of −1 bits in x. In particular, ‖x⊕ y‖ yields the
number of bit positions where x and y differ.
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2.2 Statistical Query Dimension

The statistical query model, first defined by Kearns [11], is an elegant model of learning that can withstand
classification noise. The SQ model has proven to be a useful formalism. In fact, a vast majority of today’s
efficient learning algorithms fit in this framework. The SQ dimension of a concept class, defined shortly,
is a tight measure of the hardness of learning in this model. As a result, SQ dimension estimates are of
considerable interest in learning theory.

A concept class C is a set of functions {−1,1}n →{−1,1}. The statistical query dimension of C under
distribution µ , denoted sqdimµ(C ), is the largest N for which there are N functions f1, . . . , fN ∈ C with

|Ex∼µ [ fi(x) · f j(x)] |6
1
N

for all i 6= j. We denote sqdim(C ) def= maxµ{sqdimµ(C )}. The SQ dimension of a concept class fully
characterizes its weak learnability in the statistical query model: a low SQ dimension implies an efficient
weak-learning algorithm, and a high SQ dimension rules out such an algorithm (see Blum et al. [5] and
Yang [26, Cor. 1]).

2.3 Notation

We adopt the notation L+
∞( f ) def= maxS 6= /0{| f̂ (S)|}. We denote by MAJk the family of functions computable by

the intersection of k majorities, each on some subset of the n variables. Throughout the paper, we view k as
an arbitrary function of n, including a constant. MAJ(xi1 ,xi2 , . . .) stands for the majority value of xi1 ,xi2 , . . . .
We denote the set {1,2, . . . ,a} by [a]. I[A] denotes 1 if the statement A is true, and 0 otherwise. The vector
with −1 in the ith position and 1’s elsewhere is ei. In particular, x⊕ ei represents x with its ith bit flipped.

Recall that a Boolean function is called monotone if flipping a bit from −1 to 1 in any input does not
decrease the value of the function. For example, the majority function ∑xi > 0 is monotone. A func-
tion f (x1, . . . ,xn) is unate if f (σ1 ⊕ x1, . . . ,σn ⊕ xn) is monotone for some fixed σ ∈ {−1,1}n. Here σ is
called the orientation of f . For example, the function x1 − 2x2 + x3 − 4x5 > 3 is unate with orientation
σ = (1,−1,1,−1).

3 PTF Length Lower Bounds for MAJk

We begin by developing lower bounds on the PTF representation of intersections of low-weight halfspaces.
In particular, this section establishes two of the main results of this paper: Theorems 1.2 and 1.3. We will
also need these structural results to prove our main lower bound on the SQ dimension of intersections of
halfspaces.

3.1 PTF Length of MAJk: An nΩ(logk) Bound

Unlike the lower bound for MAJ2, the results in this section and the next require k = ω(1) for a super-
polynomial lower bound. However, they rely solely on the fundamental Theorem 2.3 and are thus consid-
erably simpler. Furthermore, the constructions below (Lemmas 3.3 and 3.5) will allow us to prove a lower
bound on the SQ dimension of MAJk in Section 4. A key to these results is the following observation.

Lemma 3.1. Let f (x1, . . . ,xn) have a PTF of length `. Then so does f (χ1, . . . ,χn), where each χi is a parity
over x1, . . . ,xn or the negation of a parity.

Proof. Given a polynomial of length ` that strongly sign-represents f , make the replacement xi → χi. This
does not increase the number of monomials, while yielding a PTF for f (χ1, . . . ,χn).
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By Lemma 3.1, it suffices to show that f (χ1, . . . ,χn) does not have a short PTF in order to prove that
neither does f (x1, . . . ,xn). We accomplish the former via a reduction to a known hard function.

Definition 3.2 (Reflection). Let f : {−1,1}n → {−1,1} and y ∈ {−1,1}n. The y-reflection of f is the
function fy(x) = f (x⊕ y). A function g : {−1,1}n → {−1,1} is called a reflection of f if g(x) = f (x⊕ y)
for some fixed y and all x.

We are now in a position to prove the desired reduction to a hard function.

Lemma 3.3. Let k 6 2no(1)
. Then there are explicitly given functions χ1,χ2, . . . ,χn (each a parity or the nega-

tion of a parity) such every reflection of IP on Ω(logn · logk) variables is computable by f (χ1,χ2, . . . ,χn)
for some f ∈MAJk.

Proof. Let g1,g2, . . . ,glogk be copies of the IP function, each on a distinct set of variables Vi with |Vi| = v
for some v = v(n,k) to be chosen later. Thus, g =

⊕
gi is IP on v logk variables. At the same time, g is

computable by the AND of 2logk−1 < k functions, each of the form h1∨h2∨·· ·∨hlogk, where hi ∈ {gi,¬gi}.
Each h1∨h2∨·· ·∨hlogk can be computed by the PTF

h1 + h2 + · · ·+ hlogk > 1− logk,

or 2v/2h1 + 2v/2h2 + · · ·+ 2v/2hlogk > 2v/2(1− logk). (3.1)

Every hi is a bent function on the v variables Vi, and thus 2v/2hi is simply the sum of the 2v parities on Vi,
each with a plus or a minus sign.

Create a new set of variables U = {χ1,χ2, . . .} as follows. U will contain a distinct variable for each
parity on Vi (for each i = 1,2, . . . , logk) and one for its negation. In addition, U will contain 2v/2(logk−1) <
2v/2 logk variables, each of which corresponds to the constant 1. As a result, each of the k PTFs of the form
(3.1) is a majority function in terms of U . Therefore, IP(x) on v logk variables is computable by f (χ1,χ2, . . .)
for some f ∈MAJk. Furthermore, for every fixed y∈ {−1,1}v logk, IP(x⊕y) is computable by fy(χ1,χ2, . . .)
for some fy ∈MAJk. This is because for each parity, U = {χ1,χ2, . . .} additionally contains its negation.

It remains to show that |U |6 n. Setting v = logn− log logk−2 yields |U |= 2 ·2v logk +2v/2 logk 6 n.

Thus, for k 6 2no(1)
the above construction computes IP on the claimed number of variables:

v logk = (logn− log logk−2) logk = Ω(logn · logk).

Lemma 3.3 immediately yields the desired lower bound on PTF length.

Theorem 3.4. Let k 6 2no(1)
. Then the intersection of k majorities requires a PTF with nΩ(logk) monomials.

Proof. Let k 6 2no(1)
. By Lemma 3.3, there is a function f ∈MAJk and a choice of signed parities χ1, . . . ,χn

such that f (χ1, . . . ,χn) computes IP on v = Ω(logn · logk) variables. Since L∞( f (χ1, . . . ,χn)) = 2−v/2, any
PTF computing f (χ1, . . . ,χn) requires 2v/2 = nΩ(logk) monomials by Theorem 2.3. By Lemma 3.1, the same
holds for f (x1, . . . ,xn).

3.2 PTF Length of MAJk: An nΩ(k/max{log logn,logk}) Bound

This section applies Lemma 3.1 with a different reduction. The resulting lower bound is better than that of
Theorem 3.4 for some range of k.

Lemma 3.5. Let k 6
√

n. Then there are explicitly given functions χ1,χ2, . . . ,χn (each a parity or the nega-
tion of a parity) such that every reflection of CQ on min

{
Ω

(
k logn

log logn

)
, Ω

(
k logn
logk

)}
variables is computable

by f (χ1,χ2, . . . ,χn) for some f ∈MAJk.
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Proof. Consider CQ on v variables, for some v = v(n,k) to be chosen later. Since CQ depends only on the
sum of the input bits, it can be represented by the AND of v predicates as follows:

CQ(x) = 1 ⇐⇒
∧

s∈S (∑i xi 6= s) ,

where S ⊆ {−v, . . . ,0, . . . ,v} and |S|6 v. A single PTF can check any number t of these predicates:

(∑i xi− s1)
2 (∑i xi− s2)

2 · · ·(∑i xi− st)
2 > 0, (3.2)

where s1, . . . ,st ∈ S.
Consider the PTF (∑i xi + v)2t > 0. Multiplying out the l.h.s. yields the sum of exactly (2v)2t parities

(not all distinct). Construct a new set of variables U = {χ1,χ2, . . .} to contain a variable for each of these
(2v)2t parities and their negations. Over U , the PTF (∑i xi + v)2t > 0 is a majority. In fact, any PTF of
the form (3.2) is a majority over U . Hence, CQ(x) on v variables is computable by f (χ1,χ2, . . .) for some
f ∈MAJk. Furthermore, for every fixed y ∈ {−1,1}v, CQ(x⊕ y) is computable by fy(χ1,χ2, . . .) for some
fy ∈MAJk. This is because for each parity, U = {χ1,χ2, . . .} additionally contains its negation.

It remains to pick v such that v 6 kt (the k PTFs must collectively check all v predicates) and |U | 6 n
(the new variable set can have size at most n):

v = max{v′ : v′ 6 kt and 2(2v′)2t 6 n for some integer t > 1}

= min
{

Ω(
√

n), Ω

(
k logn

log logn

)
, Ω

(
k logn
logk

)}
,

which is equivalent to v = min{Ω(k logn/ log logn), Ω(k logn/ logk)} for k 6
√

n.

Theorem 3.6. Let k 6
√

n. Then the intersection of k majorities requires a PTF with
min

{
nΩ(k/ log logn),nΩ(k/ logk)

}
monomials.

Proof. Let k 6
√

n. By Lemma 3.5, there is a function f ∈MAJk and a choice of signed parities χ1, . . . ,χn

such that f (χ1, . . . ,χn) computes CQ on v = min{Ω(k logn/ log logn),Ω(k logn/ logk)} variables. Since
L∞( f (χ1, . . . ,χn)) = 2−v/2, any PTF computing f (χ1, . . . ,χn) requires 2v/2 monomials by Theorem 2.3. By
Lemma 3.1, the same holds for f (x1, . . . ,xn).

3.3 PTF Length of MAJ2: An nΩ(logn/ log logn) Bound

Our lower bound for the PTF length of MAJ2 exploits two related results in the literature. The first is a lower
bound on the degree of any PTF for MAJ2, due to O’Donnell and Servedio [21]. We additionally amplify the
degree requirements by replacing each variable in MAJ2 by a parity on a separate set of ≈ logn variables.
Denote the resulting composition by MAJ2 ◦ PARITY. The second result we use is a general theorem of
Krause and Pudlák [15] which, given the PTF degree of a function f , states a lower bound on the PTF length
of a related function f op. We obtain the result of this section by relating the PTF length of MAJ2 to that of
(MAJ2 ◦PARITY)op.

The degree of a function f , denoted deg( f ), is the minimum degree of any polynomial that strongly
represents it. For MAJ2, we have:

Theorem 3.7 (O’Donnell and Servedio [21, Thm. 17]). Let f (x,y) = MAJ(x1, . . . ,xn)∧MAJ(y1, . . . ,yn).
Then f has degree Ω

(
logn

log logn

)
.

The key to the lower bound in this section is the following link between PTF degree and length requirements.
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Definition 3.8. For f : {−1,1}n →{−1,1}, define f op : {−1,1}3n →{−1,1} as

f op(x1, . . . ,xn, y1, . . . ,yn, z1, . . . ,zn) = f (u1, . . . ,un),

where ui = (zi∧ xi)∨ (zi∧ yi).

Proposition 3.9 (Krause and Pudlák [15, Prop. 2.1]). Let f : {−1,1}n → {−1,1} be given. Then f op

requires PTF length 2deg( f ).

We need another observation.

Lemma 3.10. Let g(x) = f

(
k⊕

i=1

x1,i, . . . ,
k⊕

i=1

xn,i

)
. Then deg(g) = k ·deg( f ).

Proof. Our proof is inspired by the XOR lemma of O’Donnell and Servedio [21, Thm. 13]. The upper
bound k · deg( f ) is trivial: take any polynomial of degree deg( f ) that strongly represents f and replace
each variable by its corresponding length-k parity on xi, j. To prove that k ·deg( f ) is also a lower bound on
deg(g), note that f has no strong representation over parities of degree less than deg( f ). By the Theorem
of the Alternative, f has a weak representation pw over parities of degree at least deg( f ). Substituting
corresponding parities on xi, j for the variables of pw yields a weak representation of g; it is nonzero on many
assignments to xi, j since pw is nonzero on at least one assignment to x1, . . . ,xn. The degree of any monomial
in the resulting PTF for g is at least k · deg( f ). By the Theorem of the Alternative, g cannot have a strong
representation over the parities of degree less than k ·deg( f ). We conclude that deg(g) > k ·deg( f ).

Combining the above yields the desired bound:

Theorem 1.2 (Restated from page 2). The function MAJ(x1, . . . ,xn)∧MAJ(y1, . . . ,yn) requires PTF length
nΩ(logn/ log logn).

Proof. Let f = MAJ(x1, . . . ,xt)∧MAJ(xt+1, . . . ,x2t). Define a new function f⊕ : ({−1,1}k)2t → {−1,1}
as

f⊕(x) = MAJ

(
k⊕

i=1

x1,i, . . . ,
k⊕

i=1

xt,i

)∧
MAJ

(
k⊕

i=1

xt+1,i, . . . ,
k⊕

i=1

x2t,i

)
.

By Lemma 3.10, deg( f⊕) = k · deg( f ). Consider now f⊕op. For single bits a,b,c ∈ {−1,1}, we have
(c∧a)∨(c∧b) = 1

2(1+c)a+ 1
2(1−c)b. As a result, f⊕op can be computed by the intersection of two PTFs:

f⊕op(x,y,z) =

(
k

∏
i=1

q1,i + · · · +
k

∏
i=1

qt,i > 0

)∧( k

∏
i=1

qt+1,i + · · · +
k

∏
i=1

q2t,i > 0

)
,

where qi, j = (1+ zi, j)xi, j +(1− zi, j)yi, j.
Therefore, f⊕op is computed by the intersection of two PTFs, each with weight at most 4kt. Lemma 3.1

implies that if the intersection of two majorities, each on a distinct set of 4kt variables, has a PTF with
` monomials, then so does f⊕op. But by Proposition 3.9, f⊕op requires a PTF of length 2deg( f⊕) =
2k·deg( f ). To summarize, the intersection of two majorities, each on 4kt variables, requires a PTF of length
2k·Ω(log t/ log log t). The theorem follows by setting t =

√
n and k = 1

4 logn.

Using a rational approximation to the sign function, it is possible to obtain a PTF for MAJ(x1, . . . ,xn)∧
MAJ(y1, . . . ,yn) with nO(logn) monomials [3]. Our lower bound of nΩ(logn/ log logn) nearly matches that upper
bound.
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A key ingredient in our proof of the nΩ(logn/ log logn) lower bound on the PTF length of MAJ2 was the
non-trivial degree lower bound for the same function, due to O’Donnell and Servedio [21]. We could obtain
an nω(1) lower bound for the PTF length of MAJ2 by using the simpler ω(1) lower bound on the degree of
MAJ2 due to Minsky and Papert [19]. That would suffice to show that MAJ2 does not have a short PTF; the
proof would be analogous to that of Theorem 1.2.

Theorems 1.2 and 3.6, established above, immediately imply:

Theorem 1.3 (Restated from page 2). Let k 6
√

n. Then there are (explicitly given) functions in MAJk that
require PTF length nΩ(k/ logk).

4 SQ Dimension of MAJk

Recall that the SQ dimension captures the hardness of a concept class. We explicitly construct distributions
under which the intersection of nε majorities, for any constant 0 < ε 6 1/2, has SQ dimension 2Ω(nε ). This is
an exponential improvement on nΩ(logn), the previous best lower bound that was based on computing parity
functions by intersections of halfspaces. We additionally prove (Section 4.1) that the latter construction
could not give a bound better than nΘ(logn).

Let f : {−1,1}n → {−1,1} be any function. Recall that for a fixed string y ∈ {−1,1}n, the y-reflection
of f is the function fy(x) = f (x⊕y). A key observation is that any two distinct reflections of a bent function
are uncorrelated under the uniform distribution. This result is known in the coding theory literature; for
completeness, we give a self-contained proof below.

Lemma 4.1 (cf. Macwilliams and Sloane [18, page 427, problem 12]). Let f : {−1,1}n → {−1,1} be a
bent function. Then for any distinct y,y′ ∈ {−1,1}n, Ex∼U [ f (x⊕ y) · f (x⊕ y′)] = 0.

Proof. For a fixed pair y,y′ of distinct strings, we have y⊕ y′ 6= 1n. Thus,

Ex∼U
[

f (x⊕ y) f (x⊕ y′)
]
= Ex

[(
∑
S

f̂ (S)χS(x)χS(y)

)(
∑
T

f̂ (T )χT (x)χT (y′)

)]
= ∑

S
∑
T

f̂ (S) f̂ (T )χS(y)χT (y′) ·Ex [χS(x)χT (x)]

= ∑
S

f̂ (S)2
χS(y)χS(y′) =

1
2n ∑

S
χS(y⊕ y′) = 0.

The last equality holds because on every z ∈ {−1,1}n \ 1n, exactly half of the parities evaluate to −1 and
the other half, to 1.

The following is a simple consequence of Lemma 4.1:

Theorem 4.2. Let C denote the concept class of bent functions on n variables. Then sqdimU(C ) = 2n.

Proof. Fix a bent function f and consider its 2n reflections, themselves bent functions. By Lemma 4.1, any
two of them are orthogonal.

Consider a function h : {−1,1}n →{−1,1}n. The h-induced distribution on {−1,1}n, denoted by h◦U ,
is the distribution given by

(h◦U)(z) = Pr
x∼U

[h(x) = z]

for any z ∈ {−1,1}n. Put differently, h◦U is the uniform distribution over the multiset h({−1,1}n).
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Proposition 4.3. Let f ,g : {−1,1}n → {−1,1} and h : {−1,1}n → {−1,1}n be arbitrary functions. Then
Ex∼h◦U [ f (x) ·g(x)] = Ex∼U [ f (h(x)) ·g(h(x))] .

Proof. By definition of h◦U , picking a random input according to h◦U is equivalent to picking x∈ {−1,1}n

uniformly at random and returning h(x).

We are ready to prove the claimed SQ lower bound for MAJk.

Theorem 1.1 (Restated from page 1). There are (explicitly given) distributions on {−1,1}n under which

sqdim(MAJk) =
{

nΩ(k/ logk) if logn 6 k 6
√

n,

max
{

nΩ(k/ log logn),nΩ(logk)
}

if k 6 logn.

Proof. Let k 6 logn. Fix n monomials χ1,χ2, . . . ,χn as in Lemma 3.3. Let v = Ω(logn · logk). Then there
are 2v functions F = { f1, f2, . . . , f2v} ⊂ MAJk, where each fi(χ1(x),χ2(x), . . . ,χn(x)) computes IP(x⊕ y)
on v variables for a distinct y ∈ {−1,1}v.

Define h : {−1,1}n →{−1,1}n by

h(x) = (χ1(x),χ2(x), . . . ,χn(x)).

Then for every two distinct fi, f j ∈F ,

Ex∼h◦U [ fi(x) · f j(x)] = Ex∼U [ fi(χ1(x), . . . ,χn(x)) · f j(χ1(x), . . . ,χn(x))] by Proposition 4.3

= 0 by Lemma 4.1.

In words, every pair of functions in F are orthogonal under the distribution h ◦U . Therefore,
sqdimh◦U(MAJk) > |F | = 2v = nΩ(logk) for k 6 logn. Moreover, the distribution h ◦U has an explicit de-
scription: pick a random x ∈ {−1,1}n and return the n-bit string (χ1(x), . . . ,χn(x)), where χ1, . . . ,χn are the
explicitly given monomials from Lemma 3.3. Applying an analogous argument to Lemma 3.5 yields the
alternate lower bound sqdim(MAJk) = min{nΩ(k/ logk),nΩ(k/ log logn)} for k 6

√
n.

For completeness, we recall an upper bound on the SQ dimension of MAJk. It is an immediate conse-
quence of the results of Blum et al. [4] and Klivans et al. [12].

Theorem 4.4. For every distribution µ on {−1,1}n, we have sqdimµ(MAJk) 6 nO(k·logk·logn).

Proof. Klivans et al. [12, Thm. 29] show that every f ∈MAJk has a PTF of degree d = O(k · logk · logn).
Thus, every f ∈MAJk is a halfspace in terms of the parity functions of degree at most d. It follows that the
SQ dimension of MAJk is at most the SQ dimension of halfspaces in ∑

d
i=0
(n

i

)
6 nO(k·logk·logn) dimensions.

A seminal paper of Blum et al. [4] proves that the SQ dimension of halfspaces in D dimensions is at most
poly(D), under all distributions. The claim follows.

4.1 On the SQ Dimension under the Uniform Distribution

The distributions in Theorem 1.1 are non-uniform. Can we prove a comparable lower bound on the SQ
dimension of MAJk under the uniform distribution? A natural approach would be to compute different
parities with functions in MAJk. Since the parities are mutually orthogonal under the uniform distribution,
this would yield an SQ lower bound. In what follows, we show that this approach yields at best a trivial
nΩ(logk) SQ lower bound, even for the much larger class of intersections of unate functions. Specifically, we
show that intersections of k unate functions cannot compute PARITY on more than 1+ logk bits.
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Proposition 4.5. Let f be a unate function with orientation σ . If f (x) = −1 on some x with ‖x⊕σ‖ < n,
then f (y) =−1 on some y with PARITY(x) 6= PARITY(y).

Proof. Suppose ‖x⊕σ‖ < n. Then xi = σi for some i. Let y = x⊕ ei. This ensures that PARITY(x) 6=
PARITY(y), as desired. Furthermore, f (y) 6 f (x) by the unate property, i.e., f (y) =−1.

Theorem 4.6. To compute PARITYn by the AND of unate functions, 2n−1 unate functions are necessary
and sufficient.

Proof. Sufficiency is straightforward: PARITY has a trivial CNF with 2n−1 clauses, each of which is a unate
function. For the lower bound, consider

∧
fi = PARITY, where each fi is a unate function with orientation

σi. By Proposition 4.5, fi can output “false” only on the input x satisfying ‖x⊕σi‖= n: otherwise fi would
output “false” on two inputs of different parity. Thus, 2n−1 unate functions are needed to exclude the 2n−1

falsifying assignments to PARITY.

5 Weakly Learning Intersections of Halfspaces

Section 3 showed that the intersection f of even two majorities does not have a polynomial-length PTF.
Thus, there is some distribution on {−1,1}n with respect to which the correlation of f with every parity is
negligible, i.e., inversely superpolynomial (1/nω(1)). However, this leaves open the possibility of inverse-
polynomial correlation (and thus weak learnability) with respect to the uniform distribution. In other words,
we would like to know if

L∞(h1∧·· ·∧hk) >
1

nO(1)

for a slow enough function k = k(n) and all halfspaces h1, . . . ,hk.
It is easy to construct an intersection of k = nω(1) halfspaces that has only negligible Fourier coefficients

(e.g., compute a bent function on ω(logn) variables). At the other extreme, Klivans et al. [12, Thm. 20] have
shown that the intersection of k = O(1) halfspaces always has a nonnegligible Fourier coefficient. Thus, we
restrict our attention to the range ω(1) 6 k 6 nO(1).

This section reports our progress on the problem. Section 5.1 studies two generalizations of MAJk and
proves that the resulting functions have only negligible Fourier coefficients for all k = ω(1). On the positive
side, Section 5.2 proves that no combining function of k 6

√
logn halfspaces can compute a bent function

on ω(logn) variables (which would have only negligible Fourier coefficients). Section 5.3 proves a positive
result for a specialization of the problem to unate functions and to intersections of read-once functions.

5.1 Negative Results for Related Concept Classes

We consider two generalizations of MAJk: the XOR of k majorities, and the AND of k unate functions. In
both cases, we show that all Fourier coefficients can be negligible whenever k = ω(1).

Proposition 5.1. Let k = k(n) be arbitrary with ω(1) 6 k 6 O(
√

n). Let h1, . . . ,hk be majority functions,
each on a separate set of n/k variables. Then L∞(h1⊕·· ·⊕hk) 6 1/nω(1).

Proof. We can assume that t = n/k is an odd integer; otherwise, work with the largest odd integer t less
than n/k. If f and g are functions on disjoint variables, then L∞( f ⊕g) = L∞( f ) ·L∞(g). For t odd, it is well
known [20] that L∞(MAJt) = O(1/

√
t). The claim follows.

Thus, the XOR of ω(1) majorities has negligible Fourier coefficients. We can extend this result to the
AND of unate functions:

11



Theorem 5.2. There are unate functions h1, . . . ,hk such that L∞(
∧

hi) = 1/nω(1) whenever k = ω(1).

Proof. Assume k 6
√

n (otherwise simply set h√n+1 ≡ ·· · ≡ hk ≡ 1). Given k = ω(1), let t = logk = ω(1).
Let f = g1⊕ ·· ·⊕ gt , where each gi is a majority function on a distinct set of n/t variables. By Proposi-
tion 5.1, L∞( f ) = 1/nω(1). At the same time, f is computed by the AND of 2t−1 functions h1, . . . ,h2t−1 ,
where each hi is a disjunction on {g1,¬g1, . . . ,gt ,¬gt}. Since each gi is a unate function, so is ¬gi. Then
each hi is a disjunction of unate functions on disjoint variable sets and is thus itself a unate function. In
summary, f is computed by the AND of 2t−1 6 k unate functions.

5.2 Computing a Bent Function with Halfspaces

Consider a function f of the form f = g(h1,h2, . . . ,hk), where each hi is a halfspace and g : {−1,1}k →
{−1,1} is an arbitrary combining function. We will give a combinatorial argument that for k = o(

√
n), the

function f cannot be bent. Our proof technique is inspired by the analysis of edge slicing in [23]. An edge
is a pair of vertices x,y ∈ {−1,1}n of the hypercube that differ in exactly one coordinate. It is easy to see
that the hypercube contains 2n−1n edges. An edge (x,y) is sliced by function f if f (x) 6= f (y); otherwise,
the edge (x,y) is unsliced.

The proof below is based on two observations. First, it is known that a single halfspace slices at most a
Θ(1/

√
n) fraction of the edges. The halfspace x1 +x2 + · · ·+xn > 0 achieves this bound exactly. The second

observation is that a bent function slices many edges; in fact, we prove that every bent function slices exactly
half of the edges. To see why this is intuitively satisfying, note that a random Boolean function is likely to
be nearly bent. At the same time, when the vertices of the hypercube are randomly labeled +1 or −1, one
would expect about half of the edges to be sliced. To summarize, bent functions slice many edges, while a
single halfspace slices few. We combine these two facts to prove that no function on o(

√
n) halfspaces can

compute a bent function.

Theorem 5.3 (O’Neil [22]). A halfspace slices at most 1
2 n
( n

n/2

)
= Θ(2n√n) edges of the n-cube.

Theorem 5.3 proves the first observation. To prove the second, we first relate the number of edges sliced
by a Boolean function to its Fourier spectrum.

Lemma 5.4. Every Boolean function f slices exactly 2n−1
∑S |S| f̂ (S)2 edges.

Proof. The probability p( f ) that a random edge is sliced by f is

p( f ) = Ei∈[n]
[
Ex∈{−1,1}n [I[ f (x) 6= f (x⊕ ei)]]

]
.

Note that Ex∈{−1,1}n [I[ f (x) 6= f (x⊕ ei)]] = Infi( f ), the influence of variable xi on f . As a result,

p( f ) = Ei∈[n] [Infi( f )] = 1
n ∑i∈[n] Infi( f ) = 1

n ∑S⊆[n] |S| f̂ (S)2.

The last equation is based on the well-known equality ∑i∈[n] Infi( f ) = ∑S⊆[n] |S| f̂ (S)2 (see [8, Lem. 4.1]).
Since the total number of edges is 2n−1n, we see that f slices p( f ) ·2n−1n = 2n−1

∑S⊆[n] |S| f̂ (S)2 edges.

As a special case, PARITYn = x1x2 . . .xn slices every edge (2n−1n), while the constant function f = 1
slices no edges. For bent functions, we obtain the following corollary:

Corollary 5.4.1. Every bent function slices exactly 2n−2n edges.

Proof. Every bent function f satisfies f̂ (S)2 = 1/2n for all S ⊆ [n]. By Lemma 5.4, the number of edges
sliced by f is:

2n−1
∑

S⊆[n]
|S| f̂ (S)2 =

1
2 ∑

S⊆[n]
|S|= 1

2

n

∑
k=0

k
(

n
k

)
= n2n−2.
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Our sought result is a straightforward consequence of Theorem 5.3 and Corollary 5.4.1.

Theorem 5.5. Let f = g(h1,h2, . . . ,hk), where each hi : {−1,1}n → {−1,1} is a halfspace and g :
{−1,1}k →{−1,1} is an arbitrary Boolean function. If k = o(

√
n), then f is not bent.

Proof. For f to slice an edge, at least one of h1,h2, . . . ,hk must slice it. By Theorem 5.3, a single halfspace
can slice at most Θ(2n√n) edges. Since every bent function slices exactly 2n−2n edges (by Corollary 5.4.1),
k = Ω(

√
n) halfspaces are necessary for f to be bent.

For a general combining function, the Ω(
√

n) bound of Theorem 5.5 is not far off. For example, the
XOR of n halfspaces can compute the bent function IPn. Also, the majority of 2n halfspaces can implement
any symmetric function on n bits [7] and, therefore, can implement the bent function CQn. It is less clear
how tight the Ω(

√
n) bound is for AND. In particular, the AND of 2Ω(n) �

√
n unate functions (and thus,

halfspaces) is needed to compute CQn. (The proof is a straightforward generalization of our argument
in Theorem 4.6.) In light of the 2Ω(n) complexity of CQn, it is plausible that AND is weaker than other
combining functions and the lower bound for AND can be improved.

5.3 Read-once Intersections and Unate Functions

Given the intersection f = h1∧ ·· ·∧hk of functions on disjoint variable sets, we can exploit their indepen-
dence in analyzing the spectrum of f .

Lemma 5.6. Let f = h1 ∧ h2 ∧ ·· · ∧ hk, where the hi are arbitrary Boolean functions on disjoint variable
sets. Then L∞( f ) > 1

3 maxi{L+
∞(hi)}.

Proof. It suffices to prove that L∞( f ) > L+
∞(hk)/3. Let pi = Prx[hi(x) = 1] and p = Prx[ f (x) = 1]. The

independence of the hi implies that p = ∏ pi. We have:

f = h1∧h2∧·· ·∧hk = −1+
1

2k−1 · ∏
i∈[k]

(1+hi) = −1+
1

2k−1 ∑
A⊆[k]

hA,

where hA
def= ∏i∈A hi. Therefore for all S 6= /0,

f̂ (S) =
1

2k−1 ∑
A⊆[k]

[ĥA(S)]. (5.1)

Let S 6= /0 be a subset of the variables on which hk is defined. Because h1, . . . ,hk are on disjoint sets of
variables, we see that

ĥA(S) =

 ĥk(S) ∏
i∈A\{k}

ĥi( /0) if k ∈ A,

0 otherwise.
(5.2)

Substituting (5.2) in (5.1) yields:

| f̂ (S)| =

∣∣∣∣∣ ĥk(S)
2k−1 ∑

A⊆[k−1]
∏
i∈A

ĥi( /0)

∣∣∣∣∣ =

∣∣∣∣∣ ĥk(S)
2k−1 ∏

i∈[k−1]
(1+ ĥi( /0))

∣∣∣∣∣ = |ĥk(S)| ∏
i∈[k−1]

pi > |ĥk(S)| · p

= |ĥk(S)| · f̂ ( /0)+1
2

.
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The above derivation uses the identity pi = (1+ ĥi( /0))/2. We have shown that

| f̂ (S)|> |ĥk(S)| · f̂ ( /0)+1
2

.

Consider two cases. If f̂ ( /0) > −1/3, we obtain L∞( f ) > | f̂ (S)| > |ĥk(S)|/3. If f̂ ( /0) < −1/3, we have
L∞( f ) > | f̂ ( /0)|> 1/3 > |ĥk(S)|/3. In either case,

L∞( f ) >
1
3
|ĥk(S)|.

Since the choice of ĥk(S) was arbitrary from among the nonconstant Fourier coefficients of hk, we have
L∞( f ) > L+

∞(hk)/3.

Lemma 5.6 states that if at least one of h1, . . . ,hk has a large nonconstant Fourier coefficient, then
f = h1 ∧ ·· · ∧ hk will have a large Fourier coefficient as well. Somewhat surprisingly, the claim holds for
any k, although the read-once requirement effectively restricts k 6 n.

We can improve on Lemma 5.6 by considering unate functions in MAJk instead of intersections of
general read-once functions. We obtain weak learnability in this case by appealing to the benign Fourier
properties of unate functions. Analyses of the max-norm of unate functions seem to be folklore, with surveys
appearing in [8, 23]. For completeness, we provide a proof below.

Theorem 5.7. For any unate function f : {−1,1}n →{−1,1},

L∞( f ) > max{| f̂ ( /0)|, | f̂ ({1})|, . . . , | f̂ ({n})|} >
1

n+1
.

Proof. For a Boolean function f : {−1,1}n → {−1,1}, let f |xi=a denote the subfunction of f with the ith
variable set to a. It is easy to see that for all f ,

E [ f |xi=1− f |xi=−1] = 2 f̂ ({i}), (5.3)

and
E
[
( f |xi=1− f |xi=−1)2]= 4 ∑

A:i∈A
f̂ (A)2. (5.4)

W.l.o.g. assume that f is monotone rather than unate; this does not affect the absolute values of f ’s Fourier
coefficients. Then we have E

[
( f |xi=1− f |xi=−1)2

]
= 2E [ f |xi=1− f |xi=−1]. Substituting (5.3) and (5.4) into

the latter equality yields:
f̂ ({i}) = ∑

A:i∈A
f̂ (A)2.

Summing over i, we obtain ∑i f̂ ({i}) = ∑A |A| f̂ (A)2 > 1− f̂ ( /0)2, from which we conclude that f̂ ( /0)2 +
∑i f̂ ({i}) > 1. The claim follows.

As a corollary, we obtain the following result.

Theorem 5.8. Let f = g(h1, . . . ,hk), where g : {−1,1}k → {−1,1} is a monotone function (e.g., AND or
MAJ) and the functions hi : {−1,1}n →{−1,1} are unate with a common orientation (e.g., halfspaces with
a common orientation or halfspaces on disjoint sets of variables). Then f is unate and L∞( f ) > 1/(n+1).
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