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High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate
with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement
produced by spontaneous parametric down-conversion and show that it is secure against collective attacks.
Its security rests upon visibility data—obtained from Franson and conjugate-Franson interferometers—that
probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper
bound can be established on the eavesdropper’s Holevo information by translating the Gaussian-state
security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We
show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful,
secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach
into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy
entanglement HDQKD could permit a 700-bit=sec secure-key rate and a photon information efficiency of 2
secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system
efficiency.
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Quantum key distribution (QKD) [1] promises uncondi-
tionally secure communication by enabling one-time
pad transmission between remote parties, Alice and Bob.
Continuous-variable QKD (CVQKD) [2,3] and discrete-
variable QKD (DVQKD) [4,5] utilize infinite-dimensional
and finite-dimensional Hilbert spaces, respectively.
CVQKD exploits the wave nature of light to encode
multiple bits into each transmission, but it has been limited
to 80 km in optical fiber [3,6,7] because the eavesdropper
(Eve) can obtain partial information from a beam-splitting
attack. The predominant DVQKD protocol is Bennett-
Brassard 1984 (BB84), which uses a two-dimensional
Hilbert space. The decoy-state BB84 protocol [8,9] has
demonstrated nonzero secure-key rates (SKRs) over
144 km in free space [10] and 107 km in optical fiber
[11], but its photon information efficiency (PIE) cannot
exceed 1 key bit per sifted photon.
High-dimensional QKD (HDQKD) using single photons

[12] can utilize the best features of the continuous and
discrete worlds, with the Hilbert space of single-photon
arrival times providing an appealing candidate for
its implementation. The time-energy entanglement of
photon pairs produced by spontaneous parametric down-
conversion (SPDC) has been employed in HDQKD experi-
ments [13,14], although these works lacked rigorous
security proofs. Security proofs for time-energy entangled
HDQKD have been attempted by discretizing the continu-
ous Hilbert space to permit use of DVQKD security
analyses [12,15], but the validity of the discretization
approach has not been proven. CVQKD security analysis

[16,17] uses the quadrature-component covariance matrix
to derive a lower bound on the SKR in the presence of a
collective attack. We take an analogous approach—using
the time-frequency covariance matrix (TFCM)—for our
time-energy entanglement HDQKD protocol.
The TFCM for our protocol can be obtained using the

dispersive-optics scheme from [18], although dense wave-
length-division multiplexing (DWDM) may be required to
do so [19]. An experimentally simpler technique—utilizing
a Franson interferometer—has been conjectured [13,14] to
be sufficient for security verification. Its robustness against
some specific attacks has been discussed [14,20], but
security against collective attacks has not been proven
and [20] suggests that such a proof may be impossible.
This Letter proves that time-energy entanglement

HDQKD can be made secure against Eve’s collective
attack when a Franson interferometer is used for security
verification in conjunction with a dispersion-based
frequency-difference measurement. Our proof relates the
Franson interferometer’s fringe visibility to the TFCM’s
frequency elements that, together with the frequency-
difference measurement, establishes an upper bound on
Eve’s Holevo information. We introduce another nonlocal
interferometer—the conjugate-Franson interferometer—
and link its fringe visibility to the TFCM’s arrival-time
elements [21]. Employing both interferometers increases
the SKR.
Our fringe visibility results presume that the entangle-

ment source emits at most one photon pair in a measurement
frame, which need not be the case for SPDC. Thus, we
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incorporate decoy-state operation [8,9] to handle multiple-
pair emissions. We show that time-energy entanglement
HDQKD could permit a 700 bit=sec SKR over a 200-km
transmission distance in optical fiber. We also show that a
PIE of 2 secure-key bits per photon coincidence can be
achieved in the key-generation phase using receivers with
a 15% system efficiency. Before beginning our security
analysis, we provide a brief explanation of our protocol.
Suppose Alice has a repetitively pumped, frequency-

degenerate SPDCsource that,within a time frameof duration
of Tf sec, which is centered at time tm ¼ 3mTf, emits a
single photon pair in the state [22]

jψmiSI ∝
Z

dtS

Z
dtIe−ðtþ−tmÞ

2=4σ2coh−t
2
−=4σ2cor−iωPtþjtSiSjtIiI

(1)

for some integer m. In this expression, ωP is the pump
frequency; jtSiS (jtIiI) represents a single photon of the
signal (idler) at time tS (tI); tþ ≡ ðtS þ tIÞ=2; t− ≡ tS − tI;
the root-mean-square coherence time σcoh ¼ Tf=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 lnð2Þp

∼ nsec is set by the pump pulse’s duration;
and the root-mean square correlation time σcor ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þp

=2πBPM ∼ psec is set by the reciprocal of the
full-width at half-maximum (FWHM) phase-matching
bandwidth, BPM, in Hz. Now suppose that, despite propa-
gation losses and detector inefficiencies, Alice and Bob
detect the signal and idler, respectively, from the preceding
photon pair and record the associated arrival times [23,24].
After many such frames, they use public communication to
reconcile their arrival-time data, resulting in their sharing
nR random bits per postselected frame, i.e., frames used
for key generation in which Alice and Bob both made
detections. How many of those bits are secure against Eve’s
collective attack? Before turning to the security analysis,
we pause for a brief note about Eq. (1). This expression
is an oft-used approximation for the postselected biphoton
state produced by an SPDC source (see, e.g., [14]).
Moreover, entanglement engineering can be employed to
achieve a close match to a truly Gaussian biphoton wave
function [25].
Our security analysis begins with the positive-

frequency field operators, ÊSðtÞ and ÊIðtÞ, for the
linearly polarized single spatial-mode signal and idler
fields emitted by Alice’s source, and their associated
frequency decompositions:

ÊSðtÞ ¼
Z

dω
2π

ÂSðωÞe−iðωP=2þωÞt; (2a)

ÊIðtÞ ¼
Z

dω
2π

ÂIðωÞe−iðωP=2−ωÞt. (2b)

The time-domain field operators ÊSðtÞ and ÊIðtÞ annihilate
signal and idler photons, respectively, at time t, and

they obey the canonical commutation relations,
½ÊJðtÞ; Ê†

KðuÞ� ¼ δJKδðt − uÞ, for J;K ¼ S; I. Their fre-
quency-domain counterparts, ÂSðωÞ and ÂIðωÞ, annihilate
signal and idler photons at detunings ω and −ω, respec-
tively. Our interest, however, is in the arrival-time and
angular-frequency operators,

t̂J ¼
Z

dttÊ†
JðtÞÊJðtÞ; (3a)

ω̂J ¼
Z

dω
2π

ωÂ†
JðωÞÂJðωÞ; (3b)

for J ¼ S; I when only one photon pair is emitted by the
source. Restricting these time and frequency operators to
the single-pair Hilbert space implies that they measure
the arrival times and frequency detunings of the signal and
idler photons. It also leads to the commutation relation
½ω̂J; t̂K� ¼ iϵJδJK [26], where ϵS ¼ −ϵI ¼ 1, making these
operators conjugate observables analogous to the quad-
rature components employed in CVQKD and justifying our
translating CVQKD’s covariance-based security analysis
[16,17] to our protocol.
To exploit the connection to CVQKD, we define an

observable vector Ô ¼ ½ t̂S ω̂S t̂I ω̂I �T. For a single-
pair state, the mean value of Ô is m ¼ hÔi, and the TFCM
is Γ ¼ hðΔÔΔÔ† þ H:c:Þi=2, where ΔÔ≡ Ô −m and
H.c. denotes Hermitian conjugate. The characteristic func-
tion associated with the single-pair state is χðζÞ ¼ heiζTÔi.
Given the covariance matrix Γ, the Gaussian state with
χðζÞ ¼ eiζ

Tm−ζTΓζ=2 yields an m-independent upper bound
on Eve’s Holevo information [16,17,27] when the SPDC
source emits a single-pair state.
A direct, complete measurement of the TFCM is quite

challenging, so we resort to indirect measurements—
using a Franson interferometer and a conjugate-Franson
interferometer—that provide useful partial information.
A Franson interferometer [28], shown in the top panel of
Fig. 1, consists of two unequal path-length Mach-Zehnder
interferometers, with the signal going through one and the

FIG. 1 (color online). (Top panel) Diagram for the Franson inter-
ferometer. (Bottom panel) Diagram for the conjugate-Franson
interferometer. PM, phase modulator; OFS, optical-frequency
shifter; Dispþ, positive dispersion element; Disp−, negative
dispersion element; D, detector.
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idler going through the other. The time delay ΔT between
each Mach-Zehnder interferometer’s long and short paths
is much greater than the correlation time σcor, ruling out
local interference in the individual interferometers. It is also
greater than the FWHM detector timing jitter, δT, so that
coincidences are only registered when both photons go
through the long or the short path. Each long path is
equipped with a phase modulator, imparting phase shifts
e−iϕS and e−iϕI to the signal and the idler, respectively.
The following lemma shows that Franson measurements,
augmented by dispersion-based frequency measurements,
bound the signal-idler frequency correlations [26].
Lemma 1.—For a single-pair state, let VFIðΔTÞ ¼

½PCFI
ð0Þ − PCFI

ðπÞ�=½PCFI
ð0Þ þ PCFI

ðπÞ�, where PCFI
ðϕS þ

ϕIÞ is Alice and Bob’s coincidence probability, be the 0-π
fringe visibility when the Franson interferometer has
delay ΔT. Then the variance of the signal-idler frequency
difference satisfies

hðΔω̂S − Δω̂IÞ2i ≤
2½1 − VFIðΔTÞ�

ΔT2
þ hð ~ωS − ~ωIÞ4i

12
ΔT2;

(4)

where ~ωS ( ~ωI) is the random variable associated with the
measured signal (idler) angular frequency from the con-
jugate-Franson interferometer with its frequency-shifted
arms disabled, i.e., when dispersion enables frequency
correlations to be measured from arrival-time coincidences.
A conjugate-Franson interferometer, shown in the

bottom panel of Fig. 1, consists of two equal path-length
Mach-Zehnder interferometers with one arm of each
containing an electro-optic optical-frequency shifter. To
rule out local interference, these devices shift the signal
and idler frequencies by −ΔΩ and ΔΩ, respectively, while
phase modulators (not shown) apply phase shifts e−iϕS

and e−iϕI , as was done in the Franson interferometer.
The positive and negative dispersion elements have coef-
ficients �β2 satisfying β2ΔΩ ¼ ffiffiffi

2
p

Tg > δT, where Tg is
the duration of detectors’ coincidence gate [29]. They
disperse the signal and idler’s frequency components with
respect to time so that two detectors suffice to measure
their frequency coincidences [18,26]. The following lemma
shows that conjugate-Franson measurements, augmented
by arrival-time measurements, bound the signal-idler
arrival-time correlations [26].
Lemma 2.—For a single-pair state, let

VCFIðΔΩÞ ¼ ½PCCFI
ð0Þ − PCCFI

ðπÞ�=½PCCFI
ð0Þ þ PCCFI

ðπÞ�,
where PCCFI

ðϕS þ ϕIÞ is Alice and Bob’s coincidence
probability, be the 0-π fringe visibility when the conjugate-
Franson interferometer has frequency shift ΔΩ. Then the
variance of the signal-idler arrival-time difference satisfies

hðΔt̂S − Δt̂IÞ2i ≤
2½1 − VCFIðΔΩÞ�

ΔΩ2
þ hð~tS − ~tIÞ4i

12
ΔΩ2;

(5)

where ~tS (~tI) is the random variable associated with the
measured signal (idler) arrival time from the Franson
interferometer with its long arms disabled.
Lemmas 1 and 2 are used below to bound Eve’s Holevo

information for a frame in which Alice’s source emits a
single photon pair. Because there is no security assurance
for multiple-pair emissions, we follow the lead of DVQKD
by employing decoy states [8,9] to deal with this problem.
In particular, Alice operates her SPDC source at several
different pump powers, enabling Bob and her to estimate
the fraction, F, of their coincidences that originated from
single-pair emissions [30].
To put an upper bound on Eve’s Holevo information, we

start from the following points: (1) Symmetry dictates that
only 10 TFCM elements need to be found. Of these, hΔω̂2

Si
and hΔt̂2Si are immune to Eve’s attack because Eve does not
have access to Alice’s apparatus, which contains the SPDC
source. (2) Given the Franson and conjugate-Franson
interferometer’s fringe visibilities, making hΔt̂JΔω̂Ki ≠
0, for J; K ¼ S; I, does not increase Eve’s Holevo
information [26]. (3) From lemmas 1 and 2, we can
determine upper bounds on the excess noise factors
1þ ξω ≡ hðΔω̂S −Δω̂IÞ2i=hðΔω̂S0 −Δω̂I0Þ2i and 1þ ξt≡
hðΔt̂S − Δt̂IÞ2i=hðΔt̂S0 − Δt̂I0Þ2i, where hðΔt̂S0 − Δt̂I0Þ2i
and hðΔω̂S0 − Δω̂I0Þ2i are the source’s variances as mea-
sured by Alice during her source-characterization phase.
Points 1–3 specify a set, M, of physically allowed

TFCMs that preserve the Heisenberg uncertainty rela-
tions for the elements of Ô, which are implied by
½ω̂J; t̂K� ¼ iϵJδJK. For each TFCM Γ ∈ M, the Gaussian
state χðζÞ ¼ e−ζ

TΓζ=2 affords Eve the maximum Holevo
information [16,17,27]. Using χΓðA;EÞ to denote that
Holevo information, our partial information about Γ gives
us the upper bound χUBξt;ξωðA;EÞ ¼ supΓ∈M½χΓðA;EÞ� on
what Eve can learn from a collective attack on a single-pair
frame. Thus, Alice and Bob’s SKR (in bits per second) has
the lower bound [9,26,31]:

SKR ≥
qpr

3Tf
½βIðA;BÞ − ð1 − FÞnR − FχUBξt;ξωðA;EÞ�. (6)

Here, q is the fraction of the frames used for key generation
(as opposed to Franson or conjugate-Franson operation or
decoy-state transmission for parameter estimation); pr is
the probability of registering a coincidence in a frame; β is
the reconciliation efficiency; and IðA;BÞ is Alice and Bob’s
Shannon information.
In Fig. 2, the left panel plots Alice and Bob’s SKR versus

transmission distance for two frame durations and two
system efficiencies for Alice (ηA) and Bob’s (ηB) receivers,
which use superconducting nanowire single-photon detec-
tors. To calculate the ξωs, we assume that the measured VFI
values are their ideal values—93.25% for Tf ¼ 16δT and
98.27% for Tf ¼ 32δT—multiplied by 0.995. (These VFI
values are achievable; see [32] in which a 99.6% fringe
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visibility was reported.) For the red and blue curves, we
calculate the ξts by assuming that the measured VCFIs
are their ideal values—99.96% for both Tf ¼ 16δT and
Tf ¼ 32δT—multiplied by 0.995. For the black curve, ξt
represents jitter-limited raw arrival-time measurements.
We see that QKD is possible out to 200 km when Alice
and Bob have receivers with 15% system efficiency. Going
to 90% system efficiency allows QKD out to 300 km and
increases the SKR by nearly 2 orders of magnitude.
There is an important point to make about the SKR

curves associated with the two ξt values we have employed.
Constraining Eve to ξt ¼ 41.5 requires the use of a
conjugate-Franson interferometer because jitter-limited
raw arrival-time measurements cannot measure finer than
ξt ¼ 400 with our system parameters. Surprisingly, ξt ¼
400 still yields a positive SKR. This is because eavesdrop-
ping in one basis disturbs correlation in the conjugate basis.
In our protocol, Alice and Bob generate key from the time
basis, so degradation in the timing correlation does not
increase Eve’s Holevo information, although it slightly
reduces Alice and Bob’s mutual information and hence
their SKR.
The PIE is defined to be the number of secure-key bits

per photon coincidence in the key-generation phase,
PIE ¼ SKR × 3Tf=qpr. The right panel of Fig. 2 plots
PIE versus transmission distance. It shows that Alice and
Bob achieve PIE ≥ 2 secure-key bits per coincidence in the
key-generation phase out to 200 km when their receivers
have a 15% system efficiency.
Our protocol sacrifices potential SKR when detector

timing jitter, δT, exceeds the SPDC source’s correlation
time, σcor; i.e., IðA;BÞ cannot approach the ultimate limit
of log2ðσcoh=σcorÞ bits per coincidence that is set by the
source’s Schmidt number. That limit can be achieved with
DWDM that makes the two-photon correlation time in each

DWDM channel comparable to the detector timing jitter
[19] and deriving key from time-frequency coincidences. In
this case, the conjugate-Franson interferometer becomes
crucial because part of the secure key information is
obtained by frequency measurements. Nevertheless, the
TFCM is still sufficient to bound Eve’s Holevo
information.
Before concluding, it behooves us to compare our

security predictions with the individual-attack results
reported in Brougham et al. [20]. The comparison is not
entirely straightforward because those authors considered a
time-binned version of time-energy entanglement HDQKD
with no multiple-pair emissions or dark counts, whereas
our protocol operates in continuous time and includes both
of those effects. Consider the 1024-bin example from [20],
in which Eve obtains 6 of 10 bits when the Franson
interferometer’s fringe visibility is 99.2% and 5 bits when
that visibility is 99.8%. To compare our results with those,
we set Tf ¼ 1024

ffiffiffi
2

p
δT so that Alice and Bob’s mutual

information equals 10 bits per coincidence in the presence
of δT timing jitter when there are neither dark counts
nor multiple-pair emissions. Under these conditions, our
security analysis sets upper bounds of 6.07 and 5.83 bits
on Eve’s Holevo information for 99.2% and 99.8% Franson
interferometer visibility, respectively.
In summary, we adapted the Gaussian-state security

analysis for CVQKD to our time-energy entanglement
HDQKD protocol. We showed that a Franson interferom-
eter’s fringe visibility suffices against arbitrary collective
attacks when that measurement is used in conjunction
with decoy states, which allow the fraction of single-pair
SPDC frames to be estimated. Adding a conjugate-Franson
interferometer to the system enables tighter constraints
on the TFCM, leading to a higher SKR. Our protocol
promises QKD over 200 km and multiple secure bits per
coincidence.
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