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Matching on demographic variables is commonly used in case–control studies to adjust 

for confounding at the design stage. There is a presumption that matched data need 

to be analyzed by matched methods. Conditional logistic regression has become a 

standard for matched case–control data to tackle the sparse data problem. The sparse 

data problem, however, may not be a concern for loose-matching data when the 

matching between cases and controls is not unique, and one case can be matched 

to other controls without substantially changing the association. Data matched on a 

few demographic variables are clearly loose-matching data, and we hypothesize that 

unconditional logistic regression is a proper method to perform. To address the hypoth-

esis, we compare unconditional and conditional logistic regression models by precision 

in estimates and hypothesis testing using simulated matched case–control data. Our 

results support our hypothesis; however, the unconditional model is not as robust as 

the conditional model to the matching distortion that the matching process not only 

makes cases and controls similar for matching variables but also for the exposure status. 

When the study design involves other complex features or the computational burden is 

high, matching in loose-matching data can be ignored for negligible loss in testing and 

estimation if the distributions of matching variables are not extremely different between 

cases and controls.

Keywords: frequency matching, individual matching, sparse data problem, loose matching, precision in estimates 

and tests, width of 95% con�dence interval

INTRODUCTION

Matching is commonly used in case–control studies to adjust for confounding at the design stage. 
It ensures that adjustment is possible when there is no su�cient overlap in confounding variables 
between cases and a random set of controls. Earlier literature o�en describes the advantages of 
matching in case–control studies as adjusting for confounding and improving the study e�ciency 
(1–4). Other reasons to match include control of unmeasured confounders and ensuring statistical 
power to perform subgroup analysis and to test for interactions (5). �e study e�ciency is improved 
if a smaller sample size is needed for the same precision or a narrower con�dence interval is obtained 
using the same sample size. Previous studies have compared e�ciency of matched and unmatched 
studies (3, 6–8). �e comparison is complex in that the e�ciency is a�ected not only by matching but 
also by other factors that are di�cult to specify in advance (9). In summary, matching is e�cient if 
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the matching variables are true confounders and if only a moder-
ate number of controls must be dropped because they cannot be 
matched to a case (9).

Age, sex, and race are common confounders as suggested by 
descriptive epidemiology (5). �e distributions of these vari-
ables may substantially di�er between cases and controls, and a 
random sample of controls may lead to spurious associations due 
to confounders. Matching is a method to tackle the problem, and 
there are two types of matching: frequency matching and indi-
vidual matching. In frequency matching, controls are selected 
such that cases and controls have similar distributions of match-
ing variables. In individual matching, matching is performed 
for cases individually assuming the majority in the population 
are controls. Given a particular case, the matched controls can 
be selected following exact matching, e.g., matching on sex, or 
interval matching, e.g., matching on age by within 3 years of the 
case’s age (age ± 3 years). Usually, the case–control matching ratio 
is �xed and preselected. While an increasing number of controls 
would increase precision in estimates and tests, the marginal 
improvement is negligible from a ratio beyond 4, except when 
the e�ect of exposure is large (5).

Matching may incur the sparse data problem that requires the 
use of matched methods. When the sample size is not su�ciently 
large relative to the number of strata where each matching set 
forms a stratum statistically, the sparse data problem arises 
and causes the estimate to bias away from the true value (10). 
Conditional logistic regression was developed as a remedy for the 
sparse data bias and has become a standard for analyzing matched 
case–control data (11). We argue that there are circumstances 
when the number of strata is large compared to the sample size 
but the sparse data problem does not exist. In a case–control 
study that investigates the association between cancer risk and 
exposure to asbestos, age is known to be a true confounder and 
assume cases and controls are matched on age by age ± 3 years. 
While the exposure frequency of asbestos signi�cantly di�ers 
between young and old subjects at the two ends, the di�erence 
is minimal between subjects who are only a few years apart. 
Subjects with similar ages thus can be grouped into a stratum 
without introducing bias to the association. With a decreasing 
number of strata, the sparse data problem is largely relieved, and 
unmatched methods become appropriate in theory.

Our research is motivated by one of the two misconceptions 
discussed by Pearce that if matching has been performed, then a 
“matched analysis” is required (12). Pearce conducted a simple 
experiment that mimicked a paired matched case–control study 
where each case was matched to a control from the same age 
group (young or old). Both matched and unmatched analyses 
yielded similar results. He thus concluded that pair matched 
analysis is not required unless cases and controls are genuinely 
matched, e.g., using siblings as controls or matching on many 
factors simultaneously. In this article, we extensively study the 
misconception by simulation where one case is matched to 
controls with a similar age, and the association and the e�ect 
of confounding vary. We hypothesize that matching on demo-
graphic variables typically generates “loose-matching” data, 
which can be appropriately analyzed by an unmatched method. 
In loose-matching data, one case can be matched to other 

controls without substantially changing the association. �e 
rematching may occur obeying or beyond the matching criteria, 
which implies that matching itself is not statistically e�cient. 
It is not straightforward, and we have no attempts to quantify 
loose matching. Instead, we simulate matched case–control data 
that mimic real data and meet the loose-matching de�nition. 
Our goal is to show that unmatched methods are appropriate  
for matched case–control data that are essentially loose-
matching data.

MATERIALS AND METHODS

Statistical Methods
Denote by Y the case–control status, where y = 1 if a case and 
y = 0 if a control. Denote by Xm = {Xm1, Xm2} a vector of match-
ing variables where variables in Xm1 are exactly matched and 
variables in Xm2 are interval matched. Denote by Xe, an exposure 
to associate with the case–control status, and Xo, a vector of 
unmatched variables to include in the model. Denote by S the 
id of matching set. s = i for subjects in the ith matching set for 
i = 1, 2, …, n. In the unconditional logistic regression, the model 
assuming no interaction is given by

 logit(π) = β β + + ,0 + e e m
Tx m o

T
oββ ββx x  (1)

where π is the probability of developing the disease, and β’s are 
the associated regression coe�cients. Correspondingly, the con-
ditional logistic regression model is given by

 logit(π) = β +β + + ,0i e e m

T
m o

T
o

2
2x ββ ββx x  (2)

where β0i denotes the contribution to the logit of all terms 
constant within the ith matching set and other parameters are 
as those de�ned in the unconditional model in Eq. 1 (11). �e 
interval matching variables need to be controlled in the con-
ditional model because the matching process makes cases and 
controls similar not only for the matching variables but also for 
the exposure status (12, 13). In each model, the two-sided P value 
against the null hypothesis, H0: βe = 0, is recorded as well as the βe 
estimate, here denoted by βe.

Simulations
We simulated matched case–control data to test for the associa-
tion between a binary exposure and the case–control status of a 
disease. We assumed that the exposure was the only predictor and 
age was the only confounder. One case was matched to k controls, 
and the number of cases was n1. �roughout this article, “case” is 
referred to as the outcome status of case in case–control studies.

Denote by pe the exposure frequency. Given the exposure 
status, the distribution of age (xa) was approximated by a normal 
distribution, N(μ0, σ2) for unexposed subjects and N(μ1, σ2) for 
exposed subjects. Given the exposure status and age, the disease 
risk was modeled by

 logit(π) = β +β +β ,0 e e a axx  (3)

where xe was 1 if exposed and 0 if unexposed. βe and βa were speci-
�ed via the odds ratios of the exposure and age. β0 was chosen 
such that the disease prevalence was controlled at K. Based on the 
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model in Eq. 3, the probability of developing the disease given the 
exposure status and age was

 
π( , ) = ( = | , ) =

(β +β +β )

+ (β β +β
x x Y x x

x
e a e a

a a

Pr 1
exp

1 exp

0

0

e e

e e a a

x

x x+ ))
.

 
(4)

A forward simulation was conducted to simulate the data of 
cases. We �rst simulated exposed and unexposed subjects fol-
lowed by their ages and then case–control statuses based on the 
disease probability in Eq. 4. �e simulated age was truncated to 
its smallest following integer due to the perception of age. �e 
simulation continued until collecting su�cient cases to power 
the study.

We assumed that the population size is unlimited, and every 
case can be matched a control. To facilitate the case–control 
matching, we simulated the exposure statuses and ages of 
matched controls from the distribution of exposure status and age 
for controls aged in the matching range. Let the age of a case be 
u and the matched controls with an age within {u1, u2} = {u − d, 
u + d}, where both u and d are integers. �e exposure status and 
age of every matched control were jointly simulated from

 

Pr( )| = , ∈ =
( , , = )

( = , = ,
=∑

x x y x
x x y

x x j y
e a a

e a

j
e a

, 0
0

P


Pr

r
i u

u
i

0

1

1

2

=∑ == )
,

0
 

(5)

where xe = 0, 1, and xa = u − d, u − d + 1,…, u + d − 1, u + d.  
In the denominator,

 

Pr Pr( , , = ) ( = )

Φ( + | µ ,σ ) −Φ( | µ ,σ ) × − π(

x x y x

j j

e a e

i i

= = =

 

i j i0

121 2 xx i x je a= , ) ,=   (6)

where Φ(⬝) is the cumulative density function of a normal distri-
bution governed by a mean and a SD.

In our settings, we considered a disease with the prevalence 
of 10%. We assumed that the exposure frequency was 30%, the 
age distribution of unexposed subjects was N(μ0, σ2), and the age 
distribution of exposed subjects was N(μ1, σ2), where μ0 = 50, 60, 
65 and μ1 = 70. �e odds ratio associated with the exposure was 
set to 1.5, and the odds ratio associated with a 10-year increase 
in age was 1, 1.5, 2, or 3. One case was matched to 1, 2, 3, or 4 
controls by age ± d, where d = 0, 1, 2, and 3. �e age distributions 
of cases and controls are presented using a population sample 
that contains 10,000 cases (Figures 1 and 2) for the settings of 
μ0 = 65, 50. �e age distributions for μ0 = 60 are in between the 
distributions for μ0 = 65, 50 and are not presented here for saving 
space.

�e signi�cance level was set to 5% to test against H0: βe = 0. 
1,000 data sets were used when the alternative hypothesis 
(H1: βe ≠ 0) was true. 10, 000 data sets were simulated instead 
when the null hypothesis was true. Each data set contained 
a number of matching sets (one case and one control). Each 
matching set contributed data to age, exposure, and outcome. 
�e number of matching sets was chosen for a power around 
80% across simulation settings, i.e., 400, 500, and 900 when 
age distributions of exposed and unexposed subjects were 5, 
10, and 20 years apart. Speci�cally, the sample size was roughly 
determined by simulations. More simulation replicates were 
required to provide su�cient accuracy for type I errors around 
5%. �e unconditional and conditional models were �tted to 

each data set and were compared across data sets by type I error 
and power for testing and by bias and width of 95% con�dence 
interval for estimation.

RESULTS

In simulations, we manipulated the confounding e�ect of age 
by the odds ratio associated with a 10-year increase in age and 
by the mean di�erence in age between exposed and unexposed 
subjects. �e results are consistent regardless of case–control 
matching ratio. �erefore, we only present the results of 1:1 
matching.

Hypothesis Testing
For the hypothesis test on βe, we compare the unconditional and 
conditional models by type I error under the null hypothesis, 
H0: βe =  0 and by power under the alternative hypothesis, H1: 
βe ≠ 0. In Table 1, we present the type I error results. A type I 
error is considered reasonable if falling in the 95% con�dence 
interval for the nominal level of 5%: 0.0457, 0.0543. �e power 
simulation results are presented in Table 2. �e two models are 
considered equally powerful if the absolute power di�erence is 
smaller than 5%.

When the mean age di�erence is 5, i.e., age distribution  
N(65, 102) for unexposed subjects and N(70, 102) for exposed 
subjects, the type I error consistently falls in the acceptable range 
(le� panel in Table  1). �e only out-of-the-range type I error 
most likely occurring by chance is from the conditional model 
when the age matching range is age ± 2. �e unconditional mod-
els consistently give similar power with an absolute di�erence 
smaller than 5% (le� panel in Table 2).

When the mean age di�erence is 10, i.e., age distribution  
N(60, 102) for unexposed subjects and N(70, 102) for exposed 
subjects, the results are consistent with those when the mean dif-
ference is 5. Both models give reasonable type I errors. Except for 
a couple of scenarios, they produce type I errors below the range 
(middle panel in Table  1). Both models are equally powerful 
when the alternative hypothesis is true (middle panel in Table 2).

When the mean age di�erence is 20, i.e., age distribution 
N(50, 102) for unexposed subjects and N(70, 102) for exposed 
subjects, the conditional model consistently maintains a reason-
able type I error, while the unconditional model gives a type 
I error below the range (right panel in Table 1). Both models 
perform similarly in terms of power (right panel in Table  2). 
�e unconditional model, however, is consistently less powerful 
than the conditional model. When the odds ratio associated 
with a 10-year increase in age is 3, the power is decreasing with 
a wider matching range of age. �is is not observed until the 
confounding e�ect is large.

Estimation
We compare the unconditional and conditional models in the 
estimation of βe by bias or percent of bias and width of 95% 
con�dence interval. We let the odds ratio associated with the 
exposure be 1 under the null hypothesis and 1.5 under the alter-
native hypothesis, equivalent to βe =  ln 1.5 = 0.0405 under the 
alternative hypothesis.
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FIGURE 1 | Age distributions of cases (white) and controls (grey) in the population, where the age distributions of exposed and unexposed subjects are N(70, 102) 

and N(65, 102), respectively, and OR (agex10) denotes odds ratio associated with a 10-year increase in age.
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Over the simulation replicates, we collect the βe estimates to 
calculate the percent of bias (% bias) when the alternative hypoth-
esis is true by

 
% =

β −β

β
× %

β −β

β
× ,

=

,
bias

1
100

nr

n
e j

r

j

e

e

e e

e1

100∑ =


%

 
(7)

where β ,

e j is the estimate for βe at the jth simulation replicate, 

nr is the number of simulation replicates, and β = β
=

∑e

j

1

1nr

n

e j

r 
, . 

When the null hypothesis is true, i.e., βe  =  0, the bias, βe e−β ,  

is reported instead. Using the same notations and letting SE 

stand for stand error, the 95% con�dence interval for βe at the jth 
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FIGURE 2 | Age distributions of cases (white) and controls (grey) in the population where the age distributions of exposed and unexposed subjects are N(70, 102) 

and N(50, 102) and OR (agex10) denotes odds ratio associated with a 10-year increase in age.

5

Kuo et al. Age-Matched Case-Control Data Analysis

Frontiers in Public Health | www.frontiersin.org March 2018 | Volume 6 | Article 57

simulation replicate is (β − × 
e j e jz, . ,0 975 SE β( ), β × 

e j e j, ,+ ( )z0.975 SE β )  

and the corresponding width of 95% con�dence interval is 

2 0 975× × β ,z . SE

e j( ) . Over the simulation replicates, instead of 

taking average of widths of 95% con�dence interval, we calculate 
the averaged width of 95% con�dence interval by

 
Width of CI 2 SE95 0 975% = × × ,βz e.

( )  
(8)
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TABLE 1 | Type I errors of unconditional and conditional logistic regression models.

Age distribution of unexposed and exposed subjects (in years)

N(65, 102) vs. N(70, 102) N(60, 102) vs. N(70, 102) N(50, 102) vs. N(70, 102)

d Unconditional Conditional Unconditional Conditional Unconditional Conditional

Odds ratio associated with a 10-year increase in age = 1

0 0.048 0.048 0.046 0.046 0.040 0.053

1 0.052 0.051 0.047 0.048 0.038 0.052

2 0.049 0.049 0.049 0.050 0.036 0.049

3 0.051 0.051 0.050 0.050 0.034 0.048

Odds ratio associated with a 10-year increase in age = 1.5

0 0.050 0.049 0.050 0.050 0.041 0.051

1 0.048 0.046 0.044 0.044 0.038 0.049

2 0.050 0.049 0.051 0.051 0.040 0.052

3 0.052 0.050 0.052 0.051 0.040 0.049

Odds ratio associated with a 10-year increase in age = 2

0 0.051 0.050 0.051 0.051 0.038 0.047

1 0.048 0.049 0.051 0.050 0.039 0.050

2 0.053 0.053 0.046 0.046 0.037 0.047

3 0.052 0.049 0.047 0.048 0.039 0.048

Odds ratio associated with a 10-year increase in age = 3

0 0.049 0.048 0.045 0.046 0.039 0.050

1 0.048 0.047 0.051 0.052 0.038 0.050

2 0.047 0.045 0.050 0.050 0.041 0.053

3 0.052 0.052 0.050 0.050 0.046 0.053

Cases and controls were matched by age ± d. The odds ratio associated with the exposure was 1 under the null hypothesis, H0: βe = 0. Numbers of matching sets were 400, 500, 

and 900 in the three scenarios of age distributions. Type I errors out of the 95% con�dence interval for the nominal level of 5% were highlighted in bold, 0.0457, 0.0543.
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where SE
1

1

β β
−

−β,
 
e

j

n

e j e

r

( ) = ( )
=

∑
nr 1

2

 is the estimated SE of βe, 

and z0.975 is the inverse cumulative density of the standard normal 
at 0.975. βe is unbiased when the percent of bias is 0%. �e width 
of 95% con�dence interval is compared between models only 
when both percents of bias are within ±5%, which is considered 
acceptable.

�e estimation results assuming the null hypothesis is true are 
presented in Tables 3 and 4. In Table 3, the bias is consistently 
around 0 regardless of confounding e�ect and age matching 
range. In Table 4, the width of 95% con�dence interval does not 
vary signi�cantly with age matching range and odds ratio associ-
ated with a 10-year increase in age. It remains similar between 
unconditional and conditional models until the mean age dif-
ference reaches 20 when the unconditional model has a shorter 
interval than the conditional model. �e SE of βe is around 0.15 
across simulation settings under both models but reduces to 0.13 
under the unconditional model when the mean age di�erence is 
20. �e reduction in the SE leads to the di�erence of 0.08 roughly 
in the width of 95% con�dence interval.

�e estimation results when the alternative hypothesis is 
true are presented in Table 5 (% of bias) and Table 6 (width of 
95% con�dence interval). When the mean age di�erence is 5,  
i.e., age distribution N(65, 102) for unexposed subjects and N(70, 102)  
for exposed subjects, both models consistently give similar 
percents of bias within the range of ±5% and also similar widths 
of 95% con�dence interval. While the di�erence is negligible, 
the unconditional model consistently produces a shorter 95% 
con�dence interval than the conditional model. �e �ndings 

are consistent when the mean age di�erence is 10. When the 
mean age di�erence is 20, the unconditional model consistently 
underestimates βe with a percent of bias smaller than −5%, but 
the conditional model consistently produces a bias within ±5% 
range. �e width of 95% con�dence interval is not compared 
between models because the unconditional estimate is always 
biased.

DISCUSSION

In conclusion, unconditional and conditional logistic regres-
sion models perform similarly in testing and estimation except 
when the age distributions of exposed and unexposed subjects 
are 20 years apart. When the two age distributions are 20 years 
apart, the unconditional model consistently gives a type I error 
below the acceptable range and is slightly less powerful than 
the conditional model under the alternative hypothesis. When 
the null hypothesis is true, the unconditional model unbiasedly 
estimates the e�ect of exposure and gives a shorter 95% con�-
dence interval than the conditional model. When the alternative 
hypothesis is true, the unconditional model signi�cantly under-
estimates the e�ect of exposure while the conditional model 
consistently produces an unbiased estimate.

When the mean age of exposed subjects is 20 years older than 
that of unexposed subjects, cases are more likely to be matched 
to controls with the same exposure status and the association 
is diminished accordingly. �e unconditional method ignores 
matching but adjusts for confounding in the framework of 
regression. In general, the Mantel–Haenszel estimator and the 
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TABLE 2 | Power of unconditional and conditional logistic regression models.

Age distribution of unexposed and exposed subjects (in years)

N(65, 102) vs. N(70, 102) N(60, 102) vs. N(70, 102) N(50, 102) vs. N(70, 102) 

d Unconditional Conditional Unconditional Conditional Unconditional Conditional

Odds ratio associated with a 10-year increase in age = 1

0 0.73 0.73 0.78 0.77 0.78 0.80

1 0.77 0.76 0.76 0.77 0.78 0.81

2 0.73 0.72 0.76 0.75 0.78 0.81

3 0.73 0.73 0.77 0.78 0.78 0.80

Odds ratio associated with a 10-year increase in age = 1.5

0 0.76 0.76 0.80 0.80 0.82 0.84

1 0.75 0.74 0.81 0.82 0.79 0.83

2 0.80 0.80 0.81 0.80 0.81 0.83

3 0.78 0.78 0.82 0.82 0.81 0.84

Odds ratio associated with a 10-year increase in age = 2

0 0.80 0.79 0.80 0.80 0.76 0.78

1 0.79 0.79 0.83 0.82 0.81 0.83

2 0.79 0.79 0.82 0.80 0.78 0.82

3 0.78 0.77 0.80 0.80 0.75 0.76

Odds ratio associated with a 10-year increase in age = 3

0 0.76 0.76 0.83 0.83 0.77 0.80

1 0.80 0.80 0.85 0.85 0.76 0.78

2 0.79 0.78 0.82 0.82 0.75 0.79

3 0.81 0.78 0.85 0.83 0.71 0.74

Cases and controls were matched by age ± d. The odds ratio associated with the exposure was 1.5 under the alternative hypothesis, H0: βe ≠ 0. Numbers of matching sets were 

400, 500, and 900 in the three scenarios of age distributions. Power simulation results that gave a difference between models 5% or greater were highlighted in bold.

TABLE 3 | Biases of unconditional and conditional logistic regression models under the null hypothesis.

Age distribution of unexposed and exposed subjects (in years)

N(65, 102) vs. N(70, 102) N(60, 102) vs. N(70, 102) N(50, 102) vs. N(70, 102)

d Unconditional Conditional Unconditional Conditional Unconditional Conditional

Odds ratio associated with a 10-year increase in age = 1

0 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.01 0.01

3 0.00 0.00 0.01 0.01 0.01 0.01

Odds ratio associated with a 10-year increase in age = 1.5

0 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.01 0.01 0.00 0.00

Odds ratio associated with a 10-year increase in age = 2

0 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 −0.01 0.00

Odds ratio associated with a 10-year increase in age = 3

0 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 −0.01 −0.01

3 0.00 0.00 0.00 0.00 −0.02 −0.01

Cases and controls were matched by age ± d. The odds ratio associated with the exposure was 1 under the null hypothesis, H0: βe = 0. Numbers of matching sets were 400, 500, 

and 900 in the three scenarios of age distributions.
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logit-based estimator are similar when the data within strata, 
here age groups, are not too sparse (11). Without losing generaliz-
ability, assume that age is grouped into a few age groups. �e data 

of each age group can be organized in a 2 by 2 table of exposure 
status (exposed/unexposed) vs. disease status (case/control)  
(see Table 7).
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TABLE 4 | Widths of 95% confidence interval of unconditional and conditional logistic regression models under the null hypothesis.

Age distribution of unexposed and exposed subjects (in years)

N(65, 102) vs. N(70, 102) N(60, 102) vs. N(70, 102) N(50, 102) vs. N(70, 102)

d Unconditional Conditional Unconditional Conditional Unconditional Conditional

Odds ratio associated with a 10-year increase in age = 1

0 0.60 0.61 0.57 0.58 0.52 0.60

1 0.58 0.59 0.60 0.61 0.51 0.59

2 0.62 0.63 0.58 0.60 0.50 0.58

3 0.61 0.62 0.59 0.60 0.50 0.58

Odds ratio associated with a 10-year increase in age = 1.5

0 0.61 0.62 0.57 0.58 0.49 0.56

1 0.56 0.57 0.56 0.57 0.48 0.54

2 0.58 0.58 0.56 0.57 0.48 0.54

3 0.60 0.62 0.55 0.56 0.50 0.56

Odds ratio associated with a 10-year increase in age = 2

0 0.57 0.58 0.56 0.57 0.50 0.56

1 0.59 0.61 0.53 0.54 0.50 0.57

2 0.57 0.59 0.56 0.57 0.51 0.58

3 0.60 0.61 0.56 0.58 0.52 0.59

Odds ratio associated with a 10-year increase in age = 3

0 0.58 0.59 0.56 0.57 0.53 0.59

1 0.57 0.58 0.53 0.54 0.50 0.57

2 0.57 0.58 0.55 0.57 0.52 0.60

3 0.61 0.63 0.54 0.56 0.53 0.61

Cases and controls were matched by age ± d. The odds ratio associated with the exposure was 1 under the null hypothesis, H0: βe = 0. Numbers of matching sets were 400, 500, 

and 900 in the three scenarios of age distributions.
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TABLE 5 | Percents of bias (%) of unconditional and conditional logistic regression models under the alternative hypothesis.

Age distribution of unexposed and exposed subjects (in years)

N(65, 102) vs. N(70, 102) N(60, 102) vs. N(70, 102) N(50, 102) vs. N(70, 102)

d Unconditional Conditional Unconditional Conditional Unconditional Conditional

Odds ratio associated with a 10-year increase in age = 1

0 −1.36 −1.22 −0.40 0.95 −10.95 1.49

1 0.27 0.68 −1.53 −0.32 −10.91 1.61

2 −1.75 −1.33 −1.64 −0.11 −10.79 0.95

3 −1.04 −0.79 −0.23 1.38 −9.07 3.26

Odds ratio associated with a 10-year increase in age = 1.5

0 0.14 0.17 0.31 0.91 −7.62 2.44

1 −3.93 −3.49 0.26 1.22 −9.71 0.15

2 2.48 3.17 0.28 1.43 −8.39 1.62

3 1.69 1.97 0.51 1.38 −9.20 0.89

Odds ratio associated with a 10-year increase in age = 2

0 −0.10 −0.05 −1.85 −1.16 −12.18 −2.52

1 1.93 2.49 −1.82 −1.32 −9.35 0.78

2 0.06 0.66 −0.73 −0.20 −10.24 0.45

3 0.91 1.17 −0.26 0.22 −13.36 −3.13

Odds ratio associated with a 10-year increase in age = 3

0 −2.16 −2.13 0.10 0.72 −9.93 0.30

1 0.84 1.38 0.34 1.22 −10.94 −0.08

2 0.08 0.39 −0.56 0.04 −11.05 0.99

3 1.77 1.98 1.15 1.67 −15.28 −2.68

Cases and controls were matched by age ± d. The odds ratio associated with the exposure was 1.5 under the alternative hypothesis, H0: βe ≠ 0. Numbers of matching sets were 

400, 500, and 900 in the three scenarios of age distributions. Percents of bias out of ±5% range were highlighted in bold.
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TABLE 6 | Widths of 95% confidence interval of unconditional and conditional logistic regression models under the alternative hypothesis.

Age distribution of unexposed and exposed subjects (in years)

N(65, 102) vs. N(70, 102) N(60, 102) vs. N(70, 102) N(50, 102) vs. N(70, 102)

d Unconditional Conditional Unconditional Conditional Unconditional Conditional

Odds ratio associated with a 10-year increase in age = 1

0 0.60 0.61 0.57 0.58 0.52 0.60

1 0.58 0.59 0.60 0.61 0.51 0.59

2 0.62 0.63 0.58 0.60 0.50 0.58

3 0.61 0.62 0.59 0.60 0.50 0.58

Odds ratio associated with a 10-year increase in age = 1.5

0 0.61 0.62 0.57 0.58 0.49 0.56

1 0.56 0.57 0.56 0.57 0.48 0.54

2 0.58 0.58 0.56 0.57 0.48 0.54

3 0.60 0.62 0.55 0.56 0.50 0.56

Odds ratio associated with a 10-year increase in age = 2

0 0.57 0.58 0.56 0.57 0.50 0.56

1 0.59 0.61 0.53 0.54 0.50 0.57

2 0.57 0.59 0.56 0.57 0.51 0.58

3 0.60 0.61 0.56 0.58 0.52 0.59

Odds ratio associated with a 10-year increase in age = 3

0 0.58 0.59 0.56 0.57 0.53 0.59

1 0.57 0.58 0.53 0.54 0.50 0.57

2 0.57 0.58 0.55 0.57 0.52 0.60

3 0.61 0.63 0.54 0.56 0.53 0.61

Cases and controls were matched by age ± d. The odds ratio associated with the exposure was 1.5 under the alternative hypothesis, H0: βe ≠ 0. Numbers of matching sets were 

400, 500, and 900 in the three scenarios of age distributions.

TABLE 7 | 2 by 2 table of exposure status vs. disease status.

Case Control

Exposed a b

Unexposed c d

Denoted by a, b, c, and d, the four cell counts representing the 
numbers of exposed cases, exposed controls, unexposed cases, 
and unexposed controls, respectively. �e Mantel–Haenszel odds 
ratio is given by

 

ψ
MH = / ,∑

i

i i

i

i i

i

a d

n

bc

n  
(9)

where i is the index of age group. �e top and bottom age groups 
particularly have the ratio of number of cases to number of con-
trols given the exposure status close to the case–control matching 
ratio. �e addition from a particular age group to the numerator 
and the denominator tend to be similar, which drives the associa-
tion toward the null value.

In simulations, we �xed the disease prevalence at 10% and the 
exposure frequency at 30%. However, we do not expect that the 
relative performance of unconditional and conditional logistic 
regression models will change with varying disease prevalence 
and/or exposure frequency. �e sample size (the number of 
matching sets) needed to achieve 80% power at the 5% signi�-
cance level depends on the disease prevalence and exposure fre-
quency. �rough simulations, we assumed well-powered studies, 
and every case can be matched to a control, which is reasonable 
because the question that we attempt to address is whether a 
matched case–control data need to be analyzed by conditional 

logistic regression model. When the disease prevalence or the 
exposure frequency is lower, a larger sample size is needed to 
maintain 80% power, but the sample size for both methods is 
the same. �e sample size is chosen for a combination of disease 
prevalence and exposure frequency to ensure 80% power. For a 
su�ciently large sample size regardless of disease prevalence and 
exposure frequency, our conclusions are generalizable for other 
disease prevalence and exposure frequency. Again, the objective 
of this article is to compare the two methods given a matched 
case–control data instead of unmatched and matched data from 
di�erent study designs where matched data tend to have a smaller 
sample size due to unmatched cases.

Our �ndings suggest that when cases and controls are mat-
ched on age only, the data are essentially loose-matching data, 
and unconditional logistic regression is a proper method when 
the age distributions of exposed and unexposed subjects are not 
signi�cantly apart. Previous literature has provided in-depth 
discussion about the advantages of unconditional regression 
model compared to its conditional alternative, such as con-
venience, easy to access, straightforward interpretation, and 
the potential to preserve unmatched controls (12). We argue 
that matched case–control studies have been underappreciated 
by the misconception that matched case–control data can be 
analyzed only by matched methods. A paper reviewed statistical 
methods of 37 matched case–control studies published in 2010. 
Among these studies, a majority of them performed match-
ing on demographic variables namely age and sex only. It was 
concluded that less than half studies (43%) were analyzed with 
proper statistical techniques (14). �e conclusion was made as 
the authors claimed following the book of Breslow et  al. (1), 
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where a Mantel–Haenszel matched-pairs analysis or conditional 
logistic regression was expected for dichotomous outcomes. 
Based on our �ndings, matched methods are not necessary for 
loose-matching data, e.g., data matched on a small number of 
demographic variables. While we believe that it is realistically 
rare to observe two age distributions that are 20 years apart for 
exposed and unexposed subjects, it gives us an example how 
the matching distortion (matched cases and controls tend to 
share the same exposure status) fails the unconditional logistic 
regression model. In contrast, the matching distortion was cor-
rected by including the matching variables in the conditional 
logistic regression model (12, 13). Although we only considered 
a single matching variable, i.e., age, our �ndings can be gene-
ralized for matching on sex and age that apparently produces 
loose-matching data. With an increasing number of matching 
variables, loose matching is less likely to hold in the data,  
e.g., matching variables used in the study by Jenab et al. (15): age, 
gender, study center, time of day at blood collection, and duration 
of fasting at blood collection; women were further matched by 
menopausal status, phase of menstrual cycle at the time of blood 
collection, and use of hormone replacement therapy. However, 
the strength of loose matching is not always re�ected from the 
number of matching variables. Matching on neighborhood or 
matching based on relationships implicitly matches numerous 
unmeasured variables including unmeasurable variables. Such 
studies apparently generate genuinely matched data that need 
to be analyzed by matched methods. It should be cautioned that 
our �ndings are for matched case–control data and cannot be 
generalized for propensity score (PS) matched data. PS method 
was developed to facilitate causal inference in the spirit of 
clinical trials (16). Matching in PS method is performed on the 
probability of a treatment assignment, which is determined by 
a selection of variables including confounders. A�er controlling 
for these variables, it is assumed that the outcome is indepen-
dent of treatment status. �e study is typically a cohort study, 
and the purpose of PS matching is to ensure that the treatment 
groups are balanced with respect to the variables (conditional 
independence). In contrast, case–control studies are retrospec-
tive studies, and the exposure status is observed. While there is 
a debate about whether treated and untreated samples should 
be regarded as independent, which will inform the choice of 
statistical methods (17), it is di�erent from the question that 

we have tried to address in terms of study design and matching 
scheme.

�e scope of this study is limited to case–control studies that 
perform matching on a few demographic variables and consider 
methods of unconditional and conditional logistic regression 
models. In addition, the simulation settings assume absolute 
matching success, no model misspeci�cation, and no interac-
tion between exposure and matching variables. However, these 
assumptions can be relaxed and will require further investigation. 
An unpublished data of Kuo’s collaborator was collected to assess 
placental telomere length in preterm fetal growth restriction 
where each preterm fetal growth restriction case was matched 
to two controls by gestational age within 6  days of deliveries. 
�e results by a linear regression model (unmatched method) 
and a linear mixed e�ects model assuming random e�ects for 
matching sets (matched method) were quite similar in terms 
of regression coe�cient and P value associated with the case–
control status, which supports our �nding that case–control 
data matched on a few demographic variables can be properly 
analyzed by unmatched methods. To conclude, it has been known 
that matched methods, e.g., conditional logistic regression, are 
required for genuinely matched case–control data to tackle the 
sparse data problem. Matched methods additionally are robust 
to the matching distortion. Unmatched methods, e.g., uncondi-
tional logistic regression, are viable options for loose-matching 
data based on our �ndings. When the study design involves 
other complex features such as censoring and repeated measures, 
matching on a few demographic variables can be ignored if the 
confounding e�ect is not very large. Standard methods such as 
Cox regression and generalized estimating equation then can 
be readily applied. Unmatched methods also are appealing for 
saving computational time when the same analysis needs to be 
repeated extensively, e.g., genome-wide association analysis.  
In addition to matching, other factors also need to be considered, 
such as study design and practical feasibility when choosing a 
statistical method.
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